summaryrefslogtreecommitdiff
path: root/clang/lib/StaticAnalyzer/Core
diff options
context:
space:
mode:
authorCarlo Zancanaro <carlo@pc-4w14-0.cs.usyd.edu.au>2012-10-15 17:10:06 +1100
committerCarlo Zancanaro <carlo@pc-4w14-0.cs.usyd.edu.au>2012-10-15 17:10:06 +1100
commitbe1de4be954c80875ad4108e0a33e8e131b2f2c0 (patch)
tree1fbbecf276bf7c7bdcbb4dd446099d6d90eaa516 /clang/lib/StaticAnalyzer/Core
parentc4626a62754862d20b41e8a46a3574264ea80e6d (diff)
parentf1bd2e48c5324d3f7cda4090c87f8a5b6f463ce2 (diff)
Merge branch 'master' of ssh://bitbucket.org/czan/honours
Diffstat (limited to 'clang/lib/StaticAnalyzer/Core')
-rw-r--r--clang/lib/StaticAnalyzer/Core/AnalysisManager.cpp78
-rw-r--r--clang/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp367
-rw-r--r--clang/lib/StaticAnalyzer/Core/BasicValueFactory.cpp291
-rw-r--r--clang/lib/StaticAnalyzer/Core/BlockCounter.cpp86
-rw-r--r--clang/lib/StaticAnalyzer/Core/BugReporter.cpp2056
-rw-r--r--clang/lib/StaticAnalyzer/Core/BugReporterVisitors.cpp784
-rw-r--r--clang/lib/StaticAnalyzer/Core/CMakeLists.txt45
-rw-r--r--clang/lib/StaticAnalyzer/Core/Checker.cpp31
-rw-r--r--clang/lib/StaticAnalyzer/Core/CheckerContext.cpp83
-rw-r--r--clang/lib/StaticAnalyzer/Core/CheckerHelpers.cpp80
-rw-r--r--clang/lib/StaticAnalyzer/Core/CheckerManager.cpp678
-rw-r--r--clang/lib/StaticAnalyzer/Core/CheckerRegistry.cpp150
-rw-r--r--clang/lib/StaticAnalyzer/Core/CoreEngine.cpp688
-rw-r--r--clang/lib/StaticAnalyzer/Core/Environment.cpp295
-rw-r--r--clang/lib/StaticAnalyzer/Core/ExplodedGraph.cpp405
-rw-r--r--clang/lib/StaticAnalyzer/Core/ExprEngine.cpp2076
-rw-r--r--clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp811
-rw-r--r--clang/lib/StaticAnalyzer/Core/ExprEngineCXX.cpp300
-rw-r--r--clang/lib/StaticAnalyzer/Core/ExprEngineCallAndReturn.cpp487
-rw-r--r--clang/lib/StaticAnalyzer/Core/ExprEngineObjC.cpp273
-rw-r--r--clang/lib/StaticAnalyzer/Core/FunctionSummary.cpp38
-rw-r--r--clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp578
-rw-r--r--clang/lib/StaticAnalyzer/Core/IntervalConstraintManager.cpp467
-rw-r--r--clang/lib/StaticAnalyzer/Core/Makefile17
-rw-r--r--clang/lib/StaticAnalyzer/Core/MemRegion.cpp1101
-rw-r--r--clang/lib/StaticAnalyzer/Core/ObjCMessage.cpp90
-rw-r--r--clang/lib/StaticAnalyzer/Core/PathDiagnostic.cpp755
-rw-r--r--clang/lib/StaticAnalyzer/Core/PlistDiagnostics.cpp513
-rw-r--r--clang/lib/StaticAnalyzer/Core/ProgramState.cpp709
-rw-r--r--clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp442
-rw-r--r--clang/lib/StaticAnalyzer/Core/RegionStore.cpp2009
-rw-r--r--clang/lib/StaticAnalyzer/Core/SValBuilder.cpp386
-rw-r--r--clang/lib/StaticAnalyzer/Core/SVals.cpp331
-rw-r--r--clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp307
-rw-r--r--clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.h101
-rw-r--r--clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp973
-rw-r--r--clang/lib/StaticAnalyzer/Core/Store.cpp362
-rw-r--r--clang/lib/StaticAnalyzer/Core/SubEngine.cpp14
-rw-r--r--clang/lib/StaticAnalyzer/Core/SymbolManager.cpp540
-rw-r--r--clang/lib/StaticAnalyzer/Core/TextPathDiagnostics.cpp69
40 files changed, 19866 insertions, 0 deletions
diff --git a/clang/lib/StaticAnalyzer/Core/AnalysisManager.cpp b/clang/lib/StaticAnalyzer/Core/AnalysisManager.cpp
new file mode 100644
index 0000000..eeaed2d
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/AnalysisManager.cpp
@@ -0,0 +1,78 @@
+//===-- AnalysisManager.cpp -------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+
+using namespace clang;
+using namespace ento;
+
+void AnalysisManager::anchor() { }
+
+AnalysisManager::AnalysisManager(ASTContext &ctx, DiagnosticsEngine &diags,
+ const LangOptions &lang,
+ PathDiagnosticConsumer *pd,
+ StoreManagerCreator storemgr,
+ ConstraintManagerCreator constraintmgr,
+ CheckerManager *checkerMgr,
+ unsigned maxnodes, unsigned maxvisit,
+ bool vizdot, bool vizubi,
+ AnalysisPurgeMode purge,
+ bool eager, bool trim,
+ bool useUnoptimizedCFG,
+ bool addImplicitDtors, bool addInitializers,
+ bool eagerlyTrimEGraph,
+ AnalysisIPAMode ipa,
+ unsigned inlineMaxStack,
+ unsigned inlineMaxFunctionSize,
+ AnalysisInliningMode IMode,
+ bool NoRetry)
+ : AnaCtxMgr(useUnoptimizedCFG, addImplicitDtors, addInitializers),
+ Ctx(ctx), Diags(diags), LangOpts(lang), PD(pd),
+ CreateStoreMgr(storemgr), CreateConstraintMgr(constraintmgr),
+ CheckerMgr(checkerMgr),
+ AScope(ScopeDecl), MaxNodes(maxnodes), MaxVisit(maxvisit),
+ VisualizeEGDot(vizdot), VisualizeEGUbi(vizubi), PurgeDead(purge),
+ EagerlyAssume(eager), TrimGraph(trim),
+ EagerlyTrimEGraph(eagerlyTrimEGraph),
+ IPAMode(ipa),
+ InlineMaxStackDepth(inlineMaxStack),
+ InlineMaxFunctionSize(inlineMaxFunctionSize),
+ InliningMode(IMode),
+ NoRetryExhausted(NoRetry)
+{
+ AnaCtxMgr.getCFGBuildOptions().setAllAlwaysAdd();
+}
+
+AnalysisManager::AnalysisManager(ASTContext &ctx, DiagnosticsEngine &diags,
+ AnalysisManager &ParentAM)
+ : AnaCtxMgr(ParentAM.AnaCtxMgr.getUseUnoptimizedCFG(),
+ ParentAM.AnaCtxMgr.getCFGBuildOptions().AddImplicitDtors,
+ ParentAM.AnaCtxMgr.getCFGBuildOptions().AddInitializers),
+ Ctx(ctx), Diags(diags),
+ LangOpts(ParentAM.LangOpts), PD(ParentAM.getPathDiagnosticConsumer()),
+ CreateStoreMgr(ParentAM.CreateStoreMgr),
+ CreateConstraintMgr(ParentAM.CreateConstraintMgr),
+ CheckerMgr(ParentAM.CheckerMgr),
+ AScope(ScopeDecl),
+ MaxNodes(ParentAM.MaxNodes),
+ MaxVisit(ParentAM.MaxVisit),
+ VisualizeEGDot(ParentAM.VisualizeEGDot),
+ VisualizeEGUbi(ParentAM.VisualizeEGUbi),
+ PurgeDead(ParentAM.PurgeDead),
+ EagerlyAssume(ParentAM.EagerlyAssume),
+ TrimGraph(ParentAM.TrimGraph),
+ EagerlyTrimEGraph(ParentAM.EagerlyTrimEGraph),
+ IPAMode(ParentAM.IPAMode),
+ InlineMaxStackDepth(ParentAM.InlineMaxStackDepth),
+ InlineMaxFunctionSize(ParentAM.InlineMaxFunctionSize),
+ InliningMode(ParentAM.InliningMode),
+ NoRetryExhausted(ParentAM.NoRetryExhausted)
+{
+ AnaCtxMgr.getCFGBuildOptions().setAllAlwaysAdd();
+}
diff --git a/clang/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp b/clang/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp
new file mode 100644
index 0000000..2d9addd
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/BasicConstraintManager.cpp
@@ -0,0 +1,367 @@
+//== BasicConstraintManager.cpp - Manage basic constraints.------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines BasicConstraintManager, a class that tracks simple
+// equality and inequality constraints on symbolic values of ProgramState.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SimpleConstraintManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+
+namespace { class ConstNotEq {}; }
+namespace { class ConstEq {}; }
+
+typedef llvm::ImmutableMap<SymbolRef,ProgramState::IntSetTy> ConstNotEqTy;
+typedef llvm::ImmutableMap<SymbolRef,const llvm::APSInt*> ConstEqTy;
+
+static int ConstEqIndex = 0;
+static int ConstNotEqIndex = 0;
+
+namespace clang {
+namespace ento {
+template<>
+struct ProgramStateTrait<ConstNotEq> :
+ public ProgramStatePartialTrait<ConstNotEqTy> {
+ static inline void *GDMIndex() { return &ConstNotEqIndex; }
+};
+
+template<>
+struct ProgramStateTrait<ConstEq> : public ProgramStatePartialTrait<ConstEqTy> {
+ static inline void *GDMIndex() { return &ConstEqIndex; }
+};
+}
+}
+
+namespace {
+// BasicConstraintManager only tracks equality and inequality constraints of
+// constants and integer variables.
+class BasicConstraintManager
+ : public SimpleConstraintManager {
+ ProgramState::IntSetTy::Factory ISetFactory;
+public:
+ BasicConstraintManager(ProgramStateManager &statemgr, SubEngine &subengine)
+ : SimpleConstraintManager(subengine),
+ ISetFactory(statemgr.getAllocator()) {}
+
+ ProgramStateRef assumeSymNE(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymEQ(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymLT(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymGT(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymGE(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymLE(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef AddEQ(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V);
+
+ ProgramStateRef AddNE(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V);
+
+ const llvm::APSInt* getSymVal(ProgramStateRef state,
+ SymbolRef sym) const;
+
+ bool isNotEqual(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V) const;
+
+ bool isEqual(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V) const;
+
+ ProgramStateRef removeDeadBindings(ProgramStateRef state,
+ SymbolReaper& SymReaper);
+
+ void print(ProgramStateRef state,
+ raw_ostream &Out,
+ const char* nl,
+ const char *sep);
+};
+
+} // end anonymous namespace
+
+ConstraintManager*
+ento::CreateBasicConstraintManager(ProgramStateManager& statemgr,
+ SubEngine &subengine) {
+ return new BasicConstraintManager(statemgr, subengine);
+}
+
+ProgramStateRef
+BasicConstraintManager::assumeSymNE(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) {
+ // First, determine if sym == X, where X+Adjustment != V.
+ llvm::APSInt Adjusted = V-Adjustment;
+ if (const llvm::APSInt* X = getSymVal(state, sym)) {
+ bool isFeasible = (*X != Adjusted);
+ return isFeasible ? state : NULL;
+ }
+
+ // Second, determine if sym+Adjustment != V.
+ if (isNotEqual(state, sym, Adjusted))
+ return state;
+
+ // If we reach here, sym is not a constant and we don't know if it is != V.
+ // Make that assumption.
+ return AddNE(state, sym, Adjusted);
+}
+
+ProgramStateRef
+BasicConstraintManager::assumeSymEQ(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) {
+ // First, determine if sym == X, where X+Adjustment != V.
+ llvm::APSInt Adjusted = V-Adjustment;
+ if (const llvm::APSInt* X = getSymVal(state, sym)) {
+ bool isFeasible = (*X == Adjusted);
+ return isFeasible ? state : NULL;
+ }
+
+ // Second, determine if sym+Adjustment != V.
+ if (isNotEqual(state, sym, Adjusted))
+ return NULL;
+
+ // If we reach here, sym is not a constant and we don't know if it is == V.
+ // Make that assumption.
+ return AddEQ(state, sym, Adjusted);
+}
+
+// The logic for these will be handled in another ConstraintManager.
+ProgramStateRef
+BasicConstraintManager::assumeSymLT(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) {
+ // Is 'V' the smallest possible value?
+ if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) {
+ // sym cannot be any value less than 'V'. This path is infeasible.
+ return NULL;
+ }
+
+ // FIXME: For now have assuming x < y be the same as assuming sym != V;
+ return assumeSymNE(state, sym, V, Adjustment);
+}
+
+ProgramStateRef
+BasicConstraintManager::assumeSymGT(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) {
+ // Is 'V' the largest possible value?
+ if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) {
+ // sym cannot be any value greater than 'V'. This path is infeasible.
+ return NULL;
+ }
+
+ // FIXME: For now have assuming x > y be the same as assuming sym != V;
+ return assumeSymNE(state, sym, V, Adjustment);
+}
+
+ProgramStateRef
+BasicConstraintManager::assumeSymGE(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) {
+ // Reject a path if the value of sym is a constant X and !(X+Adj >= V).
+ if (const llvm::APSInt *X = getSymVal(state, sym)) {
+ bool isFeasible = (*X >= V-Adjustment);
+ return isFeasible ? state : NULL;
+ }
+
+ // Sym is not a constant, but it is worth looking to see if V is the
+ // maximum integer value.
+ if (V == llvm::APSInt::getMaxValue(V.getBitWidth(), V.isUnsigned())) {
+ llvm::APSInt Adjusted = V-Adjustment;
+
+ // If we know that sym != V (after adjustment), then this condition
+ // is infeasible since there is no other value greater than V.
+ bool isFeasible = !isNotEqual(state, sym, Adjusted);
+
+ // If the path is still feasible then as a consequence we know that
+ // 'sym+Adjustment == V' because there are no larger values.
+ // Add this constraint.
+ return isFeasible ? AddEQ(state, sym, Adjusted) : NULL;
+ }
+
+ return state;
+}
+
+ProgramStateRef
+BasicConstraintManager::assumeSymLE(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) {
+ // Reject a path if the value of sym is a constant X and !(X+Adj <= V).
+ if (const llvm::APSInt* X = getSymVal(state, sym)) {
+ bool isFeasible = (*X <= V-Adjustment);
+ return isFeasible ? state : NULL;
+ }
+
+ // Sym is not a constant, but it is worth looking to see if V is the
+ // minimum integer value.
+ if (V == llvm::APSInt::getMinValue(V.getBitWidth(), V.isUnsigned())) {
+ llvm::APSInt Adjusted = V-Adjustment;
+
+ // If we know that sym != V (after adjustment), then this condition
+ // is infeasible since there is no other value less than V.
+ bool isFeasible = !isNotEqual(state, sym, Adjusted);
+
+ // If the path is still feasible then as a consequence we know that
+ // 'sym+Adjustment == V' because there are no smaller values.
+ // Add this constraint.
+ return isFeasible ? AddEQ(state, sym, Adjusted) : NULL;
+ }
+
+ return state;
+}
+
+ProgramStateRef BasicConstraintManager::AddEQ(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V) {
+ // Create a new state with the old binding replaced.
+ return state->set<ConstEq>(sym, &state->getBasicVals().getValue(V));
+}
+
+ProgramStateRef BasicConstraintManager::AddNE(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V) {
+
+ // First, retrieve the NE-set associated with the given symbol.
+ ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
+ ProgramState::IntSetTy S = T ? *T : ISetFactory.getEmptySet();
+
+ // Now add V to the NE set.
+ S = ISetFactory.add(S, &state->getBasicVals().getValue(V));
+
+ // Create a new state with the old binding replaced.
+ return state->set<ConstNotEq>(sym, S);
+}
+
+const llvm::APSInt* BasicConstraintManager::getSymVal(ProgramStateRef state,
+ SymbolRef sym) const {
+ const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
+ return T ? *T : NULL;
+}
+
+bool BasicConstraintManager::isNotEqual(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V) const {
+
+ // Retrieve the NE-set associated with the given symbol.
+ const ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
+
+ // See if V is present in the NE-set.
+ return T ? T->contains(&state->getBasicVals().getValue(V)) : false;
+}
+
+bool BasicConstraintManager::isEqual(ProgramStateRef state,
+ SymbolRef sym,
+ const llvm::APSInt& V) const {
+ // Retrieve the EQ-set associated with the given symbol.
+ const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
+ // See if V is present in the EQ-set.
+ return T ? **T == V : false;
+}
+
+/// Scan all symbols referenced by the constraints. If the symbol is not alive
+/// as marked in LSymbols, mark it as dead in DSymbols.
+ProgramStateRef
+BasicConstraintManager::removeDeadBindings(ProgramStateRef state,
+ SymbolReaper& SymReaper) {
+
+ ConstEqTy CE = state->get<ConstEq>();
+ ConstEqTy::Factory& CEFactory = state->get_context<ConstEq>();
+
+ for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
+ SymbolRef sym = I.getKey();
+ if (SymReaper.maybeDead(sym))
+ CE = CEFactory.remove(CE, sym);
+ }
+ state = state->set<ConstEq>(CE);
+
+ ConstNotEqTy CNE = state->get<ConstNotEq>();
+ ConstNotEqTy::Factory& CNEFactory = state->get_context<ConstNotEq>();
+
+ for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) {
+ SymbolRef sym = I.getKey();
+ if (SymReaper.maybeDead(sym))
+ CNE = CNEFactory.remove(CNE, sym);
+ }
+
+ return state->set<ConstNotEq>(CNE);
+}
+
+void BasicConstraintManager::print(ProgramStateRef state,
+ raw_ostream &Out,
+ const char* nl, const char *sep) {
+ // Print equality constraints.
+
+ ConstEqTy CE = state->get<ConstEq>();
+
+ if (!CE.isEmpty()) {
+ Out << nl << sep << "'==' constraints:";
+ for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I)
+ Out << nl << " $" << I.getKey() << " : " << *I.getData();
+ }
+
+ // Print != constraints.
+
+ ConstNotEqTy CNE = state->get<ConstNotEq>();
+
+ if (!CNE.isEmpty()) {
+ Out << nl << sep << "'!=' constraints:";
+
+ for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) {
+ Out << nl << " $" << I.getKey() << " : ";
+ bool isFirst = true;
+
+ ProgramState::IntSetTy::iterator J = I.getData().begin(),
+ EJ = I.getData().end();
+
+ for ( ; J != EJ; ++J) {
+ if (isFirst) isFirst = false;
+ else Out << ", ";
+
+ Out << (*J)->getSExtValue(); // Hack: should print to raw_ostream.
+ }
+ }
+ }
+}
diff --git a/clang/lib/StaticAnalyzer/Core/BasicValueFactory.cpp b/clang/lib/StaticAnalyzer/Core/BasicValueFactory.cpp
new file mode 100644
index 0000000..fe96700
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/BasicValueFactory.cpp
@@ -0,0 +1,291 @@
+//=== BasicValueFactory.cpp - Basic values for Path Sens analysis --*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines BasicValueFactory, a class that manages the lifetime
+// of APSInt objects and symbolic constraints used by ExprEngine
+// and related classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
+
+using namespace clang;
+using namespace ento;
+
+void CompoundValData::Profile(llvm::FoldingSetNodeID& ID, QualType T,
+ llvm::ImmutableList<SVal> L) {
+ T.Profile(ID);
+ ID.AddPointer(L.getInternalPointer());
+}
+
+void LazyCompoundValData::Profile(llvm::FoldingSetNodeID& ID,
+ const StoreRef &store,
+ const TypedValueRegion *region) {
+ ID.AddPointer(store.getStore());
+ ID.AddPointer(region);
+}
+
+typedef std::pair<SVal, uintptr_t> SValData;
+typedef std::pair<SVal, SVal> SValPair;
+
+namespace llvm {
+template<> struct FoldingSetTrait<SValData> {
+ static inline void Profile(const SValData& X, llvm::FoldingSetNodeID& ID) {
+ X.first.Profile(ID);
+ ID.AddPointer( (void*) X.second);
+ }
+};
+
+template<> struct FoldingSetTrait<SValPair> {
+ static inline void Profile(const SValPair& X, llvm::FoldingSetNodeID& ID) {
+ X.first.Profile(ID);
+ X.second.Profile(ID);
+ }
+};
+}
+
+typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValData> >
+ PersistentSValsTy;
+
+typedef llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValPair> >
+ PersistentSValPairsTy;
+
+BasicValueFactory::~BasicValueFactory() {
+ // Note that the dstor for the contents of APSIntSet will never be called,
+ // so we iterate over the set and invoke the dstor for each APSInt. This
+ // frees an aux. memory allocated to represent very large constants.
+ for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I)
+ I->getValue().~APSInt();
+
+ delete (PersistentSValsTy*) PersistentSVals;
+ delete (PersistentSValPairsTy*) PersistentSValPairs;
+}
+
+const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) {
+ llvm::FoldingSetNodeID ID;
+ void *InsertPos;
+ typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy;
+
+ X.Profile(ID);
+ FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!P) {
+ P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
+ new (P) FoldNodeTy(X);
+ APSIntSet.InsertNode(P, InsertPos);
+ }
+
+ return *P;
+}
+
+const llvm::APSInt& BasicValueFactory::getValue(const llvm::APInt& X,
+ bool isUnsigned) {
+ llvm::APSInt V(X, isUnsigned);
+ return getValue(V);
+}
+
+const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth,
+ bool isUnsigned) {
+ llvm::APSInt V(BitWidth, isUnsigned);
+ V = X;
+ return getValue(V);
+}
+
+const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) {
+
+ unsigned bits = Ctx.getTypeSize(T);
+ llvm::APSInt V(bits,
+ T->isUnsignedIntegerOrEnumerationType() || Loc::isLocType(T));
+ V = X;
+ return getValue(V);
+}
+
+const CompoundValData*
+BasicValueFactory::getCompoundValData(QualType T,
+ llvm::ImmutableList<SVal> Vals) {
+
+ llvm::FoldingSetNodeID ID;
+ CompoundValData::Profile(ID, T, Vals);
+ void *InsertPos;
+
+ CompoundValData* D = CompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!D) {
+ D = (CompoundValData*) BPAlloc.Allocate<CompoundValData>();
+ new (D) CompoundValData(T, Vals);
+ CompoundValDataSet.InsertNode(D, InsertPos);
+ }
+
+ return D;
+}
+
+const LazyCompoundValData*
+BasicValueFactory::getLazyCompoundValData(const StoreRef &store,
+ const TypedValueRegion *region) {
+ llvm::FoldingSetNodeID ID;
+ LazyCompoundValData::Profile(ID, store, region);
+ void *InsertPos;
+
+ LazyCompoundValData *D =
+ LazyCompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!D) {
+ D = (LazyCompoundValData*) BPAlloc.Allocate<LazyCompoundValData>();
+ new (D) LazyCompoundValData(store, region);
+ LazyCompoundValDataSet.InsertNode(D, InsertPos);
+ }
+
+ return D;
+}
+
+const llvm::APSInt*
+BasicValueFactory::evalAPSInt(BinaryOperator::Opcode Op,
+ const llvm::APSInt& V1, const llvm::APSInt& V2) {
+
+ switch (Op) {
+ default:
+ assert (false && "Invalid Opcode.");
+
+ case BO_Mul:
+ return &getValue( V1 * V2 );
+
+ case BO_Div:
+ return &getValue( V1 / V2 );
+
+ case BO_Rem:
+ return &getValue( V1 % V2 );
+
+ case BO_Add:
+ return &getValue( V1 + V2 );
+
+ case BO_Sub:
+ return &getValue( V1 - V2 );
+
+ case BO_Shl: {
+
+ // FIXME: This logic should probably go higher up, where we can
+ // test these conditions symbolically.
+
+ // FIXME: Expand these checks to include all undefined behavior.
+
+ if (V2.isSigned() && V2.isNegative())
+ return NULL;
+
+ uint64_t Amt = V2.getZExtValue();
+
+ if (Amt > V1.getBitWidth())
+ return NULL;
+
+ return &getValue( V1.operator<<( (unsigned) Amt ));
+ }
+
+ case BO_Shr: {
+
+ // FIXME: This logic should probably go higher up, where we can
+ // test these conditions symbolically.
+
+ // FIXME: Expand these checks to include all undefined behavior.
+
+ if (V2.isSigned() && V2.isNegative())
+ return NULL;
+
+ uint64_t Amt = V2.getZExtValue();
+
+ if (Amt > V1.getBitWidth())
+ return NULL;
+
+ return &getValue( V1.operator>>( (unsigned) Amt ));
+ }
+
+ case BO_LT:
+ return &getTruthValue( V1 < V2 );
+
+ case BO_GT:
+ return &getTruthValue( V1 > V2 );
+
+ case BO_LE:
+ return &getTruthValue( V1 <= V2 );
+
+ case BO_GE:
+ return &getTruthValue( V1 >= V2 );
+
+ case BO_EQ:
+ return &getTruthValue( V1 == V2 );
+
+ case BO_NE:
+ return &getTruthValue( V1 != V2 );
+
+ // Note: LAnd, LOr, Comma are handled specially by higher-level logic.
+
+ case BO_And:
+ return &getValue( V1 & V2 );
+
+ case BO_Or:
+ return &getValue( V1 | V2 );
+
+ case BO_Xor:
+ return &getValue( V1 ^ V2 );
+ }
+}
+
+
+const std::pair<SVal, uintptr_t>&
+BasicValueFactory::getPersistentSValWithData(const SVal& V, uintptr_t Data) {
+
+ // Lazily create the folding set.
+ if (!PersistentSVals) PersistentSVals = new PersistentSValsTy();
+
+ llvm::FoldingSetNodeID ID;
+ void *InsertPos;
+ V.Profile(ID);
+ ID.AddPointer((void*) Data);
+
+ PersistentSValsTy& Map = *((PersistentSValsTy*) PersistentSVals);
+
+ typedef llvm::FoldingSetNodeWrapper<SValData> FoldNodeTy;
+ FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!P) {
+ P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
+ new (P) FoldNodeTy(std::make_pair(V, Data));
+ Map.InsertNode(P, InsertPos);
+ }
+
+ return P->getValue();
+}
+
+const std::pair<SVal, SVal>&
+BasicValueFactory::getPersistentSValPair(const SVal& V1, const SVal& V2) {
+
+ // Lazily create the folding set.
+ if (!PersistentSValPairs) PersistentSValPairs = new PersistentSValPairsTy();
+
+ llvm::FoldingSetNodeID ID;
+ void *InsertPos;
+ V1.Profile(ID);
+ V2.Profile(ID);
+
+ PersistentSValPairsTy& Map = *((PersistentSValPairsTy*) PersistentSValPairs);
+
+ typedef llvm::FoldingSetNodeWrapper<SValPair> FoldNodeTy;
+ FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!P) {
+ P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
+ new (P) FoldNodeTy(std::make_pair(V1, V2));
+ Map.InsertNode(P, InsertPos);
+ }
+
+ return P->getValue();
+}
+
+const SVal* BasicValueFactory::getPersistentSVal(SVal X) {
+ return &getPersistentSValWithData(X, 0).first;
+}
diff --git a/clang/lib/StaticAnalyzer/Core/BlockCounter.cpp b/clang/lib/StaticAnalyzer/Core/BlockCounter.cpp
new file mode 100644
index 0000000..74d761e
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/BlockCounter.cpp
@@ -0,0 +1,86 @@
+//==- BlockCounter.h - ADT for counting block visits -------------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines BlockCounter, an abstract data type used to count
+// the number of times a given block has been visited along a path
+// analyzed by CoreEngine.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/BlockCounter.h"
+#include "llvm/ADT/ImmutableMap.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+class CountKey {
+ const StackFrameContext *CallSite;
+ unsigned BlockID;
+
+public:
+ CountKey(const StackFrameContext *CS, unsigned ID)
+ : CallSite(CS), BlockID(ID) {}
+
+ bool operator==(const CountKey &RHS) const {
+ return (CallSite == RHS.CallSite) && (BlockID == RHS.BlockID);
+ }
+
+ bool operator<(const CountKey &RHS) const {
+ return (CallSite == RHS.CallSite) ? (BlockID < RHS.BlockID)
+ : (CallSite < RHS.CallSite);
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddPointer(CallSite);
+ ID.AddInteger(BlockID);
+ }
+};
+
+}
+
+typedef llvm::ImmutableMap<CountKey, unsigned> CountMap;
+
+static inline CountMap GetMap(void *D) {
+ return CountMap(static_cast<CountMap::TreeTy*>(D));
+}
+
+static inline CountMap::Factory& GetFactory(void *F) {
+ return *static_cast<CountMap::Factory*>(F);
+}
+
+unsigned BlockCounter::getNumVisited(const StackFrameContext *CallSite,
+ unsigned BlockID) const {
+ CountMap M = GetMap(Data);
+ CountMap::data_type* T = M.lookup(CountKey(CallSite, BlockID));
+ return T ? *T : 0;
+}
+
+BlockCounter::Factory::Factory(llvm::BumpPtrAllocator& Alloc) {
+ F = new CountMap::Factory(Alloc);
+}
+
+BlockCounter::Factory::~Factory() {
+ delete static_cast<CountMap::Factory*>(F);
+}
+
+BlockCounter
+BlockCounter::Factory::IncrementCount(BlockCounter BC,
+ const StackFrameContext *CallSite,
+ unsigned BlockID) {
+ return BlockCounter(GetFactory(F).add(GetMap(BC.Data),
+ CountKey(CallSite, BlockID),
+ BC.getNumVisited(CallSite, BlockID)+1).getRoot());
+}
+
+BlockCounter
+BlockCounter::Factory::GetEmptyCounter() {
+ return BlockCounter(GetFactory(F).getEmptyMap().getRoot());
+}
diff --git a/clang/lib/StaticAnalyzer/Core/BugReporter.cpp b/clang/lib/StaticAnalyzer/Core/BugReporter.cpp
new file mode 100644
index 0000000..a264212
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/BugReporter.cpp
@@ -0,0 +1,2056 @@
+// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines BugReporter, a utility class for generating
+// PathDiagnostics.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Analysis/ProgramPoint.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/IntrusiveRefCntPtr.h"
+#include <queue>
+
+using namespace clang;
+using namespace ento;
+
+BugReporterVisitor::~BugReporterVisitor() {}
+
+void BugReporterContext::anchor() {}
+
+//===----------------------------------------------------------------------===//
+// Helper routines for walking the ExplodedGraph and fetching statements.
+//===----------------------------------------------------------------------===//
+
+static inline const Stmt *GetStmt(const ProgramPoint &P) {
+ if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
+ return SP->getStmt();
+ else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
+ return BE->getSrc()->getTerminator();
+
+ return 0;
+}
+
+static inline const ExplodedNode*
+GetPredecessorNode(const ExplodedNode *N) {
+ return N->pred_empty() ? NULL : *(N->pred_begin());
+}
+
+static inline const ExplodedNode*
+GetSuccessorNode(const ExplodedNode *N) {
+ return N->succ_empty() ? NULL : *(N->succ_begin());
+}
+
+static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
+ for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
+ if (const Stmt *S = GetStmt(N->getLocation()))
+ return S;
+
+ return 0;
+}
+
+static const Stmt *GetNextStmt(const ExplodedNode *N) {
+ for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
+ if (const Stmt *S = GetStmt(N->getLocation())) {
+ // Check if the statement is '?' or '&&'/'||'. These are "merges",
+ // not actual statement points.
+ switch (S->getStmtClass()) {
+ case Stmt::ChooseExprClass:
+ case Stmt::BinaryConditionalOperatorClass: continue;
+ case Stmt::ConditionalOperatorClass: continue;
+ case Stmt::BinaryOperatorClass: {
+ BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
+ if (Op == BO_LAnd || Op == BO_LOr)
+ continue;
+ break;
+ }
+ default:
+ break;
+ }
+ return S;
+ }
+
+ return 0;
+}
+
+static inline const Stmt*
+GetCurrentOrPreviousStmt(const ExplodedNode *N) {
+ if (const Stmt *S = GetStmt(N->getLocation()))
+ return S;
+
+ return GetPreviousStmt(N);
+}
+
+static inline const Stmt*
+GetCurrentOrNextStmt(const ExplodedNode *N) {
+ if (const Stmt *S = GetStmt(N->getLocation()))
+ return S;
+
+ return GetNextStmt(N);
+}
+
+//===----------------------------------------------------------------------===//
+// Diagnostic cleanup.
+//===----------------------------------------------------------------------===//
+
+/// Recursively scan through a path and prune out calls and macros pieces
+/// that aren't needed. Return true if afterwards the path contains
+/// "interesting stuff" which means it should be pruned from the parent path.
+static bool RemoveUneededCalls(PathPieces &pieces) {
+ bool containsSomethingInteresting = false;
+ const unsigned N = pieces.size();
+
+ for (unsigned i = 0 ; i < N ; ++i) {
+ // Remove the front piece from the path. If it is still something we
+ // want to keep once we are done, we will push it back on the end.
+ IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
+ pieces.pop_front();
+
+ switch (piece->getKind()) {
+ case PathDiagnosticPiece::Call: {
+ PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
+ // Recursively clean out the subclass. Keep this call around if
+ // it contains any informative diagnostics.
+ if (!RemoveUneededCalls(call->path))
+ continue;
+ containsSomethingInteresting = true;
+ break;
+ }
+ case PathDiagnosticPiece::Macro: {
+ PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
+ if (!RemoveUneededCalls(macro->subPieces))
+ continue;
+ containsSomethingInteresting = true;
+ break;
+ }
+ case PathDiagnosticPiece::Event: {
+ PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
+ // We never throw away an event, but we do throw it away wholesale
+ // as part of a path if we throw the entire path away.
+ if (event->isPrunable())
+ continue;
+ containsSomethingInteresting = true;
+ break;
+ }
+ case PathDiagnosticPiece::ControlFlow:
+ break;
+ }
+
+ pieces.push_back(piece);
+ }
+
+ return containsSomethingInteresting;
+}
+
+//===----------------------------------------------------------------------===//
+// PathDiagnosticBuilder and its associated routines and helper objects.
+//===----------------------------------------------------------------------===//
+
+typedef llvm::DenseMap<const ExplodedNode*,
+const ExplodedNode*> NodeBackMap;
+
+namespace {
+class NodeMapClosure : public BugReport::NodeResolver {
+ NodeBackMap& M;
+public:
+ NodeMapClosure(NodeBackMap *m) : M(*m) {}
+ ~NodeMapClosure() {}
+
+ const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
+ NodeBackMap::iterator I = M.find(N);
+ return I == M.end() ? 0 : I->second;
+ }
+};
+
+class PathDiagnosticBuilder : public BugReporterContext {
+ BugReport *R;
+ PathDiagnosticConsumer *PDC;
+ OwningPtr<ParentMap> PM;
+ NodeMapClosure NMC;
+public:
+ const LocationContext *LC;
+
+ PathDiagnosticBuilder(GRBugReporter &br,
+ BugReport *r, NodeBackMap *Backmap,
+ PathDiagnosticConsumer *pdc)
+ : BugReporterContext(br),
+ R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
+ {}
+
+ PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
+
+ PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
+ const ExplodedNode *N);
+
+ BugReport *getBugReport() { return R; }
+
+ Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
+
+ ParentMap& getParentMap() { return LC->getParentMap(); }
+
+ const Stmt *getParent(const Stmt *S) {
+ return getParentMap().getParent(S);
+ }
+
+ virtual NodeMapClosure& getNodeResolver() { return NMC; }
+
+ PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
+
+ PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
+ return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
+ }
+
+ bool supportsLogicalOpControlFlow() const {
+ return PDC ? PDC->supportsLogicalOpControlFlow() : true;
+ }
+};
+} // end anonymous namespace
+
+PathDiagnosticLocation
+PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
+ if (const Stmt *S = GetNextStmt(N))
+ return PathDiagnosticLocation(S, getSourceManager(), LC);
+
+ return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
+ getSourceManager());
+}
+
+PathDiagnosticLocation
+PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
+ const ExplodedNode *N) {
+
+ // Slow, but probably doesn't matter.
+ if (os.str().empty())
+ os << ' ';
+
+ const PathDiagnosticLocation &Loc = ExecutionContinues(N);
+
+ if (Loc.asStmt())
+ os << "Execution continues on line "
+ << getSourceManager().getExpansionLineNumber(Loc.asLocation())
+ << '.';
+ else {
+ os << "Execution jumps to the end of the ";
+ const Decl *D = N->getLocationContext()->getDecl();
+ if (isa<ObjCMethodDecl>(D))
+ os << "method";
+ else if (isa<FunctionDecl>(D))
+ os << "function";
+ else {
+ assert(isa<BlockDecl>(D));
+ os << "anonymous block";
+ }
+ os << '.';
+ }
+
+ return Loc;
+}
+
+static bool IsNested(const Stmt *S, ParentMap &PM) {
+ if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
+ return true;
+
+ const Stmt *Parent = PM.getParentIgnoreParens(S);
+
+ if (Parent)
+ switch (Parent->getStmtClass()) {
+ case Stmt::ForStmtClass:
+ case Stmt::DoStmtClass:
+ case Stmt::WhileStmtClass:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+PathDiagnosticLocation
+PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
+ assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
+ ParentMap &P = getParentMap();
+ SourceManager &SMgr = getSourceManager();
+
+ while (IsNested(S, P)) {
+ const Stmt *Parent = P.getParentIgnoreParens(S);
+
+ if (!Parent)
+ break;
+
+ switch (Parent->getStmtClass()) {
+ case Stmt::BinaryOperatorClass: {
+ const BinaryOperator *B = cast<BinaryOperator>(Parent);
+ if (B->isLogicalOp())
+ return PathDiagnosticLocation(S, SMgr, LC);
+ break;
+ }
+ case Stmt::CompoundStmtClass:
+ case Stmt::StmtExprClass:
+ return PathDiagnosticLocation(S, SMgr, LC);
+ case Stmt::ChooseExprClass:
+ // Similar to '?' if we are referring to condition, just have the edge
+ // point to the entire choose expression.
+ if (cast<ChooseExpr>(Parent)->getCond() == S)
+ return PathDiagnosticLocation(Parent, SMgr, LC);
+ else
+ return PathDiagnosticLocation(S, SMgr, LC);
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ // For '?', if we are referring to condition, just have the edge point
+ // to the entire '?' expression.
+ if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
+ return PathDiagnosticLocation(Parent, SMgr, LC);
+ else
+ return PathDiagnosticLocation(S, SMgr, LC);
+ case Stmt::DoStmtClass:
+ return PathDiagnosticLocation(S, SMgr, LC);
+ case Stmt::ForStmtClass:
+ if (cast<ForStmt>(Parent)->getBody() == S)
+ return PathDiagnosticLocation(S, SMgr, LC);
+ break;
+ case Stmt::IfStmtClass:
+ if (cast<IfStmt>(Parent)->getCond() != S)
+ return PathDiagnosticLocation(S, SMgr, LC);
+ break;
+ case Stmt::ObjCForCollectionStmtClass:
+ if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
+ return PathDiagnosticLocation(S, SMgr, LC);
+ break;
+ case Stmt::WhileStmtClass:
+ if (cast<WhileStmt>(Parent)->getCond() != S)
+ return PathDiagnosticLocation(S, SMgr, LC);
+ break;
+ default:
+ break;
+ }
+
+ S = Parent;
+ }
+
+ assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
+
+ // Special case: DeclStmts can appear in for statement declarations, in which
+ // case the ForStmt is the context.
+ if (isa<DeclStmt>(S)) {
+ if (const Stmt *Parent = P.getParent(S)) {
+ switch (Parent->getStmtClass()) {
+ case Stmt::ForStmtClass:
+ case Stmt::ObjCForCollectionStmtClass:
+ return PathDiagnosticLocation(Parent, SMgr, LC);
+ default:
+ break;
+ }
+ }
+ }
+ else if (isa<BinaryOperator>(S)) {
+ // Special case: the binary operator represents the initialization
+ // code in a for statement (this can happen when the variable being
+ // initialized is an old variable.
+ if (const ForStmt *FS =
+ dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
+ if (FS->getInit() == S)
+ return PathDiagnosticLocation(FS, SMgr, LC);
+ }
+ }
+
+ return PathDiagnosticLocation(S, SMgr, LC);
+}
+
+//===----------------------------------------------------------------------===//
+// "Minimal" path diagnostic generation algorithm.
+//===----------------------------------------------------------------------===//
+typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
+typedef SmallVector<StackDiagPair, 6> StackDiagVector;
+
+static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
+ StackDiagVector &CallStack) {
+ // If the piece contains a special message, add it to all the call
+ // pieces on the active stack.
+ if (PathDiagnosticEventPiece *ep =
+ dyn_cast<PathDiagnosticEventPiece>(P)) {
+
+ if (ep->hasCallStackHint())
+ for (StackDiagVector::iterator I = CallStack.begin(),
+ E = CallStack.end(); I != E; ++I) {
+ PathDiagnosticCallPiece *CP = I->first;
+ const ExplodedNode *N = I->second;
+ std::string stackMsg = ep->getCallStackMessage(N);
+
+ // The last message on the path to final bug is the most important
+ // one. Since we traverse the path backwards, do not add the message
+ // if one has been previously added.
+ if (!CP->hasCallStackMessage())
+ CP->setCallStackMessage(stackMsg);
+ }
+ }
+}
+
+static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
+
+static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
+ PathDiagnosticBuilder &PDB,
+ const ExplodedNode *N,
+ ArrayRef<BugReporterVisitor *> visitors) {
+
+ SourceManager& SMgr = PDB.getSourceManager();
+ const LocationContext *LC = PDB.LC;
+ const ExplodedNode *NextNode = N->pred_empty()
+ ? NULL : *(N->pred_begin());
+
+ StackDiagVector CallStack;
+
+ while (NextNode) {
+ N = NextNode;
+ PDB.LC = N->getLocationContext();
+ NextNode = GetPredecessorNode(N);
+
+ ProgramPoint P = N->getLocation();
+
+ if (const CallExit *CE = dyn_cast<CallExit>(&P)) {
+ PathDiagnosticCallPiece *C =
+ PathDiagnosticCallPiece::construct(N, *CE, SMgr);
+ PD.getActivePath().push_front(C);
+ PD.pushActivePath(&C->path);
+ CallStack.push_back(StackDiagPair(C, N));
+ continue;
+ }
+
+ if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
+ PD.popActivePath();
+ // The current active path should never be empty. Either we
+ // just added a bunch of stuff to the top-level path, or
+ // we have a previous CallExit. If the front of the active
+ // path is not a PathDiagnosticCallPiece, it means that the
+ // path terminated within a function call. We must then take the
+ // current contents of the active path and place it within
+ // a new PathDiagnosticCallPiece.
+ assert(!PD.getActivePath().empty());
+ PathDiagnosticCallPiece *C =
+ dyn_cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
+ if (!C) {
+ const Decl *Caller = CE->getLocationContext()->getDecl();
+ C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
+ }
+ C->setCallee(*CE, SMgr);
+ if (!CallStack.empty()) {
+ assert(CallStack.back().first == C);
+ CallStack.pop_back();
+ }
+ continue;
+ }
+
+ if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
+ const CFGBlock *Src = BE->getSrc();
+ const CFGBlock *Dst = BE->getDst();
+ const Stmt *T = Src->getTerminator();
+
+ if (!T)
+ continue;
+
+ PathDiagnosticLocation Start =
+ PathDiagnosticLocation::createBegin(T, SMgr,
+ N->getLocationContext());
+
+ switch (T->getStmtClass()) {
+ default:
+ break;
+
+ case Stmt::GotoStmtClass:
+ case Stmt::IndirectGotoStmtClass: {
+ const Stmt *S = GetNextStmt(N);
+
+ if (!S)
+ continue;
+
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+ const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
+
+ os << "Control jumps to line "
+ << End.asLocation().getExpansionLineNumber();
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ os.str()));
+ break;
+ }
+
+ case Stmt::SwitchStmtClass: {
+ // Figure out what case arm we took.
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+
+ if (const Stmt *S = Dst->getLabel()) {
+ PathDiagnosticLocation End(S, SMgr, LC);
+
+ switch (S->getStmtClass()) {
+ default:
+ os << "No cases match in the switch statement. "
+ "Control jumps to line "
+ << End.asLocation().getExpansionLineNumber();
+ break;
+ case Stmt::DefaultStmtClass:
+ os << "Control jumps to the 'default' case at line "
+ << End.asLocation().getExpansionLineNumber();
+ break;
+
+ case Stmt::CaseStmtClass: {
+ os << "Control jumps to 'case ";
+ const CaseStmt *Case = cast<CaseStmt>(S);
+ const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
+
+ // Determine if it is an enum.
+ bool GetRawInt = true;
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
+ // FIXME: Maybe this should be an assertion. Are there cases
+ // were it is not an EnumConstantDecl?
+ const EnumConstantDecl *D =
+ dyn_cast<EnumConstantDecl>(DR->getDecl());
+
+ if (D) {
+ GetRawInt = false;
+ os << *D;
+ }
+ }
+
+ if (GetRawInt)
+ os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
+
+ os << ":' at line "
+ << End.asLocation().getExpansionLineNumber();
+ break;
+ }
+ }
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ os.str()));
+ }
+ else {
+ os << "'Default' branch taken. ";
+ const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ os.str()));
+ }
+
+ break;
+ }
+
+ case Stmt::BreakStmtClass:
+ case Stmt::ContinueStmtClass: {
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+ PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ os.str()));
+ break;
+ }
+
+ // Determine control-flow for ternary '?'.
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass: {
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+ os << "'?' condition is ";
+
+ if (*(Src->succ_begin()+1) == Dst)
+ os << "false";
+ else
+ os << "true";
+
+ PathDiagnosticLocation End = PDB.ExecutionContinues(N);
+
+ if (const Stmt *S = End.asStmt())
+ End = PDB.getEnclosingStmtLocation(S);
+
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ os.str()));
+ break;
+ }
+
+ // Determine control-flow for short-circuited '&&' and '||'.
+ case Stmt::BinaryOperatorClass: {
+ if (!PDB.supportsLogicalOpControlFlow())
+ break;
+
+ const BinaryOperator *B = cast<BinaryOperator>(T);
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+ os << "Left side of '";
+
+ if (B->getOpcode() == BO_LAnd) {
+ os << "&&" << "' is ";
+
+ if (*(Src->succ_begin()+1) == Dst) {
+ os << "false";
+ PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
+ PathDiagnosticLocation Start =
+ PathDiagnosticLocation::createOperatorLoc(B, SMgr);
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ os.str()));
+ }
+ else {
+ os << "true";
+ PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
+ PathDiagnosticLocation End = PDB.ExecutionContinues(N);
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ os.str()));
+ }
+ }
+ else {
+ assert(B->getOpcode() == BO_LOr);
+ os << "||" << "' is ";
+
+ if (*(Src->succ_begin()+1) == Dst) {
+ os << "false";
+ PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
+ PathDiagnosticLocation End = PDB.ExecutionContinues(N);
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ os.str()));
+ }
+ else {
+ os << "true";
+ PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
+ PathDiagnosticLocation Start =
+ PathDiagnosticLocation::createOperatorLoc(B, SMgr);
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ os.str()));
+ }
+ }
+
+ break;
+ }
+
+ case Stmt::DoStmtClass: {
+ if (*(Src->succ_begin()) == Dst) {
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+
+ os << "Loop condition is true. ";
+ PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
+
+ if (const Stmt *S = End.asStmt())
+ End = PDB.getEnclosingStmtLocation(S);
+
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ os.str()));
+ }
+ else {
+ PathDiagnosticLocation End = PDB.ExecutionContinues(N);
+
+ if (const Stmt *S = End.asStmt())
+ End = PDB.getEnclosingStmtLocation(S);
+
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ "Loop condition is false. Exiting loop"));
+ }
+
+ break;
+ }
+
+ case Stmt::WhileStmtClass:
+ case Stmt::ForStmtClass: {
+ if (*(Src->succ_begin()+1) == Dst) {
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+
+ os << "Loop condition is false. ";
+ PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
+ if (const Stmt *S = End.asStmt())
+ End = PDB.getEnclosingStmtLocation(S);
+
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ os.str()));
+ }
+ else {
+ PathDiagnosticLocation End = PDB.ExecutionContinues(N);
+ if (const Stmt *S = End.asStmt())
+ End = PDB.getEnclosingStmtLocation(S);
+
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ "Loop condition is true. Entering loop body"));
+ }
+
+ break;
+ }
+
+ case Stmt::IfStmtClass: {
+ PathDiagnosticLocation End = PDB.ExecutionContinues(N);
+
+ if (const Stmt *S = End.asStmt())
+ End = PDB.getEnclosingStmtLocation(S);
+
+ if (*(Src->succ_begin()+1) == Dst)
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ "Taking false branch"));
+ else
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(Start, End,
+ "Taking true branch"));
+
+ break;
+ }
+ }
+ }
+
+ if (NextNode) {
+ // Add diagnostic pieces from custom visitors.
+ BugReport *R = PDB.getBugReport();
+ for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
+ E = visitors.end();
+ I != E; ++I) {
+ if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
+ PD.getActivePath().push_front(p);
+ updateStackPiecesWithMessage(p, CallStack);
+ }
+ }
+ }
+ }
+
+ // After constructing the full PathDiagnostic, do a pass over it to compact
+ // PathDiagnosticPieces that occur within a macro.
+ CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
+}
+
+//===----------------------------------------------------------------------===//
+// "Extensive" PathDiagnostic generation.
+//===----------------------------------------------------------------------===//
+
+static bool IsControlFlowExpr(const Stmt *S) {
+ const Expr *E = dyn_cast<Expr>(S);
+
+ if (!E)
+ return false;
+
+ E = E->IgnoreParenCasts();
+
+ if (isa<AbstractConditionalOperator>(E))
+ return true;
+
+ if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
+ if (B->isLogicalOp())
+ return true;
+
+ return false;
+}
+
+namespace {
+class ContextLocation : public PathDiagnosticLocation {
+ bool IsDead;
+public:
+ ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
+ : PathDiagnosticLocation(L), IsDead(isdead) {}
+
+ void markDead() { IsDead = true; }
+ bool isDead() const { return IsDead; }
+};
+
+class EdgeBuilder {
+ std::vector<ContextLocation> CLocs;
+ typedef std::vector<ContextLocation>::iterator iterator;
+ PathDiagnostic &PD;
+ PathDiagnosticBuilder &PDB;
+ PathDiagnosticLocation PrevLoc;
+
+ bool IsConsumedExpr(const PathDiagnosticLocation &L);
+
+ bool containsLocation(const PathDiagnosticLocation &Container,
+ const PathDiagnosticLocation &Containee);
+
+ PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
+
+ PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
+ bool firstCharOnly = false) {
+ if (const Stmt *S = L.asStmt()) {
+ const Stmt *Original = S;
+ while (1) {
+ // Adjust the location for some expressions that are best referenced
+ // by one of their subexpressions.
+ switch (S->getStmtClass()) {
+ default:
+ break;
+ case Stmt::ParenExprClass:
+ case Stmt::GenericSelectionExprClass:
+ S = cast<Expr>(S)->IgnoreParens();
+ firstCharOnly = true;
+ continue;
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ S = cast<AbstractConditionalOperator>(S)->getCond();
+ firstCharOnly = true;
+ continue;
+ case Stmt::ChooseExprClass:
+ S = cast<ChooseExpr>(S)->getCond();
+ firstCharOnly = true;
+ continue;
+ case Stmt::BinaryOperatorClass:
+ S = cast<BinaryOperator>(S)->getLHS();
+ firstCharOnly = true;
+ continue;
+ }
+
+ break;
+ }
+
+ if (S != Original)
+ L = PathDiagnosticLocation(S, L.getManager(), PDB.LC);
+ }
+
+ if (firstCharOnly)
+ L = PathDiagnosticLocation::createSingleLocation(L);
+
+ return L;
+ }
+
+ void popLocation() {
+ if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
+ // For contexts, we only one the first character as the range.
+ rawAddEdge(cleanUpLocation(CLocs.back(), true));
+ }
+ CLocs.pop_back();
+ }
+
+public:
+ EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
+ : PD(pd), PDB(pdb) {
+
+ // If the PathDiagnostic already has pieces, add the enclosing statement
+ // of the first piece as a context as well.
+ if (!PD.path.empty()) {
+ PrevLoc = (*PD.path.begin())->getLocation();
+
+ if (const Stmt *S = PrevLoc.asStmt())
+ addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
+ }
+ }
+
+ ~EdgeBuilder() {
+ while (!CLocs.empty()) popLocation();
+
+ // Finally, add an initial edge from the start location of the first
+ // statement (if it doesn't already exist).
+ PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
+ PDB.LC,
+ PDB.getSourceManager());
+ if (L.isValid())
+ rawAddEdge(L);
+ }
+
+ void flushLocations() {
+ while (!CLocs.empty())
+ popLocation();
+ PrevLoc = PathDiagnosticLocation();
+ }
+
+ void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
+
+ void rawAddEdge(PathDiagnosticLocation NewLoc);
+
+ void addContext(const Stmt *S);
+ void addExtendedContext(const Stmt *S);
+};
+} // end anonymous namespace
+
+
+PathDiagnosticLocation
+EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
+ if (const Stmt *S = L.asStmt()) {
+ if (IsControlFlowExpr(S))
+ return L;
+
+ return PDB.getEnclosingStmtLocation(S);
+ }
+
+ return L;
+}
+
+bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
+ const PathDiagnosticLocation &Containee) {
+
+ if (Container == Containee)
+ return true;
+
+ if (Container.asDecl())
+ return true;
+
+ if (const Stmt *S = Containee.asStmt())
+ if (const Stmt *ContainerS = Container.asStmt()) {
+ while (S) {
+ if (S == ContainerS)
+ return true;
+ S = PDB.getParent(S);
+ }
+ return false;
+ }
+
+ // Less accurate: compare using source ranges.
+ SourceRange ContainerR = Container.asRange();
+ SourceRange ContaineeR = Containee.asRange();
+
+ SourceManager &SM = PDB.getSourceManager();
+ SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
+ SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
+ SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
+ SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
+
+ unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
+ unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
+ unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
+ unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
+
+ assert(ContainerBegLine <= ContainerEndLine);
+ assert(ContaineeBegLine <= ContaineeEndLine);
+
+ return (ContainerBegLine <= ContaineeBegLine &&
+ ContainerEndLine >= ContaineeEndLine &&
+ (ContainerBegLine != ContaineeBegLine ||
+ SM.getExpansionColumnNumber(ContainerRBeg) <=
+ SM.getExpansionColumnNumber(ContaineeRBeg)) &&
+ (ContainerEndLine != ContaineeEndLine ||
+ SM.getExpansionColumnNumber(ContainerREnd) >=
+ SM.getExpansionColumnNumber(ContaineeREnd)));
+}
+
+void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
+ if (!PrevLoc.isValid()) {
+ PrevLoc = NewLoc;
+ return;
+ }
+
+ const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
+ const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
+
+ if (NewLocClean.asLocation() == PrevLocClean.asLocation())
+ return;
+
+ // FIXME: Ignore intra-macro edges for now.
+ if (NewLocClean.asLocation().getExpansionLoc() ==
+ PrevLocClean.asLocation().getExpansionLoc())
+ return;
+
+ PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
+ PrevLoc = NewLoc;
+}
+
+void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
+
+ if (!alwaysAdd && NewLoc.asLocation().isMacroID())
+ return;
+
+ const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
+
+ while (!CLocs.empty()) {
+ ContextLocation &TopContextLoc = CLocs.back();
+
+ // Is the top location context the same as the one for the new location?
+ if (TopContextLoc == CLoc) {
+ if (alwaysAdd) {
+ if (IsConsumedExpr(TopContextLoc) &&
+ !IsControlFlowExpr(TopContextLoc.asStmt()))
+ TopContextLoc.markDead();
+
+ rawAddEdge(NewLoc);
+ }
+
+ return;
+ }
+
+ if (containsLocation(TopContextLoc, CLoc)) {
+ if (alwaysAdd) {
+ rawAddEdge(NewLoc);
+
+ if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
+ CLocs.push_back(ContextLocation(CLoc, true));
+ return;
+ }
+ }
+
+ CLocs.push_back(CLoc);
+ return;
+ }
+
+ // Context does not contain the location. Flush it.
+ popLocation();
+ }
+
+ // If we reach here, there is no enclosing context. Just add the edge.
+ rawAddEdge(NewLoc);
+}
+
+bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
+ if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
+ return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
+
+ return false;
+}
+
+void EdgeBuilder::addExtendedContext(const Stmt *S) {
+ if (!S)
+ return;
+
+ const Stmt *Parent = PDB.getParent(S);
+ while (Parent) {
+ if (isa<CompoundStmt>(Parent))
+ Parent = PDB.getParent(Parent);
+ else
+ break;
+ }
+
+ if (Parent) {
+ switch (Parent->getStmtClass()) {
+ case Stmt::DoStmtClass:
+ case Stmt::ObjCAtSynchronizedStmtClass:
+ addContext(Parent);
+ default:
+ break;
+ }
+ }
+
+ addContext(S);
+}
+
+void EdgeBuilder::addContext(const Stmt *S) {
+ if (!S)
+ return;
+
+ PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
+
+ while (!CLocs.empty()) {
+ const PathDiagnosticLocation &TopContextLoc = CLocs.back();
+
+ // Is the top location context the same as the one for the new location?
+ if (TopContextLoc == L)
+ return;
+
+ if (containsLocation(TopContextLoc, L)) {
+ CLocs.push_back(L);
+ return;
+ }
+
+ // Context does not contain the location. Flush it.
+ popLocation();
+ }
+
+ CLocs.push_back(L);
+}
+
+static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
+ PathDiagnosticBuilder &PDB,
+ const ExplodedNode *N,
+ ArrayRef<BugReporterVisitor *> visitors) {
+ EdgeBuilder EB(PD, PDB);
+ const SourceManager& SM = PDB.getSourceManager();
+ StackDiagVector CallStack;
+
+ const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
+ while (NextNode) {
+ N = NextNode;
+ NextNode = GetPredecessorNode(N);
+ ProgramPoint P = N->getLocation();
+
+ do {
+ if (const CallExit *CE = dyn_cast<CallExit>(&P)) {
+ const StackFrameContext *LCtx =
+ CE->getLocationContext()->getCurrentStackFrame();
+ PathDiagnosticLocation Loc(LCtx->getCallSite(),
+ PDB.getSourceManager(),
+ LCtx);
+ EB.addEdge(Loc, true);
+ EB.flushLocations();
+ PathDiagnosticCallPiece *C =
+ PathDiagnosticCallPiece::construct(N, *CE, SM);
+ PD.getActivePath().push_front(C);
+ PD.pushActivePath(&C->path);
+ CallStack.push_back(StackDiagPair(C, N));
+ break;
+ }
+
+ // Pop the call hierarchy if we are done walking the contents
+ // of a function call.
+ if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
+ // Add an edge to the start of the function.
+ const Decl *D = CE->getCalleeContext()->getDecl();
+ PathDiagnosticLocation pos =
+ PathDiagnosticLocation::createBegin(D, SM);
+ EB.addEdge(pos);
+
+ // Flush all locations, and pop the active path.
+ EB.flushLocations();
+ PD.popActivePath();
+ assert(!PD.getActivePath().empty());
+ PDB.LC = N->getLocationContext();
+
+ // The current active path should never be empty. Either we
+ // just added a bunch of stuff to the top-level path, or
+ // we have a previous CallExit. If the front of the active
+ // path is not a PathDiagnosticCallPiece, it means that the
+ // path terminated within a function call. We must then take the
+ // current contents of the active path and place it within
+ // a new PathDiagnosticCallPiece.
+ PathDiagnosticCallPiece *C =
+ dyn_cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
+ if (!C) {
+ const Decl * Caller = CE->getLocationContext()->getDecl();
+ C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
+ }
+ C->setCallee(*CE, SM);
+ EB.addContext(CE->getCallExpr());
+
+ if (!CallStack.empty()) {
+ assert(CallStack.back().first == C);
+ CallStack.pop_back();
+ }
+ break;
+ }
+
+ // Note that is important that we update the LocationContext
+ // after looking at CallExits. CallExit basically adds an
+ // edge in the *caller*, so we don't want to update the LocationContext
+ // too soon.
+ PDB.LC = N->getLocationContext();
+
+ // Block edges.
+ if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
+ const CFGBlock &Blk = *BE->getSrc();
+ const Stmt *Term = Blk.getTerminator();
+
+ // Are we jumping to the head of a loop? Add a special diagnostic.
+ if (const Stmt *Loop = BE->getDst()->getLoopTarget()) {
+ PathDiagnosticLocation L(Loop, SM, PDB.LC);
+ const CompoundStmt *CS = NULL;
+
+ if (!Term) {
+ if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
+ CS = dyn_cast<CompoundStmt>(FS->getBody());
+ else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
+ CS = dyn_cast<CompoundStmt>(WS->getBody());
+ }
+
+ PathDiagnosticEventPiece *p =
+ new PathDiagnosticEventPiece(L,
+ "Looping back to the head of the loop");
+ p->setPrunable(true);
+
+ EB.addEdge(p->getLocation(), true);
+ PD.getActivePath().push_front(p);
+
+ if (CS) {
+ PathDiagnosticLocation BL =
+ PathDiagnosticLocation::createEndBrace(CS, SM);
+ EB.addEdge(BL);
+ }
+ }
+
+ if (Term)
+ EB.addContext(Term);
+
+ break;
+ }
+
+ if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
+ if (const CFGStmt *S = BE->getFirstElement().getAs<CFGStmt>()) {
+ const Stmt *stmt = S->getStmt();
+ if (IsControlFlowExpr(stmt)) {
+ // Add the proper context for '&&', '||', and '?'.
+ EB.addContext(stmt);
+ }
+ else
+ EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
+ }
+
+ break;
+ }
+
+
+ } while (0);
+
+ if (!NextNode)
+ continue;
+
+ // Add pieces from custom visitors.
+ BugReport *R = PDB.getBugReport();
+ for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
+ E = visitors.end();
+ I != E; ++I) {
+ if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
+ const PathDiagnosticLocation &Loc = p->getLocation();
+ EB.addEdge(Loc, true);
+ PD.getActivePath().push_front(p);
+ updateStackPiecesWithMessage(p, CallStack);
+
+ if (const Stmt *S = Loc.asStmt())
+ EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
+ }
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Methods for BugType and subclasses.
+//===----------------------------------------------------------------------===//
+BugType::~BugType() { }
+
+void BugType::FlushReports(BugReporter &BR) {}
+
+void BuiltinBug::anchor() {}
+
+//===----------------------------------------------------------------------===//
+// Methods for BugReport and subclasses.
+//===----------------------------------------------------------------------===//
+
+void BugReport::NodeResolver::anchor() {}
+
+void BugReport::addVisitor(BugReporterVisitor* visitor) {
+ if (!visitor)
+ return;
+
+ llvm::FoldingSetNodeID ID;
+ visitor->Profile(ID);
+ void *InsertPos;
+
+ if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
+ delete visitor;
+ return;
+ }
+
+ CallbacksSet.InsertNode(visitor, InsertPos);
+ Callbacks.push_back(visitor);
+ ++ConfigurationChangeToken;
+}
+
+BugReport::~BugReport() {
+ for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
+ delete *I;
+ }
+}
+
+const Decl *BugReport::getDeclWithIssue() const {
+ if (DeclWithIssue)
+ return DeclWithIssue;
+
+ const ExplodedNode *N = getErrorNode();
+ if (!N)
+ return 0;
+
+ const LocationContext *LC = N->getLocationContext();
+ return LC->getCurrentStackFrame()->getDecl();
+}
+
+void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
+ hash.AddPointer(&BT);
+ hash.AddString(Description);
+ if (UniqueingLocation.isValid()) {
+ UniqueingLocation.Profile(hash);
+ } else if (Location.isValid()) {
+ Location.Profile(hash);
+ } else {
+ assert(ErrorNode);
+ hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
+ }
+
+ for (SmallVectorImpl<SourceRange>::const_iterator I =
+ Ranges.begin(), E = Ranges.end(); I != E; ++I) {
+ const SourceRange range = *I;
+ if (!range.isValid())
+ continue;
+ hash.AddInteger(range.getBegin().getRawEncoding());
+ hash.AddInteger(range.getEnd().getRawEncoding());
+ }
+}
+
+void BugReport::markInteresting(SymbolRef sym) {
+ if (!sym)
+ return;
+
+ // If the symbol wasn't already in our set, note a configuration change.
+ if (interestingSymbols.insert(sym).second)
+ ++ConfigurationChangeToken;
+
+ if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
+ interestingRegions.insert(meta->getRegion());
+}
+
+void BugReport::markInteresting(const MemRegion *R) {
+ if (!R)
+ return;
+
+ // If the base region wasn't already in our set, note a configuration change.
+ R = R->getBaseRegion();
+ if (interestingRegions.insert(R).second)
+ ++ConfigurationChangeToken;
+
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
+ interestingSymbols.insert(SR->getSymbol());
+}
+
+void BugReport::markInteresting(SVal V) {
+ markInteresting(V.getAsRegion());
+ markInteresting(V.getAsSymbol());
+}
+
+bool BugReport::isInteresting(SVal V) const {
+ return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
+}
+
+bool BugReport::isInteresting(SymbolRef sym) const {
+ if (!sym)
+ return false;
+ // We don't currently consider metadata symbols to be interesting
+ // even if we know their region is interesting. Is that correct behavior?
+ return interestingSymbols.count(sym);
+}
+
+bool BugReport::isInteresting(const MemRegion *R) const {
+ if (!R)
+ return false;
+ R = R->getBaseRegion();
+ bool b = interestingRegions.count(R);
+ if (b)
+ return true;
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
+ return interestingSymbols.count(SR->getSymbol());
+ return false;
+}
+
+
+const Stmt *BugReport::getStmt() const {
+ if (!ErrorNode)
+ return 0;
+
+ ProgramPoint ProgP = ErrorNode->getLocation();
+ const Stmt *S = NULL;
+
+ if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) {
+ CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
+ if (BE->getBlock() == &Exit)
+ S = GetPreviousStmt(ErrorNode);
+ }
+ if (!S)
+ S = GetStmt(ProgP);
+
+ return S;
+}
+
+std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
+BugReport::getRanges() {
+ // If no custom ranges, add the range of the statement corresponding to
+ // the error node.
+ if (Ranges.empty()) {
+ if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
+ addRange(E->getSourceRange());
+ else
+ return std::make_pair(ranges_iterator(), ranges_iterator());
+ }
+
+ // User-specified absence of range info.
+ if (Ranges.size() == 1 && !Ranges.begin()->isValid())
+ return std::make_pair(ranges_iterator(), ranges_iterator());
+
+ return std::make_pair(Ranges.begin(), Ranges.end());
+}
+
+PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
+ if (ErrorNode) {
+ assert(!Location.isValid() &&
+ "Either Location or ErrorNode should be specified but not both.");
+
+ if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
+ const LocationContext *LC = ErrorNode->getLocationContext();
+
+ // For member expressions, return the location of the '.' or '->'.
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
+ return PathDiagnosticLocation::createMemberLoc(ME, SM);
+ // For binary operators, return the location of the operator.
+ if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
+ return PathDiagnosticLocation::createOperatorLoc(B, SM);
+
+ return PathDiagnosticLocation::createBegin(S, SM, LC);
+ }
+ } else {
+ assert(Location.isValid());
+ return Location;
+ }
+
+ return PathDiagnosticLocation();
+}
+
+//===----------------------------------------------------------------------===//
+// Methods for BugReporter and subclasses.
+//===----------------------------------------------------------------------===//
+
+BugReportEquivClass::~BugReportEquivClass() { }
+GRBugReporter::~GRBugReporter() { }
+BugReporterData::~BugReporterData() {}
+
+ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
+
+ProgramStateManager&
+GRBugReporter::getStateManager() { return Eng.getStateManager(); }
+
+BugReporter::~BugReporter() {
+ FlushReports();
+
+ // Free the bug reports we are tracking.
+ typedef std::vector<BugReportEquivClass *> ContTy;
+ for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
+ I != E; ++I) {
+ delete *I;
+ }
+}
+
+void BugReporter::FlushReports() {
+ if (BugTypes.isEmpty())
+ return;
+
+ // First flush the warnings for each BugType. This may end up creating new
+ // warnings and new BugTypes.
+ // FIXME: Only NSErrorChecker needs BugType's FlushReports.
+ // Turn NSErrorChecker into a proper checker and remove this.
+ SmallVector<const BugType*, 16> bugTypes;
+ for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
+ bugTypes.push_back(*I);
+ for (SmallVector<const BugType*, 16>::iterator
+ I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
+ const_cast<BugType*>(*I)->FlushReports(*this);
+
+ typedef llvm::FoldingSet<BugReportEquivClass> SetTy;
+ for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){
+ BugReportEquivClass& EQ = *EI;
+ FlushReport(EQ);
+ }
+
+ // BugReporter owns and deletes only BugTypes created implicitly through
+ // EmitBasicReport.
+ // FIXME: There are leaks from checkers that assume that the BugTypes they
+ // create will be destroyed by the BugReporter.
+ for (llvm::StringMap<BugType*>::iterator
+ I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
+ delete I->second;
+
+ // Remove all references to the BugType objects.
+ BugTypes = F.getEmptySet();
+}
+
+//===----------------------------------------------------------------------===//
+// PathDiagnostics generation.
+//===----------------------------------------------------------------------===//
+
+static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
+ std::pair<ExplodedNode*, unsigned> >
+MakeReportGraph(const ExplodedGraph* G,
+ SmallVectorImpl<const ExplodedNode*> &nodes) {
+
+ // Create the trimmed graph. It will contain the shortest paths from the
+ // error nodes to the root. In the new graph we should only have one
+ // error node unless there are two or more error nodes with the same minimum
+ // path length.
+ ExplodedGraph* GTrim;
+ InterExplodedGraphMap* NMap;
+
+ llvm::DenseMap<const void*, const void*> InverseMap;
+ llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
+ &InverseMap);
+
+ // Create owning pointers for GTrim and NMap just to ensure that they are
+ // released when this function exists.
+ OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
+ OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
+
+ // Find the (first) error node in the trimmed graph. We just need to consult
+ // the node map (NMap) which maps from nodes in the original graph to nodes
+ // in the new graph.
+
+ std::queue<const ExplodedNode*> WS;
+ typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
+ IndexMapTy IndexMap;
+
+ for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
+ const ExplodedNode *originalNode = nodes[nodeIndex];
+ if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
+ WS.push(N);
+ IndexMap[originalNode] = nodeIndex;
+ }
+ }
+
+ assert(!WS.empty() && "No error node found in the trimmed graph.");
+
+ // Create a new (third!) graph with a single path. This is the graph
+ // that will be returned to the caller.
+ ExplodedGraph *GNew = new ExplodedGraph();
+
+ // Sometimes the trimmed graph can contain a cycle. Perform a reverse BFS
+ // to the root node, and then construct a new graph that contains only
+ // a single path.
+ llvm::DenseMap<const void*,unsigned> Visited;
+
+ unsigned cnt = 0;
+ const ExplodedNode *Root = 0;
+
+ while (!WS.empty()) {
+ const ExplodedNode *Node = WS.front();
+ WS.pop();
+
+ if (Visited.find(Node) != Visited.end())
+ continue;
+
+ Visited[Node] = cnt++;
+
+ if (Node->pred_empty()) {
+ Root = Node;
+ break;
+ }
+
+ for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
+ E=Node->pred_end(); I!=E; ++I)
+ WS.push(*I);
+ }
+
+ assert(Root);
+
+ // Now walk from the root down the BFS path, always taking the successor
+ // with the lowest number.
+ ExplodedNode *Last = 0, *First = 0;
+ NodeBackMap *BM = new NodeBackMap();
+ unsigned NodeIndex = 0;
+
+ for ( const ExplodedNode *N = Root ;;) {
+ // Lookup the number associated with the current node.
+ llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
+ assert(I != Visited.end());
+
+ // Create the equivalent node in the new graph with the same state
+ // and location.
+ ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
+
+ // Store the mapping to the original node.
+ llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
+ assert(IMitr != InverseMap.end() && "No mapping to original node.");
+ (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
+
+ // Link up the new node with the previous node.
+ if (Last)
+ NewN->addPredecessor(Last, *GNew);
+
+ Last = NewN;
+
+ // Are we at the final node?
+ IndexMapTy::iterator IMI =
+ IndexMap.find((const ExplodedNode*)(IMitr->second));
+ if (IMI != IndexMap.end()) {
+ First = NewN;
+ NodeIndex = IMI->second;
+ break;
+ }
+
+ // Find the next successor node. We choose the node that is marked
+ // with the lowest DFS number.
+ ExplodedNode::const_succ_iterator SI = N->succ_begin();
+ ExplodedNode::const_succ_iterator SE = N->succ_end();
+ N = 0;
+
+ for (unsigned MinVal = 0; SI != SE; ++SI) {
+
+ I = Visited.find(*SI);
+
+ if (I == Visited.end())
+ continue;
+
+ if (!N || I->second < MinVal) {
+ N = *SI;
+ MinVal = I->second;
+ }
+ }
+
+ assert(N);
+ }
+
+ assert(First);
+
+ return std::make_pair(std::make_pair(GNew, BM),
+ std::make_pair(First, NodeIndex));
+}
+
+/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
+/// and collapses PathDiagosticPieces that are expanded by macros.
+static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
+ typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
+ SourceLocation> > MacroStackTy;
+
+ typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
+ PiecesTy;
+
+ MacroStackTy MacroStack;
+ PiecesTy Pieces;
+
+ for (PathPieces::const_iterator I = path.begin(), E = path.end();
+ I!=E; ++I) {
+
+ PathDiagnosticPiece *piece = I->getPtr();
+
+ // Recursively compact calls.
+ if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
+ CompactPathDiagnostic(call->path, SM);
+ }
+
+ // Get the location of the PathDiagnosticPiece.
+ const FullSourceLoc Loc = piece->getLocation().asLocation();
+
+ // Determine the instantiation location, which is the location we group
+ // related PathDiagnosticPieces.
+ SourceLocation InstantiationLoc = Loc.isMacroID() ?
+ SM.getExpansionLoc(Loc) :
+ SourceLocation();
+
+ if (Loc.isFileID()) {
+ MacroStack.clear();
+ Pieces.push_back(piece);
+ continue;
+ }
+
+ assert(Loc.isMacroID());
+
+ // Is the PathDiagnosticPiece within the same macro group?
+ if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
+ MacroStack.back().first->subPieces.push_back(piece);
+ continue;
+ }
+
+ // We aren't in the same group. Are we descending into a new macro
+ // or are part of an old one?
+ IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
+
+ SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
+ SM.getExpansionLoc(Loc) :
+ SourceLocation();
+
+ // Walk the entire macro stack.
+ while (!MacroStack.empty()) {
+ if (InstantiationLoc == MacroStack.back().second) {
+ MacroGroup = MacroStack.back().first;
+ break;
+ }
+
+ if (ParentInstantiationLoc == MacroStack.back().second) {
+ MacroGroup = MacroStack.back().first;
+ break;
+ }
+
+ MacroStack.pop_back();
+ }
+
+ if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
+ // Create a new macro group and add it to the stack.
+ PathDiagnosticMacroPiece *NewGroup =
+ new PathDiagnosticMacroPiece(
+ PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
+
+ if (MacroGroup)
+ MacroGroup->subPieces.push_back(NewGroup);
+ else {
+ assert(InstantiationLoc.isFileID());
+ Pieces.push_back(NewGroup);
+ }
+
+ MacroGroup = NewGroup;
+ MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
+ }
+
+ // Finally, add the PathDiagnosticPiece to the group.
+ MacroGroup->subPieces.push_back(piece);
+ }
+
+ // Now take the pieces and construct a new PathDiagnostic.
+ path.clear();
+
+ for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
+ path.push_back(*I);
+}
+
+void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
+ SmallVectorImpl<BugReport *> &bugReports) {
+
+ assert(!bugReports.empty());
+ SmallVector<const ExplodedNode *, 10> errorNodes;
+ for (SmallVectorImpl<BugReport*>::iterator I = bugReports.begin(),
+ E = bugReports.end(); I != E; ++I) {
+ errorNodes.push_back((*I)->getErrorNode());
+ }
+
+ // Construct a new graph that contains only a single path from the error
+ // node to a root.
+ const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
+ std::pair<ExplodedNode*, unsigned> >&
+ GPair = MakeReportGraph(&getGraph(), errorNodes);
+
+ // Find the BugReport with the original location.
+ assert(GPair.second.second < bugReports.size());
+ BugReport *R = bugReports[GPair.second.second];
+ assert(R && "No original report found for sliced graph.");
+
+ OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
+ OwningPtr<NodeBackMap> BackMap(GPair.first.second);
+ const ExplodedNode *N = GPair.second.first;
+
+ // Start building the path diagnostic...
+ PathDiagnosticBuilder PDB(*this, R, BackMap.get(),
+ getPathDiagnosticConsumer());
+
+ // Register additional node visitors.
+ R->addVisitor(new NilReceiverBRVisitor());
+ R->addVisitor(new ConditionBRVisitor());
+
+ BugReport::VisitorList visitors;
+ unsigned originalReportConfigToken, finalReportConfigToken;
+
+ // While generating diagnostics, it's possible the visitors will decide
+ // new symbols and regions are interesting, or add other visitors based on
+ // the information they find. If they do, we need to regenerate the path
+ // based on our new report configuration.
+ do {
+ // Get a clean copy of all the visitors.
+ for (BugReport::visitor_iterator I = R->visitor_begin(),
+ E = R->visitor_end(); I != E; ++I)
+ visitors.push_back((*I)->clone());
+
+ // Clear out the active path from any previous work.
+ PD.getActivePath().clear();
+ originalReportConfigToken = R->getConfigurationChangeToken();
+
+ // Generate the very last diagnostic piece - the piece is visible before
+ // the trace is expanded.
+ PathDiagnosticPiece *LastPiece = 0;
+ for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
+ I != E; ++I) {
+ if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
+ assert (!LastPiece &&
+ "There can only be one final piece in a diagnostic.");
+ LastPiece = Piece;
+ }
+ }
+ if (!LastPiece)
+ LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
+ if (LastPiece)
+ PD.getActivePath().push_back(LastPiece);
+ else
+ return;
+
+ switch (PDB.getGenerationScheme()) {
+ case PathDiagnosticConsumer::Extensive:
+ GenerateExtensivePathDiagnostic(PD, PDB, N, visitors);
+ break;
+ case PathDiagnosticConsumer::Minimal:
+ GenerateMinimalPathDiagnostic(PD, PDB, N, visitors);
+ break;
+ }
+
+ // Clean up the visitors we used.
+ llvm::DeleteContainerPointers(visitors);
+
+ // Did anything change while generating this path?
+ finalReportConfigToken = R->getConfigurationChangeToken();
+ } while(finalReportConfigToken != originalReportConfigToken);
+
+ // Finally, prune the diagnostic path of uninteresting stuff.
+ bool hasSomethingInteresting = RemoveUneededCalls(PD.getMutablePieces());
+ assert(hasSomethingInteresting);
+ (void) hasSomethingInteresting;
+}
+
+void BugReporter::Register(BugType *BT) {
+ BugTypes = F.add(BugTypes, BT);
+}
+
+void BugReporter::EmitReport(BugReport* R) {
+ // Compute the bug report's hash to determine its equivalence class.
+ llvm::FoldingSetNodeID ID;
+ R->Profile(ID);
+
+ // Lookup the equivance class. If there isn't one, create it.
+ BugType& BT = R->getBugType();
+ Register(&BT);
+ void *InsertPos;
+ BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!EQ) {
+ EQ = new BugReportEquivClass(R);
+ EQClasses.InsertNode(EQ, InsertPos);
+ EQClassesVector.push_back(EQ);
+ }
+ else
+ EQ->AddReport(R);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Emitting reports in equivalence classes.
+//===----------------------------------------------------------------------===//
+
+namespace {
+struct FRIEC_WLItem {
+ const ExplodedNode *N;
+ ExplodedNode::const_succ_iterator I, E;
+
+ FRIEC_WLItem(const ExplodedNode *n)
+ : N(n), I(N->succ_begin()), E(N->succ_end()) {}
+};
+}
+
+static BugReport *
+FindReportInEquivalenceClass(BugReportEquivClass& EQ,
+ SmallVectorImpl<BugReport*> &bugReports) {
+
+ BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
+ assert(I != E);
+ BugType& BT = I->getBugType();
+
+ // If we don't need to suppress any of the nodes because they are
+ // post-dominated by a sink, simply add all the nodes in the equivalence class
+ // to 'Nodes'. Any of the reports will serve as a "representative" report.
+ if (!BT.isSuppressOnSink()) {
+ BugReport *R = I;
+ for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
+ const ExplodedNode *N = I->getErrorNode();
+ if (N) {
+ R = I;
+ bugReports.push_back(R);
+ }
+ }
+ return R;
+ }
+
+ // For bug reports that should be suppressed when all paths are post-dominated
+ // by a sink node, iterate through the reports in the equivalence class
+ // until we find one that isn't post-dominated (if one exists). We use a
+ // DFS traversal of the ExplodedGraph to find a non-sink node. We could write
+ // this as a recursive function, but we don't want to risk blowing out the
+ // stack for very long paths.
+ BugReport *exampleReport = 0;
+
+ for (; I != E; ++I) {
+ const ExplodedNode *errorNode = I->getErrorNode();
+
+ if (!errorNode)
+ continue;
+ if (errorNode->isSink()) {
+ llvm_unreachable(
+ "BugType::isSuppressSink() should not be 'true' for sink end nodes");
+ }
+ // No successors? By definition this nodes isn't post-dominated by a sink.
+ if (errorNode->succ_empty()) {
+ bugReports.push_back(I);
+ if (!exampleReport)
+ exampleReport = I;
+ continue;
+ }
+
+ // At this point we know that 'N' is not a sink and it has at least one
+ // successor. Use a DFS worklist to find a non-sink end-of-path node.
+ typedef FRIEC_WLItem WLItem;
+ typedef SmallVector<WLItem, 10> DFSWorkList;
+ llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
+
+ DFSWorkList WL;
+ WL.push_back(errorNode);
+ Visited[errorNode] = 1;
+
+ while (!WL.empty()) {
+ WLItem &WI = WL.back();
+ assert(!WI.N->succ_empty());
+
+ for (; WI.I != WI.E; ++WI.I) {
+ const ExplodedNode *Succ = *WI.I;
+ // End-of-path node?
+ if (Succ->succ_empty()) {
+ // If we found an end-of-path node that is not a sink.
+ if (!Succ->isSink()) {
+ bugReports.push_back(I);
+ if (!exampleReport)
+ exampleReport = I;
+ WL.clear();
+ break;
+ }
+ // Found a sink? Continue on to the next successor.
+ continue;
+ }
+ // Mark the successor as visited. If it hasn't been explored,
+ // enqueue it to the DFS worklist.
+ unsigned &mark = Visited[Succ];
+ if (!mark) {
+ mark = 1;
+ WL.push_back(Succ);
+ break;
+ }
+ }
+
+ // The worklist may have been cleared at this point. First
+ // check if it is empty before checking the last item.
+ if (!WL.empty() && &WL.back() == &WI)
+ WL.pop_back();
+ }
+ }
+
+ // ExampleReport will be NULL if all the nodes in the equivalence class
+ // were post-dominated by sinks.
+ return exampleReport;
+}
+
+//===----------------------------------------------------------------------===//
+// DiagnosticCache. This is a hack to cache analyzer diagnostics. It
+// uses global state, which eventually should go elsewhere.
+//===----------------------------------------------------------------------===//
+namespace {
+class DiagCacheItem : public llvm::FoldingSetNode {
+ llvm::FoldingSetNodeID ID;
+public:
+ DiagCacheItem(BugReport *R, PathDiagnostic *PD) {
+ R->Profile(ID);
+ PD->Profile(ID);
+ }
+
+ void Profile(llvm::FoldingSetNodeID &id) {
+ id = ID;
+ }
+
+ llvm::FoldingSetNodeID &getID() { return ID; }
+};
+}
+
+static bool IsCachedDiagnostic(BugReport *R, PathDiagnostic *PD) {
+ // FIXME: Eventually this diagnostic cache should reside in something
+ // like AnalysisManager instead of being a static variable. This is
+ // really unsafe in the long term.
+ typedef llvm::FoldingSet<DiagCacheItem> DiagnosticCache;
+ static DiagnosticCache DC;
+
+ void *InsertPos;
+ DiagCacheItem *Item = new DiagCacheItem(R, PD);
+
+ if (DC.FindNodeOrInsertPos(Item->getID(), InsertPos)) {
+ delete Item;
+ return true;
+ }
+
+ DC.InsertNode(Item, InsertPos);
+ return false;
+}
+
+void BugReporter::FlushReport(BugReportEquivClass& EQ) {
+ SmallVector<BugReport*, 10> bugReports;
+ BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
+ if (!exampleReport)
+ return;
+
+ PathDiagnosticConsumer* PD = getPathDiagnosticConsumer();
+
+ // FIXME: Make sure we use the 'R' for the path that was actually used.
+ // Probably doesn't make a difference in practice.
+ BugType& BT = exampleReport->getBugType();
+
+ OwningPtr<PathDiagnostic>
+ D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
+ exampleReport->getBugType().getName(),
+ !PD || PD->useVerboseDescription()
+ ? exampleReport->getDescription()
+ : exampleReport->getShortDescription(),
+ BT.getCategory()));
+
+ if (!bugReports.empty())
+ GeneratePathDiagnostic(*D.get(), bugReports);
+
+ // Get the meta data.
+ const BugReport::ExtraTextList &Meta =
+ exampleReport->getExtraText();
+ for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
+ e = Meta.end(); i != e; ++i) {
+ D->addMeta(*i);
+ }
+
+ // Emit a summary diagnostic to the regular Diagnostics engine.
+ BugReport::ranges_iterator Beg, End;
+ llvm::tie(Beg, End) = exampleReport->getRanges();
+ DiagnosticsEngine &Diag = getDiagnostic();
+
+ if (!IsCachedDiagnostic(exampleReport, D.get())) {
+ // Search the description for '%', as that will be interpretted as a
+ // format character by FormatDiagnostics.
+ StringRef desc = exampleReport->getShortDescription();
+
+ SmallString<512> TmpStr;
+ llvm::raw_svector_ostream Out(TmpStr);
+ for (StringRef::iterator I=desc.begin(), E=desc.end(); I!=E; ++I) {
+ if (*I == '%')
+ Out << "%%";
+ else
+ Out << *I;
+ }
+
+ Out.flush();
+ unsigned ErrorDiag = Diag.getCustomDiagID(DiagnosticsEngine::Warning, TmpStr);
+
+ DiagnosticBuilder diagBuilder = Diag.Report(
+ exampleReport->getLocation(getSourceManager()).asLocation(), ErrorDiag);
+ for (BugReport::ranges_iterator I = Beg; I != End; ++I)
+ diagBuilder << *I;
+ }
+
+ // Emit a full diagnostic for the path if we have a PathDiagnosticConsumer.
+ if (!PD)
+ return;
+
+ if (D->path.empty()) {
+ PathDiagnosticPiece *piece = new PathDiagnosticEventPiece(
+ exampleReport->getLocation(getSourceManager()),
+ exampleReport->getDescription());
+ for ( ; Beg != End; ++Beg)
+ piece->addRange(*Beg);
+
+ D->getActivePath().push_back(piece);
+ }
+
+ PD->HandlePathDiagnostic(D.take());
+}
+
+void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
+ StringRef name,
+ StringRef category,
+ StringRef str, PathDiagnosticLocation Loc,
+ SourceRange* RBeg, unsigned NumRanges) {
+
+ // 'BT' is owned by BugReporter.
+ BugType *BT = getBugTypeForName(name, category);
+ BugReport *R = new BugReport(*BT, str, Loc);
+ R->setDeclWithIssue(DeclWithIssue);
+ for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
+ EmitReport(R);
+}
+
+BugType *BugReporter::getBugTypeForName(StringRef name,
+ StringRef category) {
+ SmallString<136> fullDesc;
+ llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
+ llvm::StringMapEntry<BugType *> &
+ entry = StrBugTypes.GetOrCreateValue(fullDesc);
+ BugType *BT = entry.getValue();
+ if (!BT) {
+ BT = new BugType(name, category);
+ entry.setValue(BT);
+ }
+ return BT;
+}
diff --git a/clang/lib/StaticAnalyzer/Core/BugReporterVisitors.cpp b/clang/lib/StaticAnalyzer/Core/BugReporterVisitors.cpp
new file mode 100644
index 0000000..6532486
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/BugReporterVisitors.cpp
@@ -0,0 +1,784 @@
+// BugReporterVisitors.cpp - Helpers for reporting bugs -----------*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a set of BugReporter "visitors" which can be used to
+// enhance the diagnostics reported for a bug.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitor.h"
+
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "llvm/ADT/SmallString.h"
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// Utility functions.
+//===----------------------------------------------------------------------===//
+
+const Stmt *bugreporter::GetDerefExpr(const ExplodedNode *N) {
+ // Pattern match for a few useful cases (do something smarter later):
+ // a[0], p->f, *p
+ const Stmt *S = N->getLocationAs<PostStmt>()->getStmt();
+
+ if (const UnaryOperator *U = dyn_cast<UnaryOperator>(S)) {
+ if (U->getOpcode() == UO_Deref)
+ return U->getSubExpr()->IgnoreParenCasts();
+ }
+ else if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
+ return ME->getBase()->IgnoreParenCasts();
+ }
+ else if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(S)) {
+ return AE->getBase();
+ }
+
+ return NULL;
+}
+
+const Stmt *bugreporter::GetDenomExpr(const ExplodedNode *N) {
+ const Stmt *S = N->getLocationAs<PreStmt>()->getStmt();
+ if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(S))
+ return BE->getRHS();
+ return NULL;
+}
+
+const Stmt *bugreporter::GetCalleeExpr(const ExplodedNode *N) {
+ // Callee is checked as a PreVisit to the CallExpr.
+ const Stmt *S = N->getLocationAs<PreStmt>()->getStmt();
+ if (const CallExpr *CE = dyn_cast<CallExpr>(S))
+ return CE->getCallee();
+ return NULL;
+}
+
+const Stmt *bugreporter::GetRetValExpr(const ExplodedNode *N) {
+ const Stmt *S = N->getLocationAs<PostStmt>()->getStmt();
+ if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(S))
+ return RS->getRetValue();
+ return NULL;
+}
+
+//===----------------------------------------------------------------------===//
+// Definitions for bug reporter visitors.
+//===----------------------------------------------------------------------===//
+
+PathDiagnosticPiece*
+BugReporterVisitor::getEndPath(BugReporterContext &BRC,
+ const ExplodedNode *EndPathNode,
+ BugReport &BR) {
+ return 0;
+}
+
+PathDiagnosticPiece*
+BugReporterVisitor::getDefaultEndPath(BugReporterContext &BRC,
+ const ExplodedNode *EndPathNode,
+ BugReport &BR) {
+ PathDiagnosticLocation L =
+ PathDiagnosticLocation::createEndOfPath(EndPathNode,BRC.getSourceManager());
+
+ BugReport::ranges_iterator Beg, End;
+ llvm::tie(Beg, End) = BR.getRanges();
+
+ // Only add the statement itself as a range if we didn't specify any
+ // special ranges for this report.
+ PathDiagnosticPiece *P = new PathDiagnosticEventPiece(L,
+ BR.getDescription(),
+ Beg == End);
+ for (; Beg != End; ++Beg)
+ P->addRange(*Beg);
+
+ return P;
+}
+
+
+void FindLastStoreBRVisitor ::Profile(llvm::FoldingSetNodeID &ID) const {
+ static int tag = 0;
+ ID.AddPointer(&tag);
+ ID.AddPointer(R);
+ ID.Add(V);
+}
+
+PathDiagnosticPiece *FindLastStoreBRVisitor::VisitNode(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+
+ if (satisfied)
+ return NULL;
+
+ if (!StoreSite) {
+ const ExplodedNode *Node = N, *Last = NULL;
+
+ for ( ; Node ; Node = Node->getFirstPred()) {
+
+ if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
+ if (const PostStmt *P = Node->getLocationAs<PostStmt>())
+ if (const DeclStmt *DS = P->getStmtAs<DeclStmt>())
+ if (DS->getSingleDecl() == VR->getDecl()) {
+ // Record the last seen initialization point.
+ Last = Node;
+ break;
+ }
+ }
+
+ // Does the region still bind to value V? If not, we are done
+ // looking for store sites.
+ if (Node->getState()->getSVal(R) != V)
+ break;
+ }
+
+ if (!Node || !Last) {
+ satisfied = true;
+ return NULL;
+ }
+
+ StoreSite = Last;
+ }
+
+ if (StoreSite != N)
+ return NULL;
+
+ satisfied = true;
+ SmallString<256> sbuf;
+ llvm::raw_svector_ostream os(sbuf);
+
+ if (const PostStmt *PS = N->getLocationAs<PostStmt>()) {
+ if (const DeclStmt *DS = PS->getStmtAs<DeclStmt>()) {
+
+ if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
+ os << "Variable '" << *VR->getDecl() << "' ";
+ }
+ else
+ return NULL;
+
+ if (isa<loc::ConcreteInt>(V)) {
+ bool b = false;
+ if (R->isBoundable()) {
+ if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
+ if (TR->getValueType()->isObjCObjectPointerType()) {
+ os << "initialized to nil";
+ b = true;
+ }
+ }
+ }
+
+ if (!b)
+ os << "initialized to a null pointer value";
+ }
+ else if (isa<nonloc::ConcreteInt>(V)) {
+ os << "initialized to " << cast<nonloc::ConcreteInt>(V).getValue();
+ }
+ else if (V.isUndef()) {
+ if (isa<VarRegion>(R)) {
+ const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
+ if (VD->getInit())
+ os << "initialized to a garbage value";
+ else
+ os << "declared without an initial value";
+ }
+ }
+ }
+ }
+
+ if (os.str().empty()) {
+ if (isa<loc::ConcreteInt>(V)) {
+ bool b = false;
+ if (R->isBoundable()) {
+ if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
+ if (TR->getValueType()->isObjCObjectPointerType()) {
+ os << "nil object reference stored to ";
+ b = true;
+ }
+ }
+ }
+
+ if (!b)
+ os << "Null pointer value stored to ";
+ }
+ else if (V.isUndef()) {
+ os << "Uninitialized value stored to ";
+ }
+ else if (isa<nonloc::ConcreteInt>(V)) {
+ os << "The value " << cast<nonloc::ConcreteInt>(V).getValue()
+ << " is assigned to ";
+ }
+ else
+ return NULL;
+
+ if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
+ os << '\'' << *VR->getDecl() << '\'';
+ }
+ else
+ return NULL;
+ }
+
+ // Construct a new PathDiagnosticPiece.
+ ProgramPoint P = N->getLocation();
+ PathDiagnosticLocation L =
+ PathDiagnosticLocation::create(P, BRC.getSourceManager());
+ if (!L.isValid())
+ return NULL;
+ return new PathDiagnosticEventPiece(L, os.str());
+}
+
+void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
+ static int tag = 0;
+ ID.AddPointer(&tag);
+ ID.AddBoolean(Assumption);
+ ID.Add(Constraint);
+}
+
+PathDiagnosticPiece *
+TrackConstraintBRVisitor::VisitNode(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+ if (isSatisfied)
+ return NULL;
+
+ // Check if in the previous state it was feasible for this constraint
+ // to *not* be true.
+ if (PrevN->getState()->assume(Constraint, !Assumption)) {
+
+ isSatisfied = true;
+
+ // As a sanity check, make sure that the negation of the constraint
+ // was infeasible in the current state. If it is feasible, we somehow
+ // missed the transition point.
+ if (N->getState()->assume(Constraint, !Assumption))
+ return NULL;
+
+ // We found the transition point for the constraint. We now need to
+ // pretty-print the constraint. (work-in-progress)
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+
+ if (isa<Loc>(Constraint)) {
+ os << "Assuming pointer value is ";
+ os << (Assumption ? "non-null" : "null");
+ }
+
+ if (os.str().empty())
+ return NULL;
+
+ // Construct a new PathDiagnosticPiece.
+ ProgramPoint P = N->getLocation();
+ PathDiagnosticLocation L =
+ PathDiagnosticLocation::create(P, BRC.getSourceManager());
+ if (!L.isValid())
+ return NULL;
+ return new PathDiagnosticEventPiece(L, os.str());
+ }
+
+ return NULL;
+}
+
+BugReporterVisitor *
+bugreporter::getTrackNullOrUndefValueVisitor(const ExplodedNode *N,
+ const Stmt *S,
+ BugReport *report) {
+ if (!S || !N)
+ return 0;
+
+ ProgramStateManager &StateMgr = N->getState()->getStateManager();
+
+ // Walk through nodes until we get one that matches the statement
+ // exactly.
+ while (N) {
+ const ProgramPoint &pp = N->getLocation();
+ if (const PostStmt *ps = dyn_cast<PostStmt>(&pp)) {
+ if (ps->getStmt() == S)
+ break;
+ }
+ N = N->getFirstPred();
+ }
+
+ if (!N)
+ return 0;
+
+ ProgramStateRef state = N->getState();
+
+ // Walk through lvalue-to-rvalue conversions.
+ const Expr *Ex = dyn_cast<Expr>(S);
+ if (Ex) {
+ Ex = Ex->IgnoreParenLValueCasts();
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex)) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ const VarRegion *R =
+ StateMgr.getRegionManager().getVarRegion(VD, N->getLocationContext());
+
+ // What did we load?
+ SVal V = state->getSVal(loc::MemRegionVal(R));
+ report->markInteresting(R);
+ report->markInteresting(V);
+ return new FindLastStoreBRVisitor(V, R);
+ }
+ }
+ }
+
+ SVal V = state->getSValAsScalarOrLoc(S, N->getLocationContext());
+
+ // Uncomment this to find cases where we aren't properly getting the
+ // base value that was dereferenced.
+ // assert(!V.isUnknownOrUndef());
+
+ // Is it a symbolic value?
+ if (loc::MemRegionVal *L = dyn_cast<loc::MemRegionVal>(&V)) {
+ const SubRegion *R = cast<SubRegion>(L->getRegion());
+ while (R && !isa<SymbolicRegion>(R)) {
+ R = dyn_cast<SubRegion>(R->getSuperRegion());
+ }
+
+ if (R) {
+ report->markInteresting(R);
+ return new TrackConstraintBRVisitor(loc::MemRegionVal(R), false);
+ }
+ }
+
+ return 0;
+}
+
+BugReporterVisitor *
+FindLastStoreBRVisitor::createVisitorObject(const ExplodedNode *N,
+ const MemRegion *R) {
+ assert(R && "The memory region is null.");
+
+ ProgramStateRef state = N->getState();
+ SVal V = state->getSVal(R);
+ if (V.isUnknown())
+ return 0;
+
+ return new FindLastStoreBRVisitor(V, R);
+}
+
+
+PathDiagnosticPiece *NilReceiverBRVisitor::VisitNode(const ExplodedNode *N,
+ const ExplodedNode *PrevN,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+ const PostStmt *P = N->getLocationAs<PostStmt>();
+ if (!P)
+ return 0;
+ const ObjCMessageExpr *ME = P->getStmtAs<ObjCMessageExpr>();
+ if (!ME)
+ return 0;
+ const Expr *Receiver = ME->getInstanceReceiver();
+ if (!Receiver)
+ return 0;
+ ProgramStateRef state = N->getState();
+ const SVal &V = state->getSVal(Receiver, N->getLocationContext());
+ const DefinedOrUnknownSVal *DV = dyn_cast<DefinedOrUnknownSVal>(&V);
+ if (!DV)
+ return 0;
+ state = state->assume(*DV, true);
+ if (state)
+ return 0;
+
+ // The receiver was nil, and hence the method was skipped.
+ // Register a BugReporterVisitor to issue a message telling us how
+ // the receiver was null.
+ BR.addVisitor(bugreporter::getTrackNullOrUndefValueVisitor(N, Receiver, &BR));
+ // Issue a message saying that the method was skipped.
+ PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
+ N->getLocationContext());
+ return new PathDiagnosticEventPiece(L, "No method is called "
+ "because the receiver is nil");
+}
+
+// Registers every VarDecl inside a Stmt with a last store visitor.
+void FindLastStoreBRVisitor::registerStatementVarDecls(BugReport &BR,
+ const Stmt *S) {
+ const ExplodedNode *N = BR.getErrorNode();
+ std::deque<const Stmt *> WorkList;
+ WorkList.push_back(S);
+
+ while (!WorkList.empty()) {
+ const Stmt *Head = WorkList.front();
+ WorkList.pop_front();
+
+ ProgramStateRef state = N->getState();
+ ProgramStateManager &StateMgr = state->getStateManager();
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Head)) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ const VarRegion *R =
+ StateMgr.getRegionManager().getVarRegion(VD, N->getLocationContext());
+
+ // What did we load?
+ SVal V = state->getSVal(S, N->getLocationContext());
+
+ if (isa<loc::ConcreteInt>(V) || isa<nonloc::ConcreteInt>(V)) {
+ // Register a new visitor with the BugReport.
+ BR.addVisitor(new FindLastStoreBRVisitor(V, R));
+ }
+ }
+ }
+
+ for (Stmt::const_child_iterator I = Head->child_begin();
+ I != Head->child_end(); ++I)
+ WorkList.push_back(*I);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Visitor that tries to report interesting diagnostics from conditions.
+//===----------------------------------------------------------------------===//
+PathDiagnosticPiece *ConditionBRVisitor::VisitNode(const ExplodedNode *N,
+ const ExplodedNode *Prev,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+ PathDiagnosticPiece *piece = VisitNodeImpl(N, Prev, BRC, BR);
+ if (PathDiagnosticEventPiece *ev =
+ dyn_cast_or_null<PathDiagnosticEventPiece>(piece))
+ ev->setPrunable(true, /* override */ false);
+ return piece;
+}
+
+PathDiagnosticPiece *ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N,
+ const ExplodedNode *Prev,
+ BugReporterContext &BRC,
+ BugReport &BR) {
+
+ const ProgramPoint &progPoint = N->getLocation();
+
+ ProgramStateRef CurrentState = N->getState();
+ ProgramStateRef PrevState = Prev->getState();
+
+ // Compare the GDMs of the state, because that is where constraints
+ // are managed. Note that ensure that we only look at nodes that
+ // were generated by the analyzer engine proper, not checkers.
+ if (CurrentState->getGDM().getRoot() ==
+ PrevState->getGDM().getRoot())
+ return 0;
+
+ // If an assumption was made on a branch, it should be caught
+ // here by looking at the state transition.
+ if (const BlockEdge *BE = dyn_cast<BlockEdge>(&progPoint)) {
+ const CFGBlock *srcBlk = BE->getSrc();
+ if (const Stmt *term = srcBlk->getTerminator())
+ return VisitTerminator(term, N, srcBlk, BE->getDst(), BR, BRC);
+ return 0;
+ }
+
+ if (const PostStmt *PS = dyn_cast<PostStmt>(&progPoint)) {
+ // FIXME: Assuming that BugReporter is a GRBugReporter is a layering
+ // violation.
+ const std::pair<const ProgramPointTag *, const ProgramPointTag *> &tags =
+ cast<GRBugReporter>(BRC.getBugReporter()).
+ getEngine().getEagerlyAssumeTags();
+
+ const ProgramPointTag *tag = PS->getTag();
+ if (tag == tags.first)
+ return VisitTrueTest(cast<Expr>(PS->getStmt()), true,
+ BRC, BR, N);
+ if (tag == tags.second)
+ return VisitTrueTest(cast<Expr>(PS->getStmt()), false,
+ BRC, BR, N);
+
+ return 0;
+ }
+
+ return 0;
+}
+
+PathDiagnosticPiece *
+ConditionBRVisitor::VisitTerminator(const Stmt *Term,
+ const ExplodedNode *N,
+ const CFGBlock *srcBlk,
+ const CFGBlock *dstBlk,
+ BugReport &R,
+ BugReporterContext &BRC) {
+ const Expr *Cond = 0;
+
+ switch (Term->getStmtClass()) {
+ default:
+ return 0;
+ case Stmt::IfStmtClass:
+ Cond = cast<IfStmt>(Term)->getCond();
+ break;
+ case Stmt::ConditionalOperatorClass:
+ Cond = cast<ConditionalOperator>(Term)->getCond();
+ break;
+ }
+
+ assert(Cond);
+ assert(srcBlk->succ_size() == 2);
+ const bool tookTrue = *(srcBlk->succ_begin()) == dstBlk;
+ return VisitTrueTest(Cond->IgnoreParenNoopCasts(BRC.getASTContext()),
+ tookTrue, BRC, R, N);
+}
+
+PathDiagnosticPiece *
+ConditionBRVisitor::VisitTrueTest(const Expr *Cond,
+ bool tookTrue,
+ BugReporterContext &BRC,
+ BugReport &R,
+ const ExplodedNode *N) {
+
+ const Expr *Ex = Cond;
+
+ while (true) {
+ Ex = Ex->IgnoreParens();
+ switch (Ex->getStmtClass()) {
+ default:
+ return 0;
+ case Stmt::BinaryOperatorClass:
+ return VisitTrueTest(Cond, cast<BinaryOperator>(Ex), tookTrue, BRC,
+ R, N);
+ case Stmt::DeclRefExprClass:
+ return VisitTrueTest(Cond, cast<DeclRefExpr>(Ex), tookTrue, BRC,
+ R, N);
+ case Stmt::UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(Ex);
+ if (UO->getOpcode() == UO_LNot) {
+ tookTrue = !tookTrue;
+ Ex = UO->getSubExpr()->IgnoreParenNoopCasts(BRC.getASTContext());
+ continue;
+ }
+ return 0;
+ }
+ }
+ }
+}
+
+bool ConditionBRVisitor::patternMatch(const Expr *Ex, llvm::raw_ostream &Out,
+ BugReporterContext &BRC,
+ BugReport &report,
+ const ExplodedNode *N,
+ llvm::Optional<bool> &prunable) {
+ const Expr *OriginalExpr = Ex;
+ Ex = Ex->IgnoreParenCasts();
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex)) {
+ const bool quotes = isa<VarDecl>(DR->getDecl());
+ if (quotes) {
+ Out << '\'';
+ const LocationContext *LCtx = N->getLocationContext();
+ const ProgramState *state = N->getState().getPtr();
+ if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
+ LCtx).getAsRegion()) {
+ if (report.isInteresting(R))
+ prunable = false;
+ else {
+ const ProgramState *state = N->getState().getPtr();
+ SVal V = state->getSVal(R);
+ if (report.isInteresting(V))
+ prunable = false;
+ }
+ }
+ }
+ Out << DR->getDecl()->getDeclName().getAsString();
+ if (quotes)
+ Out << '\'';
+ return quotes;
+ }
+
+ if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(Ex)) {
+ QualType OriginalTy = OriginalExpr->getType();
+ if (OriginalTy->isPointerType()) {
+ if (IL->getValue() == 0) {
+ Out << "null";
+ return false;
+ }
+ }
+ else if (OriginalTy->isObjCObjectPointerType()) {
+ if (IL->getValue() == 0) {
+ Out << "nil";
+ return false;
+ }
+ }
+
+ Out << IL->getValue();
+ return false;
+ }
+
+ return false;
+}
+
+PathDiagnosticPiece *
+ConditionBRVisitor::VisitTrueTest(const Expr *Cond,
+ const BinaryOperator *BExpr,
+ const bool tookTrue,
+ BugReporterContext &BRC,
+ BugReport &R,
+ const ExplodedNode *N) {
+
+ bool shouldInvert = false;
+ llvm::Optional<bool> shouldPrune;
+
+ SmallString<128> LhsString, RhsString;
+ {
+ llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
+ const bool isVarLHS = patternMatch(BExpr->getLHS(), OutLHS, BRC, R, N,
+ shouldPrune);
+ const bool isVarRHS = patternMatch(BExpr->getRHS(), OutRHS, BRC, R, N,
+ shouldPrune);
+
+ shouldInvert = !isVarLHS && isVarRHS;
+ }
+
+ BinaryOperator::Opcode Op = BExpr->getOpcode();
+
+ if (BinaryOperator::isAssignmentOp(Op)) {
+ // For assignment operators, all that we care about is that the LHS
+ // evaluates to "true" or "false".
+ return VisitConditionVariable(LhsString, BExpr->getLHS(), tookTrue,
+ BRC, R, N);
+ }
+
+ // For non-assignment operations, we require that we can understand
+ // both the LHS and RHS.
+ if (LhsString.empty() || RhsString.empty())
+ return 0;
+
+ // Should we invert the strings if the LHS is not a variable name?
+ SmallString<256> buf;
+ llvm::raw_svector_ostream Out(buf);
+ Out << "Assuming " << (shouldInvert ? RhsString : LhsString) << " is ";
+
+ // Do we need to invert the opcode?
+ if (shouldInvert)
+ switch (Op) {
+ default: break;
+ case BO_LT: Op = BO_GT; break;
+ case BO_GT: Op = BO_LT; break;
+ case BO_LE: Op = BO_GE; break;
+ case BO_GE: Op = BO_LE; break;
+ }
+
+ if (!tookTrue)
+ switch (Op) {
+ case BO_EQ: Op = BO_NE; break;
+ case BO_NE: Op = BO_EQ; break;
+ case BO_LT: Op = BO_GE; break;
+ case BO_GT: Op = BO_LE; break;
+ case BO_LE: Op = BO_GT; break;
+ case BO_GE: Op = BO_LT; break;
+ default:
+ return 0;
+ }
+
+ switch (Op) {
+ case BO_EQ:
+ Out << "equal to ";
+ break;
+ case BO_NE:
+ Out << "not equal to ";
+ break;
+ default:
+ Out << BinaryOperator::getOpcodeStr(Op) << ' ';
+ break;
+ }
+
+ Out << (shouldInvert ? LhsString : RhsString);
+ const LocationContext *LCtx = N->getLocationContext();
+ PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
+ PathDiagnosticEventPiece *event =
+ new PathDiagnosticEventPiece(Loc, Out.str());
+ if (shouldPrune.hasValue())
+ event->setPrunable(shouldPrune.getValue());
+ return event;
+}
+
+PathDiagnosticPiece *
+ConditionBRVisitor::VisitConditionVariable(StringRef LhsString,
+ const Expr *CondVarExpr,
+ const bool tookTrue,
+ BugReporterContext &BRC,
+ BugReport &report,
+ const ExplodedNode *N) {
+ SmallString<256> buf;
+ llvm::raw_svector_ostream Out(buf);
+ Out << "Assuming " << LhsString << " is ";
+
+ QualType Ty = CondVarExpr->getType();
+
+ if (Ty->isPointerType())
+ Out << (tookTrue ? "not null" : "null");
+ else if (Ty->isObjCObjectPointerType())
+ Out << (tookTrue ? "not nil" : "nil");
+ else if (Ty->isBooleanType())
+ Out << (tookTrue ? "true" : "false");
+ else if (Ty->isIntegerType())
+ Out << (tookTrue ? "non-zero" : "zero");
+ else
+ return 0;
+
+ const LocationContext *LCtx = N->getLocationContext();
+ PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
+ PathDiagnosticEventPiece *event =
+ new PathDiagnosticEventPiece(Loc, Out.str());
+
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(CondVarExpr)) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
+ const ProgramState *state = N->getState().getPtr();
+ if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) {
+ if (report.isInteresting(R))
+ event->setPrunable(false);
+ }
+ }
+ }
+
+ return event;
+}
+
+PathDiagnosticPiece *
+ConditionBRVisitor::VisitTrueTest(const Expr *Cond,
+ const DeclRefExpr *DR,
+ const bool tookTrue,
+ BugReporterContext &BRC,
+ BugReport &report,
+ const ExplodedNode *N) {
+
+ const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
+ if (!VD)
+ return 0;
+
+ SmallString<256> Buf;
+ llvm::raw_svector_ostream Out(Buf);
+
+ Out << "Assuming '";
+ VD->getDeclName().printName(Out);
+ Out << "' is ";
+
+ QualType VDTy = VD->getType();
+
+ if (VDTy->isPointerType())
+ Out << (tookTrue ? "non-null" : "null");
+ else if (VDTy->isObjCObjectPointerType())
+ Out << (tookTrue ? "non-nil" : "nil");
+ else if (VDTy->isScalarType())
+ Out << (tookTrue ? "not equal to 0" : "0");
+ else
+ return 0;
+
+ const LocationContext *LCtx = N->getLocationContext();
+ PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
+ PathDiagnosticEventPiece *event =
+ new PathDiagnosticEventPiece(Loc, Out.str());
+
+ const ProgramState *state = N->getState().getPtr();
+ if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) {
+ if (report.isInteresting(R))
+ event->setPrunable(false);
+ else {
+ SVal V = state->getSVal(R);
+ if (report.isInteresting(V))
+ event->setPrunable(false);
+ }
+ }
+ return event;
+}
+
diff --git a/clang/lib/StaticAnalyzer/Core/CMakeLists.txt b/clang/lib/StaticAnalyzer/Core/CMakeLists.txt
new file mode 100644
index 0000000..1ea25bd
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/CMakeLists.txt
@@ -0,0 +1,45 @@
+set(LLVM_LINK_COMPONENTS support)
+
+set(LLVM_USED_LIBS clangBasic clangLex clangAST clangFrontend clangRewrite)
+
+add_clang_library(clangStaticAnalyzerCore
+ AnalysisManager.cpp
+ BasicConstraintManager.cpp
+ BasicValueFactory.cpp
+ BlockCounter.cpp
+ BugReporter.cpp
+ BugReporterVisitors.cpp
+ Checker.cpp
+ CheckerContext.cpp
+ CheckerHelpers.cpp
+ CheckerManager.cpp
+ CheckerRegistry.cpp
+ CoreEngine.cpp
+ Environment.cpp
+ ExplodedGraph.cpp
+ ExprEngine.cpp
+ ExprEngineC.cpp
+ ExprEngineCXX.cpp
+ ExprEngineCallAndReturn.cpp
+ ExprEngineObjC.cpp
+ FunctionSummary.cpp
+ HTMLDiagnostics.cpp
+ MemRegion.cpp
+ ObjCMessage.cpp
+ PathDiagnostic.cpp
+ PlistDiagnostics.cpp
+ ProgramState.cpp
+ RangeConstraintManager.cpp
+ RegionStore.cpp
+ SValBuilder.cpp
+ SVals.cpp
+ SimpleConstraintManager.cpp
+ SimpleSValBuilder.cpp
+ Store.cpp
+ SubEngine.cpp
+ SymbolManager.cpp
+ TextPathDiagnostics.cpp
+ )
+
+add_dependencies(clangStaticAnalyzerCore ClangAttrClasses ClangAttrList ClangDeclNodes
+ ClangStmtNodes)
diff --git a/clang/lib/StaticAnalyzer/Core/Checker.cpp b/clang/lib/StaticAnalyzer/Core/Checker.cpp
new file mode 100644
index 0000000..07e0aac
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/Checker.cpp
@@ -0,0 +1,31 @@
+//== Checker.cpp - Registration mechanism for checkers -----------*- C++ -*--=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines Checker, used to create and register checkers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+
+using namespace clang;
+using namespace ento;
+
+StringRef CheckerBase::getTagDescription() const {
+ // FIXME: We want to return the package + name of the checker here.
+ return "A Checker";
+}
+
+void Checker<check::_VoidCheck, check::_VoidCheck, check::_VoidCheck,
+ check::_VoidCheck, check::_VoidCheck, check::_VoidCheck,
+ check::_VoidCheck, check::_VoidCheck, check::_VoidCheck,
+ check::_VoidCheck, check::_VoidCheck, check::_VoidCheck,
+ check::_VoidCheck, check::_VoidCheck, check::_VoidCheck,
+ check::_VoidCheck, check::_VoidCheck, check::_VoidCheck
+ >::anchor() { }
diff --git a/clang/lib/StaticAnalyzer/Core/CheckerContext.cpp b/clang/lib/StaticAnalyzer/Core/CheckerContext.cpp
new file mode 100644
index 0000000..0a047d9
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/CheckerContext.cpp
@@ -0,0 +1,83 @@
+//== CheckerContext.cpp - Context info for path-sensitive checkers-----------=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines CheckerContext that provides contextual info for
+// path-sensitive checkers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Lex/Lexer.h"
+
+using namespace clang;
+using namespace ento;
+
+const FunctionDecl *CheckerContext::getCalleeDecl(const CallExpr *CE) const {
+ ProgramStateRef State = getState();
+ const Expr *Callee = CE->getCallee();
+ SVal L = State->getSVal(Callee, Pred->getLocationContext());
+ return L.getAsFunctionDecl();
+}
+
+StringRef CheckerContext::getCalleeName(const FunctionDecl *FunDecl) const {
+ if (!FunDecl)
+ return StringRef();
+ IdentifierInfo *funI = FunDecl->getIdentifier();
+ if (!funI)
+ return StringRef();
+ return funI->getName();
+}
+
+
+bool CheckerContext::isCLibraryFunction(const FunctionDecl *FD,
+ StringRef Name) {
+ return isCLibraryFunction(FD, Name, getASTContext());
+}
+
+bool CheckerContext::isCLibraryFunction(const FunctionDecl *FD,
+ StringRef Name, ASTContext &Context) {
+ // To avoid false positives (Ex: finding user defined functions with
+ // similar names), only perform fuzzy name matching when it's a builtin.
+ // Using a string compare is slow, we might want to switch on BuiltinID here.
+ unsigned BId = FD->getBuiltinID();
+ if (BId != 0) {
+ StringRef BName = Context.BuiltinInfo.GetName(BId);
+ if (BName.find(Name) != StringRef::npos)
+ return true;
+ }
+
+ const IdentifierInfo *II = FD->getIdentifier();
+ // If this is a special C++ name without IdentifierInfo, it can't be a
+ // C library function.
+ if (!II)
+ return false;
+
+ StringRef FName = II->getName();
+ if (FName.equals(Name))
+ return true;
+
+ if (FName.startswith("__inline") && (FName.find(Name) != StringRef::npos))
+ return true;
+
+ if (FName.startswith("__") && FName.endswith("_chk") &&
+ FName.find(Name) != StringRef::npos)
+ return true;
+
+ return false;
+}
+
+StringRef CheckerContext::getMacroNameOrSpelling(SourceLocation &Loc) {
+ if (Loc.isMacroID())
+ return Lexer::getImmediateMacroName(Loc, getSourceManager(),
+ getLangOpts());
+ SmallVector<char, 16> buf;
+ return Lexer::getSpelling(Loc, buf, getSourceManager(), getLangOpts());
+}
+
diff --git a/clang/lib/StaticAnalyzer/Core/CheckerHelpers.cpp b/clang/lib/StaticAnalyzer/Core/CheckerHelpers.cpp
new file mode 100644
index 0000000..28df695
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/CheckerHelpers.cpp
@@ -0,0 +1,80 @@
+//===---- CheckerHelpers.cpp - Helper functions for checkers ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines several static functions for use in checkers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
+#include "clang/AST/Expr.h"
+
+// Recursively find any substatements containing macros
+bool clang::ento::containsMacro(const Stmt *S) {
+ if (S->getLocStart().isMacroID())
+ return true;
+
+ if (S->getLocEnd().isMacroID())
+ return true;
+
+ for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
+ ++I)
+ if (const Stmt *child = *I)
+ if (containsMacro(child))
+ return true;
+
+ return false;
+}
+
+// Recursively find any substatements containing enum constants
+bool clang::ento::containsEnum(const Stmt *S) {
+ const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(S);
+
+ if (DR && isa<EnumConstantDecl>(DR->getDecl()))
+ return true;
+
+ for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
+ ++I)
+ if (const Stmt *child = *I)
+ if (containsEnum(child))
+ return true;
+
+ return false;
+}
+
+// Recursively find any substatements containing static vars
+bool clang::ento::containsStaticLocal(const Stmt *S) {
+ const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(S);
+
+ if (DR)
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()))
+ if (VD->isStaticLocal())
+ return true;
+
+ for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
+ ++I)
+ if (const Stmt *child = *I)
+ if (containsStaticLocal(child))
+ return true;
+
+ return false;
+}
+
+// Recursively find any substatements containing __builtin_offsetof
+bool clang::ento::containsBuiltinOffsetOf(const Stmt *S) {
+ if (isa<OffsetOfExpr>(S))
+ return true;
+
+ for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
+ ++I)
+ if (const Stmt *child = *I)
+ if (containsBuiltinOffsetOf(child))
+ return true;
+
+ return false;
+}
diff --git a/clang/lib/StaticAnalyzer/Core/CheckerManager.cpp b/clang/lib/StaticAnalyzer/Core/CheckerManager.cpp
new file mode 100644
index 0000000..0bcc343
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/CheckerManager.cpp
@@ -0,0 +1,678 @@
+//===--- CheckerManager.cpp - Static Analyzer Checker Manager -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Defines the Static Analyzer Checker Manager.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
+#include "clang/Analysis/ProgramPoint.h"
+#include "clang/AST/DeclBase.h"
+
+using namespace clang;
+using namespace ento;
+
+bool CheckerManager::hasPathSensitiveCheckers() const {
+ return !StmtCheckers.empty() ||
+ !PreObjCMessageCheckers.empty() ||
+ !PostObjCMessageCheckers.empty() ||
+ !LocationCheckers.empty() ||
+ !BindCheckers.empty() ||
+ !EndAnalysisCheckers.empty() ||
+ !EndPathCheckers.empty() ||
+ !BranchConditionCheckers.empty() ||
+ !LiveSymbolsCheckers.empty() ||
+ !DeadSymbolsCheckers.empty() ||
+ !RegionChangesCheckers.empty() ||
+ !EvalAssumeCheckers.empty() ||
+ !EvalCallCheckers.empty() ||
+ !InlineCallCheckers.empty();
+}
+
+void CheckerManager::finishedCheckerRegistration() {
+#ifndef NDEBUG
+ // Make sure that for every event that has listeners, there is at least
+ // one dispatcher registered for it.
+ for (llvm::DenseMap<EventTag, EventInfo>::iterator
+ I = Events.begin(), E = Events.end(); I != E; ++I)
+ assert(I->second.HasDispatcher && "No dispatcher registered for an event");
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+// Functions for running checkers for AST traversing..
+//===----------------------------------------------------------------------===//
+
+void CheckerManager::runCheckersOnASTDecl(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) {
+ assert(D);
+
+ unsigned DeclKind = D->getKind();
+ CachedDeclCheckers *checkers = 0;
+ CachedDeclCheckersMapTy::iterator CCI = CachedDeclCheckersMap.find(DeclKind);
+ if (CCI != CachedDeclCheckersMap.end()) {
+ checkers = &(CCI->second);
+ } else {
+ // Find the checkers that should run for this Decl and cache them.
+ checkers = &CachedDeclCheckersMap[DeclKind];
+ for (unsigned i = 0, e = DeclCheckers.size(); i != e; ++i) {
+ DeclCheckerInfo &info = DeclCheckers[i];
+ if (info.IsForDeclFn(D))
+ checkers->push_back(info.CheckFn);
+ }
+ }
+
+ assert(checkers);
+ for (CachedDeclCheckers::iterator
+ I = checkers->begin(), E = checkers->end(); I != E; ++I)
+ (*I)(D, mgr, BR);
+}
+
+void CheckerManager::runCheckersOnASTBody(const Decl *D, AnalysisManager& mgr,
+ BugReporter &BR) {
+ assert(D && D->hasBody());
+
+ for (unsigned i = 0, e = BodyCheckers.size(); i != e; ++i)
+ BodyCheckers[i](D, mgr, BR);
+}
+
+//===----------------------------------------------------------------------===//
+// Functions for running checkers for path-sensitive checking.
+//===----------------------------------------------------------------------===//
+
+template <typename CHECK_CTX>
+static void expandGraphWithCheckers(CHECK_CTX checkCtx,
+ ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src) {
+ const NodeBuilderContext &BldrCtx = checkCtx.Eng.getBuilderContext();
+ if (Src.empty())
+ return;
+
+ typename CHECK_CTX::CheckersTy::const_iterator
+ I = checkCtx.checkers_begin(), E = checkCtx.checkers_end();
+ if (I == E) {
+ Dst.insert(Src);
+ return;
+ }
+
+ ExplodedNodeSet Tmp1, Tmp2;
+ const ExplodedNodeSet *PrevSet = &Src;
+
+ for (; I != E; ++I) {
+ ExplodedNodeSet *CurrSet = 0;
+ if (I+1 == E)
+ CurrSet = &Dst;
+ else {
+ CurrSet = (PrevSet == &Tmp1) ? &Tmp2 : &Tmp1;
+ CurrSet->clear();
+ }
+
+ NodeBuilder B(*PrevSet, *CurrSet, BldrCtx);
+ for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end();
+ NI != NE; ++NI) {
+ checkCtx.runChecker(*I, B, *NI);
+ }
+
+ // If all the produced transitions are sinks, stop.
+ if (CurrSet->empty())
+ return;
+
+ // Update which NodeSet is the current one.
+ PrevSet = CurrSet;
+ }
+}
+
+namespace {
+ struct CheckStmtContext {
+ typedef SmallVectorImpl<CheckerManager::CheckStmtFunc> CheckersTy;
+ bool IsPreVisit;
+ const CheckersTy &Checkers;
+ const Stmt *S;
+ ExprEngine &Eng;
+ bool wasInlined;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckStmtContext(bool isPreVisit, const CheckersTy &checkers,
+ const Stmt *s, ExprEngine &eng, bool wasInlined = false)
+ : IsPreVisit(isPreVisit), Checkers(checkers), S(s), Eng(eng),
+ wasInlined(wasInlined) {}
+
+ void runChecker(CheckerManager::CheckStmtFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ // FIXME: Remove respondsToCallback from CheckerContext;
+ ProgramPoint::Kind K = IsPreVisit ? ProgramPoint::PreStmtKind :
+ ProgramPoint::PostStmtKind;
+ const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
+ Pred->getLocationContext(), checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L, wasInlined);
+ checkFn(S, C);
+ }
+ };
+}
+
+/// \brief Run checkers for visiting Stmts.
+void CheckerManager::runCheckersForStmt(bool isPreVisit,
+ ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ const Stmt *S,
+ ExprEngine &Eng,
+ bool wasInlined) {
+ CheckStmtContext C(isPreVisit, *getCachedStmtCheckersFor(S, isPreVisit),
+ S, Eng, wasInlined);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+namespace {
+ struct CheckObjCMessageContext {
+ typedef std::vector<CheckerManager::CheckObjCMessageFunc> CheckersTy;
+ bool IsPreVisit;
+ const CheckersTy &Checkers;
+ const ObjCMessage &Msg;
+ ExprEngine &Eng;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckObjCMessageContext(bool isPreVisit, const CheckersTy &checkers,
+ const ObjCMessage &msg, ExprEngine &eng)
+ : IsPreVisit(isPreVisit), Checkers(checkers), Msg(msg), Eng(eng) { }
+
+ void runChecker(CheckerManager::CheckObjCMessageFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ ProgramPoint::Kind K = IsPreVisit ? ProgramPoint::PreStmtKind :
+ ProgramPoint::PostStmtKind;
+ const ProgramPoint &L =
+ ProgramPoint::getProgramPoint(Msg.getMessageExpr(),
+ K, Pred->getLocationContext(),
+ checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L);
+
+ checkFn(Msg, C);
+ }
+ };
+}
+
+/// \brief Run checkers for visiting obj-c messages.
+void CheckerManager::runCheckersForObjCMessage(bool isPreVisit,
+ ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ const ObjCMessage &msg,
+ ExprEngine &Eng) {
+ CheckObjCMessageContext C(isPreVisit,
+ isPreVisit ? PreObjCMessageCheckers
+ : PostObjCMessageCheckers,
+ msg, Eng);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+namespace {
+ struct CheckLocationContext {
+ typedef std::vector<CheckerManager::CheckLocationFunc> CheckersTy;
+ const CheckersTy &Checkers;
+ SVal Loc;
+ bool IsLoad;
+ const Stmt *NodeEx; /* Will become a CFGStmt */
+ const Stmt *BoundEx;
+ ExprEngine &Eng;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckLocationContext(const CheckersTy &checkers,
+ SVal loc, bool isLoad, const Stmt *NodeEx,
+ const Stmt *BoundEx,
+ ExprEngine &eng)
+ : Checkers(checkers), Loc(loc), IsLoad(isLoad), NodeEx(NodeEx),
+ BoundEx(BoundEx), Eng(eng) {}
+
+ void runChecker(CheckerManager::CheckLocationFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ ProgramPoint::Kind K = IsLoad ? ProgramPoint::PreLoadKind :
+ ProgramPoint::PreStoreKind;
+ const ProgramPoint &L =
+ ProgramPoint::getProgramPoint(NodeEx, K,
+ Pred->getLocationContext(),
+ checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L);
+ checkFn(Loc, IsLoad, BoundEx, C);
+ }
+ };
+}
+
+/// \brief Run checkers for load/store of a location.
+
+void CheckerManager::runCheckersForLocation(ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ SVal location, bool isLoad,
+ const Stmt *NodeEx,
+ const Stmt *BoundEx,
+ ExprEngine &Eng) {
+ CheckLocationContext C(LocationCheckers, location, isLoad, NodeEx,
+ BoundEx, Eng);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+namespace {
+ struct CheckBindContext {
+ typedef std::vector<CheckerManager::CheckBindFunc> CheckersTy;
+ const CheckersTy &Checkers;
+ SVal Loc;
+ SVal Val;
+ const Stmt *S;
+ ExprEngine &Eng;
+ ProgramPoint::Kind PointKind;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckBindContext(const CheckersTy &checkers,
+ SVal loc, SVal val, const Stmt *s, ExprEngine &eng,
+ ProgramPoint::Kind PK)
+ : Checkers(checkers), Loc(loc), Val(val), S(s), Eng(eng), PointKind(PK) {}
+
+ void runChecker(CheckerManager::CheckBindFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ const ProgramPoint &L = ProgramPoint::getProgramPoint(S, PointKind,
+ Pred->getLocationContext(), checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L);
+
+ checkFn(Loc, Val, S, C);
+ }
+ };
+}
+
+/// \brief Run checkers for binding of a value to a location.
+void CheckerManager::runCheckersForBind(ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ SVal location, SVal val,
+ const Stmt *S, ExprEngine &Eng,
+ ProgramPoint::Kind PointKind) {
+ CheckBindContext C(BindCheckers, location, val, S, Eng, PointKind);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+void CheckerManager::runCheckersForEndAnalysis(ExplodedGraph &G,
+ BugReporter &BR,
+ ExprEngine &Eng) {
+ for (unsigned i = 0, e = EndAnalysisCheckers.size(); i != e; ++i)
+ EndAnalysisCheckers[i](G, BR, Eng);
+}
+
+/// \brief Run checkers for end of path.
+// Note, We do not chain the checker output (like in expandGraphWithCheckers)
+// for this callback since end of path nodes are expected to be final.
+void CheckerManager::runCheckersForEndPath(NodeBuilderContext &BC,
+ ExplodedNodeSet &Dst,
+ ExprEngine &Eng) {
+ ExplodedNode *Pred = BC.Pred;
+
+ // We define the builder outside of the loop bacause if at least one checkers
+ // creates a sucsessor for Pred, we do not need to generate an
+ // autotransition for it.
+ NodeBuilder Bldr(Pred, Dst, BC);
+ for (unsigned i = 0, e = EndPathCheckers.size(); i != e; ++i) {
+ CheckEndPathFunc checkFn = EndPathCheckers[i];
+
+ const ProgramPoint &L = BlockEntrance(BC.Block,
+ Pred->getLocationContext(),
+ checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L);
+ checkFn(C);
+ }
+}
+
+namespace {
+ struct CheckBranchConditionContext {
+ typedef std::vector<CheckerManager::CheckBranchConditionFunc> CheckersTy;
+ const CheckersTy &Checkers;
+ const Stmt *Condition;
+ ExprEngine &Eng;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckBranchConditionContext(const CheckersTy &checkers,
+ const Stmt *Cond, ExprEngine &eng)
+ : Checkers(checkers), Condition(Cond), Eng(eng) {}
+
+ void runChecker(CheckerManager::CheckBranchConditionFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ ProgramPoint L = PostCondition(Condition, Pred->getLocationContext(),
+ checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L);
+ checkFn(Condition, C);
+ }
+ };
+}
+
+/// \brief Run checkers for branch condition.
+void CheckerManager::runCheckersForBranchCondition(const Stmt *Condition,
+ ExplodedNodeSet &Dst,
+ ExplodedNode *Pred,
+ ExprEngine &Eng) {
+ ExplodedNodeSet Src;
+ Src.insert(Pred);
+ CheckBranchConditionContext C(BranchConditionCheckers, Condition, Eng);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+/// \brief Run checkers for live symbols.
+void CheckerManager::runCheckersForLiveSymbols(ProgramStateRef state,
+ SymbolReaper &SymReaper) {
+ for (unsigned i = 0, e = LiveSymbolsCheckers.size(); i != e; ++i)
+ LiveSymbolsCheckers[i](state, SymReaper);
+}
+
+namespace {
+ struct CheckDeadSymbolsContext {
+ typedef std::vector<CheckerManager::CheckDeadSymbolsFunc> CheckersTy;
+ const CheckersTy &Checkers;
+ SymbolReaper &SR;
+ const Stmt *S;
+ ExprEngine &Eng;
+
+ CheckersTy::const_iterator checkers_begin() { return Checkers.begin(); }
+ CheckersTy::const_iterator checkers_end() { return Checkers.end(); }
+
+ CheckDeadSymbolsContext(const CheckersTy &checkers, SymbolReaper &sr,
+ const Stmt *s, ExprEngine &eng)
+ : Checkers(checkers), SR(sr), S(s), Eng(eng) { }
+
+ void runChecker(CheckerManager::CheckDeadSymbolsFunc checkFn,
+ NodeBuilder &Bldr, ExplodedNode *Pred) {
+ ProgramPoint::Kind K = ProgramPoint::PostPurgeDeadSymbolsKind;
+ const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
+ Pred->getLocationContext(), checkFn.Checker);
+ CheckerContext C(Bldr, Eng, Pred, L);
+
+ checkFn(SR, C);
+ }
+ };
+}
+
+/// \brief Run checkers for dead symbols.
+void CheckerManager::runCheckersForDeadSymbols(ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ SymbolReaper &SymReaper,
+ const Stmt *S,
+ ExprEngine &Eng) {
+ CheckDeadSymbolsContext C(DeadSymbolsCheckers, SymReaper, S, Eng);
+ expandGraphWithCheckers(C, Dst, Src);
+}
+
+/// \brief True if at least one checker wants to check region changes.
+bool CheckerManager::wantsRegionChangeUpdate(ProgramStateRef state) {
+ for (unsigned i = 0, e = RegionChangesCheckers.size(); i != e; ++i)
+ if (RegionChangesCheckers[i].WantUpdateFn(state))
+ return true;
+
+ return false;
+}
+
+/// \brief Run checkers for region changes.
+ProgramStateRef
+CheckerManager::runCheckersForRegionChanges(ProgramStateRef state,
+ const StoreManager::InvalidatedSymbols *invalidated,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const CallOrObjCMessage *Call) {
+ for (unsigned i = 0, e = RegionChangesCheckers.size(); i != e; ++i) {
+ // If any checker declares the state infeasible (or if it starts that way),
+ // bail out.
+ if (!state)
+ return NULL;
+ state = RegionChangesCheckers[i].CheckFn(state, invalidated,
+ ExplicitRegions, Regions, Call);
+ }
+ return state;
+}
+
+/// \brief Run checkers for handling assumptions on symbolic values.
+ProgramStateRef
+CheckerManager::runCheckersForEvalAssume(ProgramStateRef state,
+ SVal Cond, bool Assumption) {
+ for (unsigned i = 0, e = EvalAssumeCheckers.size(); i != e; ++i) {
+ // If any checker declares the state infeasible (or if it starts that way),
+ // bail out.
+ if (!state)
+ return NULL;
+ state = EvalAssumeCheckers[i](state, Cond, Assumption);
+ }
+ return state;
+}
+
+/// \brief Run checkers for evaluating a call.
+/// Only one checker will evaluate the call.
+void CheckerManager::runCheckersForEvalCall(ExplodedNodeSet &Dst,
+ const ExplodedNodeSet &Src,
+ const CallExpr *CE,
+ ExprEngine &Eng,
+ GraphExpander *defaultEval) {
+ if (EvalCallCheckers.empty() &&
+ InlineCallCheckers.empty() &&
+ defaultEval == 0) {
+ Dst.insert(Src);
+ return;
+ }
+
+ for (ExplodedNodeSet::iterator
+ NI = Src.begin(), NE = Src.end(); NI != NE; ++NI) {
+
+ ExplodedNode *Pred = *NI;
+ bool anyEvaluated = false;
+
+ // First, check if any of the InlineCall callbacks can evaluate the call.
+ assert(InlineCallCheckers.size() <= 1 &&
+ "InlineCall is a special hacky callback to allow intrusive"
+ "evaluation of the call (which simulates inlining). It is "
+ "currently only used by OSAtomicChecker and should go away "
+ "at some point.");
+ for (std::vector<InlineCallFunc>::iterator
+ EI = InlineCallCheckers.begin(), EE = InlineCallCheckers.end();
+ EI != EE; ++EI) {
+ ExplodedNodeSet checkDst;
+ bool evaluated = (*EI)(CE, Eng, Pred, checkDst);
+ assert(!(evaluated && anyEvaluated)
+ && "There are more than one checkers evaluating the call");
+ if (evaluated) {
+ anyEvaluated = true;
+ Dst.insert(checkDst);
+#ifdef NDEBUG
+ break; // on release don't check that no other checker also evals.
+#endif
+ }
+ }
+
+#ifdef NDEBUG // on release don't check that no other checker also evals.
+ if (anyEvaluated) {
+ break;
+ }
+#endif
+
+ ExplodedNodeSet checkDst;
+ NodeBuilder B(Pred, checkDst, Eng.getBuilderContext());
+ // Next, check if any of the EvalCall callbacks can evaluate the call.
+ for (std::vector<EvalCallFunc>::iterator
+ EI = EvalCallCheckers.begin(), EE = EvalCallCheckers.end();
+ EI != EE; ++EI) {
+ ProgramPoint::Kind K = ProgramPoint::PostStmtKind;
+ const ProgramPoint &L = ProgramPoint::getProgramPoint(CE, K,
+ Pred->getLocationContext(), EI->Checker);
+ bool evaluated = false;
+ { // CheckerContext generates transitions(populates checkDest) on
+ // destruction, so introduce the scope to make sure it gets properly
+ // populated.
+ CheckerContext C(B, Eng, Pred, L);
+ evaluated = (*EI)(CE, C);
+ }
+ assert(!(evaluated && anyEvaluated)
+ && "There are more than one checkers evaluating the call");
+ if (evaluated) {
+ anyEvaluated = true;
+ Dst.insert(checkDst);
+#ifdef NDEBUG
+ break; // on release don't check that no other checker also evals.
+#endif
+ }
+ }
+
+ // If none of the checkers evaluated the call, ask ExprEngine to handle it.
+ if (!anyEvaluated) {
+ if (defaultEval)
+ defaultEval->expandGraph(Dst, Pred);
+ else
+ Dst.insert(Pred);
+ }
+ }
+}
+
+/// \brief Run checkers for the entire Translation Unit.
+void CheckerManager::runCheckersOnEndOfTranslationUnit(
+ const TranslationUnitDecl *TU,
+ AnalysisManager &mgr,
+ BugReporter &BR) {
+ for (unsigned i = 0, e = EndOfTranslationUnitCheckers.size(); i != e; ++i)
+ EndOfTranslationUnitCheckers[i](TU, mgr, BR);
+}
+
+void CheckerManager::runCheckersForPrintState(raw_ostream &Out,
+ ProgramStateRef State,
+ const char *NL, const char *Sep) {
+ for (llvm::DenseMap<CheckerTag, CheckerRef>::iterator
+ I = CheckerTags.begin(), E = CheckerTags.end(); I != E; ++I)
+ I->second->printState(Out, State, NL, Sep);
+}
+
+//===----------------------------------------------------------------------===//
+// Internal registration functions for AST traversing.
+//===----------------------------------------------------------------------===//
+
+void CheckerManager::_registerForDecl(CheckDeclFunc checkfn,
+ HandlesDeclFunc isForDeclFn) {
+ DeclCheckerInfo info = { checkfn, isForDeclFn };
+ DeclCheckers.push_back(info);
+}
+
+void CheckerManager::_registerForBody(CheckDeclFunc checkfn) {
+ BodyCheckers.push_back(checkfn);
+}
+
+//===----------------------------------------------------------------------===//
+// Internal registration functions for path-sensitive checking.
+//===----------------------------------------------------------------------===//
+
+void CheckerManager::_registerForPreStmt(CheckStmtFunc checkfn,
+ HandlesStmtFunc isForStmtFn) {
+ StmtCheckerInfo info = { checkfn, isForStmtFn, /*IsPreVisit*/true };
+ StmtCheckers.push_back(info);
+}
+void CheckerManager::_registerForPostStmt(CheckStmtFunc checkfn,
+ HandlesStmtFunc isForStmtFn) {
+ StmtCheckerInfo info = { checkfn, isForStmtFn, /*IsPreVisit*/false };
+ StmtCheckers.push_back(info);
+}
+
+void CheckerManager::_registerForPreObjCMessage(CheckObjCMessageFunc checkfn) {
+ PreObjCMessageCheckers.push_back(checkfn);
+}
+void CheckerManager::_registerForPostObjCMessage(CheckObjCMessageFunc checkfn) {
+ PostObjCMessageCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForLocation(CheckLocationFunc checkfn) {
+ LocationCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForBind(CheckBindFunc checkfn) {
+ BindCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForEndAnalysis(CheckEndAnalysisFunc checkfn) {
+ EndAnalysisCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForEndPath(CheckEndPathFunc checkfn) {
+ EndPathCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForBranchCondition(
+ CheckBranchConditionFunc checkfn) {
+ BranchConditionCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForLiveSymbols(CheckLiveSymbolsFunc checkfn) {
+ LiveSymbolsCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForDeadSymbols(CheckDeadSymbolsFunc checkfn) {
+ DeadSymbolsCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForRegionChanges(CheckRegionChangesFunc checkfn,
+ WantsRegionChangeUpdateFunc wantUpdateFn) {
+ RegionChangesCheckerInfo info = {checkfn, wantUpdateFn};
+ RegionChangesCheckers.push_back(info);
+}
+
+void CheckerManager::_registerForEvalAssume(EvalAssumeFunc checkfn) {
+ EvalAssumeCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForEvalCall(EvalCallFunc checkfn) {
+ EvalCallCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForInlineCall(InlineCallFunc checkfn) {
+ InlineCallCheckers.push_back(checkfn);
+}
+
+void CheckerManager::_registerForEndOfTranslationUnit(
+ CheckEndOfTranslationUnit checkfn) {
+ EndOfTranslationUnitCheckers.push_back(checkfn);
+}
+
+//===----------------------------------------------------------------------===//
+// Implementation details.
+//===----------------------------------------------------------------------===//
+
+CheckerManager::CachedStmtCheckers *
+CheckerManager::getCachedStmtCheckersFor(const Stmt *S, bool isPreVisit) {
+ assert(S);
+
+ CachedStmtCheckersKey key(S->getStmtClass(), isPreVisit);
+ CachedStmtCheckers *checkers = 0;
+ CachedStmtCheckersMapTy::iterator CCI = CachedStmtCheckersMap.find(key);
+ if (CCI != CachedStmtCheckersMap.end()) {
+ checkers = &(CCI->second);
+ } else {
+ // Find the checkers that should run for this Stmt and cache them.
+ checkers = &CachedStmtCheckersMap[key];
+ for (unsigned i = 0, e = StmtCheckers.size(); i != e; ++i) {
+ StmtCheckerInfo &info = StmtCheckers[i];
+ if (info.IsPreVisit == isPreVisit && info.IsForStmtFn(S))
+ checkers->push_back(info.CheckFn);
+ }
+ }
+
+ assert(checkers);
+ return checkers;
+}
+
+CheckerManager::~CheckerManager() {
+ for (unsigned i = 0, e = CheckerDtors.size(); i != e; ++i)
+ CheckerDtors[i]();
+}
+
+// Anchor for the vtable.
+GraphExpander::~GraphExpander() { }
diff --git a/clang/lib/StaticAnalyzer/Core/CheckerRegistry.cpp b/clang/lib/StaticAnalyzer/Core/CheckerRegistry.cpp
new file mode 100644
index 0000000..9791e2e
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/CheckerRegistry.cpp
@@ -0,0 +1,150 @@
+//===--- CheckerRegistry.cpp - Maintains all available checkers -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/CheckerRegistry.h"
+#include "clang/StaticAnalyzer/Core/CheckerOptInfo.h"
+#include "llvm/ADT/SetVector.h"
+
+using namespace clang;
+using namespace ento;
+
+static const char PackageSeparator = '.';
+typedef llvm::SetVector<const CheckerRegistry::CheckerInfo *> CheckerInfoSet;
+
+
+static bool checkerNameLT(const CheckerRegistry::CheckerInfo &a,
+ const CheckerRegistry::CheckerInfo &b) {
+ return a.FullName < b.FullName;
+}
+
+static bool isInPackage(const CheckerRegistry::CheckerInfo &checker,
+ StringRef packageName) {
+ // Does the checker's full name have the package as a prefix?
+ if (!checker.FullName.startswith(packageName))
+ return false;
+
+ // Is the package actually just the name of a specific checker?
+ if (checker.FullName.size() == packageName.size())
+ return true;
+
+ // Is the checker in the package (or a subpackage)?
+ if (checker.FullName[packageName.size()] == PackageSeparator)
+ return true;
+
+ return false;
+}
+
+static void collectCheckers(const CheckerRegistry::CheckerInfoList &checkers,
+ const llvm::StringMap<size_t> &packageSizes,
+ CheckerOptInfo &opt, CheckerInfoSet &collected) {
+ // Use a binary search to find the possible start of the package.
+ CheckerRegistry::CheckerInfo packageInfo(NULL, opt.getName(), "");
+ CheckerRegistry::CheckerInfoList::const_iterator e = checkers.end();
+ CheckerRegistry::CheckerInfoList::const_iterator i =
+ std::lower_bound(checkers.begin(), e, packageInfo, checkerNameLT);
+
+ // If we didn't even find a possible package, give up.
+ if (i == e)
+ return;
+
+ // If what we found doesn't actually start the package, give up.
+ if (!isInPackage(*i, opt.getName()))
+ return;
+
+ // There is at least one checker in the package; claim the option.
+ opt.claim();
+
+ // See how large the package is.
+ // If the package doesn't exist, assume the option refers to a single checker.
+ size_t size = 1;
+ llvm::StringMap<size_t>::const_iterator packageSize =
+ packageSizes.find(opt.getName());
+ if (packageSize != packageSizes.end())
+ size = packageSize->getValue();
+
+ // Step through all the checkers in the package.
+ for (e = i+size; i != e; ++i) {
+ if (opt.isEnabled())
+ collected.insert(&*i);
+ else
+ collected.remove(&*i);
+ }
+}
+
+void CheckerRegistry::addChecker(InitializationFunction fn, StringRef name,
+ StringRef desc) {
+ Checkers.push_back(CheckerInfo(fn, name, desc));
+
+ // Record the presence of the checker in its packages.
+ StringRef packageName, leafName;
+ llvm::tie(packageName, leafName) = name.rsplit(PackageSeparator);
+ while (!leafName.empty()) {
+ Packages[packageName] += 1;
+ llvm::tie(packageName, leafName) = packageName.rsplit(PackageSeparator);
+ }
+}
+
+void CheckerRegistry::initializeManager(CheckerManager &checkerMgr,
+ SmallVectorImpl<CheckerOptInfo> &opts) const {
+ // Sort checkers for efficient collection.
+ std::sort(Checkers.begin(), Checkers.end(), checkerNameLT);
+
+ // Collect checkers enabled by the options.
+ CheckerInfoSet enabledCheckers;
+ for (SmallVectorImpl<CheckerOptInfo>::iterator
+ i = opts.begin(), e = opts.end(); i != e; ++i) {
+ collectCheckers(Checkers, Packages, *i, enabledCheckers);
+ }
+
+ // Initialize the CheckerManager with all enabled checkers.
+ for (CheckerInfoSet::iterator
+ i = enabledCheckers.begin(), e = enabledCheckers.end(); i != e; ++i) {
+ (*i)->Initialize(checkerMgr);
+ }
+}
+
+void CheckerRegistry::printHelp(llvm::raw_ostream &out,
+ size_t maxNameChars) const {
+ // FIXME: Alphabetical sort puts 'experimental' in the middle.
+ // Would it be better to name it '~experimental' or something else
+ // that's ASCIIbetically last?
+ std::sort(Checkers.begin(), Checkers.end(), checkerNameLT);
+
+ // FIXME: Print available packages.
+
+ out << "CHECKERS:\n";
+
+ // Find the maximum option length.
+ size_t optionFieldWidth = 0;
+ for (CheckerInfoList::const_iterator i = Checkers.begin(), e = Checkers.end();
+ i != e; ++i) {
+ // Limit the amount of padding we are willing to give up for alignment.
+ // Package.Name Description [Hidden]
+ size_t nameLength = i->FullName.size();
+ if (nameLength <= maxNameChars)
+ optionFieldWidth = std::max(optionFieldWidth, nameLength);
+ }
+
+ const size_t initialPad = 2;
+ for (CheckerInfoList::const_iterator i = Checkers.begin(), e = Checkers.end();
+ i != e; ++i) {
+ out.indent(initialPad) << i->FullName;
+
+ int pad = optionFieldWidth - i->FullName.size();
+
+ // Break on long option names.
+ if (pad < 0) {
+ out << '\n';
+ pad = optionFieldWidth + initialPad;
+ }
+ out.indent(pad + 2) << i->Desc;
+
+ out << '\n';
+ }
+}
diff --git a/clang/lib/StaticAnalyzer/Core/CoreEngine.cpp b/clang/lib/StaticAnalyzer/Core/CoreEngine.cpp
new file mode 100644
index 0000000..ca662c7
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/CoreEngine.cpp
@@ -0,0 +1,688 @@
+//==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a generic engine for intraprocedural, path-sensitive,
+// dataflow analysis via graph reachability engine.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "CoreEngine"
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/StmtCXX.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+
+using namespace clang;
+using namespace ento;
+
+STATISTIC(NumReachedMaxSteps,
+ "The # of times we reached the max number of steps.");
+STATISTIC(NumPathsExplored,
+ "The # of paths explored by the analyzer.");
+
+//===----------------------------------------------------------------------===//
+// Worklist classes for exploration of reachable states.
+//===----------------------------------------------------------------------===//
+
+WorkList::Visitor::~Visitor() {}
+
+namespace {
+class DFS : public WorkList {
+ SmallVector<WorkListUnit,20> Stack;
+public:
+ virtual bool hasWork() const {
+ return !Stack.empty();
+ }
+
+ virtual void enqueue(const WorkListUnit& U) {
+ Stack.push_back(U);
+ }
+
+ virtual WorkListUnit dequeue() {
+ assert (!Stack.empty());
+ const WorkListUnit& U = Stack.back();
+ Stack.pop_back(); // This technically "invalidates" U, but we are fine.
+ return U;
+ }
+
+ virtual bool visitItemsInWorkList(Visitor &V) {
+ for (SmallVectorImpl<WorkListUnit>::iterator
+ I = Stack.begin(), E = Stack.end(); I != E; ++I) {
+ if (V.visit(*I))
+ return true;
+ }
+ return false;
+ }
+};
+
+class BFS : public WorkList {
+ std::deque<WorkListUnit> Queue;
+public:
+ virtual bool hasWork() const {
+ return !Queue.empty();
+ }
+
+ virtual void enqueue(const WorkListUnit& U) {
+ Queue.push_front(U);
+ }
+
+ virtual WorkListUnit dequeue() {
+ WorkListUnit U = Queue.front();
+ Queue.pop_front();
+ return U;
+ }
+
+ virtual bool visitItemsInWorkList(Visitor &V) {
+ for (std::deque<WorkListUnit>::iterator
+ I = Queue.begin(), E = Queue.end(); I != E; ++I) {
+ if (V.visit(*I))
+ return true;
+ }
+ return false;
+ }
+};
+
+} // end anonymous namespace
+
+// Place the dstor for WorkList here because it contains virtual member
+// functions, and we the code for the dstor generated in one compilation unit.
+WorkList::~WorkList() {}
+
+WorkList *WorkList::makeDFS() { return new DFS(); }
+WorkList *WorkList::makeBFS() { return new BFS(); }
+
+namespace {
+ class BFSBlockDFSContents : public WorkList {
+ std::deque<WorkListUnit> Queue;
+ SmallVector<WorkListUnit,20> Stack;
+ public:
+ virtual bool hasWork() const {
+ return !Queue.empty() || !Stack.empty();
+ }
+
+ virtual void enqueue(const WorkListUnit& U) {
+ if (isa<BlockEntrance>(U.getNode()->getLocation()))
+ Queue.push_front(U);
+ else
+ Stack.push_back(U);
+ }
+
+ virtual WorkListUnit dequeue() {
+ // Process all basic blocks to completion.
+ if (!Stack.empty()) {
+ const WorkListUnit& U = Stack.back();
+ Stack.pop_back(); // This technically "invalidates" U, but we are fine.
+ return U;
+ }
+
+ assert(!Queue.empty());
+ // Don't use const reference. The subsequent pop_back() might make it
+ // unsafe.
+ WorkListUnit U = Queue.front();
+ Queue.pop_front();
+ return U;
+ }
+ virtual bool visitItemsInWorkList(Visitor &V) {
+ for (SmallVectorImpl<WorkListUnit>::iterator
+ I = Stack.begin(), E = Stack.end(); I != E; ++I) {
+ if (V.visit(*I))
+ return true;
+ }
+ for (std::deque<WorkListUnit>::iterator
+ I = Queue.begin(), E = Queue.end(); I != E; ++I) {
+ if (V.visit(*I))
+ return true;
+ }
+ return false;
+ }
+
+ };
+} // end anonymous namespace
+
+WorkList* WorkList::makeBFSBlockDFSContents() {
+ return new BFSBlockDFSContents();
+}
+
+//===----------------------------------------------------------------------===//
+// Core analysis engine.
+//===----------------------------------------------------------------------===//
+
+/// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
+bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
+ ProgramStateRef InitState) {
+
+ if (G->num_roots() == 0) { // Initialize the analysis by constructing
+ // the root if none exists.
+
+ const CFGBlock *Entry = &(L->getCFG()->getEntry());
+
+ assert (Entry->empty() &&
+ "Entry block must be empty.");
+
+ assert (Entry->succ_size() == 1 &&
+ "Entry block must have 1 successor.");
+
+ // Mark the entry block as visited.
+ FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(),
+ L->getDecl(),
+ L->getCFG()->getNumBlockIDs());
+
+ // Get the solitary successor.
+ const CFGBlock *Succ = *(Entry->succ_begin());
+
+ // Construct an edge representing the
+ // starting location in the function.
+ BlockEdge StartLoc(Entry, Succ, L);
+
+ // Set the current block counter to being empty.
+ WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
+
+ if (!InitState)
+ // Generate the root.
+ generateNode(StartLoc, SubEng.getInitialState(L), 0);
+ else
+ generateNode(StartLoc, InitState, 0);
+ }
+
+ // Check if we have a steps limit
+ bool UnlimitedSteps = Steps == 0;
+
+ while (WList->hasWork()) {
+ if (!UnlimitedSteps) {
+ if (Steps == 0) {
+ NumReachedMaxSteps++;
+ break;
+ }
+ --Steps;
+ }
+
+ const WorkListUnit& WU = WList->dequeue();
+
+ // Set the current block counter.
+ WList->setBlockCounter(WU.getBlockCounter());
+
+ // Retrieve the node.
+ ExplodedNode *Node = WU.getNode();
+
+ dispatchWorkItem(Node, Node->getLocation(), WU);
+ }
+ SubEng.processEndWorklist(hasWorkRemaining());
+ return WList->hasWork();
+}
+
+void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
+ const WorkListUnit& WU) {
+ // Dispatch on the location type.
+ switch (Loc.getKind()) {
+ case ProgramPoint::BlockEdgeKind:
+ HandleBlockEdge(cast<BlockEdge>(Loc), Pred);
+ break;
+
+ case ProgramPoint::BlockEntranceKind:
+ HandleBlockEntrance(cast<BlockEntrance>(Loc), Pred);
+ break;
+
+ case ProgramPoint::BlockExitKind:
+ assert (false && "BlockExit location never occur in forward analysis.");
+ break;
+
+ case ProgramPoint::CallEnterKind: {
+ CallEnter CEnter = cast<CallEnter>(Loc);
+ if (AnalyzedCallees)
+ if (const CallExpr* CE =
+ dyn_cast_or_null<CallExpr>(CEnter.getCallExpr()))
+ if (const Decl *CD = CE->getCalleeDecl())
+ AnalyzedCallees->insert(CD);
+ SubEng.processCallEnter(CEnter, Pred);
+ break;
+ }
+
+ case ProgramPoint::CallExitKind:
+ SubEng.processCallExit(Pred);
+ break;
+
+ case ProgramPoint::EpsilonKind: {
+ assert(Pred->hasSinglePred() &&
+ "Assume epsilon has exactly one predecessor by construction");
+ ExplodedNode *PNode = Pred->getFirstPred();
+ dispatchWorkItem(Pred, PNode->getLocation(), WU);
+ break;
+ }
+ default:
+ assert(isa<PostStmt>(Loc) ||
+ isa<PostInitializer>(Loc));
+ HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred);
+ break;
+ }
+}
+
+bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
+ unsigned Steps,
+ ProgramStateRef InitState,
+ ExplodedNodeSet &Dst) {
+ bool DidNotFinish = ExecuteWorkList(L, Steps, InitState);
+ for (ExplodedGraph::eop_iterator I = G->eop_begin(),
+ E = G->eop_end(); I != E; ++I) {
+ Dst.Add(*I);
+ }
+ return DidNotFinish;
+}
+
+void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {
+
+ const CFGBlock *Blk = L.getDst();
+ NodeBuilderContext BuilderCtx(*this, Blk, Pred);
+
+ // Mark this block as visited.
+ const LocationContext *LC = Pred->getLocationContext();
+ FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(),
+ LC->getDecl(),
+ LC->getCFG()->getNumBlockIDs());
+
+ // Check if we are entering the EXIT block.
+ if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
+
+ assert (L.getLocationContext()->getCFG()->getExit().size() == 0
+ && "EXIT block cannot contain Stmts.");
+
+ // Process the final state transition.
+ SubEng.processEndOfFunction(BuilderCtx);
+
+ // This path is done. Don't enqueue any more nodes.
+ return;
+ }
+
+ // Call into the SubEngine to process entering the CFGBlock.
+ ExplodedNodeSet dstNodes;
+ BlockEntrance BE(Blk, Pred->getLocationContext());
+ NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE);
+ SubEng.processCFGBlockEntrance(L, nodeBuilder);
+
+ // Auto-generate a node.
+ if (!nodeBuilder.hasGeneratedNodes()) {
+ nodeBuilder.generateNode(Pred->State, Pred);
+ }
+
+ // Enqueue nodes onto the worklist.
+ enqueue(dstNodes);
+}
+
+void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
+ ExplodedNode *Pred) {
+
+ // Increment the block counter.
+ const LocationContext *LC = Pred->getLocationContext();
+ unsigned BlockId = L.getBlock()->getBlockID();
+ BlockCounter Counter = WList->getBlockCounter();
+ Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(),
+ BlockId);
+ WList->setBlockCounter(Counter);
+
+ // Process the entrance of the block.
+ if (CFGElement E = L.getFirstElement()) {
+ NodeBuilderContext Ctx(*this, L.getBlock(), Pred);
+ SubEng.processCFGElement(E, Pred, 0, &Ctx);
+ }
+ else
+ HandleBlockExit(L.getBlock(), Pred);
+}
+
+void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {
+
+ if (const Stmt *Term = B->getTerminator()) {
+ switch (Term->getStmtClass()) {
+ default:
+ llvm_unreachable("Analysis for this terminator not implemented.");
+
+ case Stmt::BinaryOperatorClass: // '&&' and '||'
+ HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
+ return;
+
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
+ Term, B, Pred);
+ return;
+
+ // FIXME: Use constant-folding in CFG construction to simplify this
+ // case.
+
+ case Stmt::ChooseExprClass:
+ HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
+ return;
+
+ case Stmt::CXXTryStmtClass: {
+ // Generate a node for each of the successors.
+ // Our logic for EH analysis can certainly be improved.
+ for (CFGBlock::const_succ_iterator it = B->succ_begin(),
+ et = B->succ_end(); it != et; ++it) {
+ if (const CFGBlock *succ = *it) {
+ generateNode(BlockEdge(B, succ, Pred->getLocationContext()),
+ Pred->State, Pred);
+ }
+ }
+ return;
+ }
+
+ case Stmt::DoStmtClass:
+ HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
+ return;
+
+ case Stmt::CXXForRangeStmtClass:
+ HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
+ return;
+
+ case Stmt::ForStmtClass:
+ HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
+ return;
+
+ case Stmt::ContinueStmtClass:
+ case Stmt::BreakStmtClass:
+ case Stmt::GotoStmtClass:
+ break;
+
+ case Stmt::IfStmtClass:
+ HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
+ return;
+
+ case Stmt::IndirectGotoStmtClass: {
+ // Only 1 successor: the indirect goto dispatch block.
+ assert (B->succ_size() == 1);
+
+ IndirectGotoNodeBuilder
+ builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
+ *(B->succ_begin()), this);
+
+ SubEng.processIndirectGoto(builder);
+ return;
+ }
+
+ case Stmt::ObjCForCollectionStmtClass: {
+ // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
+ //
+ // (1) inside a basic block, which represents the binding of the
+ // 'element' variable to a value.
+ // (2) in a terminator, which represents the branch.
+ //
+ // For (1), subengines will bind a value (i.e., 0 or 1) indicating
+ // whether or not collection contains any more elements. We cannot
+ // just test to see if the element is nil because a container can
+ // contain nil elements.
+ HandleBranch(Term, Term, B, Pred);
+ return;
+ }
+
+ case Stmt::SwitchStmtClass: {
+ SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
+ this);
+
+ SubEng.processSwitch(builder);
+ return;
+ }
+
+ case Stmt::WhileStmtClass:
+ HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
+ return;
+ }
+ }
+
+ assert (B->succ_size() == 1 &&
+ "Blocks with no terminator should have at most 1 successor.");
+
+ generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
+ Pred->State, Pred);
+}
+
+void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term,
+ const CFGBlock * B, ExplodedNode *Pred) {
+ assert(B->succ_size() == 2);
+ NodeBuilderContext Ctx(*this, B, Pred);
+ ExplodedNodeSet Dst;
+ SubEng.processBranch(Cond, Term, Ctx, Pred, Dst,
+ *(B->succ_begin()), *(B->succ_begin()+1));
+ // Enqueue the new frontier onto the worklist.
+ enqueue(Dst);
+}
+
+void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx,
+ ExplodedNode *Pred) {
+ assert(B);
+ assert(!B->empty());
+
+ if (StmtIdx == B->size())
+ HandleBlockExit(B, Pred);
+ else {
+ NodeBuilderContext Ctx(*this, B, Pred);
+ SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx);
+ }
+}
+
+/// generateNode - Utility method to generate nodes, hook up successors,
+/// and add nodes to the worklist.
+void CoreEngine::generateNode(const ProgramPoint &Loc,
+ ProgramStateRef State,
+ ExplodedNode *Pred) {
+
+ bool IsNew;
+ ExplodedNode *Node = G->getNode(Loc, State, false, &IsNew);
+
+ if (Pred)
+ Node->addPredecessor(Pred, *G); // Link 'Node' with its predecessor.
+ else {
+ assert (IsNew);
+ G->addRoot(Node); // 'Node' has no predecessor. Make it a root.
+ }
+
+ // Only add 'Node' to the worklist if it was freshly generated.
+ if (IsNew) WList->enqueue(Node);
+}
+
+void CoreEngine::enqueueStmtNode(ExplodedNode *N,
+ const CFGBlock *Block, unsigned Idx) {
+ assert(Block);
+ assert (!N->isSink());
+
+ // Check if this node entered a callee.
+ if (isa<CallEnter>(N->getLocation())) {
+ // Still use the index of the CallExpr. It's needed to create the callee
+ // StackFrameContext.
+ WList->enqueue(N, Block, Idx);
+ return;
+ }
+
+ // Do not create extra nodes. Move to the next CFG element.
+ if (isa<PostInitializer>(N->getLocation())) {
+ WList->enqueue(N, Block, Idx+1);
+ return;
+ }
+
+ if (isa<EpsilonPoint>(N->getLocation())) {
+ WList->enqueue(N, Block, Idx);
+ return;
+ }
+
+ const CFGStmt *CS = (*Block)[Idx].getAs<CFGStmt>();
+ const Stmt *St = CS ? CS->getStmt() : 0;
+ PostStmt Loc(St, N->getLocationContext());
+
+ if (Loc == N->getLocation()) {
+ // Note: 'N' should be a fresh node because otherwise it shouldn't be
+ // a member of Deferred.
+ WList->enqueue(N, Block, Idx+1);
+ return;
+ }
+
+ bool IsNew;
+ ExplodedNode *Succ = G->getNode(Loc, N->getState(), false, &IsNew);
+ Succ->addPredecessor(N, *G);
+
+ if (IsNew)
+ WList->enqueue(Succ, Block, Idx+1);
+}
+
+ExplodedNode *CoreEngine::generateCallExitNode(ExplodedNode *N) {
+ // Create a CallExit node and enqueue it.
+ const StackFrameContext *LocCtx
+ = cast<StackFrameContext>(N->getLocationContext());
+ const Stmt *CE = LocCtx->getCallSite();
+
+ // Use the the callee location context.
+ CallExit Loc(CE, LocCtx);
+
+ bool isNew;
+ ExplodedNode *Node = G->getNode(Loc, N->getState(), false, &isNew);
+ Node->addPredecessor(N, *G);
+ return isNew ? Node : 0;
+}
+
+
+void CoreEngine::enqueue(ExplodedNodeSet &Set) {
+ for (ExplodedNodeSet::iterator I = Set.begin(),
+ E = Set.end(); I != E; ++I) {
+ WList->enqueue(*I);
+ }
+}
+
+void CoreEngine::enqueue(ExplodedNodeSet &Set,
+ const CFGBlock *Block, unsigned Idx) {
+ for (ExplodedNodeSet::iterator I = Set.begin(),
+ E = Set.end(); I != E; ++I) {
+ enqueueStmtNode(*I, Block, Idx);
+ }
+}
+
+void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) {
+ for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) {
+ ExplodedNode *N = *I;
+ // If we are in an inlined call, generate CallExit node.
+ if (N->getLocationContext()->getParent()) {
+ N = generateCallExitNode(N);
+ if (N)
+ WList->enqueue(N);
+ } else {
+ G->addEndOfPath(N);
+ NumPathsExplored++;
+ }
+ }
+}
+
+
+void NodeBuilder::anchor() { }
+
+ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc,
+ ProgramStateRef State,
+ ExplodedNode *FromN,
+ bool MarkAsSink) {
+ HasGeneratedNodes = true;
+ bool IsNew;
+ ExplodedNode *N = C.Eng.G->getNode(Loc, State, MarkAsSink, &IsNew);
+ N->addPredecessor(FromN, *C.Eng.G);
+ Frontier.erase(FromN);
+
+ if (!IsNew)
+ return 0;
+
+ if (!MarkAsSink)
+ Frontier.Add(N);
+
+ return N;
+}
+
+void NodeBuilderWithSinks::anchor() { }
+
+StmtNodeBuilder::~StmtNodeBuilder() {
+ if (EnclosingBldr)
+ for (ExplodedNodeSet::iterator I = Frontier.begin(),
+ E = Frontier.end(); I != E; ++I )
+ EnclosingBldr->addNodes(*I);
+}
+
+void BranchNodeBuilder::anchor() { }
+
+ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State,
+ bool branch,
+ ExplodedNode *NodePred) {
+ // If the branch has been marked infeasible we should not generate a node.
+ if (!isFeasible(branch))
+ return NULL;
+
+ ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF,
+ NodePred->getLocationContext());
+ ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred);
+ return Succ;
+}
+
+ExplodedNode*
+IndirectGotoNodeBuilder::generateNode(const iterator &I,
+ ProgramStateRef St,
+ bool IsSink) {
+ bool IsNew;
+ ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
+ Pred->getLocationContext()), St,
+ IsSink, &IsNew);
+ Succ->addPredecessor(Pred, *Eng.G);
+
+ if (!IsNew)
+ return 0;
+
+ if (!IsSink)
+ Eng.WList->enqueue(Succ);
+
+ return Succ;
+}
+
+
+ExplodedNode*
+SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
+ ProgramStateRef St) {
+
+ bool IsNew;
+ ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
+ Pred->getLocationContext()), St,
+ false, &IsNew);
+ Succ->addPredecessor(Pred, *Eng.G);
+ if (!IsNew)
+ return 0;
+
+ Eng.WList->enqueue(Succ);
+ return Succ;
+}
+
+
+ExplodedNode*
+SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St,
+ bool IsSink) {
+ // Get the block for the default case.
+ assert(Src->succ_rbegin() != Src->succ_rend());
+ CFGBlock *DefaultBlock = *Src->succ_rbegin();
+
+ // Sanity check for default blocks that are unreachable and not caught
+ // by earlier stages.
+ if (!DefaultBlock)
+ return NULL;
+
+ bool IsNew;
+ ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock,
+ Pred->getLocationContext()), St,
+ IsSink, &IsNew);
+ Succ->addPredecessor(Pred, *Eng.G);
+
+ if (!IsNew)
+ return 0;
+
+ if (!IsSink)
+ Eng.WList->enqueue(Succ);
+
+ return Succ;
+}
diff --git a/clang/lib/StaticAnalyzer/Core/Environment.cpp b/clang/lib/StaticAnalyzer/Core/Environment.cpp
new file mode 100644
index 0000000..b5ea3db
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/Environment.cpp
@@ -0,0 +1,295 @@
+//== Environment.cpp - Map from Stmt* to Locations/Values -------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defined the Environment and EnvironmentManager classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+
+using namespace clang;
+using namespace ento;
+
+SVal Environment::lookupExpr(const EnvironmentEntry &E) const {
+ const SVal* X = ExprBindings.lookup(E);
+ if (X) {
+ SVal V = *X;
+ return V;
+ }
+ return UnknownVal();
+}
+
+SVal Environment::getSVal(const EnvironmentEntry &Entry,
+ SValBuilder& svalBuilder,
+ bool useOnlyDirectBindings) const {
+
+ if (useOnlyDirectBindings) {
+ // This branch is rarely taken, but can be exercised by
+ // checkers that explicitly bind values to arbitrary
+ // expressions. It is crucial that we do not ignore any
+ // expression here, and do a direct lookup.
+ return lookupExpr(Entry);
+ }
+
+ const Stmt *E = Entry.getStmt();
+ const LocationContext *LCtx = Entry.getLocationContext();
+
+ for (;;) {
+ if (const Expr *Ex = dyn_cast<Expr>(E))
+ E = Ex->IgnoreParens();
+
+ switch (E->getStmtClass()) {
+ case Stmt::AddrLabelExprClass:
+ return svalBuilder.makeLoc(cast<AddrLabelExpr>(E));
+ case Stmt::OpaqueValueExprClass: {
+ const OpaqueValueExpr *ope = cast<OpaqueValueExpr>(E);
+ E = ope->getSourceExpr();
+ continue;
+ }
+ case Stmt::ParenExprClass:
+ case Stmt::GenericSelectionExprClass:
+ llvm_unreachable("ParenExprs and GenericSelectionExprs should "
+ "have been handled by IgnoreParens()");
+ case Stmt::CharacterLiteralClass: {
+ const CharacterLiteral* C = cast<CharacterLiteral>(E);
+ return svalBuilder.makeIntVal(C->getValue(), C->getType());
+ }
+ case Stmt::CXXBoolLiteralExprClass: {
+ const SVal *X = ExprBindings.lookup(EnvironmentEntry(E, LCtx));
+ if (X)
+ return *X;
+ else
+ return svalBuilder.makeBoolVal(cast<CXXBoolLiteralExpr>(E));
+ }
+ case Stmt::IntegerLiteralClass: {
+ // In C++, this expression may have been bound to a temporary object.
+ SVal const *X = ExprBindings.lookup(EnvironmentEntry(E, LCtx));
+ if (X)
+ return *X;
+ else
+ return svalBuilder.makeIntVal(cast<IntegerLiteral>(E));
+ }
+ case Stmt::ObjCBoolLiteralExprClass:
+ return svalBuilder.makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
+
+ // For special C0xx nullptr case, make a null pointer SVal.
+ case Stmt::CXXNullPtrLiteralExprClass:
+ return svalBuilder.makeNull();
+ case Stmt::ExprWithCleanupsClass:
+ E = cast<ExprWithCleanups>(E)->getSubExpr();
+ continue;
+ case Stmt::CXXBindTemporaryExprClass:
+ E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
+ continue;
+ case Stmt::ObjCPropertyRefExprClass:
+ return loc::ObjCPropRef(cast<ObjCPropertyRefExpr>(E));
+ case Stmt::ObjCStringLiteralClass: {
+ MemRegionManager &MRMgr = svalBuilder.getRegionManager();
+ const ObjCStringLiteral *SL = cast<ObjCStringLiteral>(E);
+ return svalBuilder.makeLoc(MRMgr.getObjCStringRegion(SL));
+ }
+ case Stmt::StringLiteralClass: {
+ MemRegionManager &MRMgr = svalBuilder.getRegionManager();
+ const StringLiteral *SL = cast<StringLiteral>(E);
+ return svalBuilder.makeLoc(MRMgr.getStringRegion(SL));
+ }
+ case Stmt::ReturnStmtClass: {
+ const ReturnStmt *RS = cast<ReturnStmt>(E);
+ if (const Expr *RE = RS->getRetValue()) {
+ E = RE;
+ continue;
+ }
+ return UndefinedVal();
+ }
+
+ // Handle all other Stmt* using a lookup.
+ default:
+ break;
+ };
+ break;
+ }
+ return lookupExpr(EnvironmentEntry(E, LCtx));
+}
+
+Environment EnvironmentManager::bindExpr(Environment Env,
+ const EnvironmentEntry &E,
+ SVal V,
+ bool Invalidate) {
+ if (V.isUnknown()) {
+ if (Invalidate)
+ return Environment(F.remove(Env.ExprBindings, E));
+ else
+ return Env;
+ }
+ return Environment(F.add(Env.ExprBindings, E, V));
+}
+
+static inline EnvironmentEntry MakeLocation(const EnvironmentEntry &E) {
+ const Stmt *S = E.getStmt();
+ S = (const Stmt*) (((uintptr_t) S) | 0x1);
+ return EnvironmentEntry(S, E.getLocationContext());
+}
+
+Environment EnvironmentManager::bindExprAndLocation(Environment Env,
+ const EnvironmentEntry &E,
+ SVal location, SVal V) {
+ return Environment(F.add(F.add(Env.ExprBindings, MakeLocation(E), location),
+ E, V));
+}
+
+namespace {
+class MarkLiveCallback : public SymbolVisitor {
+ SymbolReaper &SymReaper;
+public:
+ MarkLiveCallback(SymbolReaper &symreaper) : SymReaper(symreaper) {}
+ bool VisitSymbol(SymbolRef sym) {
+ SymReaper.markLive(sym);
+ return true;
+ }
+ bool VisitMemRegion(const MemRegion *R) {
+ SymReaper.markLive(R);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+// In addition to mapping from EnvironmentEntry - > SVals in the Environment,
+// we also maintain a mapping from EnvironmentEntry -> SVals (locations)
+// that were used during a load and store.
+static inline bool IsLocation(const EnvironmentEntry &E) {
+ const Stmt *S = E.getStmt();
+ return (bool) (((uintptr_t) S) & 0x1);
+}
+
+// removeDeadBindings:
+// - Remove subexpression bindings.
+// - Remove dead block expression bindings.
+// - Keep live block expression bindings:
+// - Mark their reachable symbols live in SymbolReaper,
+// see ScanReachableSymbols.
+// - Mark the region in DRoots if the binding is a loc::MemRegionVal.
+Environment
+EnvironmentManager::removeDeadBindings(Environment Env,
+ SymbolReaper &SymReaper,
+ ProgramStateRef ST) {
+
+ // We construct a new Environment object entirely, as this is cheaper than
+ // individually removing all the subexpression bindings (which will greatly
+ // outnumber block-level expression bindings).
+ Environment NewEnv = getInitialEnvironment();
+
+ SmallVector<std::pair<EnvironmentEntry, SVal>, 10> deferredLocations;
+
+ MarkLiveCallback CB(SymReaper);
+ ScanReachableSymbols RSScaner(ST, CB);
+
+ llvm::ImmutableMapRef<EnvironmentEntry,SVal>
+ EBMapRef(NewEnv.ExprBindings.getRootWithoutRetain(),
+ F.getTreeFactory());
+
+ // Iterate over the block-expr bindings.
+ for (Environment::iterator I = Env.begin(), E = Env.end();
+ I != E; ++I) {
+
+ const EnvironmentEntry &BlkExpr = I.getKey();
+ // For recorded locations (used when evaluating loads and stores), we
+ // consider them live only when their associated normal expression is
+ // also live.
+ // NOTE: This assumes that loads/stores that evaluated to UnknownVal
+ // still have an entry in the map.
+ if (IsLocation(BlkExpr)) {
+ deferredLocations.push_back(std::make_pair(BlkExpr, I.getData()));
+ continue;
+ }
+ const SVal &X = I.getData();
+
+ if (SymReaper.isLive(BlkExpr.getStmt(), BlkExpr.getLocationContext())) {
+ // Copy the binding to the new map.
+ EBMapRef = EBMapRef.add(BlkExpr, X);
+
+ // If the block expr's value is a memory region, then mark that region.
+ if (isa<loc::MemRegionVal>(X)) {
+ const MemRegion *R = cast<loc::MemRegionVal>(X).getRegion();
+ SymReaper.markLive(R);
+ }
+
+ // Mark all symbols in the block expr's value live.
+ RSScaner.scan(X);
+ continue;
+ }
+
+ // Otherwise the expression is dead with a couple exceptions.
+ // Do not misclean LogicalExpr or ConditionalOperator. It is dead at the
+ // beginning of itself, but we need its UndefinedVal to determine its
+ // SVal.
+ if (X.isUndef() && cast<UndefinedVal>(X).getData())
+ EBMapRef = EBMapRef.add(BlkExpr, X);
+ }
+
+ // Go through he deferred locations and add them to the new environment if
+ // the correspond Stmt* is in the map as well.
+ for (SmallVectorImpl<std::pair<EnvironmentEntry, SVal> >::iterator
+ I = deferredLocations.begin(), E = deferredLocations.end(); I != E; ++I) {
+ const EnvironmentEntry &En = I->first;
+ const Stmt *S = (Stmt*) (((uintptr_t) En.getStmt()) & (uintptr_t) ~0x1);
+ if (EBMapRef.lookup(EnvironmentEntry(S, En.getLocationContext())))
+ EBMapRef = EBMapRef.add(En, I->second);
+ }
+
+ NewEnv.ExprBindings = EBMapRef.asImmutableMap();
+ return NewEnv;
+}
+
+void Environment::print(raw_ostream &Out, const char *NL,
+ const char *Sep) const {
+ printAux(Out, false, NL, Sep);
+ printAux(Out, true, NL, Sep);
+}
+
+void Environment::printAux(raw_ostream &Out, bool printLocations,
+ const char *NL,
+ const char *Sep) const{
+
+ bool isFirst = true;
+
+ for (Environment::iterator I = begin(), E = end(); I != E; ++I) {
+ const EnvironmentEntry &En = I.getKey();
+ if (IsLocation(En)) {
+ if (!printLocations)
+ continue;
+ }
+ else {
+ if (printLocations)
+ continue;
+ }
+
+ if (isFirst) {
+ Out << NL << NL
+ << (printLocations ? "Load/Store locations:" : "Expressions:")
+ << NL;
+ isFirst = false;
+ } else {
+ Out << NL;
+ }
+
+ const Stmt *S = En.getStmt();
+ if (printLocations) {
+ S = (Stmt*) (((uintptr_t) S) & ((uintptr_t) ~0x1));
+ }
+
+ Out << " (" << (void*) En.getLocationContext() << ',' << (void*) S << ") ";
+ LangOptions LO; // FIXME.
+ S->printPretty(Out, 0, PrintingPolicy(LO));
+ Out << " : " << I.getData();
+ }
+}
diff --git a/clang/lib/StaticAnalyzer/Core/ExplodedGraph.cpp b/clang/lib/StaticAnalyzer/Core/ExplodedGraph.cpp
new file mode 100644
index 0000000..0dcbe1f
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/ExplodedGraph.cpp
@@ -0,0 +1,405 @@
+//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the template classes ExplodedNode and ExplodedGraph,
+// which represent a path-sensitive, intra-procedural "exploded graph."
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/ParentMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include <vector>
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// Node auditing.
+//===----------------------------------------------------------------------===//
+
+// An out of line virtual method to provide a home for the class vtable.
+ExplodedNode::Auditor::~Auditor() {}
+
+#ifndef NDEBUG
+static ExplodedNode::Auditor* NodeAuditor = 0;
+#endif
+
+void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
+#ifndef NDEBUG
+ NodeAuditor = A;
+#endif
+}
+
+//===----------------------------------------------------------------------===//
+// Cleanup.
+//===----------------------------------------------------------------------===//
+
+static const unsigned CounterTop = 1000;
+
+ExplodedGraph::ExplodedGraph()
+ : NumNodes(0), reclaimNodes(false), reclaimCounter(CounterTop) {}
+
+ExplodedGraph::~ExplodedGraph() {}
+
+//===----------------------------------------------------------------------===//
+// Node reclamation.
+//===----------------------------------------------------------------------===//
+
+bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
+ // Reclaimn all nodes that match *all* the following criteria:
+ //
+ // (1) 1 predecessor (that has one successor)
+ // (2) 1 successor (that has one predecessor)
+ // (3) The ProgramPoint is for a PostStmt.
+ // (4) There is no 'tag' for the ProgramPoint.
+ // (5) The 'store' is the same as the predecessor.
+ // (6) The 'GDM' is the same as the predecessor.
+ // (7) The LocationContext is the same as the predecessor.
+ // (8) The PostStmt is for a non-consumed Stmt or Expr.
+
+ // Conditions 1 and 2.
+ if (node->pred_size() != 1 || node->succ_size() != 1)
+ return false;
+
+ const ExplodedNode *pred = *(node->pred_begin());
+ if (pred->succ_size() != 1)
+ return false;
+
+ const ExplodedNode *succ = *(node->succ_begin());
+ if (succ->pred_size() != 1)
+ return false;
+
+ // Condition 3.
+ ProgramPoint progPoint = node->getLocation();
+ if (!isa<PostStmt>(progPoint) ||
+ (isa<CallEnter>(progPoint) || isa<CallExit>(progPoint)))
+ return false;
+
+ // Condition 4.
+ PostStmt ps = cast<PostStmt>(progPoint);
+ if (ps.getTag())
+ return false;
+
+ if (isa<BinaryOperator>(ps.getStmt()))
+ return false;
+
+ // Conditions 5, 6, and 7.
+ ProgramStateRef state = node->getState();
+ ProgramStateRef pred_state = pred->getState();
+ if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
+ progPoint.getLocationContext() != pred->getLocationContext())
+ return false;
+
+ // Condition 8.
+ if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) {
+ ParentMap &PM = progPoint.getLocationContext()->getParentMap();
+ if (!PM.isConsumedExpr(Ex))
+ return false;
+ }
+
+ return true;
+}
+
+void ExplodedGraph::collectNode(ExplodedNode *node) {
+ // Removing a node means:
+ // (a) changing the predecessors successor to the successor of this node
+ // (b) changing the successors predecessor to the predecessor of this node
+ // (c) Putting 'node' onto freeNodes.
+ assert(node->pred_size() == 1 || node->succ_size() == 1);
+ ExplodedNode *pred = *(node->pred_begin());
+ ExplodedNode *succ = *(node->succ_begin());
+ pred->replaceSuccessor(succ);
+ succ->replacePredecessor(pred);
+ FreeNodes.push_back(node);
+ Nodes.RemoveNode(node);
+ --NumNodes;
+ node->~ExplodedNode();
+}
+
+void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
+ if (ChangedNodes.empty())
+ return;
+
+ // Only periodically relcaim nodes so that we can build up a set of
+ // nodes that meet the reclamation criteria. Freshly created nodes
+ // by definition have no successor, and thus cannot be reclaimed (see below).
+ assert(reclaimCounter > 0);
+ if (--reclaimCounter != 0)
+ return;
+ reclaimCounter = CounterTop;
+
+ for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
+ it != et; ++it) {
+ ExplodedNode *node = *it;
+ if (shouldCollect(node))
+ collectNode(node);
+ }
+ ChangedNodes.clear();
+}
+
+//===----------------------------------------------------------------------===//
+// ExplodedNode.
+//===----------------------------------------------------------------------===//
+
+static inline BumpVector<ExplodedNode*>& getVector(void *P) {
+ return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P);
+}
+
+void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
+ assert (!V->isSink());
+ Preds.addNode(V, G);
+ V->Succs.addNode(this, G);
+#ifndef NDEBUG
+ if (NodeAuditor) NodeAuditor->AddEdge(V, this);
+#endif
+}
+
+void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
+ assert(getKind() == Size1);
+ P = reinterpret_cast<uintptr_t>(node);
+ assert(getKind() == Size1);
+}
+
+void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
+ assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
+ assert(!getFlag());
+
+ if (getKind() == Size1) {
+ if (ExplodedNode *NOld = getNode()) {
+ BumpVectorContext &Ctx = G.getNodeAllocator();
+ BumpVector<ExplodedNode*> *V =
+ G.getAllocator().Allocate<BumpVector<ExplodedNode*> >();
+ new (V) BumpVector<ExplodedNode*>(Ctx, 4);
+
+ assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
+ V->push_back(NOld, Ctx);
+ V->push_back(N, Ctx);
+ P = reinterpret_cast<uintptr_t>(V) | SizeOther;
+ assert(getPtr() == (void*) V);
+ assert(getKind() == SizeOther);
+ }
+ else {
+ P = reinterpret_cast<uintptr_t>(N);
+ assert(getKind() == Size1);
+ }
+ }
+ else {
+ assert(getKind() == SizeOther);
+ getVector(getPtr()).push_back(N, G.getNodeAllocator());
+ }
+}
+
+unsigned ExplodedNode::NodeGroup::size() const {
+ if (getFlag())
+ return 0;
+
+ if (getKind() == Size1)
+ return getNode() ? 1 : 0;
+ else
+ return getVector(getPtr()).size();
+}
+
+ExplodedNode **ExplodedNode::NodeGroup::begin() const {
+ if (getFlag())
+ return NULL;
+
+ if (getKind() == Size1)
+ return (ExplodedNode**) (getPtr() ? &P : NULL);
+ else
+ return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin()));
+}
+
+ExplodedNode** ExplodedNode::NodeGroup::end() const {
+ if (getFlag())
+ return NULL;
+
+ if (getKind() == Size1)
+ return (ExplodedNode**) (getPtr() ? &P+1 : NULL);
+ else {
+ // Dereferencing end() is undefined behaviour. The vector is not empty, so
+ // we can dereference the last elem and then add 1 to the result.
+ return const_cast<ExplodedNode**>(getVector(getPtr()).end());
+ }
+}
+
+ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
+ ProgramStateRef State,
+ bool IsSink,
+ bool* IsNew) {
+ // Profile 'State' to determine if we already have an existing node.
+ llvm::FoldingSetNodeID profile;
+ void *InsertPos = 0;
+
+ NodeTy::Profile(profile, L, State, IsSink);
+ NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
+
+ if (!V) {
+ if (!FreeNodes.empty()) {
+ V = FreeNodes.back();
+ FreeNodes.pop_back();
+ }
+ else {
+ // Allocate a new node.
+ V = (NodeTy*) getAllocator().Allocate<NodeTy>();
+ }
+
+ new (V) NodeTy(L, State, IsSink);
+
+ if (reclaimNodes)
+ ChangedNodes.push_back(V);
+
+ // Insert the node into the node set and return it.
+ Nodes.InsertNode(V, InsertPos);
+ ++NumNodes;
+
+ if (IsNew) *IsNew = true;
+ }
+ else
+ if (IsNew) *IsNew = false;
+
+ return V;
+}
+
+std::pair<ExplodedGraph*, InterExplodedGraphMap*>
+ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
+ llvm::DenseMap<const void*, const void*> *InverseMap) const {
+
+ if (NBeg == NEnd)
+ return std::make_pair((ExplodedGraph*) 0,
+ (InterExplodedGraphMap*) 0);
+
+ assert (NBeg < NEnd);
+
+ OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
+
+ ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
+
+ return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
+}
+
+ExplodedGraph*
+ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources,
+ const ExplodedNode* const* EndSources,
+ InterExplodedGraphMap* M,
+ llvm::DenseMap<const void*, const void*> *InverseMap) const {
+
+ typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
+ Pass1Ty Pass1;
+
+ typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
+ Pass2Ty& Pass2 = M->M;
+
+ SmallVector<const ExplodedNode*, 10> WL1, WL2;
+
+ // ===- Pass 1 (reverse DFS) -===
+ for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) {
+ assert(*I);
+ WL1.push_back(*I);
+ }
+
+ // Process the first worklist until it is empty. Because it is a std::list
+ // it acts like a FIFO queue.
+ while (!WL1.empty()) {
+ const ExplodedNode *N = WL1.back();
+ WL1.pop_back();
+
+ // Have we already visited this node? If so, continue to the next one.
+ if (Pass1.count(N))
+ continue;
+
+ // Otherwise, mark this node as visited.
+ Pass1.insert(N);
+
+ // If this is a root enqueue it to the second worklist.
+ if (N->Preds.empty()) {
+ WL2.push_back(N);
+ continue;
+ }
+
+ // Visit our predecessors and enqueue them.
+ for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
+ WL1.push_back(*I);
+ }
+
+ // We didn't hit a root? Return with a null pointer for the new graph.
+ if (WL2.empty())
+ return 0;
+
+ // Create an empty graph.
+ ExplodedGraph* G = MakeEmptyGraph();
+
+ // ===- Pass 2 (forward DFS to construct the new graph) -===
+ while (!WL2.empty()) {
+ const ExplodedNode *N = WL2.back();
+ WL2.pop_back();
+
+ // Skip this node if we have already processed it.
+ if (Pass2.find(N) != Pass2.end())
+ continue;
+
+ // Create the corresponding node in the new graph and record the mapping
+ // from the old node to the new node.
+ ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0);
+ Pass2[N] = NewN;
+
+ // Also record the reverse mapping from the new node to the old node.
+ if (InverseMap) (*InverseMap)[NewN] = N;
+
+ // If this node is a root, designate it as such in the graph.
+ if (N->Preds.empty())
+ G->addRoot(NewN);
+
+ // In the case that some of the intended predecessors of NewN have already
+ // been created, we should hook them up as predecessors.
+
+ // Walk through the predecessors of 'N' and hook up their corresponding
+ // nodes in the new graph (if any) to the freshly created node.
+ for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
+ Pass2Ty::iterator PI = Pass2.find(*I);
+ if (PI == Pass2.end())
+ continue;
+
+ NewN->addPredecessor(PI->second, *G);
+ }
+
+ // In the case that some of the intended successors of NewN have already
+ // been created, we should hook them up as successors. Otherwise, enqueue
+ // the new nodes from the original graph that should have nodes created
+ // in the new graph.
+ for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
+ Pass2Ty::iterator PI = Pass2.find(*I);
+ if (PI != Pass2.end()) {
+ PI->second->addPredecessor(NewN, *G);
+ continue;
+ }
+
+ // Enqueue nodes to the worklist that were marked during pass 1.
+ if (Pass1.count(*I))
+ WL2.push_back(*I);
+ }
+ }
+
+ return G;
+}
+
+void InterExplodedGraphMap::anchor() { }
+
+ExplodedNode*
+InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const {
+ llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I =
+ M.find(N);
+
+ return I == M.end() ? 0 : I->second;
+}
+
diff --git a/clang/lib/StaticAnalyzer/Core/ExprEngine.cpp b/clang/lib/StaticAnalyzer/Core/ExprEngine.cpp
new file mode 100644
index 0000000..1fd9068
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/ExprEngine.cpp
@@ -0,0 +1,2076 @@
+//=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a meta-engine for path-sensitive dataflow analysis that
+// is built on GREngine, but provides the boilerplate to execute transfer
+// functions and build the ExplodedGraph at the expression level.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "ExprEngine"
+
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/PrettyStackTrace.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/ImmutableList.h"
+#include "llvm/ADT/Statistic.h"
+
+#ifndef NDEBUG
+#include "llvm/Support/GraphWriter.h"
+#endif
+
+using namespace clang;
+using namespace ento;
+using llvm::APSInt;
+
+STATISTIC(NumRemoveDeadBindings,
+ "The # of times RemoveDeadBindings is called");
+STATISTIC(NumRemoveDeadBindingsSkipped,
+ "The # of times RemoveDeadBindings is skipped");
+STATISTIC(NumMaxBlockCountReached,
+ "The # of aborted paths due to reaching the maximum block count in "
+ "a top level function");
+STATISTIC(NumMaxBlockCountReachedInInlined,
+ "The # of aborted paths due to reaching the maximum block count in "
+ "an inlined function");
+STATISTIC(NumTimesRetriedWithoutInlining,
+ "The # of times we re-evaluated a call without inlining");
+
+//===----------------------------------------------------------------------===//
+// Utility functions.
+//===----------------------------------------------------------------------===//
+
+static inline Selector GetNullarySelector(const char* name, ASTContext &Ctx) {
+ IdentifierInfo* II = &Ctx.Idents.get(name);
+ return Ctx.Selectors.getSelector(0, &II);
+}
+
+//===----------------------------------------------------------------------===//
+// Engine construction and deletion.
+//===----------------------------------------------------------------------===//
+
+ExprEngine::ExprEngine(AnalysisManager &mgr, bool gcEnabled,
+ SetOfConstDecls *VisitedCallees,
+ FunctionSummariesTy *FS)
+ : AMgr(mgr),
+ AnalysisDeclContexts(mgr.getAnalysisDeclContextManager()),
+ Engine(*this, VisitedCallees, FS),
+ G(Engine.getGraph()),
+ StateMgr(getContext(), mgr.getStoreManagerCreator(),
+ mgr.getConstraintManagerCreator(), G.getAllocator(),
+ *this),
+ SymMgr(StateMgr.getSymbolManager()),
+ svalBuilder(StateMgr.getSValBuilder()),
+ EntryNode(NULL),
+ currentStmt(NULL), currentStmtIdx(0), currentBuilderContext(0),
+ NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL),
+ RaiseSel(GetNullarySelector("raise", getContext())),
+ ObjCGCEnabled(gcEnabled), BR(mgr, *this) {
+
+ if (mgr.shouldEagerlyTrimExplodedGraph()) {
+ // Enable eager node reclaimation when constructing the ExplodedGraph.
+ G.enableNodeReclamation();
+ }
+}
+
+ExprEngine::~ExprEngine() {
+ BR.FlushReports();
+ delete [] NSExceptionInstanceRaiseSelectors;
+}
+
+//===----------------------------------------------------------------------===//
+// Utility methods.
+//===----------------------------------------------------------------------===//
+
+ProgramStateRef ExprEngine::getInitialState(const LocationContext *InitLoc) {
+ ProgramStateRef state = StateMgr.getInitialState(InitLoc);
+ const Decl *D = InitLoc->getDecl();
+
+ // Preconditions.
+ // FIXME: It would be nice if we had a more general mechanism to add
+ // such preconditions. Some day.
+ do {
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // Precondition: the first argument of 'main' is an integer guaranteed
+ // to be > 0.
+ const IdentifierInfo *II = FD->getIdentifier();
+ if (!II || !(II->getName() == "main" && FD->getNumParams() > 0))
+ break;
+
+ const ParmVarDecl *PD = FD->getParamDecl(0);
+ QualType T = PD->getType();
+ if (!T->isIntegerType())
+ break;
+
+ const MemRegion *R = state->getRegion(PD, InitLoc);
+ if (!R)
+ break;
+
+ SVal V = state->getSVal(loc::MemRegionVal(R));
+ SVal Constraint_untested = evalBinOp(state, BO_GT, V,
+ svalBuilder.makeZeroVal(T),
+ getContext().IntTy);
+
+ DefinedOrUnknownSVal *Constraint =
+ dyn_cast<DefinedOrUnknownSVal>(&Constraint_untested);
+
+ if (!Constraint)
+ break;
+
+ if (ProgramStateRef newState = state->assume(*Constraint, true))
+ state = newState;
+ }
+ break;
+ }
+ while (0);
+
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ // Precondition: 'self' is always non-null upon entry to an Objective-C
+ // method.
+ const ImplicitParamDecl *SelfD = MD->getSelfDecl();
+ const MemRegion *R = state->getRegion(SelfD, InitLoc);
+ SVal V = state->getSVal(loc::MemRegionVal(R));
+
+ if (const Loc *LV = dyn_cast<Loc>(&V)) {
+ // Assume that the pointer value in 'self' is non-null.
+ state = state->assume(*LV, true);
+ assert(state && "'self' cannot be null");
+ }
+ }
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
+ if (!MD->isStatic()) {
+ // Precondition: 'this' is always non-null upon entry to the
+ // top-level function. This is our starting assumption for
+ // analyzing an "open" program.
+ const StackFrameContext *SFC = InitLoc->getCurrentStackFrame();
+ if (SFC->getParent() == 0) {
+ loc::MemRegionVal L(getCXXThisRegion(MD, SFC));
+ SVal V = state->getSVal(L);
+ if (const Loc *LV = dyn_cast<Loc>(&V)) {
+ state = state->assume(*LV, true);
+ assert(state && "'this' cannot be null");
+ }
+ }
+ }
+ }
+
+ return state;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-level transfer function logic (Dispatcher).
+//===----------------------------------------------------------------------===//
+
+/// evalAssume - Called by ConstraintManager. Used to call checker-specific
+/// logic for handling assumptions on symbolic values.
+ProgramStateRef ExprEngine::processAssume(ProgramStateRef state,
+ SVal cond, bool assumption) {
+ return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption);
+}
+
+bool ExprEngine::wantsRegionChangeUpdate(ProgramStateRef state) {
+ return getCheckerManager().wantsRegionChangeUpdate(state);
+}
+
+ProgramStateRef
+ExprEngine::processRegionChanges(ProgramStateRef state,
+ const StoreManager::InvalidatedSymbols *invalidated,
+ ArrayRef<const MemRegion *> Explicits,
+ ArrayRef<const MemRegion *> Regions,
+ const CallOrObjCMessage *Call) {
+ return getCheckerManager().runCheckersForRegionChanges(state, invalidated,
+ Explicits, Regions, Call);
+}
+
+void ExprEngine::printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) {
+ getCheckerManager().runCheckersForPrintState(Out, State, NL, Sep);
+}
+
+void ExprEngine::processEndWorklist(bool hasWorkRemaining) {
+ getCheckerManager().runCheckersForEndAnalysis(G, BR, *this);
+}
+
+void ExprEngine::processCFGElement(const CFGElement E, ExplodedNode *Pred,
+ unsigned StmtIdx, NodeBuilderContext *Ctx) {
+ currentStmtIdx = StmtIdx;
+ currentBuilderContext = Ctx;
+
+ switch (E.getKind()) {
+ case CFGElement::Invalid:
+ llvm_unreachable("Unexpected CFGElement kind.");
+ case CFGElement::Statement:
+ ProcessStmt(const_cast<Stmt*>(E.getAs<CFGStmt>()->getStmt()), Pred);
+ return;
+ case CFGElement::Initializer:
+ ProcessInitializer(E.getAs<CFGInitializer>()->getInitializer(), Pred);
+ return;
+ case CFGElement::AutomaticObjectDtor:
+ case CFGElement::BaseDtor:
+ case CFGElement::MemberDtor:
+ case CFGElement::TemporaryDtor:
+ ProcessImplicitDtor(*E.getAs<CFGImplicitDtor>(), Pred);
+ return;
+ }
+}
+
+static bool shouldRemoveDeadBindings(AnalysisManager &AMgr,
+ const CFGStmt S,
+ const ExplodedNode *Pred,
+ const LocationContext *LC) {
+
+ // Are we never purging state values?
+ if (AMgr.getPurgeMode() == PurgeNone)
+ return false;
+
+ // Is this the beginning of a basic block?
+ if (isa<BlockEntrance>(Pred->getLocation()))
+ return true;
+
+ // Is this on a non-expression?
+ if (!isa<Expr>(S.getStmt()))
+ return true;
+
+ // Run before processing a call.
+ if (isa<CallExpr>(S.getStmt()))
+ return true;
+
+ // Is this an expression that is consumed by another expression? If so,
+ // postpone cleaning out the state.
+ ParentMap &PM = LC->getAnalysisDeclContext()->getParentMap();
+ return !PM.isConsumedExpr(cast<Expr>(S.getStmt()));
+}
+
+void ExprEngine::ProcessStmt(const CFGStmt S,
+ ExplodedNode *Pred) {
+ // Reclaim any unnecessary nodes in the ExplodedGraph.
+ G.reclaimRecentlyAllocatedNodes();
+
+ currentStmt = S.getStmt();
+ PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
+ currentStmt->getLocStart(),
+ "Error evaluating statement");
+
+ EntryNode = Pred;
+
+ ProgramStateRef EntryState = EntryNode->getState();
+ CleanedState = EntryState;
+
+ // Create the cleaned state.
+ const LocationContext *LC = EntryNode->getLocationContext();
+ SymbolReaper SymReaper(LC, currentStmt, SymMgr, getStoreManager());
+
+ if (shouldRemoveDeadBindings(AMgr, S, Pred, LC)) {
+ NumRemoveDeadBindings++;
+ getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper);
+
+ const StackFrameContext *SFC = LC->getCurrentStackFrame();
+
+ // Create a state in which dead bindings are removed from the environment
+ // and the store. TODO: The function should just return new env and store,
+ // not a new state.
+ CleanedState = StateMgr.removeDeadBindings(CleanedState, SFC, SymReaper);
+ } else {
+ NumRemoveDeadBindingsSkipped++;
+ }
+
+ // Process any special transfer function for dead symbols.
+ ExplodedNodeSet Tmp;
+ // A tag to track convenience transitions, which can be removed at cleanup.
+ static SimpleProgramPointTag cleanupTag("ExprEngine : Clean Node");
+
+ if (!SymReaper.hasDeadSymbols()) {
+ // Generate a CleanedNode that has the environment and store cleaned
+ // up. Since no symbols are dead, we can optimize and not clean out
+ // the constraint manager.
+ StmtNodeBuilder Bldr(Pred, Tmp, *currentBuilderContext);
+ Bldr.generateNode(currentStmt, EntryNode, CleanedState, false, &cleanupTag);
+
+ } else {
+ // Call checkers with the non-cleaned state so that they could query the
+ // values of the soon to be dead symbols.
+ ExplodedNodeSet CheckedSet;
+ getCheckerManager().runCheckersForDeadSymbols(CheckedSet, EntryNode,
+ SymReaper, currentStmt, *this);
+
+ // For each node in CheckedSet, generate CleanedNodes that have the
+ // environment, the store, and the constraints cleaned up but have the
+ // user-supplied states as the predecessors.
+ StmtNodeBuilder Bldr(CheckedSet, Tmp, *currentBuilderContext);
+ for (ExplodedNodeSet::const_iterator
+ I = CheckedSet.begin(), E = CheckedSet.end(); I != E; ++I) {
+ ProgramStateRef CheckerState = (*I)->getState();
+
+ // The constraint manager has not been cleaned up yet, so clean up now.
+ CheckerState = getConstraintManager().removeDeadBindings(CheckerState,
+ SymReaper);
+
+ assert(StateMgr.haveEqualEnvironments(CheckerState, EntryState) &&
+ "Checkers are not allowed to modify the Environment as a part of "
+ "checkDeadSymbols processing.");
+ assert(StateMgr.haveEqualStores(CheckerState, EntryState) &&
+ "Checkers are not allowed to modify the Store as a part of "
+ "checkDeadSymbols processing.");
+
+ // Create a state based on CleanedState with CheckerState GDM and
+ // generate a transition to that state.
+ ProgramStateRef CleanedCheckerSt =
+ StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState);
+ Bldr.generateNode(currentStmt, *I, CleanedCheckerSt, false, &cleanupTag,
+ ProgramPoint::PostPurgeDeadSymbolsKind);
+ }
+ }
+
+ ExplodedNodeSet Dst;
+ for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
+ ExplodedNodeSet DstI;
+ // Visit the statement.
+ Visit(currentStmt, *I, DstI);
+ Dst.insert(DstI);
+ }
+
+ // Enqueue the new nodes onto the work list.
+ Engine.enqueue(Dst, currentBuilderContext->getBlock(), currentStmtIdx);
+
+ // NULL out these variables to cleanup.
+ CleanedState = NULL;
+ EntryNode = NULL;
+ currentStmt = 0;
+}
+
+void ExprEngine::ProcessInitializer(const CFGInitializer Init,
+ ExplodedNode *Pred) {
+ ExplodedNodeSet Dst;
+
+ // We don't set EntryNode and currentStmt. And we don't clean up state.
+ const CXXCtorInitializer *BMI = Init.getInitializer();
+ const StackFrameContext *stackFrame =
+ cast<StackFrameContext>(Pred->getLocationContext());
+ const CXXConstructorDecl *decl =
+ cast<CXXConstructorDecl>(stackFrame->getDecl());
+ const CXXThisRegion *thisReg = getCXXThisRegion(decl, stackFrame);
+
+ SVal thisVal = Pred->getState()->getSVal(thisReg);
+
+ if (BMI->isAnyMemberInitializer()) {
+ // Evaluate the initializer.
+
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+ ProgramStateRef state = Pred->getState();
+
+ const FieldDecl *FD = BMI->getAnyMember();
+
+ SVal FieldLoc = state->getLValue(FD, thisVal);
+ SVal InitVal = state->getSVal(BMI->getInit(), Pred->getLocationContext());
+ state = state->bindLoc(FieldLoc, InitVal);
+
+ // Use a custom node building process.
+ PostInitializer PP(BMI, stackFrame);
+ // Builder automatically add the generated node to the deferred set,
+ // which are processed in the builder's dtor.
+ Bldr.generateNode(PP, Pred, state);
+ } else {
+ assert(BMI->isBaseInitializer());
+
+ // Get the base class declaration.
+ const CXXConstructExpr *ctorExpr = cast<CXXConstructExpr>(BMI->getInit());
+
+ // Create the base object region.
+ SVal baseVal =
+ getStoreManager().evalDerivedToBase(thisVal, ctorExpr->getType());
+ const MemRegion *baseReg = baseVal.getAsRegion();
+ assert(baseReg);
+
+ VisitCXXConstructExpr(ctorExpr, baseReg, Pred, Dst);
+ }
+
+ // Enqueue the new nodes onto the work list.
+ Engine.enqueue(Dst, currentBuilderContext->getBlock(), currentStmtIdx);
+}
+
+void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D,
+ ExplodedNode *Pred) {
+ ExplodedNodeSet Dst;
+ switch (D.getKind()) {
+ case CFGElement::AutomaticObjectDtor:
+ ProcessAutomaticObjDtor(cast<CFGAutomaticObjDtor>(D), Pred, Dst);
+ break;
+ case CFGElement::BaseDtor:
+ ProcessBaseDtor(cast<CFGBaseDtor>(D), Pred, Dst);
+ break;
+ case CFGElement::MemberDtor:
+ ProcessMemberDtor(cast<CFGMemberDtor>(D), Pred, Dst);
+ break;
+ case CFGElement::TemporaryDtor:
+ ProcessTemporaryDtor(cast<CFGTemporaryDtor>(D), Pred, Dst);
+ break;
+ default:
+ llvm_unreachable("Unexpected dtor kind.");
+ }
+
+ // Enqueue the new nodes onto the work list.
+ Engine.enqueue(Dst, currentBuilderContext->getBlock(), currentStmtIdx);
+}
+
+void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor Dtor,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ ProgramStateRef state = Pred->getState();
+ const VarDecl *varDecl = Dtor.getVarDecl();
+
+ QualType varType = varDecl->getType();
+
+ if (const ReferenceType *refType = varType->getAs<ReferenceType>())
+ varType = refType->getPointeeType();
+
+ const CXXRecordDecl *recordDecl = varType->getAsCXXRecordDecl();
+ assert(recordDecl && "get CXXRecordDecl fail");
+ const CXXDestructorDecl *dtorDecl = recordDecl->getDestructor();
+
+ Loc dest = state->getLValue(varDecl, Pred->getLocationContext());
+
+ VisitCXXDestructor(dtorDecl, cast<loc::MemRegionVal>(dest).getRegion(),
+ Dtor.getTriggerStmt(), Pred, Dst);
+}
+
+void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D,
+ ExplodedNode *Pred, ExplodedNodeSet &Dst) {}
+
+void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D,
+ ExplodedNode *Pred, ExplodedNodeSet &Dst) {}
+
+void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {}
+
+void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred,
+ ExplodedNodeSet &DstTop) {
+ PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
+ S->getLocStart(),
+ "Error evaluating statement");
+ ExplodedNodeSet Dst;
+ StmtNodeBuilder Bldr(Pred, DstTop, *currentBuilderContext);
+
+ // Expressions to ignore.
+ if (const Expr *Ex = dyn_cast<Expr>(S))
+ S = Ex->IgnoreParens();
+
+ // FIXME: add metadata to the CFG so that we can disable
+ // this check when we KNOW that there is no block-level subexpression.
+ // The motivation is that this check requires a hashtable lookup.
+
+ if (S != currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(S))
+ return;
+
+ switch (S->getStmtClass()) {
+ // C++ and ARC stuff we don't support yet.
+ case Expr::ObjCIndirectCopyRestoreExprClass:
+ case Stmt::CXXDependentScopeMemberExprClass:
+ case Stmt::CXXPseudoDestructorExprClass:
+ case Stmt::CXXTryStmtClass:
+ case Stmt::CXXTypeidExprClass:
+ case Stmt::CXXUuidofExprClass:
+ case Stmt::CXXUnresolvedConstructExprClass:
+ case Stmt::CXXScalarValueInitExprClass:
+ case Stmt::DependentScopeDeclRefExprClass:
+ case Stmt::UnaryTypeTraitExprClass:
+ case Stmt::BinaryTypeTraitExprClass:
+ case Stmt::TypeTraitExprClass:
+ case Stmt::ArrayTypeTraitExprClass:
+ case Stmt::ExpressionTraitExprClass:
+ case Stmt::UnresolvedLookupExprClass:
+ case Stmt::UnresolvedMemberExprClass:
+ case Stmt::CXXNoexceptExprClass:
+ case Stmt::PackExpansionExprClass:
+ case Stmt::SubstNonTypeTemplateParmPackExprClass:
+ case Stmt::SEHTryStmtClass:
+ case Stmt::SEHExceptStmtClass:
+ case Stmt::LambdaExprClass:
+ case Stmt::SEHFinallyStmtClass: {
+ const ExplodedNode *node = Bldr.generateNode(S, Pred, Pred->getState(),
+ /* sink */ true);
+ Engine.addAbortedBlock(node, currentBuilderContext->getBlock());
+ break;
+ }
+
+ // We don't handle default arguments either yet, but we can fake it
+ // for now by just skipping them.
+ case Stmt::SubstNonTypeTemplateParmExprClass:
+ case Stmt::CXXDefaultArgExprClass:
+ break;
+
+ case Stmt::ParenExprClass:
+ llvm_unreachable("ParenExprs already handled.");
+ case Stmt::GenericSelectionExprClass:
+ llvm_unreachable("GenericSelectionExprs already handled.");
+ // Cases that should never be evaluated simply because they shouldn't
+ // appear in the CFG.
+ case Stmt::BreakStmtClass:
+ case Stmt::CaseStmtClass:
+ case Stmt::CompoundStmtClass:
+ case Stmt::ContinueStmtClass:
+ case Stmt::CXXForRangeStmtClass:
+ case Stmt::DefaultStmtClass:
+ case Stmt::DoStmtClass:
+ case Stmt::ForStmtClass:
+ case Stmt::GotoStmtClass:
+ case Stmt::IfStmtClass:
+ case Stmt::IndirectGotoStmtClass:
+ case Stmt::LabelStmtClass:
+ case Stmt::AttributedStmtClass:
+ case Stmt::NoStmtClass:
+ case Stmt::NullStmtClass:
+ case Stmt::SwitchStmtClass:
+ case Stmt::WhileStmtClass:
+ case Expr::MSDependentExistsStmtClass:
+ llvm_unreachable("Stmt should not be in analyzer evaluation loop");
+
+ case Stmt::GNUNullExprClass: {
+ // GNU __null is a pointer-width integer, not an actual pointer.
+ ProgramStateRef state = Pred->getState();
+ state = state->BindExpr(S, Pred->getLocationContext(),
+ svalBuilder.makeIntValWithPtrWidth(0, false));
+ Bldr.generateNode(S, Pred, state);
+ break;
+ }
+
+ case Stmt::ObjCAtSynchronizedStmtClass:
+ Bldr.takeNodes(Pred);
+ VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ // FIXME.
+ case Stmt::ObjCSubscriptRefExprClass:
+ break;
+
+ case Stmt::ObjCPropertyRefExprClass:
+ // Implicitly handled by Environment::getSVal().
+ break;
+
+ case Stmt::ImplicitValueInitExprClass: {
+ ProgramStateRef state = Pred->getState();
+ QualType ty = cast<ImplicitValueInitExpr>(S)->getType();
+ SVal val = svalBuilder.makeZeroVal(ty);
+ Bldr.generateNode(S, Pred, state->BindExpr(S, Pred->getLocationContext(),
+ val));
+ break;
+ }
+
+ case Stmt::ExprWithCleanupsClass:
+ // Handled due to fully linearised CFG.
+ break;
+
+ // Cases not handled yet; but will handle some day.
+ case Stmt::DesignatedInitExprClass:
+ case Stmt::ExtVectorElementExprClass:
+ case Stmt::ImaginaryLiteralClass:
+ case Stmt::ObjCAtCatchStmtClass:
+ case Stmt::ObjCAtFinallyStmtClass:
+ case Stmt::ObjCAtTryStmtClass:
+ case Stmt::ObjCAutoreleasePoolStmtClass:
+ case Stmt::ObjCEncodeExprClass:
+ case Stmt::ObjCIsaExprClass:
+ case Stmt::ObjCProtocolExprClass:
+ case Stmt::ObjCSelectorExprClass:
+ case Expr::ObjCNumericLiteralClass:
+ case Stmt::ParenListExprClass:
+ case Stmt::PredefinedExprClass:
+ case Stmt::ShuffleVectorExprClass:
+ case Stmt::VAArgExprClass:
+ case Stmt::CUDAKernelCallExprClass:
+ case Stmt::OpaqueValueExprClass:
+ case Stmt::AsTypeExprClass:
+ case Stmt::AtomicExprClass:
+ // Fall through.
+
+ // Currently all handling of 'throw' just falls to the CFG. We
+ // can consider doing more if necessary.
+ case Stmt::CXXThrowExprClass:
+ // Fall through.
+
+ // Cases we intentionally don't evaluate, since they don't need
+ // to be explicitly evaluated.
+ case Stmt::AddrLabelExprClass:
+ case Stmt::IntegerLiteralClass:
+ case Stmt::CharacterLiteralClass:
+ case Stmt::CXXBoolLiteralExprClass:
+ case Stmt::ObjCBoolLiteralExprClass:
+ case Stmt::FloatingLiteralClass:
+ case Stmt::SizeOfPackExprClass:
+ case Stmt::StringLiteralClass:
+ case Stmt::ObjCStringLiteralClass:
+ case Stmt::CXXBindTemporaryExprClass:
+ case Stmt::CXXNullPtrLiteralExprClass: {
+ Bldr.takeNodes(Pred);
+ ExplodedNodeSet preVisit;
+ getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
+ getCheckerManager().runCheckersForPostStmt(Dst, preVisit, S, *this);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Expr::ObjCArrayLiteralClass:
+ case Expr::ObjCDictionaryLiteralClass: {
+ Bldr.takeNodes(Pred);
+
+ ExplodedNodeSet preVisit;
+ getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
+
+ // FIXME: explicitly model with a region and the actual contents
+ // of the container. For now, conjure a symbol.
+ ExplodedNodeSet Tmp;
+ StmtNodeBuilder Bldr2(preVisit, Tmp, *currentBuilderContext);
+
+ for (ExplodedNodeSet::iterator it = preVisit.begin(), et = preVisit.end();
+ it != et; ++it) {
+ ExplodedNode *N = *it;
+ const Expr *Ex = cast<Expr>(S);
+ QualType resultType = Ex->getType();
+ const LocationContext *LCtx = N->getLocationContext();
+ SVal result =
+ svalBuilder.getConjuredSymbolVal(0, Ex, LCtx, resultType,
+ currentBuilderContext->getCurrentBlockCount());
+ ProgramStateRef state = N->getState()->BindExpr(Ex, LCtx, result);
+ Bldr2.generateNode(S, N, state);
+ }
+
+ getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::ArraySubscriptExprClass:
+ Bldr.takeNodes(Pred);
+ VisitLvalArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::AsmStmtClass:
+ Bldr.takeNodes(Pred);
+ VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::BlockExprClass:
+ Bldr.takeNodes(Pred);
+ VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::BinaryOperatorClass: {
+ const BinaryOperator* B = cast<BinaryOperator>(S);
+ if (B->isLogicalOp()) {
+ Bldr.takeNodes(Pred);
+ VisitLogicalExpr(B, Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+ else if (B->getOpcode() == BO_Comma) {
+ ProgramStateRef state = Pred->getState();
+ Bldr.generateNode(B, Pred,
+ state->BindExpr(B, Pred->getLocationContext(),
+ state->getSVal(B->getRHS(),
+ Pred->getLocationContext())));
+ break;
+ }
+
+ Bldr.takeNodes(Pred);
+
+ if (AMgr.shouldEagerlyAssume() &&
+ (B->isRelationalOp() || B->isEqualityOp())) {
+ ExplodedNodeSet Tmp;
+ VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp);
+ evalEagerlyAssume(Dst, Tmp, cast<Expr>(S));
+ }
+ else
+ VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
+
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CallExprClass:
+ case Stmt::CXXOperatorCallExprClass:
+ case Stmt::CXXMemberCallExprClass:
+ case Stmt::UserDefinedLiteralClass: {
+ Bldr.takeNodes(Pred);
+ VisitCallExpr(cast<CallExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CXXCatchStmtClass: {
+ Bldr.takeNodes(Pred);
+ VisitCXXCatchStmt(cast<CXXCatchStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CXXTemporaryObjectExprClass:
+ case Stmt::CXXConstructExprClass: {
+ const CXXConstructExpr *C = cast<CXXConstructExpr>(S);
+ // For block-level CXXConstructExpr, we don't have a destination region.
+ // Let VisitCXXConstructExpr() create one.
+ Bldr.takeNodes(Pred);
+ VisitCXXConstructExpr(C, 0, Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CXXNewExprClass: {
+ Bldr.takeNodes(Pred);
+ const CXXNewExpr *NE = cast<CXXNewExpr>(S);
+ VisitCXXNewExpr(NE, Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CXXDeleteExprClass: {
+ Bldr.takeNodes(Pred);
+ const CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S);
+ VisitCXXDeleteExpr(CDE, Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+ // FIXME: ChooseExpr is really a constant. We need to fix
+ // the CFG do not model them as explicit control-flow.
+
+ case Stmt::ChooseExprClass: { // __builtin_choose_expr
+ Bldr.takeNodes(Pred);
+ const ChooseExpr *C = cast<ChooseExpr>(S);
+ VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CompoundAssignOperatorClass:
+ Bldr.takeNodes(Pred);
+ VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::CompoundLiteralExprClass:
+ Bldr.takeNodes(Pred);
+ VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass: { // '?' operator
+ Bldr.takeNodes(Pred);
+ const AbstractConditionalOperator *C
+ = cast<AbstractConditionalOperator>(S);
+ VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::CXXThisExprClass:
+ Bldr.takeNodes(Pred);
+ VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::DeclRefExprClass: {
+ Bldr.takeNodes(Pred);
+ const DeclRefExpr *DE = cast<DeclRefExpr>(S);
+ VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::DeclStmtClass:
+ Bldr.takeNodes(Pred);
+ VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::ImplicitCastExprClass:
+ case Stmt::CStyleCastExprClass:
+ case Stmt::CXXStaticCastExprClass:
+ case Stmt::CXXDynamicCastExprClass:
+ case Stmt::CXXReinterpretCastExprClass:
+ case Stmt::CXXConstCastExprClass:
+ case Stmt::CXXFunctionalCastExprClass:
+ case Stmt::ObjCBridgedCastExprClass: {
+ Bldr.takeNodes(Pred);
+ const CastExpr *C = cast<CastExpr>(S);
+ // Handle the previsit checks.
+ ExplodedNodeSet dstPrevisit;
+ getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, C, *this);
+
+ // Handle the expression itself.
+ ExplodedNodeSet dstExpr;
+ for (ExplodedNodeSet::iterator i = dstPrevisit.begin(),
+ e = dstPrevisit.end(); i != e ; ++i) {
+ VisitCast(C, C->getSubExpr(), *i, dstExpr);
+ }
+
+ // Handle the postvisit checks.
+ getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Expr::MaterializeTemporaryExprClass: {
+ Bldr.takeNodes(Pred);
+ const MaterializeTemporaryExpr *Materialize
+ = cast<MaterializeTemporaryExpr>(S);
+ if (Materialize->getType()->isRecordType())
+ Dst.Add(Pred);
+ else
+ CreateCXXTemporaryObject(Materialize, Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::InitListExprClass:
+ Bldr.takeNodes(Pred);
+ VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::MemberExprClass:
+ Bldr.takeNodes(Pred);
+ VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::ObjCIvarRefExprClass:
+ Bldr.takeNodes(Pred);
+ VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::ObjCForCollectionStmtClass:
+ Bldr.takeNodes(Pred);
+ VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::ObjCMessageExprClass: {
+ Bldr.takeNodes(Pred);
+ // Is this a property access?
+ const ParentMap &PM = Pred->getLocationContext()->getParentMap();
+ const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(S);
+ bool evaluated = false;
+
+ if (const PseudoObjectExpr *PO =
+ dyn_cast_or_null<PseudoObjectExpr>(PM.getParent(S))) {
+ const Expr *syntactic = PO->getSyntacticForm();
+ if (const ObjCPropertyRefExpr *PR =
+ dyn_cast<ObjCPropertyRefExpr>(syntactic)) {
+ bool isSetter = ME->getNumArgs() > 0;
+ VisitObjCMessage(ObjCMessage(ME, PR, isSetter), Pred, Dst);
+ evaluated = true;
+ }
+ else if (isa<BinaryOperator>(syntactic)) {
+ VisitObjCMessage(ObjCMessage(ME, 0, true), Pred, Dst);
+ }
+ }
+
+ if (!evaluated)
+ VisitObjCMessage(ME, Pred, Dst);
+
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::ObjCAtThrowStmtClass: {
+ // FIXME: This is not complete. We basically treat @throw as
+ // an abort.
+ Bldr.generateNode(S, Pred, Pred->getState());
+ break;
+ }
+
+ case Stmt::ReturnStmtClass:
+ Bldr.takeNodes(Pred);
+ VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::OffsetOfExprClass:
+ Bldr.takeNodes(Pred);
+ VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::UnaryExprOrTypeTraitExprClass:
+ Bldr.takeNodes(Pred);
+ VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
+ Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+
+ case Stmt::StmtExprClass: {
+ const StmtExpr *SE = cast<StmtExpr>(S);
+
+ if (SE->getSubStmt()->body_empty()) {
+ // Empty statement expression.
+ assert(SE->getType() == getContext().VoidTy
+ && "Empty statement expression must have void type.");
+ break;
+ }
+
+ if (Expr *LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
+ ProgramStateRef state = Pred->getState();
+ Bldr.generateNode(SE, Pred,
+ state->BindExpr(SE, Pred->getLocationContext(),
+ state->getSVal(LastExpr,
+ Pred->getLocationContext())));
+ }
+ break;
+ }
+
+ case Stmt::UnaryOperatorClass: {
+ Bldr.takeNodes(Pred);
+ const UnaryOperator *U = cast<UnaryOperator>(S);
+ if (AMgr.shouldEagerlyAssume() && (U->getOpcode() == UO_LNot)) {
+ ExplodedNodeSet Tmp;
+ VisitUnaryOperator(U, Pred, Tmp);
+ evalEagerlyAssume(Dst, Tmp, U);
+ }
+ else
+ VisitUnaryOperator(U, Pred, Dst);
+ Bldr.addNodes(Dst);
+ break;
+ }
+
+ case Stmt::PseudoObjectExprClass: {
+ Bldr.takeNodes(Pred);
+ ProgramStateRef state = Pred->getState();
+ const PseudoObjectExpr *PE = cast<PseudoObjectExpr>(S);
+ if (const Expr *Result = PE->getResultExpr()) {
+ SVal V = state->getSVal(Result, Pred->getLocationContext());
+ Bldr.generateNode(S, Pred,
+ state->BindExpr(S, Pred->getLocationContext(), V));
+ }
+ else
+ Bldr.generateNode(S, Pred,
+ state->BindExpr(S, Pred->getLocationContext(),
+ UnknownVal()));
+
+ Bldr.addNodes(Dst);
+ break;
+ }
+ }
+}
+
+bool ExprEngine::replayWithoutInlining(ExplodedNode *N,
+ const LocationContext *CalleeLC) {
+ const StackFrameContext *CalleeSF = CalleeLC->getCurrentStackFrame();
+ const StackFrameContext *CallerSF = CalleeSF->getParent()->getCurrentStackFrame();
+ assert(CalleeSF && CallerSF);
+ ExplodedNode *BeforeProcessingCall = 0;
+
+ // Find the first node before we started processing the call expression.
+ while (N) {
+ ProgramPoint L = N->getLocation();
+ BeforeProcessingCall = N;
+ N = N->pred_empty() ? NULL : *(N->pred_begin());
+
+ // Skip the nodes corresponding to the inlined code.
+ if (L.getLocationContext()->getCurrentStackFrame() != CallerSF)
+ continue;
+ // We reached the caller. Find the node right before we started
+ // processing the CallExpr.
+ if (isa<PostPurgeDeadSymbols>(L))
+ continue;
+ if (const StmtPoint *SP = dyn_cast<StmtPoint>(&L))
+ if (SP->getStmt() == CalleeSF->getCallSite())
+ continue;
+ break;
+ }
+
+ if (!BeforeProcessingCall)
+ return false;
+
+ // TODO: Clean up the unneeded nodes.
+
+ // Build an Epsilon node from which we will restart the analyzes.
+ const Stmt *CE = CalleeSF->getCallSite();
+ ProgramPoint NewNodeLoc =
+ EpsilonPoint(BeforeProcessingCall->getLocationContext(), CE);
+ // Add the special flag to GDM to signal retrying with no inlining.
+ // Note, changing the state ensures that we are not going to cache out.
+ ProgramStateRef NewNodeState = BeforeProcessingCall->getState();
+ NewNodeState = NewNodeState->set<ReplayWithoutInlining>((void*)CE);
+
+ // Make the new node a successor of BeforeProcessingCall.
+ bool IsNew = false;
+ ExplodedNode *NewNode = G.getNode(NewNodeLoc, NewNodeState, false, &IsNew);
+ // We cached out at this point. Caching out is common due to us backtracking
+ // from the inlined function, which might spawn several paths.
+ if (!IsNew)
+ return true;
+
+ NewNode->addPredecessor(BeforeProcessingCall, G);
+
+ // Add the new node to the work list.
+ Engine.enqueueStmtNode(NewNode, CalleeSF->getCallSiteBlock(),
+ CalleeSF->getIndex());
+ NumTimesRetriedWithoutInlining++;
+ return true;
+}
+
+/// Block entrance. (Update counters).
+void ExprEngine::processCFGBlockEntrance(const BlockEdge &L,
+ NodeBuilderWithSinks &nodeBuilder) {
+
+ // FIXME: Refactor this into a checker.
+ ExplodedNode *pred = nodeBuilder.getContext().getPred();
+
+ if (nodeBuilder.getContext().getCurrentBlockCount() >= AMgr.getMaxVisit()) {
+ static SimpleProgramPointTag tag("ExprEngine : Block count exceeded");
+ const ExplodedNode *Sink =
+ nodeBuilder.generateNode(pred->getState(), pred, &tag, true);
+
+ // Check if we stopped at the top level function or not.
+ // Root node should have the location context of the top most function.
+ const LocationContext *CalleeLC = pred->getLocation().getLocationContext();
+ const LocationContext *CalleeSF = CalleeLC->getCurrentStackFrame();
+ const LocationContext *RootLC =
+ (*G.roots_begin())->getLocation().getLocationContext();
+ if (RootLC->getCurrentStackFrame() != CalleeSF) {
+ Engine.FunctionSummaries->markReachedMaxBlockCount(CalleeSF->getDecl());
+
+ // Re-run the call evaluation without inlining it, by storing the
+ // no-inlining policy in the state and enqueuing the new work item on
+ // the list. Replay should almost never fail. Use the stats to catch it
+ // if it does.
+ if ((!AMgr.NoRetryExhausted && replayWithoutInlining(pred, CalleeLC)))
+ return;
+ NumMaxBlockCountReachedInInlined++;
+ } else
+ NumMaxBlockCountReached++;
+
+ // Make sink nodes as exhausted(for stats) only if retry failed.
+ Engine.blocksExhausted.push_back(std::make_pair(L, Sink));
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Branch processing.
+//===----------------------------------------------------------------------===//
+
+ProgramStateRef ExprEngine::MarkBranch(ProgramStateRef state,
+ const Stmt *Terminator,
+ const LocationContext *LCtx,
+ bool branchTaken) {
+
+ switch (Terminator->getStmtClass()) {
+ default:
+ return state;
+
+ case Stmt::BinaryOperatorClass: { // '&&' and '||'
+
+ const BinaryOperator* B = cast<BinaryOperator>(Terminator);
+ BinaryOperator::Opcode Op = B->getOpcode();
+
+ assert (Op == BO_LAnd || Op == BO_LOr);
+
+ // For &&, if we take the true branch, then the value of the whole
+ // expression is that of the RHS expression.
+ //
+ // For ||, if we take the false branch, then the value of the whole
+ // expression is that of the RHS expression.
+
+ const Expr *Ex = (Op == BO_LAnd && branchTaken) ||
+ (Op == BO_LOr && !branchTaken)
+ ? B->getRHS() : B->getLHS();
+
+ return state->BindExpr(B, LCtx, UndefinedVal(Ex));
+ }
+
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass: { // ?:
+ const AbstractConditionalOperator* C
+ = cast<AbstractConditionalOperator>(Terminator);
+
+ // For ?, if branchTaken == true then the value is either the LHS or
+ // the condition itself. (GNU extension).
+
+ const Expr *Ex;
+
+ if (branchTaken)
+ Ex = C->getTrueExpr();
+ else
+ Ex = C->getFalseExpr();
+
+ return state->BindExpr(C, LCtx, UndefinedVal(Ex));
+ }
+
+ case Stmt::ChooseExprClass: { // ?:
+
+ const ChooseExpr *C = cast<ChooseExpr>(Terminator);
+
+ const Expr *Ex = branchTaken ? C->getLHS() : C->getRHS();
+ return state->BindExpr(C, LCtx, UndefinedVal(Ex));
+ }
+ }
+}
+
+/// RecoverCastedSymbol - A helper function for ProcessBranch that is used
+/// to try to recover some path-sensitivity for casts of symbolic
+/// integers that promote their values (which are currently not tracked well).
+/// This function returns the SVal bound to Condition->IgnoreCasts if all the
+// cast(s) did was sign-extend the original value.
+static SVal RecoverCastedSymbol(ProgramStateManager& StateMgr,
+ ProgramStateRef state,
+ const Stmt *Condition,
+ const LocationContext *LCtx,
+ ASTContext &Ctx) {
+
+ const Expr *Ex = dyn_cast<Expr>(Condition);
+ if (!Ex)
+ return UnknownVal();
+
+ uint64_t bits = 0;
+ bool bitsInit = false;
+
+ while (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
+ QualType T = CE->getType();
+
+ if (!T->isIntegerType())
+ return UnknownVal();
+
+ uint64_t newBits = Ctx.getTypeSize(T);
+ if (!bitsInit || newBits < bits) {
+ bitsInit = true;
+ bits = newBits;
+ }
+
+ Ex = CE->getSubExpr();
+ }
+
+ // We reached a non-cast. Is it a symbolic value?
+ QualType T = Ex->getType();
+
+ if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits)
+ return UnknownVal();
+
+ return state->getSVal(Ex, LCtx);
+}
+
+void ExprEngine::processBranch(const Stmt *Condition, const Stmt *Term,
+ NodeBuilderContext& BldCtx,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst,
+ const CFGBlock *DstT,
+ const CFGBlock *DstF) {
+ currentBuilderContext = &BldCtx;
+
+ // Check for NULL conditions; e.g. "for(;;)"
+ if (!Condition) {
+ BranchNodeBuilder NullCondBldr(Pred, Dst, BldCtx, DstT, DstF);
+ NullCondBldr.markInfeasible(false);
+ NullCondBldr.generateNode(Pred->getState(), true, Pred);
+ return;
+ }
+
+ PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
+ Condition->getLocStart(),
+ "Error evaluating branch");
+
+ ExplodedNodeSet CheckersOutSet;
+ getCheckerManager().runCheckersForBranchCondition(Condition, CheckersOutSet,
+ Pred, *this);
+ // We generated only sinks.
+ if (CheckersOutSet.empty())
+ return;
+
+ BranchNodeBuilder builder(CheckersOutSet, Dst, BldCtx, DstT, DstF);
+ for (NodeBuilder::iterator I = CheckersOutSet.begin(),
+ E = CheckersOutSet.end(); E != I; ++I) {
+ ExplodedNode *PredI = *I;
+
+ if (PredI->isSink())
+ continue;
+
+ ProgramStateRef PrevState = Pred->getState();
+ SVal X = PrevState->getSVal(Condition, Pred->getLocationContext());
+
+ if (X.isUnknownOrUndef()) {
+ // Give it a chance to recover from unknown.
+ if (const Expr *Ex = dyn_cast<Expr>(Condition)) {
+ if (Ex->getType()->isIntegerType()) {
+ // Try to recover some path-sensitivity. Right now casts of symbolic
+ // integers that promote their values are currently not tracked well.
+ // If 'Condition' is such an expression, try and recover the
+ // underlying value and use that instead.
+ SVal recovered = RecoverCastedSymbol(getStateManager(),
+ PrevState, Condition,
+ Pred->getLocationContext(),
+ getContext());
+
+ if (!recovered.isUnknown()) {
+ X = recovered;
+ }
+ }
+ }
+ }
+
+ const LocationContext *LCtx = PredI->getLocationContext();
+
+ // If the condition is still unknown, give up.
+ if (X.isUnknownOrUndef()) {
+ builder.generateNode(MarkBranch(PrevState, Term, LCtx, true),
+ true, PredI);
+ builder.generateNode(MarkBranch(PrevState, Term, LCtx, false),
+ false, PredI);
+ continue;
+ }
+
+ DefinedSVal V = cast<DefinedSVal>(X);
+
+ // Process the true branch.
+ if (builder.isFeasible(true)) {
+ if (ProgramStateRef state = PrevState->assume(V, true))
+ builder.generateNode(MarkBranch(state, Term, LCtx, true),
+ true, PredI);
+ else
+ builder.markInfeasible(true);
+ }
+
+ // Process the false branch.
+ if (builder.isFeasible(false)) {
+ if (ProgramStateRef state = PrevState->assume(V, false))
+ builder.generateNode(MarkBranch(state, Term, LCtx, false),
+ false, PredI);
+ else
+ builder.markInfeasible(false);
+ }
+ }
+ currentBuilderContext = 0;
+}
+
+/// processIndirectGoto - Called by CoreEngine. Used to generate successor
+/// nodes by processing the 'effects' of a computed goto jump.
+void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) {
+
+ ProgramStateRef state = builder.getState();
+ SVal V = state->getSVal(builder.getTarget(), builder.getLocationContext());
+
+ // Three possibilities:
+ //
+ // (1) We know the computed label.
+ // (2) The label is NULL (or some other constant), or Undefined.
+ // (3) We have no clue about the label. Dispatch to all targets.
+ //
+
+ typedef IndirectGotoNodeBuilder::iterator iterator;
+
+ if (isa<loc::GotoLabel>(V)) {
+ const LabelDecl *L = cast<loc::GotoLabel>(V).getLabel();
+
+ for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) {
+ if (I.getLabel() == L) {
+ builder.generateNode(I, state);
+ return;
+ }
+ }
+
+ llvm_unreachable("No block with label.");
+ }
+
+ if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) {
+ // Dispatch to the first target and mark it as a sink.
+ //ExplodedNode* N = builder.generateNode(builder.begin(), state, true);
+ // FIXME: add checker visit.
+ // UndefBranches.insert(N);
+ return;
+ }
+
+ // This is really a catch-all. We don't support symbolics yet.
+ // FIXME: Implement dispatch for symbolic pointers.
+
+ for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
+ builder.generateNode(I, state);
+}
+
+/// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path
+/// nodes when the control reaches the end of a function.
+void ExprEngine::processEndOfFunction(NodeBuilderContext& BC) {
+ StateMgr.EndPath(BC.Pred->getState());
+ ExplodedNodeSet Dst;
+ getCheckerManager().runCheckersForEndPath(BC, Dst, *this);
+ Engine.enqueueEndOfFunction(Dst);
+}
+
+/// ProcessSwitch - Called by CoreEngine. Used to generate successor
+/// nodes by processing the 'effects' of a switch statement.
+void ExprEngine::processSwitch(SwitchNodeBuilder& builder) {
+ typedef SwitchNodeBuilder::iterator iterator;
+ ProgramStateRef state = builder.getState();
+ const Expr *CondE = builder.getCondition();
+ SVal CondV_untested = state->getSVal(CondE, builder.getLocationContext());
+
+ if (CondV_untested.isUndef()) {
+ //ExplodedNode* N = builder.generateDefaultCaseNode(state, true);
+ // FIXME: add checker
+ //UndefBranches.insert(N);
+
+ return;
+ }
+ DefinedOrUnknownSVal CondV = cast<DefinedOrUnknownSVal>(CondV_untested);
+
+ ProgramStateRef DefaultSt = state;
+
+ iterator I = builder.begin(), EI = builder.end();
+ bool defaultIsFeasible = I == EI;
+
+ for ( ; I != EI; ++I) {
+ // Successor may be pruned out during CFG construction.
+ if (!I.getBlock())
+ continue;
+
+ const CaseStmt *Case = I.getCase();
+
+ // Evaluate the LHS of the case value.
+ llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext());
+ assert(V1.getBitWidth() == getContext().getTypeSize(CondE->getType()));
+
+ // Get the RHS of the case, if it exists.
+ llvm::APSInt V2;
+ if (const Expr *E = Case->getRHS())
+ V2 = E->EvaluateKnownConstInt(getContext());
+ else
+ V2 = V1;
+
+ // FIXME: Eventually we should replace the logic below with a range
+ // comparison, rather than concretize the values within the range.
+ // This should be easy once we have "ranges" for NonLVals.
+
+ do {
+ nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1));
+ DefinedOrUnknownSVal Res = svalBuilder.evalEQ(DefaultSt ? DefaultSt : state,
+ CondV, CaseVal);
+
+ // Now "assume" that the case matches.
+ if (ProgramStateRef stateNew = state->assume(Res, true)) {
+ builder.generateCaseStmtNode(I, stateNew);
+
+ // If CondV evaluates to a constant, then we know that this
+ // is the *only* case that we can take, so stop evaluating the
+ // others.
+ if (isa<nonloc::ConcreteInt>(CondV))
+ return;
+ }
+
+ // Now "assume" that the case doesn't match. Add this state
+ // to the default state (if it is feasible).
+ if (DefaultSt) {
+ if (ProgramStateRef stateNew = DefaultSt->assume(Res, false)) {
+ defaultIsFeasible = true;
+ DefaultSt = stateNew;
+ }
+ else {
+ defaultIsFeasible = false;
+ DefaultSt = NULL;
+ }
+ }
+
+ // Concretize the next value in the range.
+ if (V1 == V2)
+ break;
+
+ ++V1;
+ assert (V1 <= V2);
+
+ } while (true);
+ }
+
+ if (!defaultIsFeasible)
+ return;
+
+ // If we have switch(enum value), the default branch is not
+ // feasible if all of the enum constants not covered by 'case:' statements
+ // are not feasible values for the switch condition.
+ //
+ // Note that this isn't as accurate as it could be. Even if there isn't
+ // a case for a particular enum value as long as that enum value isn't
+ // feasible then it shouldn't be considered for making 'default:' reachable.
+ const SwitchStmt *SS = builder.getSwitch();
+ const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts();
+ if (CondExpr->getType()->getAs<EnumType>()) {
+ if (SS->isAllEnumCasesCovered())
+ return;
+ }
+
+ builder.generateDefaultCaseNode(DefaultSt);
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer functions: Loads and stores.
+//===----------------------------------------------------------------------===//
+
+void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ assert(Ex->isLValue());
+ SVal V = state->getLValue(VD, Pred->getLocationContext());
+
+ // For references, the 'lvalue' is the pointer address stored in the
+ // reference region.
+ if (VD->getType()->isReferenceType()) {
+ if (const MemRegion *R = V.getAsRegion())
+ V = state->getSVal(R);
+ else
+ V = UnknownVal();
+ }
+
+ Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), false, 0,
+ ProgramPoint::PostLValueKind);
+ return;
+ }
+ if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) {
+ assert(!Ex->isLValue());
+ SVal V = svalBuilder.makeIntVal(ED->getInitVal());
+ Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V));
+ return;
+ }
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ SVal V = svalBuilder.getFunctionPointer(FD);
+ Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), false, 0,
+ ProgramPoint::PostLValueKind);
+ return;
+ }
+ if (isa<FieldDecl>(D)) {
+ // FIXME: Compute lvalue of fields.
+ Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, UnknownVal()),
+ false, 0, ProgramPoint::PostLValueKind);
+ return;
+ }
+
+ assert (false &&
+ "ValueDecl support for this ValueDecl not implemented.");
+}
+
+/// VisitArraySubscriptExpr - Transfer function for array accesses
+void ExprEngine::VisitLvalArraySubscriptExpr(const ArraySubscriptExpr *A,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst){
+
+ const Expr *Base = A->getBase()->IgnoreParens();
+ const Expr *Idx = A->getIdx()->IgnoreParens();
+
+
+ ExplodedNodeSet checkerPreStmt;
+ getCheckerManager().runCheckersForPreStmt(checkerPreStmt, Pred, A, *this);
+
+ StmtNodeBuilder Bldr(checkerPreStmt, Dst, *currentBuilderContext);
+
+ for (ExplodedNodeSet::iterator it = checkerPreStmt.begin(),
+ ei = checkerPreStmt.end(); it != ei; ++it) {
+ const LocationContext *LCtx = (*it)->getLocationContext();
+ ProgramStateRef state = (*it)->getState();
+ SVal V = state->getLValue(A->getType(),
+ state->getSVal(Idx, LCtx),
+ state->getSVal(Base, LCtx));
+ assert(A->isLValue());
+ Bldr.generateNode(A, *it, state->BindExpr(A, LCtx, V),
+ false, 0, ProgramPoint::PostLValueKind);
+ }
+}
+
+/// VisitMemberExpr - Transfer function for member expressions.
+void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred,
+ ExplodedNodeSet &TopDst) {
+
+ StmtNodeBuilder Bldr(Pred, TopDst, *currentBuilderContext);
+ ExplodedNodeSet Dst;
+ Decl *member = M->getMemberDecl();
+ if (VarDecl *VD = dyn_cast<VarDecl>(member)) {
+ assert(M->isLValue());
+ Bldr.takeNodes(Pred);
+ VisitCommonDeclRefExpr(M, VD, Pred, Dst);
+ Bldr.addNodes(Dst);
+ return;
+ }
+
+ FieldDecl *field = dyn_cast<FieldDecl>(member);
+ if (!field) // FIXME: skipping member expressions for non-fields
+ return;
+
+ Expr *baseExpr = M->getBase()->IgnoreParens();
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal baseExprVal = state->getSVal(baseExpr, Pred->getLocationContext());
+ if (isa<nonloc::LazyCompoundVal>(baseExprVal) ||
+ isa<nonloc::CompoundVal>(baseExprVal) ||
+ // FIXME: This can originate by conjuring a symbol for an unknown
+ // temporary struct object, see test/Analysis/fields.c:
+ // (p = getit()).x
+ isa<nonloc::SymbolVal>(baseExprVal)) {
+ Bldr.generateNode(M, Pred, state->BindExpr(M, LCtx, UnknownVal()));
+ return;
+ }
+
+ // FIXME: Should we insert some assumption logic in here to determine
+ // if "Base" is a valid piece of memory? Before we put this assumption
+ // later when using FieldOffset lvals (which we no longer have).
+
+ // For all other cases, compute an lvalue.
+ SVal L = state->getLValue(field, baseExprVal);
+ if (M->isLValue())
+ Bldr.generateNode(M, Pred, state->BindExpr(M, LCtx, L), false, 0,
+ ProgramPoint::PostLValueKind);
+ else {
+ Bldr.takeNodes(Pred);
+ evalLoad(Dst, M, M, Pred, state, L);
+ Bldr.addNodes(Dst);
+ }
+}
+
+/// evalBind - Handle the semantics of binding a value to a specific location.
+/// This method is used by evalStore and (soon) VisitDeclStmt, and others.
+void ExprEngine::evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE,
+ ExplodedNode *Pred,
+ SVal location, SVal Val, bool atDeclInit) {
+
+ // Do a previsit of the bind.
+ ExplodedNodeSet CheckedSet;
+ getCheckerManager().runCheckersForBind(CheckedSet, Pred, location, Val,
+ StoreE, *this,
+ ProgramPoint::PostStmtKind);
+
+ ExplodedNodeSet TmpDst;
+ StmtNodeBuilder Bldr(CheckedSet, TmpDst, *currentBuilderContext);
+
+ const LocationContext *LC = Pred->getLocationContext();
+ for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
+ I!=E; ++I) {
+ ExplodedNode *PredI = *I;
+ ProgramStateRef state = PredI->getState();
+
+ if (atDeclInit) {
+ const VarRegion *VR =
+ cast<VarRegion>(cast<loc::MemRegionVal>(location).getRegion());
+
+ state = state->bindDecl(VR, Val);
+ } else {
+ state = state->bindLoc(location, Val);
+ }
+
+ const MemRegion *LocReg = 0;
+ if (loc::MemRegionVal *LocRegVal = dyn_cast<loc::MemRegionVal>(&location))
+ LocReg = LocRegVal->getRegion();
+
+ const ProgramPoint L = PostStore(StoreE, LC, LocReg, 0);
+ Bldr.generateNode(L, PredI, state, false);
+ }
+
+ Dst.insert(TmpDst);
+}
+
+/// evalStore - Handle the semantics of a store via an assignment.
+/// @param Dst The node set to store generated state nodes
+/// @param AssignE The assignment expression if the store happens in an
+/// assignment.
+/// @param LocatioinE The location expression that is stored to.
+/// @param state The current simulation state
+/// @param location The location to store the value
+/// @param Val The value to be stored
+void ExprEngine::evalStore(ExplodedNodeSet &Dst, const Expr *AssignE,
+ const Expr *LocationE,
+ ExplodedNode *Pred,
+ ProgramStateRef state, SVal location, SVal Val,
+ const ProgramPointTag *tag) {
+ // Proceed with the store. We use AssignE as the anchor for the PostStore
+ // ProgramPoint if it is non-NULL, and LocationE otherwise.
+ const Expr *StoreE = AssignE ? AssignE : LocationE;
+
+ if (isa<loc::ObjCPropRef>(location)) {
+ assert(false);
+ }
+
+ // Evaluate the location (checks for bad dereferences).
+ ExplodedNodeSet Tmp;
+ evalLocation(Tmp, AssignE, LocationE, Pred, state, location, tag, false);
+
+ if (Tmp.empty())
+ return;
+
+ if (location.isUndef())
+ return;
+
+ for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI)
+ evalBind(Dst, StoreE, *NI, location, Val, false);
+}
+
+void ExprEngine::evalLoad(ExplodedNodeSet &Dst,
+ const Expr *NodeEx,
+ const Expr *BoundEx,
+ ExplodedNode *Pred,
+ ProgramStateRef state,
+ SVal location,
+ const ProgramPointTag *tag,
+ QualType LoadTy)
+{
+ assert(!isa<NonLoc>(location) && "location cannot be a NonLoc.");
+ assert(!isa<loc::ObjCPropRef>(location));
+
+ // Are we loading from a region? This actually results in two loads; one
+ // to fetch the address of the referenced value and one to fetch the
+ // referenced value.
+ if (const TypedValueRegion *TR =
+ dyn_cast_or_null<TypedValueRegion>(location.getAsRegion())) {
+
+ QualType ValTy = TR->getValueType();
+ if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) {
+ static SimpleProgramPointTag
+ loadReferenceTag("ExprEngine : Load Reference");
+ ExplodedNodeSet Tmp;
+ evalLoadCommon(Tmp, NodeEx, BoundEx, Pred, state,
+ location, &loadReferenceTag,
+ getContext().getPointerType(RT->getPointeeType()));
+
+ // Perform the load from the referenced value.
+ for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) {
+ state = (*I)->getState();
+ location = state->getSVal(BoundEx, (*I)->getLocationContext());
+ evalLoadCommon(Dst, NodeEx, BoundEx, *I, state, location, tag, LoadTy);
+ }
+ return;
+ }
+ }
+
+ evalLoadCommon(Dst, NodeEx, BoundEx, Pred, state, location, tag, LoadTy);
+}
+
+void ExprEngine::evalLoadCommon(ExplodedNodeSet &Dst,
+ const Expr *NodeEx,
+ const Expr *BoundEx,
+ ExplodedNode *Pred,
+ ProgramStateRef state,
+ SVal location,
+ const ProgramPointTag *tag,
+ QualType LoadTy) {
+ assert(NodeEx);
+ assert(BoundEx);
+ // Evaluate the location (checks for bad dereferences).
+ ExplodedNodeSet Tmp;
+ evalLocation(Tmp, NodeEx, BoundEx, Pred, state, location, tag, true);
+ if (Tmp.empty())
+ return;
+
+ StmtNodeBuilder Bldr(Tmp, Dst, *currentBuilderContext);
+ if (location.isUndef())
+ return;
+
+ // Proceed with the load.
+ for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) {
+ state = (*NI)->getState();
+ const LocationContext *LCtx = (*NI)->getLocationContext();
+
+ if (location.isUnknown()) {
+ // This is important. We must nuke the old binding.
+ Bldr.generateNode(NodeEx, *NI,
+ state->BindExpr(BoundEx, LCtx, UnknownVal()),
+ false, tag,
+ ProgramPoint::PostLoadKind);
+ }
+ else {
+ if (LoadTy.isNull())
+ LoadTy = BoundEx->getType();
+ SVal V = state->getSVal(cast<Loc>(location), LoadTy);
+ Bldr.generateNode(NodeEx, *NI,
+ state->bindExprAndLocation(BoundEx, LCtx, location, V),
+ false, tag, ProgramPoint::PostLoadKind);
+ }
+ }
+}
+
+void ExprEngine::evalLocation(ExplodedNodeSet &Dst,
+ const Stmt *NodeEx,
+ const Stmt *BoundEx,
+ ExplodedNode *Pred,
+ ProgramStateRef state,
+ SVal location,
+ const ProgramPointTag *tag,
+ bool isLoad) {
+ StmtNodeBuilder BldrTop(Pred, Dst, *currentBuilderContext);
+ // Early checks for performance reason.
+ if (location.isUnknown()) {
+ return;
+ }
+
+ ExplodedNodeSet Src;
+ BldrTop.takeNodes(Pred);
+ StmtNodeBuilder Bldr(Pred, Src, *currentBuilderContext);
+ if (Pred->getState() != state) {
+ // Associate this new state with an ExplodedNode.
+ // FIXME: If I pass null tag, the graph is incorrect, e.g for
+ // int *p;
+ // p = 0;
+ // *p = 0xDEADBEEF;
+ // "p = 0" is not noted as "Null pointer value stored to 'p'" but
+ // instead "int *p" is noted as
+ // "Variable 'p' initialized to a null pointer value"
+
+ // FIXME: why is 'tag' not used instead of etag?
+ static SimpleProgramPointTag etag("ExprEngine: Location");
+ Bldr.generateNode(NodeEx, Pred, state, false, &etag);
+ }
+ ExplodedNodeSet Tmp;
+ getCheckerManager().runCheckersForLocation(Tmp, Src, location, isLoad,
+ NodeEx, BoundEx, *this);
+ BldrTop.addNodes(Tmp);
+}
+
+std::pair<const ProgramPointTag *, const ProgramPointTag*>
+ExprEngine::getEagerlyAssumeTags() {
+ static SimpleProgramPointTag
+ EagerlyAssumeTrue("ExprEngine : Eagerly Assume True"),
+ EagerlyAssumeFalse("ExprEngine : Eagerly Assume False");
+ return std::make_pair(&EagerlyAssumeTrue, &EagerlyAssumeFalse);
+}
+
+void ExprEngine::evalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src,
+ const Expr *Ex) {
+ StmtNodeBuilder Bldr(Src, Dst, *currentBuilderContext);
+
+ for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) {
+ ExplodedNode *Pred = *I;
+ // Test if the previous node was as the same expression. This can happen
+ // when the expression fails to evaluate to anything meaningful and
+ // (as an optimization) we don't generate a node.
+ ProgramPoint P = Pred->getLocation();
+ if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) {
+ continue;
+ }
+
+ ProgramStateRef state = Pred->getState();
+ SVal V = state->getSVal(Ex, Pred->getLocationContext());
+ nonloc::SymbolVal *SEV = dyn_cast<nonloc::SymbolVal>(&V);
+ if (SEV && SEV->isExpression()) {
+ const std::pair<const ProgramPointTag *, const ProgramPointTag*> &tags =
+ getEagerlyAssumeTags();
+
+ // First assume that the condition is true.
+ if (ProgramStateRef StateTrue = state->assume(*SEV, true)) {
+ SVal Val = svalBuilder.makeIntVal(1U, Ex->getType());
+ StateTrue = StateTrue->BindExpr(Ex, Pred->getLocationContext(), Val);
+ Bldr.generateNode(Ex, Pred, StateTrue, false, tags.first);
+ }
+
+ // Next, assume that the condition is false.
+ if (ProgramStateRef StateFalse = state->assume(*SEV, false)) {
+ SVal Val = svalBuilder.makeIntVal(0U, Ex->getType());
+ StateFalse = StateFalse->BindExpr(Ex, Pred->getLocationContext(), Val);
+ Bldr.generateNode(Ex, Pred, StateFalse, false, tags.second);
+ }
+ }
+ }
+}
+
+void ExprEngine::VisitAsmStmt(const AsmStmt *A, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+ // We have processed both the inputs and the outputs. All of the outputs
+ // should evaluate to Locs. Nuke all of their values.
+
+ // FIXME: Some day in the future it would be nice to allow a "plug-in"
+ // which interprets the inline asm and stores proper results in the
+ // outputs.
+
+ ProgramStateRef state = Pred->getState();
+
+ for (AsmStmt::const_outputs_iterator OI = A->begin_outputs(),
+ OE = A->end_outputs(); OI != OE; ++OI) {
+ SVal X = state->getSVal(*OI, Pred->getLocationContext());
+ assert (!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef.
+
+ if (isa<Loc>(X))
+ state = state->bindLoc(cast<Loc>(X), UnknownVal());
+ }
+
+ Bldr.generateNode(A, Pred, state);
+}
+
+//===----------------------------------------------------------------------===//
+// Visualization.
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+static ExprEngine* GraphPrintCheckerState;
+static SourceManager* GraphPrintSourceManager;
+
+namespace llvm {
+template<>
+struct DOTGraphTraits<ExplodedNode*> :
+ public DefaultDOTGraphTraits {
+
+ DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
+
+ // FIXME: Since we do not cache error nodes in ExprEngine now, this does not
+ // work.
+ static std::string getNodeAttributes(const ExplodedNode *N, void*) {
+
+#if 0
+ // FIXME: Replace with a general scheme to tell if the node is
+ // an error node.
+ if (GraphPrintCheckerState->isImplicitNullDeref(N) ||
+ GraphPrintCheckerState->isExplicitNullDeref(N) ||
+ GraphPrintCheckerState->isUndefDeref(N) ||
+ GraphPrintCheckerState->isUndefStore(N) ||
+ GraphPrintCheckerState->isUndefControlFlow(N) ||
+ GraphPrintCheckerState->isUndefResult(N) ||
+ GraphPrintCheckerState->isBadCall(N) ||
+ GraphPrintCheckerState->isUndefArg(N))
+ return "color=\"red\",style=\"filled\"";
+
+ if (GraphPrintCheckerState->isNoReturnCall(N))
+ return "color=\"blue\",style=\"filled\"";
+#endif
+ return "";
+ }
+
+ static std::string getNodeLabel(const ExplodedNode *N, void*){
+
+ std::string sbuf;
+ llvm::raw_string_ostream Out(sbuf);
+
+ // Program Location.
+ ProgramPoint Loc = N->getLocation();
+
+ switch (Loc.getKind()) {
+ case ProgramPoint::BlockEntranceKind:
+ Out << "Block Entrance: B"
+ << cast<BlockEntrance>(Loc).getBlock()->getBlockID();
+ break;
+
+ case ProgramPoint::BlockExitKind:
+ assert (false);
+ break;
+
+ case ProgramPoint::CallEnterKind:
+ Out << "CallEnter";
+ break;
+
+ case ProgramPoint::CallExitKind:
+ Out << "CallExit";
+ break;
+
+ case ProgramPoint::EpsilonKind:
+ Out << "Epsilon Point";
+ break;
+
+ default: {
+ if (StmtPoint *L = dyn_cast<StmtPoint>(&Loc)) {
+ const Stmt *S = L->getStmt();
+ SourceLocation SLoc = S->getLocStart();
+
+ Out << S->getStmtClassName() << ' ' << (void*) S << ' ';
+ LangOptions LO; // FIXME.
+ S->printPretty(Out, 0, PrintingPolicy(LO));
+
+ if (SLoc.isFileID()) {
+ Out << "\\lline="
+ << GraphPrintSourceManager->getExpansionLineNumber(SLoc)
+ << " col="
+ << GraphPrintSourceManager->getExpansionColumnNumber(SLoc)
+ << "\\l";
+ }
+
+ if (isa<PreStmt>(Loc))
+ Out << "\\lPreStmt\\l;";
+ else if (isa<PostLoad>(Loc))
+ Out << "\\lPostLoad\\l;";
+ else if (isa<PostStore>(Loc))
+ Out << "\\lPostStore\\l";
+ else if (isa<PostLValue>(Loc))
+ Out << "\\lPostLValue\\l";
+
+#if 0
+ // FIXME: Replace with a general scheme to determine
+ // the name of the check.
+ if (GraphPrintCheckerState->isImplicitNullDeref(N))
+ Out << "\\|Implicit-Null Dereference.\\l";
+ else if (GraphPrintCheckerState->isExplicitNullDeref(N))
+ Out << "\\|Explicit-Null Dereference.\\l";
+ else if (GraphPrintCheckerState->isUndefDeref(N))
+ Out << "\\|Dereference of undefialied value.\\l";
+ else if (GraphPrintCheckerState->isUndefStore(N))
+ Out << "\\|Store to Undefined Loc.";
+ else if (GraphPrintCheckerState->isUndefResult(N))
+ Out << "\\|Result of operation is undefined.";
+ else if (GraphPrintCheckerState->isNoReturnCall(N))
+ Out << "\\|Call to function marked \"noreturn\".";
+ else if (GraphPrintCheckerState->isBadCall(N))
+ Out << "\\|Call to NULL/Undefined.";
+ else if (GraphPrintCheckerState->isUndefArg(N))
+ Out << "\\|Argument in call is undefined";
+#endif
+
+ break;
+ }
+
+ const BlockEdge &E = cast<BlockEdge>(Loc);
+ Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
+ << E.getDst()->getBlockID() << ')';
+
+ if (const Stmt *T = E.getSrc()->getTerminator()) {
+
+ SourceLocation SLoc = T->getLocStart();
+
+ Out << "\\|Terminator: ";
+ LangOptions LO; // FIXME.
+ E.getSrc()->printTerminator(Out, LO);
+
+ if (SLoc.isFileID()) {
+ Out << "\\lline="
+ << GraphPrintSourceManager->getExpansionLineNumber(SLoc)
+ << " col="
+ << GraphPrintSourceManager->getExpansionColumnNumber(SLoc);
+ }
+
+ if (isa<SwitchStmt>(T)) {
+ const Stmt *Label = E.getDst()->getLabel();
+
+ if (Label) {
+ if (const CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
+ Out << "\\lcase ";
+ LangOptions LO; // FIXME.
+ C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO));
+
+ if (const Stmt *RHS = C->getRHS()) {
+ Out << " .. ";
+ RHS->printPretty(Out, 0, PrintingPolicy(LO));
+ }
+
+ Out << ":";
+ }
+ else {
+ assert (isa<DefaultStmt>(Label));
+ Out << "\\ldefault:";
+ }
+ }
+ else
+ Out << "\\l(implicit) default:";
+ }
+ else if (isa<IndirectGotoStmt>(T)) {
+ // FIXME
+ }
+ else {
+ Out << "\\lCondition: ";
+ if (*E.getSrc()->succ_begin() == E.getDst())
+ Out << "true";
+ else
+ Out << "false";
+ }
+
+ Out << "\\l";
+ }
+
+#if 0
+ // FIXME: Replace with a general scheme to determine
+ // the name of the check.
+ if (GraphPrintCheckerState->isUndefControlFlow(N)) {
+ Out << "\\|Control-flow based on\\lUndefined value.\\l";
+ }
+#endif
+ }
+ }
+
+ ProgramStateRef state = N->getState();
+ Out << "\\|StateID: " << (void*) state.getPtr()
+ << " NodeID: " << (void*) N << "\\|";
+ state->printDOT(Out);
+
+ Out << "\\l";
+
+ if (const ProgramPointTag *tag = Loc.getTag()) {
+ Out << "\\|Tag: " << tag->getTagDescription();
+ Out << "\\l";
+ }
+ return Out.str();
+ }
+};
+} // end llvm namespace
+#endif
+
+#ifndef NDEBUG
+template <typename ITERATOR>
+ExplodedNode *GetGraphNode(ITERATOR I) { return *I; }
+
+template <> ExplodedNode*
+GetGraphNode<llvm::DenseMap<ExplodedNode*, Expr*>::iterator>
+ (llvm::DenseMap<ExplodedNode*, Expr*>::iterator I) {
+ return I->first;
+}
+#endif
+
+void ExprEngine::ViewGraph(bool trim) {
+#ifndef NDEBUG
+ if (trim) {
+ std::vector<ExplodedNode*> Src;
+
+ // Flush any outstanding reports to make sure we cover all the nodes.
+ // This does not cause them to get displayed.
+ for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I)
+ const_cast<BugType*>(*I)->FlushReports(BR);
+
+ // Iterate through the reports and get their nodes.
+ for (BugReporter::EQClasses_iterator
+ EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) {
+ ExplodedNode *N = const_cast<ExplodedNode*>(EI->begin()->getErrorNode());
+ if (N) Src.push_back(N);
+ }
+
+ ViewGraph(&Src[0], &Src[0]+Src.size());
+ }
+ else {
+ GraphPrintCheckerState = this;
+ GraphPrintSourceManager = &getContext().getSourceManager();
+
+ llvm::ViewGraph(*G.roots_begin(), "ExprEngine");
+
+ GraphPrintCheckerState = NULL;
+ GraphPrintSourceManager = NULL;
+ }
+#endif
+}
+
+void ExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) {
+#ifndef NDEBUG
+ GraphPrintCheckerState = this;
+ GraphPrintSourceManager = &getContext().getSourceManager();
+
+ std::auto_ptr<ExplodedGraph> TrimmedG(G.Trim(Beg, End).first);
+
+ if (!TrimmedG.get())
+ llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n";
+ else
+ llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine");
+
+ GraphPrintCheckerState = NULL;
+ GraphPrintSourceManager = NULL;
+#endif
+}
diff --git a/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp b/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp
new file mode 100644
index 0000000..93e598a
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp
@@ -0,0 +1,811 @@
+//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines ExprEngine's support for C expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+
+using namespace clang;
+using namespace ento;
+using llvm::APSInt;
+
+void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ Expr *LHS = B->getLHS()->IgnoreParens();
+ Expr *RHS = B->getRHS()->IgnoreParens();
+
+ // FIXME: Prechecks eventually go in ::Visit().
+ ExplodedNodeSet CheckedSet;
+ ExplodedNodeSet Tmp2;
+ getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
+
+ // With both the LHS and RHS evaluated, process the operation itself.
+ for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
+ it != ei; ++it) {
+
+ ProgramStateRef state = (*it)->getState();
+ const LocationContext *LCtx = (*it)->getLocationContext();
+ SVal LeftV = state->getSVal(LHS, LCtx);
+ SVal RightV = state->getSVal(RHS, LCtx);
+
+ BinaryOperator::Opcode Op = B->getOpcode();
+
+ if (Op == BO_Assign) {
+ // EXPERIMENTAL: "Conjured" symbols.
+ // FIXME: Handle structs.
+ if (RightV.isUnknown()) {
+ unsigned Count = currentBuilderContext->getCurrentBlockCount();
+ RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LCtx, Count);
+ }
+ // Simulate the effects of a "store": bind the value of the RHS
+ // to the L-Value represented by the LHS.
+ SVal ExprVal = B->isLValue() ? LeftV : RightV;
+ evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
+ LeftV, RightV);
+ continue;
+ }
+
+ if (!B->isAssignmentOp()) {
+ StmtNodeBuilder Bldr(*it, Tmp2, *currentBuilderContext);
+ // Process non-assignments except commas or short-circuited
+ // logical expressions (LAnd and LOr).
+ SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
+ if (Result.isUnknown()) {
+ Bldr.generateNode(B, *it, state);
+ continue;
+ }
+
+ state = state->BindExpr(B, LCtx, Result);
+ Bldr.generateNode(B, *it, state);
+ continue;
+ }
+
+ assert (B->isCompoundAssignmentOp());
+
+ switch (Op) {
+ default:
+ llvm_unreachable("Invalid opcode for compound assignment.");
+ case BO_MulAssign: Op = BO_Mul; break;
+ case BO_DivAssign: Op = BO_Div; break;
+ case BO_RemAssign: Op = BO_Rem; break;
+ case BO_AddAssign: Op = BO_Add; break;
+ case BO_SubAssign: Op = BO_Sub; break;
+ case BO_ShlAssign: Op = BO_Shl; break;
+ case BO_ShrAssign: Op = BO_Shr; break;
+ case BO_AndAssign: Op = BO_And; break;
+ case BO_XorAssign: Op = BO_Xor; break;
+ case BO_OrAssign: Op = BO_Or; break;
+ }
+
+ // Perform a load (the LHS). This performs the checks for
+ // null dereferences, and so on.
+ ExplodedNodeSet Tmp;
+ SVal location = LeftV;
+ evalLoad(Tmp, B, LHS, *it, state, location);
+
+ for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
+ ++I) {
+
+ state = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+ SVal V = state->getSVal(LHS, LCtx);
+
+ // Get the computation type.
+ QualType CTy =
+ cast<CompoundAssignOperator>(B)->getComputationResultType();
+ CTy = getContext().getCanonicalType(CTy);
+
+ QualType CLHSTy =
+ cast<CompoundAssignOperator>(B)->getComputationLHSType();
+ CLHSTy = getContext().getCanonicalType(CLHSTy);
+
+ QualType LTy = getContext().getCanonicalType(LHS->getType());
+
+ // Promote LHS.
+ V = svalBuilder.evalCast(V, CLHSTy, LTy);
+
+ // Compute the result of the operation.
+ SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
+ B->getType(), CTy);
+
+ // EXPERIMENTAL: "Conjured" symbols.
+ // FIXME: Handle structs.
+
+ SVal LHSVal;
+
+ if (Result.isUnknown()) {
+
+ unsigned Count = currentBuilderContext->getCurrentBlockCount();
+
+ // The symbolic value is actually for the type of the left-hand side
+ // expression, not the computation type, as this is the value the
+ // LValue on the LHS will bind to.
+ LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LCtx,
+ LTy, Count);
+
+ // However, we need to convert the symbol to the computation type.
+ Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
+ }
+ else {
+ // The left-hand side may bind to a different value then the
+ // computation type.
+ LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
+ }
+
+ // In C++, assignment and compound assignment operators return an
+ // lvalue.
+ if (B->isLValue())
+ state = state->BindExpr(B, LCtx, location);
+ else
+ state = state->BindExpr(B, LCtx, Result);
+
+ evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
+ }
+ }
+
+ // FIXME: postvisits eventually go in ::Visit()
+ getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
+}
+
+void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ CanQualType T = getContext().getCanonicalType(BE->getType());
+ SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
+ Pred->getLocationContext());
+
+ ExplodedNodeSet Tmp;
+ StmtNodeBuilder Bldr(Pred, Tmp, *currentBuilderContext);
+ Bldr.generateNode(BE, Pred,
+ Pred->getState()->BindExpr(BE, Pred->getLocationContext(),
+ V),
+ false, 0,
+ ProgramPoint::PostLValueKind);
+
+ // FIXME: Move all post/pre visits to ::Visit().
+ getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
+}
+
+void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
+ ExplodedNode *Pred, ExplodedNodeSet &Dst) {
+
+ ExplodedNodeSet dstPreStmt;
+ getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
+
+ if (CastE->getCastKind() == CK_LValueToRValue) {
+ for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
+ I!=E; ++I) {
+ ExplodedNode *subExprNode = *I;
+ ProgramStateRef state = subExprNode->getState();
+ const LocationContext *LCtx = subExprNode->getLocationContext();
+ evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
+ }
+ return;
+ }
+
+ // All other casts.
+ QualType T = CastE->getType();
+ QualType ExTy = Ex->getType();
+
+ if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
+ T = ExCast->getTypeAsWritten();
+
+ StmtNodeBuilder Bldr(dstPreStmt, Dst, *currentBuilderContext);
+ for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
+ I != E; ++I) {
+
+ Pred = *I;
+
+ switch (CastE->getCastKind()) {
+ case CK_LValueToRValue:
+ llvm_unreachable("LValueToRValue casts handled earlier.");
+ case CK_ToVoid:
+ continue;
+ // The analyzer doesn't do anything special with these casts,
+ // since it understands retain/release semantics already.
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject: // Fall-through.
+ case CK_CopyAndAutoreleaseBlockObject:
+ // The analyser can ignore atomic casts for now, although some future
+ // checkers may want to make certain that you're not modifying the same
+ // value through atomic and nonatomic pointers.
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ // True no-ops.
+ case CK_NoOp:
+ case CK_FunctionToPointerDecay: {
+ // Copy the SVal of Ex to CastE.
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal V = state->getSVal(Ex, LCtx);
+ state = state->BindExpr(CastE, LCtx, V);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ case CK_Dependent:
+ case CK_ArrayToPointerDecay:
+ case CK_BitCast:
+ case CK_LValueBitCast:
+ case CK_IntegralCast:
+ case CK_NullToPointer:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast: {
+ // Delegate to SValBuilder to process.
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal V = state->getSVal(Ex, LCtx);
+ V = svalBuilder.evalCast(V, T, ExTy);
+ state = state->BindExpr(CastE, LCtx, V);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase: {
+ // For DerivedToBase cast, delegate to the store manager.
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal val = state->getSVal(Ex, LCtx);
+ val = getStoreManager().evalDerivedToBase(val, T);
+ state = state->BindExpr(CastE, LCtx, val);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ // Handle C++ dyn_cast.
+ case CK_Dynamic: {
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal val = state->getSVal(Ex, LCtx);
+
+ // Compute the type of the result.
+ QualType resultType = CastE->getType();
+ if (CastE->isLValue())
+ resultType = getContext().getPointerType(resultType);
+
+ bool Failed = false;
+
+ // Check if the value being cast evaluates to 0.
+ if (val.isZeroConstant())
+ Failed = true;
+ // Else, evaluate the cast.
+ else
+ val = getStoreManager().evalDynamicCast(val, T, Failed);
+
+ if (Failed) {
+ if (T->isReferenceType()) {
+ // A bad_cast exception is thrown if input value is a reference.
+ // Currently, we model this, by generating a sink.
+ Bldr.generateNode(CastE, Pred, state, true);
+ continue;
+ } else {
+ // If the cast fails on a pointer, bind to 0.
+ state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
+ }
+ } else {
+ // If we don't know if the cast succeeded, conjure a new symbol.
+ if (val.isUnknown()) {
+ DefinedOrUnknownSVal NewSym = svalBuilder.getConjuredSymbolVal(NULL,
+ CastE, LCtx, resultType,
+ currentBuilderContext->getCurrentBlockCount());
+ state = state->BindExpr(CastE, LCtx, NewSym);
+ } else
+ // Else, bind to the derived region value.
+ state = state->BindExpr(CastE, LCtx, val);
+ }
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ // Various C++ casts that are not handled yet.
+ case CK_ToUnion:
+ case CK_BaseToDerived:
+ case CK_NullToMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_ReinterpretMemberPointer:
+ case CK_UserDefinedConversion:
+ case CK_ConstructorConversion:
+ case CK_VectorSplat:
+ case CK_MemberPointerToBoolean: {
+ // Recover some path-sensitivty by conjuring a new value.
+ QualType resultType = CastE->getType();
+ if (CastE->isLValue())
+ resultType = getContext().getPointerType(resultType);
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal result = svalBuilder.getConjuredSymbolVal(NULL, CastE, LCtx,
+ resultType, currentBuilderContext->getCurrentBlockCount());
+ ProgramStateRef state = Pred->getState()->BindExpr(CastE, LCtx,
+ result);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ }
+ }
+}
+
+void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
+
+ const InitListExpr *ILE
+ = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
+
+ ProgramStateRef state = Pred->getState();
+ SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
+ const LocationContext *LC = Pred->getLocationContext();
+ state = state->bindCompoundLiteral(CL, LC, ILV);
+
+ if (CL->isLValue())
+ B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
+ else
+ B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
+}
+
+void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ // FIXME: static variables may have an initializer, but the second
+ // time a function is called those values may not be current.
+ // This may need to be reflected in the CFG.
+
+ // Assumption: The CFG has one DeclStmt per Decl.
+ const Decl *D = *DS->decl_begin();
+
+ if (!D || !isa<VarDecl>(D)) {
+ //TODO:AZ: remove explicit insertion after refactoring is done.
+ Dst.insert(Pred);
+ return;
+ }
+
+ // FIXME: all pre/post visits should eventually be handled by ::Visit().
+ ExplodedNodeSet dstPreVisit;
+ getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
+
+ StmtNodeBuilder B(dstPreVisit, Dst, *currentBuilderContext);
+ const VarDecl *VD = dyn_cast<VarDecl>(D);
+ for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
+ I!=E; ++I) {
+ ExplodedNode *N = *I;
+ ProgramStateRef state = N->getState();
+
+ // Decls without InitExpr are not initialized explicitly.
+ const LocationContext *LC = N->getLocationContext();
+
+ if (const Expr *InitEx = VD->getInit()) {
+ SVal InitVal = state->getSVal(InitEx, Pred->getLocationContext());
+
+ // We bound the temp obj region to the CXXConstructExpr. Now recover
+ // the lazy compound value when the variable is not a reference.
+ if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
+ !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
+ InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
+ assert(isa<nonloc::LazyCompoundVal>(InitVal));
+ }
+
+ // Recover some path-sensitivity if a scalar value evaluated to
+ // UnknownVal.
+ if (InitVal.isUnknown()) {
+ QualType Ty = InitEx->getType();
+ if (InitEx->isLValue()) {
+ Ty = getContext().getPointerType(Ty);
+ }
+
+ InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx, LC, Ty,
+ currentBuilderContext->getCurrentBlockCount());
+ }
+ B.takeNodes(N);
+ ExplodedNodeSet Dst2;
+ evalBind(Dst2, DS, N, state->getLValue(VD, LC), InitVal, true);
+ B.addNodes(Dst2);
+ }
+ else {
+ B.generateNode(DS, N,state->bindDeclWithNoInit(state->getRegion(VD, LC)));
+ }
+ }
+}
+
+void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ assert(B->getOpcode() == BO_LAnd ||
+ B->getOpcode() == BO_LOr);
+
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal X = state->getSVal(B, LCtx);
+ assert(X.isUndef());
+
+ const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData();
+ assert(Ex);
+
+ if (Ex == B->getRHS()) {
+ X = state->getSVal(Ex, LCtx);
+
+ // Handle undefined values.
+ if (X.isUndef()) {
+ Bldr.generateNode(B, Pred, state->BindExpr(B, LCtx, X));
+ return;
+ }
+
+ DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X);
+
+ // We took the RHS. Because the value of the '&&' or '||' expression must
+ // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
+ // or 1. Alternatively, we could take a lazy approach, and calculate this
+ // value later when necessary. We don't have the machinery in place for
+ // this right now, and since most logical expressions are used for branches,
+ // the payoff is not likely to be large. Instead, we do eager evaluation.
+ if (ProgramStateRef newState = state->assume(XD, true))
+ Bldr.generateNode(B, Pred,
+ newState->BindExpr(B, LCtx,
+ svalBuilder.makeIntVal(1U, B->getType())));
+
+ if (ProgramStateRef newState = state->assume(XD, false))
+ Bldr.generateNode(B, Pred,
+ newState->BindExpr(B, LCtx,
+ svalBuilder.makeIntVal(0U, B->getType())));
+ }
+ else {
+ // We took the LHS expression. Depending on whether we are '&&' or
+ // '||' we know what the value of the expression is via properties of
+ // the short-circuiting.
+ X = svalBuilder.makeIntVal(B->getOpcode() == BO_LAnd ? 0U : 1U,
+ B->getType());
+ Bldr.generateNode(B, Pred, state->BindExpr(B, LCtx, X));
+ }
+}
+
+void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
+
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ QualType T = getContext().getCanonicalType(IE->getType());
+ unsigned NumInitElements = IE->getNumInits();
+
+ if (T->isArrayType() || T->isRecordType() || T->isVectorType()) {
+ llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
+
+ // Handle base case where the initializer has no elements.
+ // e.g: static int* myArray[] = {};
+ if (NumInitElements == 0) {
+ SVal V = svalBuilder.makeCompoundVal(T, vals);
+ B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
+ return;
+ }
+
+ for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
+ ei = IE->rend(); it != ei; ++it) {
+ vals = getBasicVals().consVals(state->getSVal(cast<Expr>(*it), LCtx),
+ vals);
+ }
+
+ B.generateNode(IE, Pred,
+ state->BindExpr(IE, LCtx,
+ svalBuilder.makeCompoundVal(T, vals)));
+ return;
+ }
+
+ if (Loc::isLocType(T) || T->isIntegerType()) {
+ assert(IE->getNumInits() == 1);
+ const Expr *initEx = IE->getInit(0);
+ B.generateNode(IE, Pred, state->BindExpr(IE, LCtx,
+ state->getSVal(initEx, LCtx)));
+ return;
+ }
+
+ llvm_unreachable("unprocessed InitListExpr type");
+}
+
+void ExprEngine::VisitGuardedExpr(const Expr *Ex,
+ const Expr *L,
+ const Expr *R,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
+
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal X = state->getSVal(Ex, LCtx);
+ assert (X.isUndef());
+ const Expr *SE = (Expr*) cast<UndefinedVal>(X).getData();
+ assert(SE);
+ X = state->getSVal(SE, LCtx);
+
+ // Make sure that we invalidate the previous binding.
+ B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, X, true));
+}
+
+void ExprEngine::
+VisitOffsetOfExpr(const OffsetOfExpr *OOE,
+ ExplodedNode *Pred, ExplodedNodeSet &Dst) {
+ StmtNodeBuilder B(Pred, Dst, *currentBuilderContext);
+ APSInt IV;
+ if (OOE->EvaluateAsInt(IV, getContext())) {
+ assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
+ assert(OOE->getType()->isIntegerType());
+ assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
+ SVal X = svalBuilder.makeIntVal(IV);
+ B.generateNode(OOE, Pred,
+ Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
+ X));
+ }
+ // FIXME: Handle the case where __builtin_offsetof is not a constant.
+}
+
+
+void ExprEngine::
+VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+
+ QualType T = Ex->getTypeOfArgument();
+
+ if (Ex->getKind() == UETT_SizeOf) {
+ if (!T->isIncompleteType() && !T->isConstantSizeType()) {
+ assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
+
+ // FIXME: Add support for VLA type arguments and VLA expressions.
+ // When that happens, we should probably refactor VLASizeChecker's code.
+ return;
+ }
+ else if (T->getAs<ObjCObjectType>()) {
+ // Some code tries to take the sizeof an ObjCObjectType, relying that
+ // the compiler has laid out its representation. Just report Unknown
+ // for these.
+ return;
+ }
+ }
+
+ APSInt Value = Ex->EvaluateKnownConstInt(getContext());
+ CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
+
+ ProgramStateRef state = Pred->getState();
+ state = state->BindExpr(Ex, Pred->getLocationContext(),
+ svalBuilder.makeIntVal(amt.getQuantity(),
+ Ex->getType()));
+ Bldr.generateNode(Ex, Pred, state);
+}
+
+void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+ switch (U->getOpcode()) {
+ default: {
+ Bldr.takeNodes(Pred);
+ ExplodedNodeSet Tmp;
+ VisitIncrementDecrementOperator(U, Pred, Tmp);
+ Bldr.addNodes(Tmp);
+ }
+ break;
+ case UO_Real: {
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+
+ // FIXME: We don't have complex SValues yet.
+ if (Ex->getType()->isAnyComplexType()) {
+ // Just report "Unknown."
+ break;
+ }
+
+ // For all other types, UO_Real is an identity operation.
+ assert (U->getType() == Ex->getType());
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
+ state->getSVal(Ex, LCtx)));
+ break;
+ }
+
+ case UO_Imag: {
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+ // FIXME: We don't have complex SValues yet.
+ if (Ex->getType()->isAnyComplexType()) {
+ // Just report "Unknown."
+ break;
+ }
+ // For all other types, UO_Imag returns 0.
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal X = svalBuilder.makeZeroVal(Ex->getType());
+ Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
+ break;
+ }
+
+ case UO_Plus:
+ assert(!U->isLValue());
+ // FALL-THROUGH.
+ case UO_Deref:
+ case UO_AddrOf:
+ case UO_Extension: {
+ // FIXME: We can probably just have some magic in Environment::getSVal()
+ // that propagates values, instead of creating a new node here.
+ //
+ // Unary "+" is a no-op, similar to a parentheses. We still have places
+ // where it may be a block-level expression, so we need to
+ // generate an extra node that just propagates the value of the
+ // subexpression.
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
+ state->getSVal(Ex, LCtx)));
+ break;
+ }
+
+ case UO_LNot:
+ case UO_Minus:
+ case UO_Not: {
+ assert (!U->isLValue());
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ // Get the value of the subexpression.
+ SVal V = state->getSVal(Ex, LCtx);
+
+ if (V.isUnknownOrUndef()) {
+ Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
+ break;
+ }
+
+ switch (U->getOpcode()) {
+ default:
+ llvm_unreachable("Invalid Opcode.");
+ case UO_Not:
+ // FIXME: Do we need to handle promotions?
+ state = state->BindExpr(U, LCtx, evalComplement(cast<NonLoc>(V)));
+ break;
+ case UO_Minus:
+ // FIXME: Do we need to handle promotions?
+ state = state->BindExpr(U, LCtx, evalMinus(cast<NonLoc>(V)));
+ break;
+ case UO_LNot:
+ // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
+ //
+ // Note: technically we do "E == 0", but this is the same in the
+ // transfer functions as "0 == E".
+ SVal Result;
+ if (isa<Loc>(V)) {
+ Loc X = svalBuilder.makeNull();
+ Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
+ U->getType());
+ }
+ else {
+ nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
+ Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
+ U->getType());
+ }
+
+ state = state->BindExpr(U, LCtx, Result);
+ break;
+ }
+ Bldr.generateNode(U, Pred, state);
+ break;
+ }
+ }
+
+}
+
+void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ // Handle ++ and -- (both pre- and post-increment).
+ assert (U->isIncrementDecrementOp());
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+
+ const LocationContext *LCtx = Pred->getLocationContext();
+ ProgramStateRef state = Pred->getState();
+ SVal loc = state->getSVal(Ex, LCtx);
+
+ // Perform a load.
+ ExplodedNodeSet Tmp;
+ evalLoad(Tmp, U, Ex, Pred, state, loc);
+
+ ExplodedNodeSet Dst2;
+ StmtNodeBuilder Bldr(Tmp, Dst2, *currentBuilderContext);
+ for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
+
+ state = (*I)->getState();
+ assert(LCtx == (*I)->getLocationContext());
+ SVal V2_untested = state->getSVal(Ex, LCtx);
+
+ // Propagate unknown and undefined values.
+ if (V2_untested.isUnknownOrUndef()) {
+ Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
+ continue;
+ }
+ DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
+
+ // Handle all other values.
+ BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
+
+ // If the UnaryOperator has non-location type, use its type to create the
+ // constant value. If the UnaryOperator has location type, create the
+ // constant with int type and pointer width.
+ SVal RHS;
+
+ if (U->getType()->isAnyPointerType())
+ RHS = svalBuilder.makeArrayIndex(1);
+ else
+ RHS = svalBuilder.makeIntVal(1, U->getType());
+
+ SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
+
+ // Conjure a new symbol if necessary to recover precision.
+ if (Result.isUnknown()){
+ DefinedOrUnknownSVal SymVal =
+ svalBuilder.getConjuredSymbolVal(NULL, Ex, LCtx,
+ currentBuilderContext->getCurrentBlockCount());
+ Result = SymVal;
+
+ // If the value is a location, ++/-- should always preserve
+ // non-nullness. Check if the original value was non-null, and if so
+ // propagate that constraint.
+ if (Loc::isLocType(U->getType())) {
+ DefinedOrUnknownSVal Constraint =
+ svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
+
+ if (!state->assume(Constraint, true)) {
+ // It isn't feasible for the original value to be null.
+ // Propagate this constraint.
+ Constraint = svalBuilder.evalEQ(state, SymVal,
+ svalBuilder.makeZeroVal(U->getType()));
+
+
+ state = state->assume(Constraint, false);
+ assert(state);
+ }
+ }
+ }
+
+ // Since the lvalue-to-rvalue conversion is explicit in the AST,
+ // we bind an l-value if the operator is prefix and an lvalue (in C++).
+ if (U->isLValue())
+ state = state->BindExpr(U, LCtx, loc);
+ else
+ state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
+
+ // Perform the store.
+ Bldr.takeNodes(*I);
+ ExplodedNodeSet Dst3;
+ evalStore(Dst3, U, U, *I, state, loc, Result);
+ Bldr.addNodes(Dst3);
+ }
+ Dst.insert(Dst2);
+}
diff --git a/clang/lib/StaticAnalyzer/Core/ExprEngineCXX.cpp b/clang/lib/StaticAnalyzer/Core/ExprEngineCXX.cpp
new file mode 100644
index 0000000..a14a491
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/ExprEngineCXX.cpp
@@ -0,0 +1,300 @@
+//===- ExprEngineCXX.cpp - ExprEngine support for C++ -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the C++ expression evaluation engine.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/StmtCXX.h"
+
+using namespace clang;
+using namespace ento;
+
+const CXXThisRegion *ExprEngine::getCXXThisRegion(const CXXRecordDecl *D,
+ const StackFrameContext *SFC) {
+ const Type *T = D->getTypeForDecl();
+ QualType PT = getContext().getPointerType(QualType(T, 0));
+ return svalBuilder.getRegionManager().getCXXThisRegion(PT, SFC);
+}
+
+const CXXThisRegion *ExprEngine::getCXXThisRegion(const CXXMethodDecl *decl,
+ const StackFrameContext *frameCtx) {
+ return svalBuilder.getRegionManager().
+ getCXXThisRegion(decl->getThisType(getContext()), frameCtx);
+}
+
+void ExprEngine::CreateCXXTemporaryObject(const MaterializeTemporaryExpr *ME,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+ const Expr *tempExpr = ME->GetTemporaryExpr()->IgnoreParens();
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ // Bind the temporary object to the value of the expression. Then bind
+ // the expression to the location of the object.
+ SVal V = state->getSVal(tempExpr, Pred->getLocationContext());
+
+ const MemRegion *R =
+ svalBuilder.getRegionManager().getCXXTempObjectRegion(ME, LCtx);
+
+ state = state->bindLoc(loc::MemRegionVal(R), V);
+ Bldr.generateNode(ME, Pred, state->BindExpr(ME, LCtx, loc::MemRegionVal(R)));
+}
+
+void ExprEngine::VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *expr,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ VisitCXXConstructExpr(expr, 0, Pred, Dst);
+}
+
+void ExprEngine::VisitCXXConstructExpr(const CXXConstructExpr *E,
+ const MemRegion *Dest,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &destNodes) {
+
+#if 0
+ const CXXConstructorDecl *CD = E->getConstructor();
+ assert(CD);
+#endif
+
+#if 0
+ if (!(CD->doesThisDeclarationHaveABody() && AMgr.shouldInlineCall()))
+ // FIXME: invalidate the object.
+ return;
+#endif
+
+#if 0
+ // Is the constructor elidable?
+ if (E->isElidable()) {
+ destNodes.Add(Pred);
+ return;
+ }
+#endif
+
+ // Perform the previsit of the constructor.
+ ExplodedNodeSet SrcNodes;
+ SrcNodes.Add(Pred);
+ ExplodedNodeSet TmpNodes;
+ getCheckerManager().runCheckersForPreStmt(TmpNodes, SrcNodes, E, *this);
+
+ // Evaluate the constructor. Currently we don't now allow checker-specific
+ // implementations of specific constructors (as we do with ordinary
+ // function calls. We can re-evaluate this in the future.
+
+#if 0
+ // Inlining currently isn't fully implemented.
+
+ if (AMgr.shouldInlineCall()) {
+ if (!Dest)
+ Dest =
+ svalBuilder.getRegionManager().getCXXTempObjectRegion(E,
+ Pred->getLocationContext());
+
+ // The callee stack frame context used to create the 'this'
+ // parameter region.
+ const StackFrameContext *SFC =
+ AMgr.getStackFrame(CD, Pred->getLocationContext(),
+ E, currentBuilderContext->getBlock(),
+ currentStmtIdx);
+
+ // Create the 'this' region.
+ const CXXThisRegion *ThisR =
+ getCXXThisRegion(E->getConstructor()->getParent(), SFC);
+
+ CallEnter Loc(E, SFC, Pred->getLocationContext());
+
+ StmtNodeBuilder Bldr(SrcNodes, TmpNodes, *currentBuilderContext);
+ for (ExplodedNodeSet::iterator NI = SrcNodes.begin(),
+ NE = SrcNodes.end(); NI != NE; ++NI) {
+ ProgramStateRef state = (*NI)->getState();
+ // Setup 'this' region, so that the ctor is evaluated on the object pointed
+ // by 'Dest'.
+ state = state->bindLoc(loc::MemRegionVal(ThisR), loc::MemRegionVal(Dest));
+ Bldr.generateNode(Loc, *NI, state);
+ }
+ }
+#endif
+
+ // Default semantics: invalidate all regions passed as arguments.
+ ExplodedNodeSet destCall;
+ {
+ StmtNodeBuilder Bldr(TmpNodes, destCall, *currentBuilderContext);
+ for (ExplodedNodeSet::iterator i = TmpNodes.begin(), e = TmpNodes.end();
+ i != e; ++i)
+ {
+ ExplodedNode *Pred = *i;
+ const LocationContext *LC = Pred->getLocationContext();
+ ProgramStateRef state = Pred->getState();
+
+ state = invalidateArguments(state, CallOrObjCMessage(E, state, LC), LC);
+ Bldr.generateNode(E, Pred, state);
+ }
+ }
+ // Do the post visit.
+ getCheckerManager().runCheckersForPostStmt(destNodes, destCall, E, *this);
+}
+
+void ExprEngine::VisitCXXDestructor(const CXXDestructorDecl *DD,
+ const MemRegion *Dest,
+ const Stmt *S,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+ if (!(DD->doesThisDeclarationHaveABody() && AMgr.shouldInlineCall()))
+ return;
+
+ // Create the context for 'this' region.
+ const StackFrameContext *SFC =
+ AnalysisDeclContexts.getContext(DD)->
+ getStackFrame(Pred->getLocationContext(), S,
+ currentBuilderContext->getBlock(), currentStmtIdx);
+
+ const CXXThisRegion *ThisR = getCXXThisRegion(DD->getParent(), SFC);
+
+ CallEnter PP(S, SFC, Pred->getLocationContext());
+
+ ProgramStateRef state = Pred->getState();
+ state = state->bindLoc(loc::MemRegionVal(ThisR), loc::MemRegionVal(Dest));
+ Bldr.generateNode(PP, Pred, state);
+}
+
+void ExprEngine::VisitCXXNewExpr(const CXXNewExpr *CNE, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+
+ unsigned blockCount = currentBuilderContext->getCurrentBlockCount();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ DefinedOrUnknownSVal symVal =
+ svalBuilder.getConjuredSymbolVal(NULL, CNE, LCtx, CNE->getType(), blockCount);
+ const MemRegion *NewReg = cast<loc::MemRegionVal>(symVal).getRegion();
+ QualType ObjTy = CNE->getType()->getAs<PointerType>()->getPointeeType();
+ const ElementRegion *EleReg =
+ getStoreManager().GetElementZeroRegion(NewReg, ObjTy);
+
+ if (CNE->isArray()) {
+ // FIXME: allocating an array requires simulating the constructors.
+ // For now, just return a symbolicated region.
+ ProgramStateRef state = Pred->getState();
+ state = state->BindExpr(CNE, Pred->getLocationContext(),
+ loc::MemRegionVal(EleReg));
+ Bldr.generateNode(CNE, Pred, state);
+ return;
+ }
+
+ // FIXME: Update for AST changes.
+#if 0
+ // Evaluate constructor arguments.
+ const FunctionProtoType *FnType = NULL;
+ const CXXConstructorDecl *CD = CNE->getConstructor();
+ if (CD)
+ FnType = CD->getType()->getAs<FunctionProtoType>();
+ ExplodedNodeSet argsEvaluated;
+ Bldr.takeNodes(Pred);
+ evalArguments(CNE->constructor_arg_begin(), CNE->constructor_arg_end(),
+ FnType, Pred, argsEvaluated);
+ Bldr.addNodes(argsEvaluated);
+
+ // Initialize the object region and bind the 'new' expression.
+ for (ExplodedNodeSet::iterator I = argsEvaluated.begin(),
+ E = argsEvaluated.end(); I != E; ++I) {
+
+ ProgramStateRef state = (*I)->getState();
+
+ // Accumulate list of regions that are invalidated.
+ // FIXME: Eventually we should unify the logic for constructor
+ // processing in one place.
+ SmallVector<const MemRegion*, 10> regionsToInvalidate;
+ for (CXXNewExpr::const_arg_iterator
+ ai = CNE->constructor_arg_begin(), ae = CNE->constructor_arg_end();
+ ai != ae; ++ai)
+ {
+ SVal val = state->getSVal(*ai, (*I)->getLocationContext());
+ if (const MemRegion *region = val.getAsRegion())
+ regionsToInvalidate.push_back(region);
+ }
+
+ if (ObjTy->isRecordType()) {
+ regionsToInvalidate.push_back(EleReg);
+ // Invalidate the regions.
+ // TODO: Pass the call to new information as the last argument, to limit
+ // the globals which will get invalidated.
+ state = state->invalidateRegions(regionsToInvalidate,
+ CNE, blockCount, 0, 0);
+
+ } else {
+ // Invalidate the regions.
+ // TODO: Pass the call to new information as the last argument, to limit
+ // the globals which will get invalidated.
+ state = state->invalidateRegions(regionsToInvalidate,
+ CNE, blockCount, 0, 0);
+
+ if (CNE->hasInitializer()) {
+ SVal V = state->getSVal(*CNE->constructor_arg_begin(),
+ (*I)->getLocationContext());
+ state = state->bindLoc(loc::MemRegionVal(EleReg), V);
+ } else {
+ // Explicitly set to undefined, because currently we retrieve symbolic
+ // value from symbolic region.
+ state = state->bindLoc(loc::MemRegionVal(EleReg), UndefinedVal());
+ }
+ }
+ state = state->BindExpr(CNE, (*I)->getLocationContext(),
+ loc::MemRegionVal(EleReg));
+ Bldr.generateNode(CNE, *I, state);
+ }
+#endif
+}
+
+void ExprEngine::VisitCXXDeleteExpr(const CXXDeleteExpr *CDE,
+ ExplodedNode *Pred, ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+ ProgramStateRef state = Pred->getState();
+ Bldr.generateNode(CDE, Pred, state);
+}
+
+void ExprEngine::VisitCXXCatchStmt(const CXXCatchStmt *CS,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ const VarDecl *VD = CS->getExceptionDecl();
+ if (!VD) {
+ Dst.Add(Pred);
+ return;
+ }
+
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal V = svalBuilder.getConjuredSymbolVal(CS, LCtx, VD->getType(),
+ currentBuilderContext->getCurrentBlockCount());
+ ProgramStateRef state = Pred->getState();
+ state = state->bindLoc(state->getLValue(VD, LCtx), V);
+
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+ Bldr.generateNode(CS, Pred, state);
+}
+
+void ExprEngine::VisitCXXThisExpr(const CXXThisExpr *TE, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+
+ // Get the this object region from StoreManager.
+ const LocationContext *LCtx = Pred->getLocationContext();
+ const MemRegion *R =
+ svalBuilder.getRegionManager().getCXXThisRegion(
+ getContext().getCanonicalType(TE->getType()),
+ LCtx);
+
+ ProgramStateRef state = Pred->getState();
+ SVal V = state->getSVal(loc::MemRegionVal(R));
+ Bldr.generateNode(TE, Pred, state->BindExpr(TE, LCtx, V));
+}
diff --git a/clang/lib/StaticAnalyzer/Core/ExprEngineCallAndReturn.cpp b/clang/lib/StaticAnalyzer/Core/ExprEngineCallAndReturn.cpp
new file mode 100644
index 0000000..b9f4e15
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/ExprEngineCallAndReturn.cpp
@@ -0,0 +1,487 @@
+//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines ExprEngine's support for calls and returns.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
+#include "clang/AST/DeclCXX.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Support/SaveAndRestore.h"
+
+using namespace clang;
+using namespace ento;
+
+void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
+ // Get the entry block in the CFG of the callee.
+ const StackFrameContext *calleeCtx = CE.getCalleeContext();
+ const CFG *CalleeCFG = calleeCtx->getCFG();
+ const CFGBlock *Entry = &(CalleeCFG->getEntry());
+
+ // Validate the CFG.
+ assert(Entry->empty());
+ assert(Entry->succ_size() == 1);
+
+ // Get the solitary sucessor.
+ const CFGBlock *Succ = *(Entry->succ_begin());
+
+ // Construct an edge representing the starting location in the callee.
+ BlockEdge Loc(Entry, Succ, calleeCtx);
+
+ // Construct a new state which contains the mapping from actual to
+ // formal arguments.
+ const LocationContext *callerCtx = Pred->getLocationContext();
+ ProgramStateRef state = Pred->getState()->enterStackFrame(callerCtx,
+ calleeCtx);
+
+ // Construct a new node and add it to the worklist.
+ bool isNew;
+ ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
+ Node->addPredecessor(Pred, G);
+ if (isNew)
+ Engine.getWorkList()->enqueue(Node);
+}
+
+static const ReturnStmt *getReturnStmt(const ExplodedNode *Node) {
+ while (Node) {
+ const ProgramPoint &PP = Node->getLocation();
+ // Skip any BlockEdges.
+ if (isa<BlockEdge>(PP) || isa<CallExit>(PP)) {
+ assert(Node->pred_size() == 1);
+ Node = *Node->pred_begin();
+ continue;
+ }
+ if (const StmtPoint *SP = dyn_cast<StmtPoint>(&PP)) {
+ const Stmt *S = SP->getStmt();
+ return dyn_cast<ReturnStmt>(S);
+ }
+ break;
+ }
+ return 0;
+}
+
+void ExprEngine::processCallExit(ExplodedNode *Pred) {
+ ProgramStateRef state = Pred->getState();
+ const StackFrameContext *calleeCtx =
+ Pred->getLocationContext()->getCurrentStackFrame();
+ const LocationContext *callerCtx = calleeCtx->getParent();
+ const Stmt *CE = calleeCtx->getCallSite();
+
+ // If the callee returns an expression, bind its value to CallExpr.
+ if (const ReturnStmt *RS = getReturnStmt(Pred)) {
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal V = state->getSVal(RS, LCtx);
+ state = state->BindExpr(CE, callerCtx, V);
+ }
+
+ // Bind the constructed object value to CXXConstructExpr.
+ if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
+ const CXXThisRegion *ThisR =
+ getCXXThisRegion(CCE->getConstructor()->getParent(), calleeCtx);
+
+ SVal ThisV = state->getSVal(ThisR);
+ // Always bind the region to the CXXConstructExpr.
+ state = state->BindExpr(CCE, Pred->getLocationContext(), ThisV);
+ }
+
+ static SimpleProgramPointTag returnTag("ExprEngine : Call Return");
+ PostStmt Loc(CE, callerCtx, &returnTag);
+ bool isNew;
+ ExplodedNode *N = G.getNode(Loc, state, false, &isNew);
+ N->addPredecessor(Pred, G);
+ if (!isNew)
+ return;
+
+ // Perform the post-condition check of the CallExpr.
+ ExplodedNodeSet Dst;
+ NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), N);
+ SaveAndRestore<const NodeBuilderContext*> NBCSave(currentBuilderContext,
+ &Ctx);
+ SaveAndRestore<unsigned> CBISave(currentStmtIdx, calleeCtx->getIndex());
+
+ getCheckerManager().runCheckersForPostStmt(Dst, N, CE, *this,
+ /* wasInlined */ true);
+
+ // Enqueue the next element in the block.
+ for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end(); I != E; ++I) {
+ Engine.getWorkList()->enqueue(*I,
+ calleeCtx->getCallSiteBlock(),
+ calleeCtx->getIndex()+1);
+ }
+}
+
+static unsigned getNumberStackFrames(const LocationContext *LCtx) {
+ unsigned count = 0;
+ while (LCtx) {
+ if (isa<StackFrameContext>(LCtx))
+ ++count;
+ LCtx = LCtx->getParent();
+ }
+ return count;
+}
+
+// Determine if we should inline the call.
+bool ExprEngine::shouldInlineDecl(const FunctionDecl *FD, ExplodedNode *Pred) {
+ AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(FD);
+ const CFG *CalleeCFG = CalleeADC->getCFG();
+
+ // It is possible that the CFG cannot be constructed.
+ // Be safe, and check if the CalleeCFG is valid.
+ if (!CalleeCFG)
+ return false;
+
+ if (getNumberStackFrames(Pred->getLocationContext())
+ == AMgr.InlineMaxStackDepth)
+ return false;
+
+ if (Engine.FunctionSummaries->hasReachedMaxBlockCount(FD))
+ return false;
+
+ if (CalleeCFG->getNumBlockIDs() > AMgr.InlineMaxFunctionSize)
+ return false;
+
+ return true;
+}
+
+// For now, skip inlining variadic functions.
+// We also don't inline blocks.
+static bool shouldInlineCallExpr(const CallExpr *CE, ExprEngine *E) {
+ if (!E->getAnalysisManager().shouldInlineCall())
+ return false;
+ QualType callee = CE->getCallee()->getType();
+ const FunctionProtoType *FT = 0;
+ if (const PointerType *PT = callee->getAs<PointerType>())
+ FT = dyn_cast<FunctionProtoType>(PT->getPointeeType());
+ else if (const BlockPointerType *BT = callee->getAs<BlockPointerType>()) {
+ // FIXME: inline blocks.
+ // FT = dyn_cast<FunctionProtoType>(BT->getPointeeType());
+ (void) BT;
+ return false;
+ }
+ // If we have no prototype, assume the function is okay.
+ if (!FT)
+ return true;
+
+ // Skip inlining of variadic functions.
+ return !FT->isVariadic();
+}
+
+bool ExprEngine::InlineCall(ExplodedNodeSet &Dst,
+ const CallExpr *CE,
+ ExplodedNode *Pred) {
+ if (!shouldInlineCallExpr(CE, this))
+ return false;
+
+ ProgramStateRef state = Pred->getState();
+ const Expr *Callee = CE->getCallee();
+ const FunctionDecl *FD =
+ state->getSVal(Callee, Pred->getLocationContext()).getAsFunctionDecl();
+ if (!FD || !FD->hasBody(FD))
+ return false;
+
+ switch (CE->getStmtClass()) {
+ default:
+ // FIXME: Handle C++.
+ break;
+ case Stmt::CallExprClass: {
+ if (!shouldInlineDecl(FD, Pred))
+ return false;
+
+ // Construct a new stack frame for the callee.
+ AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(FD);
+ const StackFrameContext *CallerSFC =
+ Pred->getLocationContext()->getCurrentStackFrame();
+ const StackFrameContext *CalleeSFC =
+ CalleeADC->getStackFrame(CallerSFC, CE,
+ currentBuilderContext->getBlock(),
+ currentStmtIdx);
+
+ CallEnter Loc(CE, CalleeSFC, Pred->getLocationContext());
+ bool isNew;
+ if (ExplodedNode *N = G.getNode(Loc, state, false, &isNew)) {
+ N->addPredecessor(Pred, G);
+ if (isNew)
+ Engine.getWorkList()->enqueue(N);
+ }
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool isPointerToConst(const ParmVarDecl *ParamDecl) {
+ QualType PointeeTy = ParamDecl->getOriginalType()->getPointeeType();
+ if (PointeeTy != QualType() && PointeeTy.isConstQualified() &&
+ !PointeeTy->isAnyPointerType() && !PointeeTy->isReferenceType()) {
+ return true;
+ }
+ return false;
+}
+
+// Try to retrieve the function declaration and find the function parameter
+// types which are pointers/references to a non-pointer const.
+// We do not invalidate the corresponding argument regions.
+static void findPtrToConstParams(llvm::SmallSet<unsigned, 1> &PreserveArgs,
+ const CallOrObjCMessage &Call) {
+ const Decl *CallDecl = Call.getDecl();
+ if (!CallDecl)
+ return;
+
+ if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(CallDecl)) {
+ const IdentifierInfo *II = FDecl->getIdentifier();
+
+ // List the cases, where the region should be invalidated even if the
+ // argument is const.
+ if (II) {
+ StringRef FName = II->getName();
+ // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
+ // value into thread local storage. The value can later be retrieved with
+ // 'void *ptheread_getspecific(pthread_key)'. So even thought the
+ // parameter is 'const void *', the region escapes through the call.
+ // - funopen - sets a buffer for future IO calls.
+ // - ObjC functions that end with "NoCopy" can free memory, of the passed
+ // in buffer.
+ // - Many CF containers allow objects to escape through custom
+ // allocators/deallocators upon container construction.
+ // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
+ // be deallocated by NSMapRemove.
+ if (FName == "pthread_setspecific" ||
+ FName == "funopen" ||
+ FName.endswith("NoCopy") ||
+ (FName.startswith("NS") &&
+ (FName.find("Insert") != StringRef::npos)) ||
+ Call.isCFCGAllowingEscape(FName))
+ return;
+ }
+
+ for (unsigned Idx = 0, E = Call.getNumArgs(); Idx != E; ++Idx) {
+ if (FDecl && Idx < FDecl->getNumParams()) {
+ if (isPointerToConst(FDecl->getParamDecl(Idx)))
+ PreserveArgs.insert(Idx);
+ }
+ }
+ return;
+ }
+
+ if (const ObjCMethodDecl *MDecl = dyn_cast<ObjCMethodDecl>(CallDecl)) {
+ assert(MDecl->param_size() <= Call.getNumArgs());
+ unsigned Idx = 0;
+ for (clang::ObjCMethodDecl::param_const_iterator
+ I = MDecl->param_begin(), E = MDecl->param_end(); I != E; ++I, ++Idx) {
+ if (isPointerToConst(*I))
+ PreserveArgs.insert(Idx);
+ }
+ return;
+ }
+}
+
+ProgramStateRef
+ExprEngine::invalidateArguments(ProgramStateRef State,
+ const CallOrObjCMessage &Call,
+ const LocationContext *LC) {
+ SmallVector<const MemRegion *, 8> RegionsToInvalidate;
+
+ if (Call.isObjCMessage()) {
+ // Invalidate all instance variables of the receiver of an ObjC message.
+ // FIXME: We should be able to do better with inter-procedural analysis.
+ if (const MemRegion *MR = Call.getInstanceMessageReceiver(LC).getAsRegion())
+ RegionsToInvalidate.push_back(MR);
+
+ } else if (Call.isCXXCall()) {
+ // Invalidate all instance variables for the callee of a C++ method call.
+ // FIXME: We should be able to do better with inter-procedural analysis.
+ // FIXME: We can probably do better for const versus non-const methods.
+ if (const MemRegion *Callee = Call.getCXXCallee().getAsRegion())
+ RegionsToInvalidate.push_back(Callee);
+
+ } else if (Call.isFunctionCall()) {
+ // Block calls invalidate all captured-by-reference values.
+ SVal CalleeVal = Call.getFunctionCallee();
+ if (const MemRegion *Callee = CalleeVal.getAsRegion()) {
+ if (isa<BlockDataRegion>(Callee))
+ RegionsToInvalidate.push_back(Callee);
+ }
+ }
+
+ // Indexes of arguments whose values will be preserved by the call.
+ llvm::SmallSet<unsigned, 1> PreserveArgs;
+ findPtrToConstParams(PreserveArgs, Call);
+
+ for (unsigned idx = 0, e = Call.getNumArgs(); idx != e; ++idx) {
+ if (PreserveArgs.count(idx))
+ continue;
+
+ SVal V = Call.getArgSVal(idx);
+
+ // If we are passing a location wrapped as an integer, unwrap it and
+ // invalidate the values referred by the location.
+ if (nonloc::LocAsInteger *Wrapped = dyn_cast<nonloc::LocAsInteger>(&V))
+ V = Wrapped->getLoc();
+ else if (!isa<Loc>(V))
+ continue;
+
+ if (const MemRegion *R = V.getAsRegion()) {
+ // Invalidate the value of the variable passed by reference.
+
+ // Are we dealing with an ElementRegion? If the element type is
+ // a basic integer type (e.g., char, int) and the underlying region
+ // is a variable region then strip off the ElementRegion.
+ // FIXME: We really need to think about this for the general case
+ // as sometimes we are reasoning about arrays and other times
+ // about (char*), etc., is just a form of passing raw bytes.
+ // e.g., void *p = alloca(); foo((char*)p);
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ // Checking for 'integral type' is probably too promiscuous, but
+ // we'll leave it in for now until we have a systematic way of
+ // handling all of these cases. Eventually we need to come up
+ // with an interface to StoreManager so that this logic can be
+ // appropriately delegated to the respective StoreManagers while
+ // still allowing us to do checker-specific logic (e.g.,
+ // invalidating reference counts), probably via callbacks.
+ if (ER->getElementType()->isIntegralOrEnumerationType()) {
+ const MemRegion *superReg = ER->getSuperRegion();
+ if (isa<VarRegion>(superReg) || isa<FieldRegion>(superReg) ||
+ isa<ObjCIvarRegion>(superReg))
+ R = cast<TypedRegion>(superReg);
+ }
+ // FIXME: What about layers of ElementRegions?
+ }
+
+ // Mark this region for invalidation. We batch invalidate regions
+ // below for efficiency.
+ RegionsToInvalidate.push_back(R);
+ } else {
+ // Nuke all other arguments passed by reference.
+ // FIXME: is this necessary or correct? This handles the non-Region
+ // cases. Is it ever valid to store to these?
+ State = State->unbindLoc(cast<Loc>(V));
+ }
+ }
+
+ // Invalidate designated regions using the batch invalidation API.
+
+ // FIXME: We can have collisions on the conjured symbol if the
+ // expression *I also creates conjured symbols. We probably want
+ // to identify conjured symbols by an expression pair: the enclosing
+ // expression (the context) and the expression itself. This should
+ // disambiguate conjured symbols.
+ unsigned Count = currentBuilderContext->getCurrentBlockCount();
+ StoreManager::InvalidatedSymbols IS;
+
+ // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
+ // global variables.
+ return State->invalidateRegions(RegionsToInvalidate,
+ Call.getOriginExpr(), Count, LC,
+ &IS, &Call);
+
+}
+
+static ProgramStateRef getReplayWithoutInliningState(ExplodedNode *&N,
+ const CallExpr *CE) {
+ void *ReplayState = N->getState()->get<ReplayWithoutInlining>();
+ if (!ReplayState)
+ return 0;
+ const CallExpr *ReplayCE = reinterpret_cast<const CallExpr*>(ReplayState);
+ if (CE == ReplayCE) {
+ return N->getState()->remove<ReplayWithoutInlining>();
+ }
+ return 0;
+}
+
+void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
+ ExplodedNodeSet &dst) {
+ // Perform the previsit of the CallExpr.
+ ExplodedNodeSet dstPreVisit;
+ getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
+
+ // Now evaluate the call itself.
+ class DefaultEval : public GraphExpander {
+ ExprEngine &Eng;
+ const CallExpr *CE;
+ public:
+
+ DefaultEval(ExprEngine &eng, const CallExpr *ce)
+ : Eng(eng), CE(ce) {}
+ virtual void expandGraph(ExplodedNodeSet &Dst, ExplodedNode *Pred) {
+
+ ProgramStateRef state = getReplayWithoutInliningState(Pred, CE);
+
+ // First, try to inline the call.
+ if (state == 0 && Eng.InlineCall(Dst, CE, Pred))
+ return;
+
+ // First handle the return value.
+ StmtNodeBuilder Bldr(Pred, Dst, *Eng.currentBuilderContext);
+
+ // Get the callee.
+ const Expr *Callee = CE->getCallee()->IgnoreParens();
+ if (state == 0)
+ state = Pred->getState();
+ SVal L = state->getSVal(Callee, Pred->getLocationContext());
+
+ // Figure out the result type. We do this dance to handle references.
+ QualType ResultTy;
+ if (const FunctionDecl *FD = L.getAsFunctionDecl())
+ ResultTy = FD->getResultType();
+ else
+ ResultTy = CE->getType();
+
+ if (CE->isLValue())
+ ResultTy = Eng.getContext().getPointerType(ResultTy);
+
+ // Conjure a symbol value to use as the result.
+ SValBuilder &SVB = Eng.getSValBuilder();
+ unsigned Count = Eng.currentBuilderContext->getCurrentBlockCount();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal RetVal = SVB.getConjuredSymbolVal(0, CE, LCtx, ResultTy, Count);
+
+ // Generate a new state with the return value set.
+ state = state->BindExpr(CE, LCtx, RetVal);
+
+ // Invalidate the arguments.
+ state = Eng.invalidateArguments(state, CallOrObjCMessage(CE, state, LCtx),
+ LCtx);
+
+ // And make the result node.
+ Bldr.generateNode(CE, Pred, state);
+ }
+ };
+
+ // Finally, evaluate the function call. We try each of the checkers
+ // to see if the can evaluate the function call.
+ ExplodedNodeSet dstCallEvaluated;
+ DefaultEval defEval(*this, CE);
+ getCheckerManager().runCheckersForEvalCall(dstCallEvaluated,
+ dstPreVisit,
+ CE, *this, &defEval);
+
+ // Finally, perform the post-condition check of the CallExpr and store
+ // the created nodes in 'Dst'.
+ getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
+ *this);
+}
+
+void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ ExplodedNodeSet dstPreVisit;
+ getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
+
+ StmtNodeBuilder B(dstPreVisit, Dst, *currentBuilderContext);
+
+ if (RS->getRetValue()) {
+ for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
+ ei = dstPreVisit.end(); it != ei; ++it) {
+ B.generateNode(RS, *it, (*it)->getState());
+ }
+ }
+}
diff --git a/clang/lib/StaticAnalyzer/Core/ExprEngineObjC.cpp b/clang/lib/StaticAnalyzer/Core/ExprEngineObjC.cpp
new file mode 100644
index 0000000..c8ad70a
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/ExprEngineObjC.cpp
@@ -0,0 +1,273 @@
+//=-- ExprEngineObjC.cpp - ExprEngine support for Objective-C ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines ExprEngine's support for Objective-C expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/StmtObjC.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
+
+using namespace clang;
+using namespace ento;
+
+void ExprEngine::VisitLvalObjCIvarRefExpr(const ObjCIvarRefExpr *Ex,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal baseVal = state->getSVal(Ex->getBase(), LCtx);
+ SVal location = state->getLValue(Ex->getDecl(), baseVal);
+
+ ExplodedNodeSet dstIvar;
+ StmtNodeBuilder Bldr(Pred, dstIvar, *currentBuilderContext);
+ Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, location));
+
+ // Perform the post-condition check of the ObjCIvarRefExpr and store
+ // the created nodes in 'Dst'.
+ getCheckerManager().runCheckersForPostStmt(Dst, dstIvar, Ex, *this);
+}
+
+void ExprEngine::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ getCheckerManager().runCheckersForPreStmt(Dst, Pred, S, *this);
+}
+
+void ExprEngine::VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ // ObjCForCollectionStmts are processed in two places. This method
+ // handles the case where an ObjCForCollectionStmt* occurs as one of the
+ // statements within a basic block. This transfer function does two things:
+ //
+ // (1) binds the next container value to 'element'. This creates a new
+ // node in the ExplodedGraph.
+ //
+ // (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating
+ // whether or not the container has any more elements. This value
+ // will be tested in ProcessBranch. We need to explicitly bind
+ // this value because a container can contain nil elements.
+ //
+ // FIXME: Eventually this logic should actually do dispatches to
+ // 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration).
+ // This will require simulating a temporary NSFastEnumerationState, either
+ // through an SVal or through the use of MemRegions. This value can
+ // be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop
+ // terminates we reclaim the temporary (it goes out of scope) and we
+ // we can test if the SVal is 0 or if the MemRegion is null (depending
+ // on what approach we take).
+ //
+ // For now: simulate (1) by assigning either a symbol or nil if the
+ // container is empty. Thus this transfer function will by default
+ // result in state splitting.
+
+ const Stmt *elem = S->getElement();
+ ProgramStateRef state = Pred->getState();
+ SVal elementV;
+ StmtNodeBuilder Bldr(Pred, Dst, *currentBuilderContext);
+
+ if (const DeclStmt *DS = dyn_cast<DeclStmt>(elem)) {
+ const VarDecl *elemD = cast<VarDecl>(DS->getSingleDecl());
+ assert(elemD->getInit() == 0);
+ elementV = state->getLValue(elemD, Pred->getLocationContext());
+ }
+ else {
+ elementV = state->getSVal(elem, Pred->getLocationContext());
+ }
+
+ ExplodedNodeSet dstLocation;
+ Bldr.takeNodes(Pred);
+ evalLocation(dstLocation, S, elem, Pred, state, elementV, NULL, false);
+ Bldr.addNodes(dstLocation);
+
+ for (ExplodedNodeSet::iterator NI = dstLocation.begin(),
+ NE = dstLocation.end(); NI!=NE; ++NI) {
+ Pred = *NI;
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ // Handle the case where the container still has elements.
+ SVal TrueV = svalBuilder.makeTruthVal(1);
+ ProgramStateRef hasElems = state->BindExpr(S, LCtx, TrueV);
+
+ // Handle the case where the container has no elements.
+ SVal FalseV = svalBuilder.makeTruthVal(0);
+ ProgramStateRef noElems = state->BindExpr(S, LCtx, FalseV);
+
+ if (loc::MemRegionVal *MV = dyn_cast<loc::MemRegionVal>(&elementV))
+ if (const TypedValueRegion *R =
+ dyn_cast<TypedValueRegion>(MV->getRegion())) {
+ // FIXME: The proper thing to do is to really iterate over the
+ // container. We will do this with dispatch logic to the store.
+ // For now, just 'conjure' up a symbolic value.
+ QualType T = R->getValueType();
+ assert(Loc::isLocType(T));
+ unsigned Count = currentBuilderContext->getCurrentBlockCount();
+ SymbolRef Sym = SymMgr.getConjuredSymbol(elem, LCtx, T, Count);
+ SVal V = svalBuilder.makeLoc(Sym);
+ hasElems = hasElems->bindLoc(elementV, V);
+
+ // Bind the location to 'nil' on the false branch.
+ SVal nilV = svalBuilder.makeIntVal(0, T);
+ noElems = noElems->bindLoc(elementV, nilV);
+ }
+
+ // Create the new nodes.
+ Bldr.generateNode(S, Pred, hasElems);
+ Bldr.generateNode(S, Pred, noElems);
+ }
+}
+
+void ExprEngine::VisitObjCMessage(const ObjCMessage &msg,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ // Handle the previsits checks.
+ ExplodedNodeSet dstPrevisit;
+ getCheckerManager().runCheckersForPreObjCMessage(dstPrevisit, Pred,
+ msg, *this);
+
+ // Proceed with evaluate the message expression.
+ ExplodedNodeSet dstEval;
+ StmtNodeBuilder Bldr(dstPrevisit, dstEval, *currentBuilderContext);
+
+ for (ExplodedNodeSet::iterator DI = dstPrevisit.begin(),
+ DE = dstPrevisit.end(); DI != DE; ++DI) {
+
+ ExplodedNode *Pred = *DI;
+ bool RaisesException = false;
+
+ if (const Expr *Receiver = msg.getInstanceReceiver()) {
+ ProgramStateRef state = Pred->getState();
+ SVal recVal = state->getSVal(Receiver, Pred->getLocationContext());
+ if (!recVal.isUndef()) {
+ // Bifurcate the state into nil and non-nil ones.
+ DefinedOrUnknownSVal receiverVal = cast<DefinedOrUnknownSVal>(recVal);
+
+ ProgramStateRef notNilState, nilState;
+ llvm::tie(notNilState, nilState) = state->assume(receiverVal);
+
+ // There are three cases: can be nil or non-nil, must be nil, must be
+ // non-nil. We ignore must be nil, and merge the rest two into non-nil.
+ if (nilState && !notNilState) {
+ continue;
+ }
+
+ // Check if the "raise" message was sent.
+ assert(notNilState);
+ if (msg.getSelector() == RaiseSel)
+ RaisesException = true;
+
+ // If we raise an exception, for now treat it as a sink.
+ // Eventually we will want to handle exceptions properly.
+ // Dispatch to plug-in transfer function.
+ evalObjCMessage(Bldr, msg, Pred, notNilState, RaisesException);
+ }
+ }
+ else if (const ObjCInterfaceDecl *Iface = msg.getReceiverInterface()) {
+ IdentifierInfo* ClsName = Iface->getIdentifier();
+ Selector S = msg.getSelector();
+
+ // Check for special instance methods.
+ if (!NSExceptionII) {
+ ASTContext &Ctx = getContext();
+ NSExceptionII = &Ctx.Idents.get("NSException");
+ }
+
+ if (ClsName == NSExceptionII) {
+ enum { NUM_RAISE_SELECTORS = 2 };
+
+ // Lazily create a cache of the selectors.
+ if (!NSExceptionInstanceRaiseSelectors) {
+ ASTContext &Ctx = getContext();
+ NSExceptionInstanceRaiseSelectors =
+ new Selector[NUM_RAISE_SELECTORS];
+ SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II;
+ unsigned idx = 0;
+
+ // raise:format:
+ II.push_back(&Ctx.Idents.get("raise"));
+ II.push_back(&Ctx.Idents.get("format"));
+ NSExceptionInstanceRaiseSelectors[idx++] =
+ Ctx.Selectors.getSelector(II.size(), &II[0]);
+
+ // raise:format::arguments:
+ II.push_back(&Ctx.Idents.get("arguments"));
+ NSExceptionInstanceRaiseSelectors[idx++] =
+ Ctx.Selectors.getSelector(II.size(), &II[0]);
+ }
+
+ for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i)
+ if (S == NSExceptionInstanceRaiseSelectors[i]) {
+ RaisesException = true;
+ break;
+ }
+ }
+
+ // If we raise an exception, for now treat it as a sink.
+ // Eventually we will want to handle exceptions properly.
+ // Dispatch to plug-in transfer function.
+ evalObjCMessage(Bldr, msg, Pred, Pred->getState(), RaisesException);
+ }
+ }
+
+ // Finally, perform the post-condition check of the ObjCMessageExpr and store
+ // the created nodes in 'Dst'.
+ getCheckerManager().runCheckersForPostObjCMessage(Dst, dstEval, msg, *this);
+}
+
+void ExprEngine::evalObjCMessage(StmtNodeBuilder &Bldr,
+ const ObjCMessage &msg,
+ ExplodedNode *Pred,
+ ProgramStateRef state,
+ bool GenSink) {
+ // First handle the return value.
+ SVal ReturnValue = UnknownVal();
+
+ // Some method families have known return values.
+ switch (msg.getMethodFamily()) {
+ default:
+ break;
+ case OMF_autorelease:
+ case OMF_retain:
+ case OMF_self: {
+ // These methods return their receivers.
+ const Expr *ReceiverE = msg.getInstanceReceiver();
+ if (ReceiverE)
+ ReturnValue = state->getSVal(ReceiverE, Pred->getLocationContext());
+ break;
+ }
+ }
+
+ // If we failed to figure out the return value, use a conjured value instead.
+ if (ReturnValue.isUnknown()) {
+ SValBuilder &SVB = getSValBuilder();
+ QualType ResultTy = msg.getResultType(getContext());
+ unsigned Count = currentBuilderContext->getCurrentBlockCount();
+ const Expr *CurrentE = cast<Expr>(currentStmt);
+ const LocationContext *LCtx = Pred->getLocationContext();
+ ReturnValue = SVB.getConjuredSymbolVal(NULL, CurrentE, LCtx, ResultTy, Count);
+ }
+
+ // Bind the return value.
+ const LocationContext *LCtx = Pred->getLocationContext();
+ state = state->BindExpr(currentStmt, LCtx, ReturnValue);
+
+ // Invalidate the arguments (and the receiver)
+ state = invalidateArguments(state, CallOrObjCMessage(msg, state, LCtx), LCtx);
+
+ // And create the new node.
+ Bldr.generateNode(msg.getMessageExpr(), Pred, state, GenSink);
+ assert(Bldr.hasGeneratedNodes());
+}
+
diff --git a/clang/lib/StaticAnalyzer/Core/FunctionSummary.cpp b/clang/lib/StaticAnalyzer/Core/FunctionSummary.cpp
new file mode 100644
index 0000000..c227aac
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/FunctionSummary.cpp
@@ -0,0 +1,38 @@
+//== FunctionSummary.h - Stores summaries of functions. ------------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a summary of a function gathered/used by static analyzes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/FunctionSummary.h"
+using namespace clang;
+using namespace ento;
+
+FunctionSummariesTy::~FunctionSummariesTy() {
+ for (MapTy::iterator I = Map.begin(), E = Map.end(); I != E; ++I) {
+ delete(I->second);
+ }
+}
+
+unsigned FunctionSummariesTy::getTotalNumBasicBlocks() {
+ unsigned Total = 0;
+ for (MapTy::iterator I = Map.begin(), E = Map.end(); I != E; ++I) {
+ Total += I->second->TotalBasicBlocks;
+ }
+ return Total;
+}
+
+unsigned FunctionSummariesTy::getTotalNumVisitedBasicBlocks() {
+ unsigned Total = 0;
+ for (MapTy::iterator I = Map.begin(), E = Map.end(); I != E; ++I) {
+ Total += I->second->VisitedBasicBlocks.count();
+ }
+ return Total;
+}
diff --git a/clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp b/clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
new file mode 100644
index 0000000..629f1ea
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
@@ -0,0 +1,578 @@
+//===--- HTMLDiagnostics.cpp - HTML Diagnostics for Paths ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the HTMLDiagnostics object.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathDiagnosticConsumers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Rewrite/Rewriter.h"
+#include "clang/Rewrite/HTMLRewrite.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Path.h"
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// Boilerplate.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class HTMLDiagnostics : public PathDiagnosticConsumer {
+ llvm::sys::Path Directory, FilePrefix;
+ bool createdDir, noDir;
+ const Preprocessor &PP;
+public:
+ HTMLDiagnostics(const std::string& prefix, const Preprocessor &pp);
+
+ virtual ~HTMLDiagnostics() { FlushDiagnostics(NULL); }
+
+ virtual void FlushDiagnosticsImpl(std::vector<const PathDiagnostic *> &Diags,
+ SmallVectorImpl<std::string> *FilesMade);
+
+ virtual StringRef getName() const {
+ return "HTMLDiagnostics";
+ }
+
+ unsigned ProcessMacroPiece(raw_ostream &os,
+ const PathDiagnosticMacroPiece& P,
+ unsigned num);
+
+ void HandlePiece(Rewriter& R, FileID BugFileID,
+ const PathDiagnosticPiece& P, unsigned num, unsigned max);
+
+ void HighlightRange(Rewriter& R, FileID BugFileID, SourceRange Range,
+ const char *HighlightStart = "<span class=\"mrange\">",
+ const char *HighlightEnd = "</span>");
+
+ void ReportDiag(const PathDiagnostic& D,
+ SmallVectorImpl<std::string> *FilesMade);
+};
+
+} // end anonymous namespace
+
+HTMLDiagnostics::HTMLDiagnostics(const std::string& prefix,
+ const Preprocessor &pp)
+ : Directory(prefix), FilePrefix(prefix), createdDir(false), noDir(false),
+ PP(pp) {
+ // All html files begin with "report"
+ FilePrefix.appendComponent("report");
+}
+
+PathDiagnosticConsumer*
+ento::createHTMLDiagnosticConsumer(const std::string& prefix,
+ const Preprocessor &PP) {
+ return new HTMLDiagnostics(prefix, PP);
+}
+
+//===----------------------------------------------------------------------===//
+// Report processing.
+//===----------------------------------------------------------------------===//
+
+void HTMLDiagnostics::FlushDiagnosticsImpl(
+ std::vector<const PathDiagnostic *> &Diags,
+ SmallVectorImpl<std::string> *FilesMade) {
+ for (std::vector<const PathDiagnostic *>::iterator it = Diags.begin(),
+ et = Diags.end(); it != et; ++it) {
+ ReportDiag(**it, FilesMade);
+ }
+}
+
+static void flattenPath(PathPieces &primaryPath, PathPieces &currentPath,
+ const PathPieces &oldPath) {
+ for (PathPieces::const_iterator it = oldPath.begin(), et = oldPath.end();
+ it != et; ++it ) {
+ PathDiagnosticPiece *piece = it->getPtr();
+ if (const PathDiagnosticCallPiece *call =
+ dyn_cast<PathDiagnosticCallPiece>(piece)) {
+ IntrusiveRefCntPtr<PathDiagnosticEventPiece> callEnter =
+ call->getCallEnterEvent();
+ if (callEnter)
+ currentPath.push_back(callEnter);
+ flattenPath(primaryPath, primaryPath, call->path);
+ IntrusiveRefCntPtr<PathDiagnosticEventPiece> callExit =
+ call->getCallExitEvent();
+ if (callExit)
+ currentPath.push_back(callExit);
+ continue;
+ }
+ if (PathDiagnosticMacroPiece *macro =
+ dyn_cast<PathDiagnosticMacroPiece>(piece)) {
+ currentPath.push_back(piece);
+ PathPieces newPath;
+ flattenPath(primaryPath, newPath, macro->subPieces);
+ macro->subPieces = newPath;
+ continue;
+ }
+
+ currentPath.push_back(piece);
+ }
+}
+
+void HTMLDiagnostics::ReportDiag(const PathDiagnostic& D,
+ SmallVectorImpl<std::string> *FilesMade) {
+
+ // Create the HTML directory if it is missing.
+ if (!createdDir) {
+ createdDir = true;
+ std::string ErrorMsg;
+ Directory.createDirectoryOnDisk(true, &ErrorMsg);
+
+ bool IsDirectory;
+ if (llvm::sys::fs::is_directory(Directory.str(), IsDirectory) ||
+ !IsDirectory) {
+ llvm::errs() << "warning: could not create directory '"
+ << Directory.str() << "'\n"
+ << "reason: " << ErrorMsg << '\n';
+
+ noDir = true;
+
+ return;
+ }
+ }
+
+ if (noDir)
+ return;
+
+ // First flatten out the entire path to make it easier to use.
+ PathPieces path;
+ flattenPath(path, path, D.path);
+
+ // The path as already been prechecked that all parts of the path are
+ // from the same file and that it is non-empty.
+ const SourceManager &SMgr = (*path.begin())->getLocation().getManager();
+ assert(!path.empty());
+ FileID FID =
+ (*path.begin())->getLocation().asLocation().getExpansionLoc().getFileID();
+ assert(!FID.isInvalid());
+
+ // Create a new rewriter to generate HTML.
+ Rewriter R(const_cast<SourceManager&>(SMgr), PP.getLangOpts());
+
+ // Process the path.
+ unsigned n = path.size();
+ unsigned max = n;
+
+ for (PathPieces::const_reverse_iterator I = path.rbegin(),
+ E = path.rend();
+ I != E; ++I, --n)
+ HandlePiece(R, FID, **I, n, max);
+
+ // Add line numbers, header, footer, etc.
+
+ // unsigned FID = R.getSourceMgr().getMainFileID();
+ html::EscapeText(R, FID);
+ html::AddLineNumbers(R, FID);
+
+ // If we have a preprocessor, relex the file and syntax highlight.
+ // We might not have a preprocessor if we come from a deserialized AST file,
+ // for example.
+
+ html::SyntaxHighlight(R, FID, PP);
+ html::HighlightMacros(R, FID, PP);
+
+ // Get the full directory name of the analyzed file.
+
+ const FileEntry* Entry = SMgr.getFileEntryForID(FID);
+
+ // This is a cludge; basically we want to append either the full
+ // working directory if we have no directory information. This is
+ // a work in progress.
+
+ std::string DirName = "";
+
+ if (llvm::sys::path::is_relative(Entry->getName())) {
+ llvm::sys::Path P = llvm::sys::Path::GetCurrentDirectory();
+ DirName = P.str() + "/";
+ }
+
+ // Add the name of the file as an <h1> tag.
+
+ {
+ std::string s;
+ llvm::raw_string_ostream os(s);
+
+ os << "<!-- REPORTHEADER -->\n"
+ << "<h3>Bug Summary</h3>\n<table class=\"simpletable\">\n"
+ "<tr><td class=\"rowname\">File:</td><td>"
+ << html::EscapeText(DirName)
+ << html::EscapeText(Entry->getName())
+ << "</td></tr>\n<tr><td class=\"rowname\">Location:</td><td>"
+ "<a href=\"#EndPath\">line "
+ << (*path.rbegin())->getLocation().asLocation().getExpansionLineNumber()
+ << ", column "
+ << (*path.rbegin())->getLocation().asLocation().getExpansionColumnNumber()
+ << "</a></td></tr>\n"
+ "<tr><td class=\"rowname\">Description:</td><td>"
+ << D.getDescription() << "</td></tr>\n";
+
+ // Output any other meta data.
+
+ for (PathDiagnostic::meta_iterator I=D.meta_begin(), E=D.meta_end();
+ I!=E; ++I) {
+ os << "<tr><td></td><td>" << html::EscapeText(*I) << "</td></tr>\n";
+ }
+
+ os << "</table>\n<!-- REPORTSUMMARYEXTRA -->\n"
+ "<h3>Annotated Source Code</h3>\n";
+
+ R.InsertTextBefore(SMgr.getLocForStartOfFile(FID), os.str());
+ }
+
+ // Embed meta-data tags.
+ {
+ std::string s;
+ llvm::raw_string_ostream os(s);
+
+ const std::string& BugDesc = D.getDescription();
+ if (!BugDesc.empty())
+ os << "\n<!-- BUGDESC " << BugDesc << " -->\n";
+
+ const std::string& BugType = D.getBugType();
+ if (!BugType.empty())
+ os << "\n<!-- BUGTYPE " << BugType << " -->\n";
+
+ const std::string& BugCategory = D.getCategory();
+ if (!BugCategory.empty())
+ os << "\n<!-- BUGCATEGORY " << BugCategory << " -->\n";
+
+ os << "\n<!-- BUGFILE " << DirName << Entry->getName() << " -->\n";
+
+ os << "\n<!-- BUGLINE "
+ << path.back()->getLocation().asLocation().getExpansionLineNumber()
+ << " -->\n";
+
+ os << "\n<!-- BUGPATHLENGTH " << path.size() << " -->\n";
+
+ // Mark the end of the tags.
+ os << "\n<!-- BUGMETAEND -->\n";
+
+ // Insert the text.
+ R.InsertTextBefore(SMgr.getLocForStartOfFile(FID), os.str());
+ }
+
+ // Add CSS, header, and footer.
+
+ html::AddHeaderFooterInternalBuiltinCSS(R, FID, Entry->getName());
+
+ // Get the rewrite buffer.
+ const RewriteBuffer *Buf = R.getRewriteBufferFor(FID);
+
+ if (!Buf) {
+ llvm::errs() << "warning: no diagnostics generated for main file.\n";
+ return;
+ }
+
+ // Create a path for the target HTML file.
+ llvm::sys::Path F(FilePrefix);
+ F.makeUnique(false, NULL);
+
+ // Rename the file with an HTML extension.
+ llvm::sys::Path H(F);
+ H.appendSuffix("html");
+ F.renamePathOnDisk(H, NULL);
+
+ std::string ErrorMsg;
+ llvm::raw_fd_ostream os(H.c_str(), ErrorMsg);
+
+ if (!ErrorMsg.empty()) {
+ llvm::errs() << "warning: could not create file '" << F.str()
+ << "'\n";
+ return;
+ }
+
+ if (FilesMade)
+ FilesMade->push_back(llvm::sys::path::filename(H.str()));
+
+ // Emit the HTML to disk.
+ for (RewriteBuffer::iterator I = Buf->begin(), E = Buf->end(); I!=E; ++I)
+ os << *I;
+}
+
+void HTMLDiagnostics::HandlePiece(Rewriter& R, FileID BugFileID,
+ const PathDiagnosticPiece& P,
+ unsigned num, unsigned max) {
+
+ // For now, just draw a box above the line in question, and emit the
+ // warning.
+ FullSourceLoc Pos = P.getLocation().asLocation();
+
+ if (!Pos.isValid())
+ return;
+
+ SourceManager &SM = R.getSourceMgr();
+ assert(&Pos.getManager() == &SM && "SourceManagers are different!");
+ std::pair<FileID, unsigned> LPosInfo = SM.getDecomposedExpansionLoc(Pos);
+
+ if (LPosInfo.first != BugFileID)
+ return;
+
+ const llvm::MemoryBuffer *Buf = SM.getBuffer(LPosInfo.first);
+ const char* FileStart = Buf->getBufferStart();
+
+ // Compute the column number. Rewind from the current position to the start
+ // of the line.
+ unsigned ColNo = SM.getColumnNumber(LPosInfo.first, LPosInfo.second);
+ const char *TokInstantiationPtr =Pos.getExpansionLoc().getCharacterData();
+ const char *LineStart = TokInstantiationPtr-ColNo;
+
+ // Compute LineEnd.
+ const char *LineEnd = TokInstantiationPtr;
+ const char* FileEnd = Buf->getBufferEnd();
+ while (*LineEnd != '\n' && LineEnd != FileEnd)
+ ++LineEnd;
+
+ // Compute the margin offset by counting tabs and non-tabs.
+ unsigned PosNo = 0;
+ for (const char* c = LineStart; c != TokInstantiationPtr; ++c)
+ PosNo += *c == '\t' ? 8 : 1;
+
+ // Create the html for the message.
+
+ const char *Kind = 0;
+ switch (P.getKind()) {
+ case PathDiagnosticPiece::Call:
+ llvm_unreachable("Calls should already be handled");
+ case PathDiagnosticPiece::Event: Kind = "Event"; break;
+ case PathDiagnosticPiece::ControlFlow: Kind = "Control"; break;
+ // Setting Kind to "Control" is intentional.
+ case PathDiagnosticPiece::Macro: Kind = "Control"; break;
+ }
+
+ std::string sbuf;
+ llvm::raw_string_ostream os(sbuf);
+
+ os << "\n<tr><td class=\"num\"></td><td class=\"line\"><div id=\"";
+
+ if (num == max)
+ os << "EndPath";
+ else
+ os << "Path" << num;
+
+ os << "\" class=\"msg";
+ if (Kind)
+ os << " msg" << Kind;
+ os << "\" style=\"margin-left:" << PosNo << "ex";
+
+ // Output a maximum size.
+ if (!isa<PathDiagnosticMacroPiece>(P)) {
+ // Get the string and determining its maximum substring.
+ const std::string& Msg = P.getString();
+ unsigned max_token = 0;
+ unsigned cnt = 0;
+ unsigned len = Msg.size();
+
+ for (std::string::const_iterator I=Msg.begin(), E=Msg.end(); I!=E; ++I)
+ switch (*I) {
+ default:
+ ++cnt;
+ continue;
+ case ' ':
+ case '\t':
+ case '\n':
+ if (cnt > max_token) max_token = cnt;
+ cnt = 0;
+ }
+
+ if (cnt > max_token)
+ max_token = cnt;
+
+ // Determine the approximate size of the message bubble in em.
+ unsigned em;
+ const unsigned max_line = 120;
+
+ if (max_token >= max_line)
+ em = max_token / 2;
+ else {
+ unsigned characters = max_line;
+ unsigned lines = len / max_line;
+
+ if (lines > 0) {
+ for (; characters > max_token; --characters)
+ if (len / characters > lines) {
+ ++characters;
+ break;
+ }
+ }
+
+ em = characters / 2;
+ }
+
+ if (em < max_line/2)
+ os << "; max-width:" << em << "em";
+ }
+ else
+ os << "; max-width:100em";
+
+ os << "\">";
+
+ if (max > 1) {
+ os << "<table class=\"msgT\"><tr><td valign=\"top\">";
+ os << "<div class=\"PathIndex";
+ if (Kind) os << " PathIndex" << Kind;
+ os << "\">" << num << "</div>";
+ os << "</td><td>";
+ }
+
+ if (const PathDiagnosticMacroPiece *MP =
+ dyn_cast<PathDiagnosticMacroPiece>(&P)) {
+
+ os << "Within the expansion of the macro '";
+
+ // Get the name of the macro by relexing it.
+ {
+ FullSourceLoc L = MP->getLocation().asLocation().getExpansionLoc();
+ assert(L.isFileID());
+ StringRef BufferInfo = L.getBufferData();
+ const char* MacroName = L.getDecomposedLoc().second + BufferInfo.data();
+ Lexer rawLexer(L, PP.getLangOpts(), BufferInfo.begin(),
+ MacroName, BufferInfo.end());
+
+ Token TheTok;
+ rawLexer.LexFromRawLexer(TheTok);
+ for (unsigned i = 0, n = TheTok.getLength(); i < n; ++i)
+ os << MacroName[i];
+ }
+
+ os << "':\n";
+
+ if (max > 1)
+ os << "</td></tr></table>";
+
+ // Within a macro piece. Write out each event.
+ ProcessMacroPiece(os, *MP, 0);
+ }
+ else {
+ os << html::EscapeText(P.getString());
+
+ if (max > 1)
+ os << "</td></tr></table>";
+ }
+
+ os << "</div></td></tr>";
+
+ // Insert the new html.
+ unsigned DisplayPos = LineEnd - FileStart;
+ SourceLocation Loc =
+ SM.getLocForStartOfFile(LPosInfo.first).getLocWithOffset(DisplayPos);
+
+ R.InsertTextBefore(Loc, os.str());
+
+ // Now highlight the ranges.
+ for (const SourceRange *I = P.ranges_begin(), *E = P.ranges_end();
+ I != E; ++I)
+ HighlightRange(R, LPosInfo.first, *I);
+
+#if 0
+ // If there is a code insertion hint, insert that code.
+ // FIXME: This code is disabled because it seems to mangle the HTML
+ // output. I'm leaving it here because it's generally the right idea,
+ // but needs some help from someone more familiar with the rewriter.
+ for (const FixItHint *Hint = P.fixit_begin(), *HintEnd = P.fixit_end();
+ Hint != HintEnd; ++Hint) {
+ if (Hint->RemoveRange.isValid()) {
+ HighlightRange(R, LPosInfo.first, Hint->RemoveRange,
+ "<span class=\"CodeRemovalHint\">", "</span>");
+ }
+ if (Hint->InsertionLoc.isValid()) {
+ std::string EscapedCode = html::EscapeText(Hint->CodeToInsert, true);
+ EscapedCode = "<span class=\"CodeInsertionHint\">" + EscapedCode
+ + "</span>";
+ R.InsertTextBefore(Hint->InsertionLoc, EscapedCode);
+ }
+ }
+#endif
+}
+
+static void EmitAlphaCounter(raw_ostream &os, unsigned n) {
+ unsigned x = n % ('z' - 'a');
+ n /= 'z' - 'a';
+
+ if (n > 0)
+ EmitAlphaCounter(os, n);
+
+ os << char('a' + x);
+}
+
+unsigned HTMLDiagnostics::ProcessMacroPiece(raw_ostream &os,
+ const PathDiagnosticMacroPiece& P,
+ unsigned num) {
+
+ for (PathPieces::const_iterator I = P.subPieces.begin(), E=P.subPieces.end();
+ I!=E; ++I) {
+
+ if (const PathDiagnosticMacroPiece *MP =
+ dyn_cast<PathDiagnosticMacroPiece>(*I)) {
+ num = ProcessMacroPiece(os, *MP, num);
+ continue;
+ }
+
+ if (PathDiagnosticEventPiece *EP = dyn_cast<PathDiagnosticEventPiece>(*I)) {
+ os << "<div class=\"msg msgEvent\" style=\"width:94%; "
+ "margin-left:5px\">"
+ "<table class=\"msgT\"><tr>"
+ "<td valign=\"top\"><div class=\"PathIndex PathIndexEvent\">";
+ EmitAlphaCounter(os, num++);
+ os << "</div></td><td valign=\"top\">"
+ << html::EscapeText(EP->getString())
+ << "</td></tr></table></div>\n";
+ }
+ }
+
+ return num;
+}
+
+void HTMLDiagnostics::HighlightRange(Rewriter& R, FileID BugFileID,
+ SourceRange Range,
+ const char *HighlightStart,
+ const char *HighlightEnd) {
+ SourceManager &SM = R.getSourceMgr();
+ const LangOptions &LangOpts = R.getLangOpts();
+
+ SourceLocation InstantiationStart = SM.getExpansionLoc(Range.getBegin());
+ unsigned StartLineNo = SM.getExpansionLineNumber(InstantiationStart);
+
+ SourceLocation InstantiationEnd = SM.getExpansionLoc(Range.getEnd());
+ unsigned EndLineNo = SM.getExpansionLineNumber(InstantiationEnd);
+
+ if (EndLineNo < StartLineNo)
+ return;
+
+ if (SM.getFileID(InstantiationStart) != BugFileID ||
+ SM.getFileID(InstantiationEnd) != BugFileID)
+ return;
+
+ // Compute the column number of the end.
+ unsigned EndColNo = SM.getExpansionColumnNumber(InstantiationEnd);
+ unsigned OldEndColNo = EndColNo;
+
+ if (EndColNo) {
+ // Add in the length of the token, so that we cover multi-char tokens.
+ EndColNo += Lexer::MeasureTokenLength(Range.getEnd(), SM, LangOpts)-1;
+ }
+
+ // Highlight the range. Make the span tag the outermost tag for the
+ // selected range.
+
+ SourceLocation E =
+ InstantiationEnd.getLocWithOffset(EndColNo - OldEndColNo);
+
+ html::HighlightRange(R, InstantiationStart, E, HighlightStart, HighlightEnd);
+}
diff --git a/clang/lib/StaticAnalyzer/Core/IntervalConstraintManager.cpp b/clang/lib/StaticAnalyzer/Core/IntervalConstraintManager.cpp
new file mode 100644
index 0000000..dc2f0d9
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/IntervalConstraintManager.cpp
@@ -0,0 +1,467 @@
+//== IntervalConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines IntervalConstraintManager, a class that tracks simple
+// equality and inequality constraints on symbolic values of ProgramState.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SimpleConstraintManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/ImmutableSet.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace { class ConstraintRange {}; }
+static int ConstraintRangeIndex = 0;
+
+/// A Range represents the closed range [from, to]. The caller must
+/// guarantee that from <= to. Note that Range is immutable, so as not
+/// to subvert RangeSet's immutability.
+namespace {
+class Range : public std::pair<const llvm::APSInt*,
+ const llvm::APSInt*> {
+public:
+ Range(const llvm::APSInt &from, const llvm::APSInt &to)
+ : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
+ assert(from <= to);
+ }
+ bool Includes(const llvm::APSInt &v) const {
+ return *first <= v && v <= *second;
+ }
+ const llvm::APSInt &From() const {
+ return *first;
+ }
+ const llvm::APSInt &To() const {
+ return *second;
+ }
+ const llvm::APSInt *getConcreteValue() const {
+ return &From() == &To() ? &From() : NULL;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddPointer(&From());
+ ID.AddPointer(&To());
+ }
+};
+
+
+class RangeTrait : public llvm::ImutContainerInfo<Range> {
+public:
+ // When comparing if one Range is less than another, we should compare
+ // the actual APSInt values instead of their pointers. This keeps the order
+ // consistent (instead of comparing by pointer values) and can potentially
+ // be used to speed up some of the operations in RangeSet.
+ static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
+ return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
+ *lhs.second < *rhs.second);
+ }
+};
+
+/// RangeSet contains a set of ranges. If the set is empty, then
+/// there the value of a symbol is overly constrained and there are no
+/// possible values for that symbol.
+class RangeSet {
+ typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
+ PrimRangeSet ranges; // no need to make const, since it is an
+ // ImmutableSet - this allows default operator=
+ // to work.
+public:
+ typedef PrimRangeSet::Factory Factory;
+ typedef PrimRangeSet::iterator iterator;
+
+ RangeSet(PrimRangeSet RS) : ranges(RS) {}
+
+ iterator begin() const { return ranges.begin(); }
+ iterator end() const { return ranges.end(); }
+
+ bool isEmpty() const { return ranges.isEmpty(); }
+
+ /// Construct a new RangeSet representing '{ [from, to] }'.
+ RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
+ : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
+
+ /// Profile - Generates a hash profile of this RangeSet for use
+ /// by FoldingSet.
+ void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
+
+ /// getConcreteValue - If a symbol is contrained to equal a specific integer
+ /// constant then this method returns that value. Otherwise, it returns
+ /// NULL.
+ const llvm::APSInt* getConcreteValue() const {
+ return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
+ }
+
+private:
+ void IntersectInRange(BasicValueFactory &BV, Factory &F,
+ const llvm::APSInt &Lower,
+ const llvm::APSInt &Upper,
+ PrimRangeSet &newRanges,
+ PrimRangeSet::iterator &i,
+ PrimRangeSet::iterator &e) const {
+ // There are six cases for each range R in the set:
+ // 1. R is entirely before the intersection range.
+ // 2. R is entirely after the intersection range.
+ // 3. R contains the entire intersection range.
+ // 4. R starts before the intersection range and ends in the middle.
+ // 5. R starts in the middle of the intersection range and ends after it.
+ // 6. R is entirely contained in the intersection range.
+ // These correspond to each of the conditions below.
+ for (/* i = begin(), e = end() */; i != e; ++i) {
+ if (i->To() < Lower) {
+ continue;
+ }
+ if (i->From() > Upper) {
+ break;
+ }
+
+ if (i->Includes(Lower)) {
+ if (i->Includes(Upper)) {
+ newRanges = F.add(newRanges, Range(BV.getValue(Lower),
+ BV.getValue(Upper)));
+ break;
+ } else
+ newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
+ } else {
+ if (i->Includes(Upper)) {
+ newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
+ break;
+ } else
+ newRanges = F.add(newRanges, *i);
+ }
+ }
+ }
+
+public:
+ // Returns a set containing the values in the receiving set, intersected with
+ // the closed range [Lower, Upper]. Unlike the Range type, this range uses
+ // modular arithmetic, corresponding to the common treatment of C integer
+ // overflow. Thus, if the Lower bound is greater than the Upper bound, the
+ // range is taken to wrap around. This is equivalent to taking the
+ // intersection with the two ranges [Min, Upper] and [Lower, Max],
+ // or, alternatively, /removing/ all integers between Upper and Lower.
+ RangeSet Intersect(BasicValueFactory &BV, Factory &F,
+ const llvm::APSInt &Lower,
+ const llvm::APSInt &Upper) const {
+ PrimRangeSet newRanges = F.getEmptySet();
+
+ PrimRangeSet::iterator i = begin(), e = end();
+ if (Lower <= Upper)
+ IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
+ else {
+ // The order of the next two statements is important!
+ // IntersectInRange() does not reset the iteration state for i and e.
+ // Therefore, the lower range most be handled first.
+ IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
+ IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
+ }
+ return newRanges;
+ }
+
+ void print(raw_ostream &os) const {
+ bool isFirst = true;
+ os << "{ ";
+ for (iterator i = begin(), e = end(); i != e; ++i) {
+ if (isFirst)
+ isFirst = false;
+ else
+ os << ", ";
+
+ os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
+ << ']';
+ }
+ os << " }";
+ }
+
+ bool operator==(const RangeSet &other) const {
+ return ranges == other.ranges;
+ }
+};
+} // end anonymous namespace
+
+typedef llvm::ImmutableMap<SymbolRef,RangeSet> ConstraintRangeTy;
+
+namespace clang {
+namespace ento {
+template<>
+struct ProgramStateTrait<ConstraintRange>
+ : public ProgramStatePartialTrait<ConstraintRangeTy> {
+ static inline void *GDMIndex() { return &ConstraintRangeIndex; }
+};
+}
+}
+
+namespace {
+class IntervalConstraintManager : public SimpleConstraintManager{
+ RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
+public:
+ IntervalConstraintManager(SubEngine &subengine)
+ : SimpleConstraintManager(subengine) {}
+
+ ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment);
+
+ const llvm::APSInt* getSymVal(ProgramStateRef St, SymbolRef sym) const;
+
+ // FIXME: Refactor into SimpleConstraintManager?
+ bool isEqual(ProgramStateRef St, SymbolRef sym, const llvm::APSInt& V) const {
+ const llvm::APSInt *i = getSymVal(St, sym);
+ return i ? *i == V : false;
+ }
+
+ ProgramStateRef removeDeadBindings(ProgramStateRef St, SymbolReaper& SymReaper);
+
+ void print(ProgramStateRef St, raw_ostream &Out,
+ const char* nl, const char *sep);
+
+private:
+ RangeSet::Factory F;
+};
+
+} // end anonymous namespace
+
+ConstraintManager* ento::CreateIntervalConstraintManager(ProgramStateManager&,
+ SubEngine &subeng) {
+ llvm::errs() << "Creating interval constraint manager\n";
+ return new IntervalConstraintManager(subeng);
+}
+
+const llvm::APSInt* IntervalConstraintManager::getSymVal(ProgramStateRef St,
+ SymbolRef sym) const {
+ const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
+ return T ? T->getConcreteValue() : NULL;
+}
+
+/// Scan all symbols referenced by the constraints. If the symbol is not alive
+/// as marked in LSymbols, mark it as dead in DSymbols.
+ProgramStateRef
+IntervalConstraintManager::removeDeadBindings(ProgramStateRef state,
+ SymbolReaper& SymReaper) {
+
+ ConstraintRangeTy CR = state->get<ConstraintRange>();
+ ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
+
+ for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
+ SymbolRef sym = I.getKey();
+ if (SymReaper.maybeDead(sym))
+ CR = CRFactory.remove(CR, sym);
+ }
+
+ return state->set<ConstraintRange>(CR);
+}
+
+RangeSet
+IntervalConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
+ if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
+ return *V;
+
+ // Lazily generate a new RangeSet representing all possible values for the
+ // given symbol type.
+ QualType T = state->getSymbolManager().getType(sym);
+ BasicValueFactory& BV = state->getBasicVals();
+ return RangeSet(F, BV.getMinValue(T), BV.getMaxValue(T));
+}
+
+//===------------------------------------------------------------------------===
+// eSymX methods: public interface for IntervalConstraintManager.
+//===------------------------------------------------------------------------===/
+
+// The syntax for ranges below is mathematical, using [x, y] for closed ranges
+// and (x, y) for open ranges. These ranges are modular, corresponding with
+// a common treatment of C integer overflow. This means that these methods
+// do not have to worry about overflow; RangeSet::Intersect can handle such a
+// "wraparound" range.
+// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
+// UINT_MAX, 0, 1, and 2.
+
+ProgramStateRef
+IntervalConstraintManager::assumeSymNE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) {
+ llvm::errs() << "AssumeNE\n";
+ state->dump();
+ sym->dump();
+
+ BasicValueFactory &BV = state->getBasicVals();
+
+ llvm::APSInt Lower = Int-Adjustment;
+ llvm::APSInt Upper = Lower;
+ --Lower;
+ ++Upper;
+
+ // [Int-Adjustment+1, Int-Adjustment-1]
+ // Notice that the lower bound is greater than the upper bound.
+ RangeSet New = GetRange(state, sym).Intersect(BV, F, Upper, Lower);
+ return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
+}
+
+ProgramStateRef
+IntervalConstraintManager::assumeSymEQ(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) {
+ llvm::errs() << "AssumeEQ\n";
+ state->dump();
+ sym->dump();
+
+ // [Int-Adjustment, Int-Adjustment]
+ BasicValueFactory &BV = state->getBasicVals();
+ llvm::APSInt AdjInt = Int-Adjustment;
+ RangeSet New = GetRange(state, sym).Intersect(BV, F, AdjInt, AdjInt);
+ return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
+}
+
+ProgramStateRef
+IntervalConstraintManager::assumeSymLT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) {
+ llvm::errs() << "AssumeLT\n";
+ state->dump();
+ sym->dump();
+
+ BasicValueFactory &BV = state->getBasicVals();
+
+ QualType T = state->getSymbolManager().getType(sym);
+ const llvm::APSInt &Min = BV.getMinValue(T);
+
+ // Special case for Int == Min. This is always false.
+ if (Int == Min)
+ return NULL;
+
+ llvm::APSInt Lower = Min-Adjustment;
+ llvm::APSInt Upper = Int-Adjustment;
+ --Upper;
+
+ RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
+ return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
+}
+
+ProgramStateRef
+IntervalConstraintManager::assumeSymGT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) {
+ llvm::errs() << "AssumeGT\n";
+ state->dump();
+ sym->dump();
+
+ BasicValueFactory &BV = state->getBasicVals();
+
+ QualType T = state->getSymbolManager().getType(sym);
+ const llvm::APSInt &Max = BV.getMaxValue(T);
+
+ // Special case for Int == Max. This is always false.
+ if (Int == Max)
+ return NULL;
+
+ llvm::APSInt Lower = Int-Adjustment;
+ llvm::APSInt Upper = Max-Adjustment;
+ ++Lower;
+
+ RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
+ return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
+}
+
+ProgramStateRef
+IntervalConstraintManager::assumeSymGE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) {
+ llvm::errs() << "AssumeGE\n";
+ state->dump();
+ sym->dump();
+
+ BasicValueFactory &BV = state->getBasicVals();
+
+ QualType T = state->getSymbolManager().getType(sym);
+ const llvm::APSInt &Min = BV.getMinValue(T);
+
+ // Special case for Int == Min. This is always feasible.
+ if (Int == Min)
+ return state;
+
+ const llvm::APSInt &Max = BV.getMaxValue(T);
+
+ llvm::APSInt Lower = Int-Adjustment;
+ llvm::APSInt Upper = Max-Adjustment;
+
+ RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
+ return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
+}
+
+ProgramStateRef
+IntervalConstraintManager::assumeSymLE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) {
+ llvm::errs() << "AssumeLE\n";
+ state->dump();
+ sym->dump();
+
+ BasicValueFactory &BV = state->getBasicVals();
+
+ QualType T = state->getSymbolManager().getType(sym);
+ const llvm::APSInt &Max = BV.getMaxValue(T);
+
+ // Special case for Int == Max. This is always feasible.
+ if (Int == Max)
+ return state;
+
+ const llvm::APSInt &Min = BV.getMinValue(T);
+
+ llvm::APSInt Lower = Min-Adjustment;
+ llvm::APSInt Upper = Int-Adjustment;
+
+ RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
+ return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
+}
+
+//===------------------------------------------------------------------------===
+// Pretty-printing.
+//===------------------------------------------------------------------------===/
+
+void IntervalConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
+ const char* nl, const char *sep) {
+
+ ConstraintRangeTy Ranges = St->get<ConstraintRange>();
+
+ if (Ranges.isEmpty()) {
+ Out << nl << sep << "Ranges are empty." << nl;
+ return;
+ }
+
+ Out << nl << sep << "Ranges of symbol values:";
+ for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
+ Out << nl << ' ' << I.getKey() << " : ";
+ I.getData().print(Out);
+ }
+ Out << nl;
+}
diff --git a/clang/lib/StaticAnalyzer/Core/Makefile b/clang/lib/StaticAnalyzer/Core/Makefile
new file mode 100644
index 0000000..4aebc16
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/Makefile
@@ -0,0 +1,17 @@
+##===- clang/lib/StaticAnalyzer/Core/Makefile --------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+#
+# This implements analyses built on top of source-level CFGs.
+#
+##===----------------------------------------------------------------------===##
+
+CLANG_LEVEL := ../../..
+LIBRARYNAME := clangStaticAnalyzerCore
+
+include $(CLANG_LEVEL)/Makefile
diff --git a/clang/lib/StaticAnalyzer/Core/MemRegion.cpp b/clang/lib/StaticAnalyzer/Core/MemRegion.cpp
new file mode 100644
index 0000000..ed94c79
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/MemRegion.cpp
@@ -0,0 +1,1101 @@
+//== MemRegion.cpp - Abstract memory regions for static analysis --*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines MemRegion and its subclasses. MemRegion defines a
+// partially-typed abstraction of memory useful for path-sensitive dataflow
+// analyses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Analysis/Support/BumpVector.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// MemRegion Construction.
+//===----------------------------------------------------------------------===//
+
+template<typename RegionTy> struct MemRegionManagerTrait;
+
+template <typename RegionTy, typename A1>
+RegionTy* MemRegionManager::getRegion(const A1 a1) {
+
+ const typename MemRegionManagerTrait<RegionTy>::SuperRegionTy *superRegion =
+ MemRegionManagerTrait<RegionTy>::getSuperRegion(*this, a1);
+
+ llvm::FoldingSetNodeID ID;
+ RegionTy::ProfileRegion(ID, a1, superRegion);
+ void *InsertPos;
+ RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
+ InsertPos));
+
+ if (!R) {
+ R = (RegionTy*) A.Allocate<RegionTy>();
+ new (R) RegionTy(a1, superRegion);
+ Regions.InsertNode(R, InsertPos);
+ }
+
+ return R;
+}
+
+template <typename RegionTy, typename A1>
+RegionTy* MemRegionManager::getSubRegion(const A1 a1,
+ const MemRegion *superRegion) {
+ llvm::FoldingSetNodeID ID;
+ RegionTy::ProfileRegion(ID, a1, superRegion);
+ void *InsertPos;
+ RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
+ InsertPos));
+
+ if (!R) {
+ R = (RegionTy*) A.Allocate<RegionTy>();
+ new (R) RegionTy(a1, superRegion);
+ Regions.InsertNode(R, InsertPos);
+ }
+
+ return R;
+}
+
+template <typename RegionTy, typename A1, typename A2>
+RegionTy* MemRegionManager::getRegion(const A1 a1, const A2 a2) {
+
+ const typename MemRegionManagerTrait<RegionTy>::SuperRegionTy *superRegion =
+ MemRegionManagerTrait<RegionTy>::getSuperRegion(*this, a1, a2);
+
+ llvm::FoldingSetNodeID ID;
+ RegionTy::ProfileRegion(ID, a1, a2, superRegion);
+ void *InsertPos;
+ RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
+ InsertPos));
+
+ if (!R) {
+ R = (RegionTy*) A.Allocate<RegionTy>();
+ new (R) RegionTy(a1, a2, superRegion);
+ Regions.InsertNode(R, InsertPos);
+ }
+
+ return R;
+}
+
+template <typename RegionTy, typename A1, typename A2>
+RegionTy* MemRegionManager::getSubRegion(const A1 a1, const A2 a2,
+ const MemRegion *superRegion) {
+
+ llvm::FoldingSetNodeID ID;
+ RegionTy::ProfileRegion(ID, a1, a2, superRegion);
+ void *InsertPos;
+ RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
+ InsertPos));
+
+ if (!R) {
+ R = (RegionTy*) A.Allocate<RegionTy>();
+ new (R) RegionTy(a1, a2, superRegion);
+ Regions.InsertNode(R, InsertPos);
+ }
+
+ return R;
+}
+
+template <typename RegionTy, typename A1, typename A2, typename A3>
+RegionTy* MemRegionManager::getSubRegion(const A1 a1, const A2 a2, const A3 a3,
+ const MemRegion *superRegion) {
+
+ llvm::FoldingSetNodeID ID;
+ RegionTy::ProfileRegion(ID, a1, a2, a3, superRegion);
+ void *InsertPos;
+ RegionTy* R = cast_or_null<RegionTy>(Regions.FindNodeOrInsertPos(ID,
+ InsertPos));
+
+ if (!R) {
+ R = (RegionTy*) A.Allocate<RegionTy>();
+ new (R) RegionTy(a1, a2, a3, superRegion);
+ Regions.InsertNode(R, InsertPos);
+ }
+
+ return R;
+}
+
+//===----------------------------------------------------------------------===//
+// Object destruction.
+//===----------------------------------------------------------------------===//
+
+MemRegion::~MemRegion() {}
+
+MemRegionManager::~MemRegionManager() {
+ // All regions and their data are BumpPtrAllocated. No need to call
+ // their destructors.
+}
+
+//===----------------------------------------------------------------------===//
+// Basic methods.
+//===----------------------------------------------------------------------===//
+
+bool SubRegion::isSubRegionOf(const MemRegion* R) const {
+ const MemRegion* r = getSuperRegion();
+ while (r != 0) {
+ if (r == R)
+ return true;
+ if (const SubRegion* sr = dyn_cast<SubRegion>(r))
+ r = sr->getSuperRegion();
+ else
+ break;
+ }
+ return false;
+}
+
+MemRegionManager* SubRegion::getMemRegionManager() const {
+ const SubRegion* r = this;
+ do {
+ const MemRegion *superRegion = r->getSuperRegion();
+ if (const SubRegion *sr = dyn_cast<SubRegion>(superRegion)) {
+ r = sr;
+ continue;
+ }
+ return superRegion->getMemRegionManager();
+ } while (1);
+}
+
+const StackFrameContext *VarRegion::getStackFrame() const {
+ const StackSpaceRegion *SSR = dyn_cast<StackSpaceRegion>(getMemorySpace());
+ return SSR ? SSR->getStackFrame() : NULL;
+}
+
+//===----------------------------------------------------------------------===//
+// Region extents.
+//===----------------------------------------------------------------------===//
+
+DefinedOrUnknownSVal DeclRegion::getExtent(SValBuilder &svalBuilder) const {
+ ASTContext &Ctx = svalBuilder.getContext();
+ QualType T = getDesugaredValueType(Ctx);
+
+ if (isa<VariableArrayType>(T))
+ return nonloc::SymbolVal(svalBuilder.getSymbolManager().getExtentSymbol(this));
+ if (isa<IncompleteArrayType>(T))
+ return UnknownVal();
+
+ CharUnits size = Ctx.getTypeSizeInChars(T);
+ QualType sizeTy = svalBuilder.getArrayIndexType();
+ return svalBuilder.makeIntVal(size.getQuantity(), sizeTy);
+}
+
+DefinedOrUnknownSVal FieldRegion::getExtent(SValBuilder &svalBuilder) const {
+ DefinedOrUnknownSVal Extent = DeclRegion::getExtent(svalBuilder);
+
+ // A zero-length array at the end of a struct often stands for dynamically-
+ // allocated extra memory.
+ if (Extent.isZeroConstant()) {
+ QualType T = getDesugaredValueType(svalBuilder.getContext());
+
+ if (isa<ConstantArrayType>(T))
+ return UnknownVal();
+ }
+
+ return Extent;
+}
+
+DefinedOrUnknownSVal AllocaRegion::getExtent(SValBuilder &svalBuilder) const {
+ return nonloc::SymbolVal(svalBuilder.getSymbolManager().getExtentSymbol(this));
+}
+
+DefinedOrUnknownSVal SymbolicRegion::getExtent(SValBuilder &svalBuilder) const {
+ return nonloc::SymbolVal(svalBuilder.getSymbolManager().getExtentSymbol(this));
+}
+
+DefinedOrUnknownSVal StringRegion::getExtent(SValBuilder &svalBuilder) const {
+ return svalBuilder.makeIntVal(getStringLiteral()->getByteLength()+1,
+ svalBuilder.getArrayIndexType());
+}
+
+ObjCIvarRegion::ObjCIvarRegion(const ObjCIvarDecl *ivd, const MemRegion* sReg)
+ : DeclRegion(ivd, sReg, ObjCIvarRegionKind) {}
+
+const ObjCIvarDecl *ObjCIvarRegion::getDecl() const {
+ return cast<ObjCIvarDecl>(D);
+}
+
+QualType ObjCIvarRegion::getValueType() const {
+ return getDecl()->getType();
+}
+
+QualType CXXBaseObjectRegion::getValueType() const {
+ return QualType(decl->getTypeForDecl(), 0);
+}
+
+//===----------------------------------------------------------------------===//
+// FoldingSet profiling.
+//===----------------------------------------------------------------------===//
+
+void MemSpaceRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ ID.AddInteger((unsigned)getKind());
+}
+
+void StackSpaceRegion::Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger((unsigned)getKind());
+ ID.AddPointer(getStackFrame());
+}
+
+void StaticGlobalSpaceRegion::Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger((unsigned)getKind());
+ ID.AddPointer(getCodeRegion());
+}
+
+void StringRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const StringLiteral* Str,
+ const MemRegion* superRegion) {
+ ID.AddInteger((unsigned) StringRegionKind);
+ ID.AddPointer(Str);
+ ID.AddPointer(superRegion);
+}
+
+void ObjCStringRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const ObjCStringLiteral* Str,
+ const MemRegion* superRegion) {
+ ID.AddInteger((unsigned) ObjCStringRegionKind);
+ ID.AddPointer(Str);
+ ID.AddPointer(superRegion);
+}
+
+void AllocaRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const Expr *Ex, unsigned cnt,
+ const MemRegion *) {
+ ID.AddInteger((unsigned) AllocaRegionKind);
+ ID.AddPointer(Ex);
+ ID.AddInteger(cnt);
+}
+
+void AllocaRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ ProfileRegion(ID, Ex, Cnt, superRegion);
+}
+
+void CompoundLiteralRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ CompoundLiteralRegion::ProfileRegion(ID, CL, superRegion);
+}
+
+void CompoundLiteralRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const CompoundLiteralExpr *CL,
+ const MemRegion* superRegion) {
+ ID.AddInteger((unsigned) CompoundLiteralRegionKind);
+ ID.AddPointer(CL);
+ ID.AddPointer(superRegion);
+}
+
+void CXXThisRegion::ProfileRegion(llvm::FoldingSetNodeID &ID,
+ const PointerType *PT,
+ const MemRegion *sRegion) {
+ ID.AddInteger((unsigned) CXXThisRegionKind);
+ ID.AddPointer(PT);
+ ID.AddPointer(sRegion);
+}
+
+void CXXThisRegion::Profile(llvm::FoldingSetNodeID &ID) const {
+ CXXThisRegion::ProfileRegion(ID, ThisPointerTy, superRegion);
+}
+
+void ObjCIvarRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const ObjCIvarDecl *ivd,
+ const MemRegion* superRegion) {
+ DeclRegion::ProfileRegion(ID, ivd, superRegion, ObjCIvarRegionKind);
+}
+
+void DeclRegion::ProfileRegion(llvm::FoldingSetNodeID& ID, const Decl *D,
+ const MemRegion* superRegion, Kind k) {
+ ID.AddInteger((unsigned) k);
+ ID.AddPointer(D);
+ ID.AddPointer(superRegion);
+}
+
+void DeclRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ DeclRegion::ProfileRegion(ID, D, superRegion, getKind());
+}
+
+void VarRegion::Profile(llvm::FoldingSetNodeID &ID) const {
+ VarRegion::ProfileRegion(ID, getDecl(), superRegion);
+}
+
+void SymbolicRegion::ProfileRegion(llvm::FoldingSetNodeID& ID, SymbolRef sym,
+ const MemRegion *sreg) {
+ ID.AddInteger((unsigned) MemRegion::SymbolicRegionKind);
+ ID.Add(sym);
+ ID.AddPointer(sreg);
+}
+
+void SymbolicRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ SymbolicRegion::ProfileRegion(ID, sym, getSuperRegion());
+}
+
+void ElementRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ QualType ElementType, SVal Idx,
+ const MemRegion* superRegion) {
+ ID.AddInteger(MemRegion::ElementRegionKind);
+ ID.Add(ElementType);
+ ID.AddPointer(superRegion);
+ Idx.Profile(ID);
+}
+
+void ElementRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ ElementRegion::ProfileRegion(ID, ElementType, Index, superRegion);
+}
+
+void FunctionTextRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const FunctionDecl *FD,
+ const MemRegion*) {
+ ID.AddInteger(MemRegion::FunctionTextRegionKind);
+ ID.AddPointer(FD);
+}
+
+void FunctionTextRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ FunctionTextRegion::ProfileRegion(ID, FD, superRegion);
+}
+
+void BlockTextRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const BlockDecl *BD, CanQualType,
+ const AnalysisDeclContext *AC,
+ const MemRegion*) {
+ ID.AddInteger(MemRegion::BlockTextRegionKind);
+ ID.AddPointer(BD);
+}
+
+void BlockTextRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ BlockTextRegion::ProfileRegion(ID, BD, locTy, AC, superRegion);
+}
+
+void BlockDataRegion::ProfileRegion(llvm::FoldingSetNodeID& ID,
+ const BlockTextRegion *BC,
+ const LocationContext *LC,
+ const MemRegion *sReg) {
+ ID.AddInteger(MemRegion::BlockDataRegionKind);
+ ID.AddPointer(BC);
+ ID.AddPointer(LC);
+ ID.AddPointer(sReg);
+}
+
+void BlockDataRegion::Profile(llvm::FoldingSetNodeID& ID) const {
+ BlockDataRegion::ProfileRegion(ID, BC, LC, getSuperRegion());
+}
+
+void CXXTempObjectRegion::ProfileRegion(llvm::FoldingSetNodeID &ID,
+ Expr const *Ex,
+ const MemRegion *sReg) {
+ ID.AddPointer(Ex);
+ ID.AddPointer(sReg);
+}
+
+void CXXTempObjectRegion::Profile(llvm::FoldingSetNodeID &ID) const {
+ ProfileRegion(ID, Ex, getSuperRegion());
+}
+
+void CXXBaseObjectRegion::ProfileRegion(llvm::FoldingSetNodeID &ID,
+ const CXXRecordDecl *decl,
+ const MemRegion *sReg) {
+ ID.AddPointer(decl);
+ ID.AddPointer(sReg);
+}
+
+void CXXBaseObjectRegion::Profile(llvm::FoldingSetNodeID &ID) const {
+ ProfileRegion(ID, decl, superRegion);
+}
+
+//===----------------------------------------------------------------------===//
+// Region anchors.
+//===----------------------------------------------------------------------===//
+
+void GlobalsSpaceRegion::anchor() { }
+void HeapSpaceRegion::anchor() { }
+void UnknownSpaceRegion::anchor() { }
+void StackLocalsSpaceRegion::anchor() { }
+void StackArgumentsSpaceRegion::anchor() { }
+void TypedRegion::anchor() { }
+void TypedValueRegion::anchor() { }
+void CodeTextRegion::anchor() { }
+void SubRegion::anchor() { }
+
+//===----------------------------------------------------------------------===//
+// Region pretty-printing.
+//===----------------------------------------------------------------------===//
+
+void MemRegion::dump() const {
+ dumpToStream(llvm::errs());
+}
+
+std::string MemRegion::getString() const {
+ std::string s;
+ llvm::raw_string_ostream os(s);
+ dumpToStream(os);
+ return os.str();
+}
+
+void MemRegion::dumpToStream(raw_ostream &os) const {
+ os << "<Unknown Region>";
+}
+
+void AllocaRegion::dumpToStream(raw_ostream &os) const {
+ os << "alloca{" << (void*) Ex << ',' << Cnt << '}';
+}
+
+void FunctionTextRegion::dumpToStream(raw_ostream &os) const {
+ os << "code{" << getDecl()->getDeclName().getAsString() << '}';
+}
+
+void BlockTextRegion::dumpToStream(raw_ostream &os) const {
+ os << "block_code{" << (void*) this << '}';
+}
+
+void BlockDataRegion::dumpToStream(raw_ostream &os) const {
+ os << "block_data{" << BC << '}';
+}
+
+void CompoundLiteralRegion::dumpToStream(raw_ostream &os) const {
+ // FIXME: More elaborate pretty-printing.
+ os << "{ " << (void*) CL << " }";
+}
+
+void CXXTempObjectRegion::dumpToStream(raw_ostream &os) const {
+ os << "temp_object{" << getValueType().getAsString() << ','
+ << (void*) Ex << '}';
+}
+
+void CXXBaseObjectRegion::dumpToStream(raw_ostream &os) const {
+ os << "base " << decl->getName();
+}
+
+void CXXThisRegion::dumpToStream(raw_ostream &os) const {
+ os << "this";
+}
+
+void ElementRegion::dumpToStream(raw_ostream &os) const {
+ os << "element{" << superRegion << ','
+ << Index << ',' << getElementType().getAsString() << '}';
+}
+
+void FieldRegion::dumpToStream(raw_ostream &os) const {
+ os << superRegion << "->" << *getDecl();
+}
+
+void ObjCIvarRegion::dumpToStream(raw_ostream &os) const {
+ os << "ivar{" << superRegion << ',' << *getDecl() << '}';
+}
+
+void StringRegion::dumpToStream(raw_ostream &os) const {
+ Str->printPretty(os, 0, PrintingPolicy(getContext().getLangOpts()));
+}
+
+void ObjCStringRegion::dumpToStream(raw_ostream &os) const {
+ Str->printPretty(os, 0, PrintingPolicy(getContext().getLangOpts()));
+}
+
+void SymbolicRegion::dumpToStream(raw_ostream &os) const {
+ os << "SymRegion{" << sym << '}';
+}
+
+void VarRegion::dumpToStream(raw_ostream &os) const {
+ os << *cast<VarDecl>(D);
+}
+
+void RegionRawOffset::dump() const {
+ dumpToStream(llvm::errs());
+}
+
+void RegionRawOffset::dumpToStream(raw_ostream &os) const {
+ os << "raw_offset{" << getRegion() << ',' << getOffset().getQuantity() << '}';
+}
+
+void StaticGlobalSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "StaticGlobalsMemSpace{" << CR << '}';
+}
+
+void NonStaticGlobalSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "NonStaticGlobalSpaceRegion";
+}
+
+void GlobalInternalSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "GlobalInternalSpaceRegion";
+}
+
+void GlobalSystemSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "GlobalSystemSpaceRegion";
+}
+
+void GlobalImmutableSpaceRegion::dumpToStream(raw_ostream &os) const {
+ os << "GlobalImmutableSpaceRegion";
+}
+
+void MemRegion::dumpPretty(raw_ostream &os) const {
+ return;
+}
+
+void VarRegion::dumpPretty(raw_ostream &os) const {
+ os << getDecl()->getName();
+}
+
+void FieldRegion::dumpPretty(raw_ostream &os) const {
+ superRegion->dumpPretty(os);
+ os << "->" << getDecl();
+}
+
+//===----------------------------------------------------------------------===//
+// MemRegionManager methods.
+//===----------------------------------------------------------------------===//
+
+template <typename REG>
+const REG *MemRegionManager::LazyAllocate(REG*& region) {
+ if (!region) {
+ region = (REG*) A.Allocate<REG>();
+ new (region) REG(this);
+ }
+
+ return region;
+}
+
+template <typename REG, typename ARG>
+const REG *MemRegionManager::LazyAllocate(REG*& region, ARG a) {
+ if (!region) {
+ region = (REG*) A.Allocate<REG>();
+ new (region) REG(this, a);
+ }
+
+ return region;
+}
+
+const StackLocalsSpaceRegion*
+MemRegionManager::getStackLocalsRegion(const StackFrameContext *STC) {
+ assert(STC);
+ StackLocalsSpaceRegion *&R = StackLocalsSpaceRegions[STC];
+
+ if (R)
+ return R;
+
+ R = A.Allocate<StackLocalsSpaceRegion>();
+ new (R) StackLocalsSpaceRegion(this, STC);
+ return R;
+}
+
+const StackArgumentsSpaceRegion *
+MemRegionManager::getStackArgumentsRegion(const StackFrameContext *STC) {
+ assert(STC);
+ StackArgumentsSpaceRegion *&R = StackArgumentsSpaceRegions[STC];
+
+ if (R)
+ return R;
+
+ R = A.Allocate<StackArgumentsSpaceRegion>();
+ new (R) StackArgumentsSpaceRegion(this, STC);
+ return R;
+}
+
+const GlobalsSpaceRegion
+*MemRegionManager::getGlobalsRegion(MemRegion::Kind K,
+ const CodeTextRegion *CR) {
+ if (!CR) {
+ if (K == MemRegion::GlobalSystemSpaceRegionKind)
+ return LazyAllocate(SystemGlobals);
+ if (K == MemRegion::GlobalImmutableSpaceRegionKind)
+ return LazyAllocate(ImmutableGlobals);
+ assert(K == MemRegion::GlobalInternalSpaceRegionKind);
+ return LazyAllocate(InternalGlobals);
+ }
+
+ assert(K == MemRegion::StaticGlobalSpaceRegionKind);
+ StaticGlobalSpaceRegion *&R = StaticsGlobalSpaceRegions[CR];
+ if (R)
+ return R;
+
+ R = A.Allocate<StaticGlobalSpaceRegion>();
+ new (R) StaticGlobalSpaceRegion(this, CR);
+ return R;
+}
+
+const HeapSpaceRegion *MemRegionManager::getHeapRegion() {
+ return LazyAllocate(heap);
+}
+
+const MemSpaceRegion *MemRegionManager::getUnknownRegion() {
+ return LazyAllocate(unknown);
+}
+
+const MemSpaceRegion *MemRegionManager::getCodeRegion() {
+ return LazyAllocate(code);
+}
+
+//===----------------------------------------------------------------------===//
+// Constructing regions.
+//===----------------------------------------------------------------------===//
+const StringRegion* MemRegionManager::getStringRegion(const StringLiteral* Str){
+ return getSubRegion<StringRegion>(Str, getGlobalsRegion());
+}
+
+const ObjCStringRegion *
+MemRegionManager::getObjCStringRegion(const ObjCStringLiteral* Str){
+ return getSubRegion<ObjCStringRegion>(Str, getGlobalsRegion());
+}
+
+const VarRegion* MemRegionManager::getVarRegion(const VarDecl *D,
+ const LocationContext *LC) {
+ const MemRegion *sReg = 0;
+
+ if (D->hasGlobalStorage() && !D->isStaticLocal()) {
+
+ // First handle the globals defined in system headers.
+ if (C.getSourceManager().isInSystemHeader(D->getLocation())) {
+ // Whitelist the system globals which often DO GET modified, assume the
+ // rest are immutable.
+ if (D->getName().find("errno") != StringRef::npos)
+ sReg = getGlobalsRegion(MemRegion::GlobalSystemSpaceRegionKind);
+ else
+ sReg = getGlobalsRegion(MemRegion::GlobalImmutableSpaceRegionKind);
+
+ // Treat other globals as GlobalInternal unless they are constants.
+ } else {
+ QualType GQT = D->getType();
+ const Type *GT = GQT.getTypePtrOrNull();
+ // TODO: We could walk the complex types here and see if everything is
+ // constified.
+ if (GT && GQT.isConstQualified() && GT->isArithmeticType())
+ sReg = getGlobalsRegion(MemRegion::GlobalImmutableSpaceRegionKind);
+ else
+ sReg = getGlobalsRegion();
+ }
+
+ // Finally handle static locals.
+ } else {
+ // FIXME: Once we implement scope handling, we will need to properly lookup
+ // 'D' to the proper LocationContext.
+ const DeclContext *DC = D->getDeclContext();
+ const StackFrameContext *STC = LC->getStackFrameForDeclContext(DC);
+
+ if (!STC)
+ sReg = getUnknownRegion();
+ else {
+ if (D->hasLocalStorage()) {
+ sReg = isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)
+ ? static_cast<const MemRegion*>(getStackArgumentsRegion(STC))
+ : static_cast<const MemRegion*>(getStackLocalsRegion(STC));
+ }
+ else {
+ assert(D->isStaticLocal());
+ const Decl *D = STC->getDecl();
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ sReg = getGlobalsRegion(MemRegion::StaticGlobalSpaceRegionKind,
+ getFunctionTextRegion(FD));
+ else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ const BlockTextRegion *BTR =
+ getBlockTextRegion(BD,
+ C.getCanonicalType(BD->getSignatureAsWritten()->getType()),
+ STC->getAnalysisDeclContext());
+ sReg = getGlobalsRegion(MemRegion::StaticGlobalSpaceRegionKind,
+ BTR);
+ }
+ else {
+ // FIXME: For ObjC-methods, we need a new CodeTextRegion. For now
+ // just use the main global memspace.
+ sReg = getGlobalsRegion();
+ }
+ }
+ }
+ }
+
+ return getSubRegion<VarRegion>(D, sReg);
+}
+
+const VarRegion *MemRegionManager::getVarRegion(const VarDecl *D,
+ const MemRegion *superR) {
+ return getSubRegion<VarRegion>(D, superR);
+}
+
+const BlockDataRegion *
+MemRegionManager::getBlockDataRegion(const BlockTextRegion *BC,
+ const LocationContext *LC) {
+ const MemRegion *sReg = 0;
+ const BlockDecl *BD = BC->getDecl();
+ if (!BD->hasCaptures()) {
+ // This handles 'static' blocks.
+ sReg = getGlobalsRegion(MemRegion::GlobalImmutableSpaceRegionKind);
+ }
+ else {
+ if (LC) {
+ // FIXME: Once we implement scope handling, we want the parent region
+ // to be the scope.
+ const StackFrameContext *STC = LC->getCurrentStackFrame();
+ assert(STC);
+ sReg = getStackLocalsRegion(STC);
+ }
+ else {
+ // We allow 'LC' to be NULL for cases where want BlockDataRegions
+ // without context-sensitivity.
+ sReg = getUnknownRegion();
+ }
+ }
+
+ return getSubRegion<BlockDataRegion>(BC, LC, sReg);
+}
+
+const CompoundLiteralRegion*
+MemRegionManager::getCompoundLiteralRegion(const CompoundLiteralExpr *CL,
+ const LocationContext *LC) {
+
+ const MemRegion *sReg = 0;
+
+ if (CL->isFileScope())
+ sReg = getGlobalsRegion();
+ else {
+ const StackFrameContext *STC = LC->getCurrentStackFrame();
+ assert(STC);
+ sReg = getStackLocalsRegion(STC);
+ }
+
+ return getSubRegion<CompoundLiteralRegion>(CL, sReg);
+}
+
+const ElementRegion*
+MemRegionManager::getElementRegion(QualType elementType, NonLoc Idx,
+ const MemRegion* superRegion,
+ ASTContext &Ctx){
+
+ QualType T = Ctx.getCanonicalType(elementType).getUnqualifiedType();
+
+ llvm::FoldingSetNodeID ID;
+ ElementRegion::ProfileRegion(ID, T, Idx, superRegion);
+
+ void *InsertPos;
+ MemRegion* data = Regions.FindNodeOrInsertPos(ID, InsertPos);
+ ElementRegion* R = cast_or_null<ElementRegion>(data);
+
+ if (!R) {
+ R = (ElementRegion*) A.Allocate<ElementRegion>();
+ new (R) ElementRegion(T, Idx, superRegion);
+ Regions.InsertNode(R, InsertPos);
+ }
+
+ return R;
+}
+
+const FunctionTextRegion *
+MemRegionManager::getFunctionTextRegion(const FunctionDecl *FD) {
+ return getSubRegion<FunctionTextRegion>(FD, getCodeRegion());
+}
+
+const BlockTextRegion *
+MemRegionManager::getBlockTextRegion(const BlockDecl *BD, CanQualType locTy,
+ AnalysisDeclContext *AC) {
+ return getSubRegion<BlockTextRegion>(BD, locTy, AC, getCodeRegion());
+}
+
+
+/// getSymbolicRegion - Retrieve or create a "symbolic" memory region.
+const SymbolicRegion *MemRegionManager::getSymbolicRegion(SymbolRef sym) {
+ return getSubRegion<SymbolicRegion>(sym, getUnknownRegion());
+}
+
+const FieldRegion*
+MemRegionManager::getFieldRegion(const FieldDecl *d,
+ const MemRegion* superRegion){
+ return getSubRegion<FieldRegion>(d, superRegion);
+}
+
+const ObjCIvarRegion*
+MemRegionManager::getObjCIvarRegion(const ObjCIvarDecl *d,
+ const MemRegion* superRegion) {
+ return getSubRegion<ObjCIvarRegion>(d, superRegion);
+}
+
+const CXXTempObjectRegion*
+MemRegionManager::getCXXTempObjectRegion(Expr const *E,
+ LocationContext const *LC) {
+ const StackFrameContext *SFC = LC->getCurrentStackFrame();
+ assert(SFC);
+ return getSubRegion<CXXTempObjectRegion>(E, getStackLocalsRegion(SFC));
+}
+
+const CXXBaseObjectRegion *
+MemRegionManager::getCXXBaseObjectRegion(const CXXRecordDecl *decl,
+ const MemRegion *superRegion) {
+ return getSubRegion<CXXBaseObjectRegion>(decl, superRegion);
+}
+
+const CXXThisRegion*
+MemRegionManager::getCXXThisRegion(QualType thisPointerTy,
+ const LocationContext *LC) {
+ const StackFrameContext *STC = LC->getCurrentStackFrame();
+ assert(STC);
+ const PointerType *PT = thisPointerTy->getAs<PointerType>();
+ assert(PT);
+ return getSubRegion<CXXThisRegion>(PT, getStackArgumentsRegion(STC));
+}
+
+const AllocaRegion*
+MemRegionManager::getAllocaRegion(const Expr *E, unsigned cnt,
+ const LocationContext *LC) {
+ const StackFrameContext *STC = LC->getCurrentStackFrame();
+ assert(STC);
+ return getSubRegion<AllocaRegion>(E, cnt, getStackLocalsRegion(STC));
+}
+
+const MemSpaceRegion *MemRegion::getMemorySpace() const {
+ const MemRegion *R = this;
+ const SubRegion* SR = dyn_cast<SubRegion>(this);
+
+ while (SR) {
+ R = SR->getSuperRegion();
+ SR = dyn_cast<SubRegion>(R);
+ }
+
+ return dyn_cast<MemSpaceRegion>(R);
+}
+
+bool MemRegion::hasStackStorage() const {
+ return isa<StackSpaceRegion>(getMemorySpace());
+}
+
+bool MemRegion::hasStackNonParametersStorage() const {
+ return isa<StackLocalsSpaceRegion>(getMemorySpace());
+}
+
+bool MemRegion::hasStackParametersStorage() const {
+ return isa<StackArgumentsSpaceRegion>(getMemorySpace());
+}
+
+bool MemRegion::hasGlobalsOrParametersStorage() const {
+ const MemSpaceRegion *MS = getMemorySpace();
+ return isa<StackArgumentsSpaceRegion>(MS) ||
+ isa<GlobalsSpaceRegion>(MS);
+}
+
+// getBaseRegion strips away all elements and fields, and get the base region
+// of them.
+const MemRegion *MemRegion::getBaseRegion() const {
+ const MemRegion *R = this;
+ while (true) {
+ switch (R->getKind()) {
+ case MemRegion::ElementRegionKind:
+ case MemRegion::FieldRegionKind:
+ case MemRegion::ObjCIvarRegionKind:
+ case MemRegion::CXXBaseObjectRegionKind:
+ R = cast<SubRegion>(R)->getSuperRegion();
+ continue;
+ default:
+ break;
+ }
+ break;
+ }
+ return R;
+}
+
+//===----------------------------------------------------------------------===//
+// View handling.
+//===----------------------------------------------------------------------===//
+
+const MemRegion *MemRegion::StripCasts() const {
+ const MemRegion *R = this;
+ while (true) {
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ // FIXME: generalize. Essentially we want to strip away ElementRegions
+ // that were layered on a symbolic region because of casts. We only
+ // want to strip away ElementRegions, however, where the index is 0.
+ SVal index = ER->getIndex();
+ if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&index)) {
+ if (CI->getValue().getSExtValue() == 0) {
+ R = ER->getSuperRegion();
+ continue;
+ }
+ }
+ }
+ break;
+ }
+ return R;
+}
+
+// FIXME: Merge with the implementation of the same method in Store.cpp
+static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const RecordDecl *D = RT->getDecl();
+ if (!D->getDefinition())
+ return false;
+ }
+
+ return true;
+}
+
+RegionRawOffset ElementRegion::getAsArrayOffset() const {
+ CharUnits offset = CharUnits::Zero();
+ const ElementRegion *ER = this;
+ const MemRegion *superR = NULL;
+ ASTContext &C = getContext();
+
+ // FIXME: Handle multi-dimensional arrays.
+
+ while (ER) {
+ superR = ER->getSuperRegion();
+
+ // FIXME: generalize to symbolic offsets.
+ SVal index = ER->getIndex();
+ if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&index)) {
+ // Update the offset.
+ int64_t i = CI->getValue().getSExtValue();
+
+ if (i != 0) {
+ QualType elemType = ER->getElementType();
+
+ // If we are pointing to an incomplete type, go no further.
+ if (!IsCompleteType(C, elemType)) {
+ superR = ER;
+ break;
+ }
+
+ CharUnits size = C.getTypeSizeInChars(elemType);
+ offset += (i * size);
+ }
+
+ // Go to the next ElementRegion (if any).
+ ER = dyn_cast<ElementRegion>(superR);
+ continue;
+ }
+
+ return NULL;
+ }
+
+ assert(superR && "super region cannot be NULL");
+ return RegionRawOffset(superR, offset);
+}
+
+RegionOffset MemRegion::getAsOffset() const {
+ const MemRegion *R = this;
+ int64_t Offset = 0;
+
+ while (1) {
+ switch (R->getKind()) {
+ default:
+ return RegionOffset(0);
+ case SymbolicRegionKind:
+ case AllocaRegionKind:
+ case CompoundLiteralRegionKind:
+ case CXXThisRegionKind:
+ case StringRegionKind:
+ case VarRegionKind:
+ case CXXTempObjectRegionKind:
+ goto Finish;
+ case ElementRegionKind: {
+ const ElementRegion *ER = cast<ElementRegion>(R);
+ QualType EleTy = ER->getValueType();
+
+ if (!IsCompleteType(getContext(), EleTy))
+ return RegionOffset(0);
+
+ SVal Index = ER->getIndex();
+ if (const nonloc::ConcreteInt *CI=dyn_cast<nonloc::ConcreteInt>(&Index)) {
+ int64_t i = CI->getValue().getSExtValue();
+ CharUnits Size = getContext().getTypeSizeInChars(EleTy);
+ Offset += i * Size.getQuantity() * 8;
+ } else {
+ // We cannot compute offset for non-concrete index.
+ return RegionOffset(0);
+ }
+ R = ER->getSuperRegion();
+ break;
+ }
+ case FieldRegionKind: {
+ const FieldRegion *FR = cast<FieldRegion>(R);
+ const RecordDecl *RD = FR->getDecl()->getParent();
+ if (!RD->isCompleteDefinition())
+ // We cannot compute offset for incomplete type.
+ return RegionOffset(0);
+ // Get the field number.
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator FI = RD->field_begin(),
+ FE = RD->field_end(); FI != FE; ++FI, ++idx)
+ if (FR->getDecl() == *FI)
+ break;
+
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ // This is offset in bits.
+ Offset += Layout.getFieldOffset(idx);
+ R = FR->getSuperRegion();
+ break;
+ }
+ }
+ }
+
+ Finish:
+ return RegionOffset(R, Offset);
+}
+
+//===----------------------------------------------------------------------===//
+// BlockDataRegion
+//===----------------------------------------------------------------------===//
+
+void BlockDataRegion::LazyInitializeReferencedVars() {
+ if (ReferencedVars)
+ return;
+
+ AnalysisDeclContext *AC = getCodeRegion()->getAnalysisDeclContext();
+ AnalysisDeclContext::referenced_decls_iterator I, E;
+ llvm::tie(I, E) = AC->getReferencedBlockVars(BC->getDecl());
+
+ if (I == E) {
+ ReferencedVars = (void*) 0x1;
+ return;
+ }
+
+ MemRegionManager &MemMgr = *getMemRegionManager();
+ llvm::BumpPtrAllocator &A = MemMgr.getAllocator();
+ BumpVectorContext BC(A);
+
+ typedef BumpVector<const MemRegion*> VarVec;
+ VarVec *BV = (VarVec*) A.Allocate<VarVec>();
+ new (BV) VarVec(BC, E - I);
+
+ for ( ; I != E; ++I) {
+ const VarDecl *VD = *I;
+ const VarRegion *VR = 0;
+
+ if (!VD->getAttr<BlocksAttr>() && VD->hasLocalStorage())
+ VR = MemMgr.getVarRegion(VD, this);
+ else {
+ if (LC)
+ VR = MemMgr.getVarRegion(VD, LC);
+ else {
+ VR = MemMgr.getVarRegion(VD, MemMgr.getUnknownRegion());
+ }
+ }
+
+ assert(VR);
+ BV->push_back(VR, BC);
+ }
+
+ ReferencedVars = BV;
+}
+
+BlockDataRegion::referenced_vars_iterator
+BlockDataRegion::referenced_vars_begin() const {
+ const_cast<BlockDataRegion*>(this)->LazyInitializeReferencedVars();
+
+ BumpVector<const MemRegion*> *Vec =
+ static_cast<BumpVector<const MemRegion*>*>(ReferencedVars);
+
+ return BlockDataRegion::referenced_vars_iterator(Vec == (void*) 0x1 ?
+ NULL : Vec->begin());
+}
+
+BlockDataRegion::referenced_vars_iterator
+BlockDataRegion::referenced_vars_end() const {
+ const_cast<BlockDataRegion*>(this)->LazyInitializeReferencedVars();
+
+ BumpVector<const MemRegion*> *Vec =
+ static_cast<BumpVector<const MemRegion*>*>(ReferencedVars);
+
+ return BlockDataRegion::referenced_vars_iterator(Vec == (void*) 0x1 ?
+ NULL : Vec->end());
+}
diff --git a/clang/lib/StaticAnalyzer/Core/ObjCMessage.cpp b/clang/lib/StaticAnalyzer/Core/ObjCMessage.cpp
new file mode 100644
index 0000000..65cdcd9
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/ObjCMessage.cpp
@@ -0,0 +1,90 @@
+//===- ObjCMessage.cpp - Wrapper for ObjC messages and dot syntax -*- C++ -*--//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines ObjCMessage which serves as a common wrapper for ObjC
+// message expressions or implicit messages for loading/storing ObjC properties.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
+#include "clang/AST/DeclCXX.h"
+
+using namespace clang;
+using namespace ento;
+
+QualType CallOrObjCMessage::getResultType(ASTContext &ctx) const {
+ QualType resultTy;
+ bool isLVal = false;
+
+ if (isObjCMessage()) {
+ resultTy = Msg.getResultType(ctx);
+ } else if (const CXXConstructExpr *Ctor =
+ CallE.dyn_cast<const CXXConstructExpr *>()) {
+ resultTy = Ctor->getType();
+ } else {
+ const CallExpr *FunctionCall = CallE.get<const CallExpr *>();
+
+ isLVal = FunctionCall->isLValue();
+ const Expr *Callee = FunctionCall->getCallee();
+ if (const FunctionDecl *FD = State->getSVal(Callee, LCtx).getAsFunctionDecl())
+ resultTy = FD->getResultType();
+ else
+ resultTy = FunctionCall->getType();
+ }
+
+ if (isLVal)
+ resultTy = ctx.getPointerType(resultTy);
+
+ return resultTy;
+}
+
+SVal CallOrObjCMessage::getFunctionCallee() const {
+ assert(isFunctionCall());
+ assert(!isCXXCall());
+ const Expr *Fun = CallE.get<const CallExpr *>()->getCallee()->IgnoreParens();
+ return State->getSVal(Fun, LCtx);
+}
+
+SVal CallOrObjCMessage::getCXXCallee() const {
+ assert(isCXXCall());
+ const CallExpr *ActualCall = CallE.get<const CallExpr *>();
+ const Expr *callee =
+ cast<CXXMemberCallExpr>(ActualCall)->getImplicitObjectArgument();
+
+ // FIXME: Will eventually need to cope with member pointers. This is
+ // a limitation in getImplicitObjectArgument().
+ if (!callee)
+ return UnknownVal();
+
+ return State->getSVal(callee, LCtx);
+}
+
+SVal
+CallOrObjCMessage::getInstanceMessageReceiver(const LocationContext *LC) const {
+ assert(isObjCMessage());
+ return Msg.getInstanceReceiverSVal(State, LC);
+}
+
+const Decl *CallOrObjCMessage::getDecl() const {
+ if (isCXXCall()) {
+ const CXXMemberCallExpr *CE =
+ cast<CXXMemberCallExpr>(CallE.dyn_cast<const CallExpr *>());
+ assert(CE);
+ return CE->getMethodDecl();
+ } else if (isObjCMessage()) {
+ return Msg.getMethodDecl();
+ } else if (isFunctionCall()) {
+ // In case of a C style call, use the path sensitive information to find
+ // the function declaration.
+ SVal CalleeVal = getFunctionCallee();
+ return CalleeVal.getAsFunctionDecl();
+ }
+ return 0;
+}
+
diff --git a/clang/lib/StaticAnalyzer/Core/PathDiagnostic.cpp b/clang/lib/StaticAnalyzer/Core/PathDiagnostic.cpp
new file mode 100644
index 0000000..01dd965
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/PathDiagnostic.cpp
@@ -0,0 +1,755 @@
+//===--- PathDiagnostic.cpp - Path-Specific Diagnostic Handling -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the PathDiagnostic-related interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/AST/StmtCXX.h"
+#include "llvm/ADT/SmallString.h"
+
+using namespace clang;
+using namespace ento;
+
+bool PathDiagnosticMacroPiece::containsEvent() const {
+ for (PathPieces::const_iterator I = subPieces.begin(), E = subPieces.end();
+ I!=E; ++I) {
+ if (isa<PathDiagnosticEventPiece>(*I))
+ return true;
+ if (PathDiagnosticMacroPiece *MP = dyn_cast<PathDiagnosticMacroPiece>(*I))
+ if (MP->containsEvent())
+ return true;
+ }
+ return false;
+}
+
+static StringRef StripTrailingDots(StringRef s) {
+ for (StringRef::size_type i = s.size(); i != 0; --i)
+ if (s[i - 1] != '.')
+ return s.substr(0, i);
+ return "";
+}
+
+PathDiagnosticPiece::PathDiagnosticPiece(StringRef s,
+ Kind k, DisplayHint hint)
+ : str(StripTrailingDots(s)), kind(k), Hint(hint) {}
+
+PathDiagnosticPiece::PathDiagnosticPiece(Kind k, DisplayHint hint)
+ : kind(k), Hint(hint) {}
+
+PathDiagnosticPiece::~PathDiagnosticPiece() {}
+PathDiagnosticEventPiece::~PathDiagnosticEventPiece() {}
+PathDiagnosticCallPiece::~PathDiagnosticCallPiece() {}
+PathDiagnosticControlFlowPiece::~PathDiagnosticControlFlowPiece() {}
+PathDiagnosticMacroPiece::~PathDiagnosticMacroPiece() {}
+
+
+PathPieces::~PathPieces() {}
+PathDiagnostic::~PathDiagnostic() {}
+
+PathDiagnostic::PathDiagnostic(const Decl *declWithIssue,
+ StringRef bugtype, StringRef desc,
+ StringRef category)
+ : DeclWithIssue(declWithIssue),
+ BugType(StripTrailingDots(bugtype)),
+ Desc(StripTrailingDots(desc)),
+ Category(StripTrailingDots(category)),
+ path(pathImpl) {}
+
+void PathDiagnosticConsumer::anchor() { }
+
+PathDiagnosticConsumer::~PathDiagnosticConsumer() {
+ // Delete the contents of the FoldingSet if it isn't empty already.
+ for (llvm::FoldingSet<PathDiagnostic>::iterator it =
+ Diags.begin(), et = Diags.end() ; it != et ; ++it) {
+ delete &*it;
+ }
+}
+
+void PathDiagnosticConsumer::HandlePathDiagnostic(PathDiagnostic *D) {
+ llvm::OwningPtr<PathDiagnostic> OwningD(D);
+
+ if (!D || D->path.empty())
+ return;
+
+ // We need to flatten the locations (convert Stmt* to locations) because
+ // the referenced statements may be freed by the time the diagnostics
+ // are emitted.
+ D->flattenLocations();
+
+ // If the PathDiagnosticConsumer does not support diagnostics that
+ // cross file boundaries, prune out such diagnostics now.
+ if (!supportsCrossFileDiagnostics()) {
+ // Verify that the entire path is from the same FileID.
+ FileID FID;
+ const SourceManager &SMgr = (*D->path.begin())->getLocation().getManager();
+ llvm::SmallVector<const PathPieces *, 5> WorkList;
+ WorkList.push_back(&D->path);
+
+ while (!WorkList.empty()) {
+ const PathPieces &path = *WorkList.back();
+ WorkList.pop_back();
+
+ for (PathPieces::const_iterator I = path.begin(), E = path.end();
+ I != E; ++I) {
+ const PathDiagnosticPiece *piece = I->getPtr();
+ FullSourceLoc L = piece->getLocation().asLocation().getExpansionLoc();
+
+ if (FID.isInvalid()) {
+ FID = SMgr.getFileID(L);
+ } else if (SMgr.getFileID(L) != FID)
+ return; // FIXME: Emit a warning?
+
+ // Check the source ranges.
+ for (PathDiagnosticPiece::range_iterator RI = piece->ranges_begin(),
+ RE = piece->ranges_end();
+ RI != RE; ++RI) {
+ SourceLocation L = SMgr.getExpansionLoc(RI->getBegin());
+ if (!L.isFileID() || SMgr.getFileID(L) != FID)
+ return; // FIXME: Emit a warning?
+ L = SMgr.getExpansionLoc(RI->getEnd());
+ if (!L.isFileID() || SMgr.getFileID(L) != FID)
+ return; // FIXME: Emit a warning?
+ }
+
+ if (const PathDiagnosticCallPiece *call =
+ dyn_cast<PathDiagnosticCallPiece>(piece)) {
+ WorkList.push_back(&call->path);
+ }
+ else if (const PathDiagnosticMacroPiece *macro =
+ dyn_cast<PathDiagnosticMacroPiece>(piece)) {
+ WorkList.push_back(&macro->subPieces);
+ }
+ }
+ }
+
+ if (FID.isInvalid())
+ return; // FIXME: Emit a warning?
+ }
+
+ // Profile the node to see if we already have something matching it
+ llvm::FoldingSetNodeID profile;
+ D->Profile(profile);
+ void *InsertPos = 0;
+
+ if (PathDiagnostic *orig = Diags.FindNodeOrInsertPos(profile, InsertPos)) {
+ // Keep the PathDiagnostic with the shorter path.
+ const unsigned orig_size = orig->full_size();
+ const unsigned new_size = D->full_size();
+
+ if (orig_size <= new_size) {
+ bool shouldKeepOriginal = true;
+ if (orig_size == new_size) {
+ // Here we break ties in a fairly arbitrary, but deterministic, way.
+ llvm::FoldingSetNodeID fullProfile, fullProfileOrig;
+ D->FullProfile(fullProfile);
+ orig->FullProfile(fullProfileOrig);
+ if (fullProfile.ComputeHash() < fullProfileOrig.ComputeHash())
+ shouldKeepOriginal = false;
+ }
+
+ if (shouldKeepOriginal)
+ return;
+ }
+ Diags.RemoveNode(orig);
+ delete orig;
+ }
+
+ Diags.InsertNode(OwningD.take());
+}
+
+
+namespace {
+struct CompareDiagnostics {
+ // Compare if 'X' is "<" than 'Y'.
+ bool operator()(const PathDiagnostic *X, const PathDiagnostic *Y) const {
+ // First compare by location
+ const FullSourceLoc &XLoc = X->getLocation().asLocation();
+ const FullSourceLoc &YLoc = Y->getLocation().asLocation();
+ if (XLoc < YLoc)
+ return true;
+ if (XLoc != YLoc)
+ return false;
+
+ // Next, compare by bug type.
+ StringRef XBugType = X->getBugType();
+ StringRef YBugType = Y->getBugType();
+ if (XBugType < YBugType)
+ return true;
+ if (XBugType != YBugType)
+ return false;
+
+ // Next, compare by bug description.
+ StringRef XDesc = X->getDescription();
+ StringRef YDesc = Y->getDescription();
+ if (XDesc < YDesc)
+ return true;
+ if (XDesc != YDesc)
+ return false;
+
+ // FIXME: Further refine by comparing PathDiagnosticPieces?
+ return false;
+ }
+};
+}
+
+void
+PathDiagnosticConsumer::FlushDiagnostics(SmallVectorImpl<std::string> *Files) {
+ if (flushed)
+ return;
+
+ flushed = true;
+
+ std::vector<const PathDiagnostic *> BatchDiags;
+ for (llvm::FoldingSet<PathDiagnostic>::iterator it = Diags.begin(),
+ et = Diags.end(); it != et; ++it) {
+ BatchDiags.push_back(&*it);
+ }
+
+ // Clear out the FoldingSet.
+ Diags.clear();
+
+ // Sort the diagnostics so that they are always emitted in a deterministic
+ // order.
+ if (!BatchDiags.empty())
+ std::sort(BatchDiags.begin(), BatchDiags.end(), CompareDiagnostics());
+
+ FlushDiagnosticsImpl(BatchDiags, Files);
+
+ // Delete the flushed diagnostics.
+ for (std::vector<const PathDiagnostic *>::iterator it = BatchDiags.begin(),
+ et = BatchDiags.end(); it != et; ++it) {
+ const PathDiagnostic *D = *it;
+ delete D;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// PathDiagnosticLocation methods.
+//===----------------------------------------------------------------------===//
+
+static SourceLocation getValidSourceLocation(const Stmt* S,
+ LocationOrAnalysisDeclContext LAC) {
+ SourceLocation L = S->getLocStart();
+ assert(!LAC.isNull() && "A valid LocationContext or AnalysisDeclContext should "
+ "be passed to PathDiagnosticLocation upon creation.");
+
+ // S might be a temporary statement that does not have a location in the
+ // source code, so find an enclosing statement and use it's location.
+ if (!L.isValid()) {
+
+ ParentMap *PM = 0;
+ if (LAC.is<const LocationContext*>())
+ PM = &LAC.get<const LocationContext*>()->getParentMap();
+ else
+ PM = &LAC.get<AnalysisDeclContext*>()->getParentMap();
+
+ while (!L.isValid()) {
+ S = PM->getParent(S);
+ L = S->getLocStart();
+ }
+ }
+
+ return L;
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createBegin(const Decl *D,
+ const SourceManager &SM) {
+ return PathDiagnosticLocation(D->getLocStart(), SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createBegin(const Stmt *S,
+ const SourceManager &SM,
+ LocationOrAnalysisDeclContext LAC) {
+ return PathDiagnosticLocation(getValidSourceLocation(S, LAC),
+ SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createOperatorLoc(const BinaryOperator *BO,
+ const SourceManager &SM) {
+ return PathDiagnosticLocation(BO->getOperatorLoc(), SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createMemberLoc(const MemberExpr *ME,
+ const SourceManager &SM) {
+ return PathDiagnosticLocation(ME->getMemberLoc(), SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createBeginBrace(const CompoundStmt *CS,
+ const SourceManager &SM) {
+ SourceLocation L = CS->getLBracLoc();
+ return PathDiagnosticLocation(L, SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createEndBrace(const CompoundStmt *CS,
+ const SourceManager &SM) {
+ SourceLocation L = CS->getRBracLoc();
+ return PathDiagnosticLocation(L, SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createDeclBegin(const LocationContext *LC,
+ const SourceManager &SM) {
+ // FIXME: Should handle CXXTryStmt if analyser starts supporting C++.
+ if (const CompoundStmt *CS =
+ dyn_cast_or_null<CompoundStmt>(LC->getDecl()->getBody()))
+ if (!CS->body_empty()) {
+ SourceLocation Loc = (*CS->body_begin())->getLocStart();
+ return PathDiagnosticLocation(Loc, SM, SingleLocK);
+ }
+
+ return PathDiagnosticLocation();
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createDeclEnd(const LocationContext *LC,
+ const SourceManager &SM) {
+ SourceLocation L = LC->getDecl()->getBodyRBrace();
+ return PathDiagnosticLocation(L, SM, SingleLocK);
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::create(const ProgramPoint& P,
+ const SourceManager &SMng) {
+
+ const Stmt* S = 0;
+ if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
+ const CFGBlock *BSrc = BE->getSrc();
+ S = BSrc->getTerminatorCondition();
+ }
+ else if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) {
+ S = PS->getStmt();
+ }
+
+ return PathDiagnosticLocation(S, SMng, P.getLocationContext());
+}
+
+PathDiagnosticLocation
+ PathDiagnosticLocation::createEndOfPath(const ExplodedNode* N,
+ const SourceManager &SM) {
+ assert(N && "Cannot create a location with a null node.");
+
+ const ExplodedNode *NI = N;
+
+ while (NI) {
+ ProgramPoint P = NI->getLocation();
+ const LocationContext *LC = P.getLocationContext();
+ if (const StmtPoint *PS = dyn_cast<StmtPoint>(&P))
+ return PathDiagnosticLocation(PS->getStmt(), SM, LC);
+ else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
+ const Stmt *Term = BE->getSrc()->getTerminator();
+ if (Term) {
+ return PathDiagnosticLocation(Term, SM, LC);
+ }
+ }
+ NI = NI->succ_empty() ? 0 : *(NI->succ_begin());
+ }
+
+ return createDeclEnd(N->getLocationContext(), SM);
+}
+
+PathDiagnosticLocation PathDiagnosticLocation::createSingleLocation(
+ const PathDiagnosticLocation &PDL) {
+ FullSourceLoc L = PDL.asLocation();
+ return PathDiagnosticLocation(L, L.getManager(), SingleLocK);
+}
+
+FullSourceLoc
+ PathDiagnosticLocation::genLocation(SourceLocation L,
+ LocationOrAnalysisDeclContext LAC) const {
+ assert(isValid());
+ // Note that we want a 'switch' here so that the compiler can warn us in
+ // case we add more cases.
+ switch (K) {
+ case SingleLocK:
+ case RangeK:
+ break;
+ case StmtK:
+ // Defensive checking.
+ if (!S)
+ break;
+ return FullSourceLoc(getValidSourceLocation(S, LAC),
+ const_cast<SourceManager&>(*SM));
+ case DeclK:
+ // Defensive checking.
+ if (!D)
+ break;
+ return FullSourceLoc(D->getLocation(), const_cast<SourceManager&>(*SM));
+ }
+
+ return FullSourceLoc(L, const_cast<SourceManager&>(*SM));
+}
+
+PathDiagnosticRange
+ PathDiagnosticLocation::genRange(LocationOrAnalysisDeclContext LAC) const {
+ assert(isValid());
+ // Note that we want a 'switch' here so that the compiler can warn us in
+ // case we add more cases.
+ switch (K) {
+ case SingleLocK:
+ return PathDiagnosticRange(SourceRange(Loc,Loc), true);
+ case RangeK:
+ break;
+ case StmtK: {
+ const Stmt *S = asStmt();
+ switch (S->getStmtClass()) {
+ default:
+ break;
+ case Stmt::DeclStmtClass: {
+ const DeclStmt *DS = cast<DeclStmt>(S);
+ if (DS->isSingleDecl()) {
+ // Should always be the case, but we'll be defensive.
+ return SourceRange(DS->getLocStart(),
+ DS->getSingleDecl()->getLocation());
+ }
+ break;
+ }
+ // FIXME: Provide better range information for different
+ // terminators.
+ case Stmt::IfStmtClass:
+ case Stmt::WhileStmtClass:
+ case Stmt::DoStmtClass:
+ case Stmt::ForStmtClass:
+ case Stmt::ChooseExprClass:
+ case Stmt::IndirectGotoStmtClass:
+ case Stmt::SwitchStmtClass:
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ case Stmt::ObjCForCollectionStmtClass: {
+ SourceLocation L = getValidSourceLocation(S, LAC);
+ return SourceRange(L, L);
+ }
+ }
+ SourceRange R = S->getSourceRange();
+ if (R.isValid())
+ return R;
+ break;
+ }
+ case DeclK:
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
+ return MD->getSourceRange();
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (Stmt *Body = FD->getBody())
+ return Body->getSourceRange();
+ }
+ else {
+ SourceLocation L = D->getLocation();
+ return PathDiagnosticRange(SourceRange(L, L), true);
+ }
+ }
+
+ return SourceRange(Loc,Loc);
+}
+
+void PathDiagnosticLocation::flatten() {
+ if (K == StmtK) {
+ K = RangeK;
+ S = 0;
+ D = 0;
+ }
+ else if (K == DeclK) {
+ K = SingleLocK;
+ S = 0;
+ D = 0;
+ }
+}
+
+PathDiagnosticLocation PathDiagnostic::getLocation() const {
+ assert(path.size() > 0 &&
+ "getLocation() requires a non-empty PathDiagnostic.");
+
+ PathDiagnosticPiece *p = path.rbegin()->getPtr();
+
+ while (true) {
+ if (PathDiagnosticCallPiece *cp = dyn_cast<PathDiagnosticCallPiece>(p)) {
+ assert(!cp->path.empty());
+ p = cp->path.rbegin()->getPtr();
+ continue;
+ }
+ break;
+ }
+
+ return p->getLocation();
+}
+
+//===----------------------------------------------------------------------===//
+// Manipulation of PathDiagnosticCallPieces.
+//===----------------------------------------------------------------------===//
+
+static PathDiagnosticLocation getLastStmtLoc(const ExplodedNode *N,
+ const SourceManager &SM) {
+ while (N) {
+ ProgramPoint PP = N->getLocation();
+ if (const StmtPoint *SP = dyn_cast<StmtPoint>(&PP))
+ return PathDiagnosticLocation(SP->getStmt(), SM, PP.getLocationContext());
+ if (N->pred_empty())
+ break;
+ N = *N->pred_begin();
+ }
+ return PathDiagnosticLocation();
+}
+
+PathDiagnosticCallPiece *
+PathDiagnosticCallPiece::construct(const ExplodedNode *N,
+ const CallExit &CE,
+ const SourceManager &SM) {
+ const Decl *caller = CE.getLocationContext()->getParent()->getDecl();
+ PathDiagnosticLocation pos = getLastStmtLoc(N, SM);
+ return new PathDiagnosticCallPiece(caller, pos);
+}
+
+PathDiagnosticCallPiece *
+PathDiagnosticCallPiece::construct(PathPieces &path,
+ const Decl *caller) {
+ PathDiagnosticCallPiece *C = new PathDiagnosticCallPiece(path, caller);
+ path.clear();
+ path.push_front(C);
+ return C;
+}
+
+void PathDiagnosticCallPiece::setCallee(const CallEnter &CE,
+ const SourceManager &SM) {
+ const Decl *D = CE.getCalleeContext()->getDecl();
+ Callee = D;
+ callEnter = PathDiagnosticLocation(CE.getCallExpr(), SM,
+ CE.getLocationContext());
+ callEnterWithin = PathDiagnosticLocation::createBegin(D, SM);
+}
+
+IntrusiveRefCntPtr<PathDiagnosticEventPiece>
+PathDiagnosticCallPiece::getCallEnterEvent() const {
+ if (!Callee)
+ return 0;
+ SmallString<256> buf;
+ llvm::raw_svector_ostream Out(buf);
+ if (isa<BlockDecl>(Callee))
+ Out << "Calling anonymous block";
+ else if (const NamedDecl *ND = dyn_cast<NamedDecl>(Callee))
+ Out << "Calling '" << *ND << "'";
+ StringRef msg = Out.str();
+ if (msg.empty())
+ return 0;
+ return new PathDiagnosticEventPiece(callEnter, msg);
+}
+
+IntrusiveRefCntPtr<PathDiagnosticEventPiece>
+PathDiagnosticCallPiece::getCallEnterWithinCallerEvent() const {
+ SmallString<256> buf;
+ llvm::raw_svector_ostream Out(buf);
+ if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Caller))
+ Out << "Entered call from '" << *ND << "'";
+ else
+ Out << "Entered call";
+ StringRef msg = Out.str();
+ if (msg.empty())
+ return 0;
+ return new PathDiagnosticEventPiece(callEnterWithin, msg);
+}
+
+IntrusiveRefCntPtr<PathDiagnosticEventPiece>
+PathDiagnosticCallPiece::getCallExitEvent() const {
+ if (NoExit)
+ return 0;
+ SmallString<256> buf;
+ llvm::raw_svector_ostream Out(buf);
+ if (!CallStackMessage.empty())
+ Out << CallStackMessage;
+ else if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Callee))
+ Out << "Returning from '" << *ND << "'";
+ else
+ Out << "Returning to caller";
+ return new PathDiagnosticEventPiece(callReturn, Out.str());
+}
+
+static void compute_path_size(const PathPieces &pieces, unsigned &size) {
+ for (PathPieces::const_iterator it = pieces.begin(),
+ et = pieces.end(); it != et; ++it) {
+ const PathDiagnosticPiece *piece = it->getPtr();
+ if (const PathDiagnosticCallPiece *cp =
+ dyn_cast<PathDiagnosticCallPiece>(piece)) {
+ compute_path_size(cp->path, size);
+ }
+ else
+ ++size;
+ }
+}
+
+unsigned PathDiagnostic::full_size() {
+ unsigned size = 0;
+ compute_path_size(path, size);
+ return size;
+}
+
+//===----------------------------------------------------------------------===//
+// FoldingSet profiling methods.
+//===----------------------------------------------------------------------===//
+
+void PathDiagnosticLocation::Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(Range.getBegin().getRawEncoding());
+ ID.AddInteger(Range.getEnd().getRawEncoding());
+ ID.AddInteger(Loc.getRawEncoding());
+ return;
+}
+
+void PathDiagnosticPiece::Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger((unsigned) getKind());
+ ID.AddString(str);
+ // FIXME: Add profiling support for code hints.
+ ID.AddInteger((unsigned) getDisplayHint());
+ for (range_iterator I = ranges_begin(), E = ranges_end(); I != E; ++I) {
+ ID.AddInteger(I->getBegin().getRawEncoding());
+ ID.AddInteger(I->getEnd().getRawEncoding());
+ }
+}
+
+void PathDiagnosticCallPiece::Profile(llvm::FoldingSetNodeID &ID) const {
+ PathDiagnosticPiece::Profile(ID);
+ for (PathPieces::const_iterator it = path.begin(),
+ et = path.end(); it != et; ++it) {
+ ID.Add(**it);
+ }
+}
+
+void PathDiagnosticSpotPiece::Profile(llvm::FoldingSetNodeID &ID) const {
+ PathDiagnosticPiece::Profile(ID);
+ ID.Add(Pos);
+}
+
+void PathDiagnosticControlFlowPiece::Profile(llvm::FoldingSetNodeID &ID) const {
+ PathDiagnosticPiece::Profile(ID);
+ for (const_iterator I = begin(), E = end(); I != E; ++I)
+ ID.Add(*I);
+}
+
+void PathDiagnosticMacroPiece::Profile(llvm::FoldingSetNodeID &ID) const {
+ PathDiagnosticSpotPiece::Profile(ID);
+ for (PathPieces::const_iterator I = subPieces.begin(), E = subPieces.end();
+ I != E; ++I)
+ ID.Add(**I);
+}
+
+void PathDiagnostic::Profile(llvm::FoldingSetNodeID &ID) const {
+ if (!path.empty())
+ getLocation().Profile(ID);
+ ID.AddString(BugType);
+ ID.AddString(Desc);
+ ID.AddString(Category);
+}
+
+void PathDiagnostic::FullProfile(llvm::FoldingSetNodeID &ID) const {
+ Profile(ID);
+ for (PathPieces::const_iterator I = path.begin(), E = path.end(); I != E; ++I)
+ ID.Add(**I);
+ for (meta_iterator I = meta_begin(), E = meta_end(); I != E; ++I)
+ ID.AddString(*I);
+}
+
+StackHintGenerator::~StackHintGenerator() {}
+
+std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
+ ProgramPoint P = N->getLocation();
+ const CallExit *CExit = dyn_cast<CallExit>(&P);
+ assert(CExit && "Stack Hints should be constructed at CallExit points.");
+
+ const CallExpr *CE = dyn_cast_or_null<CallExpr>(CExit->getStmt());
+ if (!CE)
+ return "";
+
+ // Get the successor node to make sure the return statement is evaluated and
+ // CE is set to the result value.
+ N = *N->succ_begin();
+ if (!N)
+ return getMessageForSymbolNotFound();
+
+ // Check if one of the parameters are set to the interesting symbol.
+ ProgramStateRef State = N->getState();
+ const LocationContext *LCtx = N->getLocationContext();
+ unsigned ArgIndex = 0;
+ for (CallExpr::const_arg_iterator I = CE->arg_begin(),
+ E = CE->arg_end(); I != E; ++I, ++ArgIndex){
+ SVal SV = State->getSVal(*I, LCtx);
+
+ // Check if the variable corresponding to the symbol is passed by value.
+ SymbolRef AS = SV.getAsLocSymbol();
+ if (AS == Sym) {
+ return getMessageForArg(*I, ArgIndex);
+ }
+
+ // Check if the parameter is a pointer to the symbol.
+ if (const loc::MemRegionVal *Reg = dyn_cast<loc::MemRegionVal>(&SV)) {
+ SVal PSV = State->getSVal(Reg->getRegion());
+ SymbolRef AS = PSV.getAsLocSymbol();
+ if (AS == Sym) {
+ return getMessageForArg(*I, ArgIndex);
+ }
+ }
+ }
+
+ // Check if we are returning the interesting symbol.
+ SVal SV = State->getSVal(CE, LCtx);
+ SymbolRef RetSym = SV.getAsLocSymbol();
+ if (RetSym == Sym) {
+ return getMessageForReturn(CE);
+ }
+
+ return getMessageForSymbolNotFound();
+}
+
+/// TODO: This is copied from clang diagnostics. Maybe we could just move it to
+/// some common place. (Same as HandleOrdinalModifier.)
+void StackHintGeneratorForSymbol::printOrdinal(unsigned ValNo,
+ llvm::raw_svector_ostream &Out) {
+ assert(ValNo != 0 && "ValNo must be strictly positive!");
+
+ // We could use text forms for the first N ordinals, but the numeric
+ // forms are actually nicer in diagnostics because they stand out.
+ Out << ValNo;
+
+ // It is critically important that we do this perfectly for
+ // user-written sequences with over 100 elements.
+ switch (ValNo % 100) {
+ case 11:
+ case 12:
+ case 13:
+ Out << "th"; return;
+ default:
+ switch (ValNo % 10) {
+ case 1: Out << "st"; return;
+ case 2: Out << "nd"; return;
+ case 3: Out << "rd"; return;
+ default: Out << "th"; return;
+ }
+ }
+}
+
+std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
+ unsigned ArgIndex) {
+ SmallString<200> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ os << Msg << " via ";
+ // Printed parameters start at 1, not 0.
+ printOrdinal(++ArgIndex, os);
+ os << " parameter";
+
+ return os.str();
+}
diff --git a/clang/lib/StaticAnalyzer/Core/PlistDiagnostics.cpp b/clang/lib/StaticAnalyzer/Core/PlistDiagnostics.cpp
new file mode 100644
index 0000000..323cede
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/PlistDiagnostics.cpp
@@ -0,0 +1,513 @@
+//===--- PlistDiagnostics.cpp - Plist Diagnostics for Paths -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the PlistDiagnostics object.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathDiagnosticConsumers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+using namespace clang;
+using namespace ento;
+
+typedef llvm::DenseMap<FileID, unsigned> FIDMap;
+
+
+namespace {
+ class PlistDiagnostics : public PathDiagnosticConsumer {
+ const std::string OutputFile;
+ const LangOptions &LangOpts;
+ OwningPtr<PathDiagnosticConsumer> SubPD;
+ bool flushed;
+ const bool SupportsCrossFileDiagnostics;
+ public:
+ PlistDiagnostics(const std::string& prefix, const LangOptions &LangOpts,
+ bool supportsMultipleFiles,
+ PathDiagnosticConsumer *subPD);
+
+ virtual ~PlistDiagnostics() {}
+
+ void FlushDiagnosticsImpl(std::vector<const PathDiagnostic *> &Diags,
+ SmallVectorImpl<std::string> *FilesMade);
+
+ virtual StringRef getName() const {
+ return "PlistDiagnostics";
+ }
+
+ PathGenerationScheme getGenerationScheme() const;
+ bool supportsLogicalOpControlFlow() const { return true; }
+ bool supportsAllBlockEdges() const { return true; }
+ virtual bool useVerboseDescription() const { return false; }
+ virtual bool supportsCrossFileDiagnostics() const {
+ return SupportsCrossFileDiagnostics;
+ }
+ };
+} // end anonymous namespace
+
+PlistDiagnostics::PlistDiagnostics(const std::string& output,
+ const LangOptions &LO,
+ bool supportsMultipleFiles,
+ PathDiagnosticConsumer *subPD)
+ : OutputFile(output), LangOpts(LO), SubPD(subPD), flushed(false),
+ SupportsCrossFileDiagnostics(supportsMultipleFiles) {}
+
+PathDiagnosticConsumer*
+ento::createPlistDiagnosticConsumer(const std::string& s, const Preprocessor &PP,
+ PathDiagnosticConsumer *subPD) {
+ return new PlistDiagnostics(s, PP.getLangOpts(), false, subPD);
+}
+
+PathDiagnosticConsumer*
+ento::createPlistMultiFileDiagnosticConsumer(const std::string &s,
+ const Preprocessor &PP) {
+ return new PlistDiagnostics(s, PP.getLangOpts(), true, 0);
+}
+
+PathDiagnosticConsumer::PathGenerationScheme
+PlistDiagnostics::getGenerationScheme() const {
+ if (const PathDiagnosticConsumer *PD = SubPD.get())
+ return PD->getGenerationScheme();
+
+ return Extensive;
+}
+
+static void AddFID(FIDMap &FIDs, SmallVectorImpl<FileID> &V,
+ const SourceManager* SM, SourceLocation L) {
+
+ FileID FID = SM->getFileID(SM->getExpansionLoc(L));
+ FIDMap::iterator I = FIDs.find(FID);
+ if (I != FIDs.end()) return;
+ FIDs[FID] = V.size();
+ V.push_back(FID);
+}
+
+static unsigned GetFID(const FIDMap& FIDs, const SourceManager &SM,
+ SourceLocation L) {
+ FileID FID = SM.getFileID(SM.getExpansionLoc(L));
+ FIDMap::const_iterator I = FIDs.find(FID);
+ assert(I != FIDs.end());
+ return I->second;
+}
+
+static raw_ostream &Indent(raw_ostream &o, const unsigned indent) {
+ for (unsigned i = 0; i < indent; ++i) o << ' ';
+ return o;
+}
+
+static void EmitLocation(raw_ostream &o, const SourceManager &SM,
+ const LangOptions &LangOpts,
+ SourceLocation L, const FIDMap &FM,
+ unsigned indent, bool extend = false) {
+
+ FullSourceLoc Loc(SM.getExpansionLoc(L), const_cast<SourceManager&>(SM));
+
+ // Add in the length of the token, so that we cover multi-char tokens.
+ unsigned offset =
+ extend ? Lexer::MeasureTokenLength(Loc, SM, LangOpts) - 1 : 0;
+
+ Indent(o, indent) << "<dict>\n";
+ Indent(o, indent) << " <key>line</key><integer>"
+ << Loc.getExpansionLineNumber() << "</integer>\n";
+ Indent(o, indent) << " <key>col</key><integer>"
+ << Loc.getExpansionColumnNumber() + offset << "</integer>\n";
+ Indent(o, indent) << " <key>file</key><integer>"
+ << GetFID(FM, SM, Loc) << "</integer>\n";
+ Indent(o, indent) << "</dict>\n";
+}
+
+static void EmitLocation(raw_ostream &o, const SourceManager &SM,
+ const LangOptions &LangOpts,
+ const PathDiagnosticLocation &L, const FIDMap& FM,
+ unsigned indent, bool extend = false) {
+ EmitLocation(o, SM, LangOpts, L.asLocation(), FM, indent, extend);
+}
+
+static void EmitRange(raw_ostream &o, const SourceManager &SM,
+ const LangOptions &LangOpts,
+ PathDiagnosticRange R, const FIDMap &FM,
+ unsigned indent) {
+ Indent(o, indent) << "<array>\n";
+ EmitLocation(o, SM, LangOpts, R.getBegin(), FM, indent+1);
+ EmitLocation(o, SM, LangOpts, R.getEnd(), FM, indent+1, !R.isPoint);
+ Indent(o, indent) << "</array>\n";
+}
+
+static raw_ostream &EmitString(raw_ostream &o, StringRef s) {
+ o << "<string>";
+ for (StringRef::const_iterator I = s.begin(), E = s.end(); I != E; ++I) {
+ char c = *I;
+ switch (c) {
+ default: o << c; break;
+ case '&': o << "&amp;"; break;
+ case '<': o << "&lt;"; break;
+ case '>': o << "&gt;"; break;
+ case '\'': o << "&apos;"; break;
+ case '\"': o << "&quot;"; break;
+ }
+ }
+ o << "</string>";
+ return o;
+}
+
+static void ReportControlFlow(raw_ostream &o,
+ const PathDiagnosticControlFlowPiece& P,
+ const FIDMap& FM,
+ const SourceManager &SM,
+ const LangOptions &LangOpts,
+ unsigned indent) {
+
+ Indent(o, indent) << "<dict>\n";
+ ++indent;
+
+ Indent(o, indent) << "<key>kind</key><string>control</string>\n";
+
+ // Emit edges.
+ Indent(o, indent) << "<key>edges</key>\n";
+ ++indent;
+ Indent(o, indent) << "<array>\n";
+ ++indent;
+ for (PathDiagnosticControlFlowPiece::const_iterator I=P.begin(), E=P.end();
+ I!=E; ++I) {
+ Indent(o, indent) << "<dict>\n";
+ ++indent;
+ Indent(o, indent) << "<key>start</key>\n";
+ EmitRange(o, SM, LangOpts, I->getStart().asRange(), FM, indent+1);
+ Indent(o, indent) << "<key>end</key>\n";
+ EmitRange(o, SM, LangOpts, I->getEnd().asRange(), FM, indent+1);
+ --indent;
+ Indent(o, indent) << "</dict>\n";
+ }
+ --indent;
+ Indent(o, indent) << "</array>\n";
+ --indent;
+
+ // Output any helper text.
+ const std::string& s = P.getString();
+ if (!s.empty()) {
+ Indent(o, indent) << "<key>alternate</key>";
+ EmitString(o, s) << '\n';
+ }
+
+ --indent;
+ Indent(o, indent) << "</dict>\n";
+}
+
+static void ReportEvent(raw_ostream &o, const PathDiagnosticPiece& P,
+ const FIDMap& FM,
+ const SourceManager &SM,
+ const LangOptions &LangOpts,
+ unsigned indent,
+ unsigned depth) {
+
+ Indent(o, indent) << "<dict>\n";
+ ++indent;
+
+ Indent(o, indent) << "<key>kind</key><string>event</string>\n";
+
+ // Output the location.
+ FullSourceLoc L = P.getLocation().asLocation();
+
+ Indent(o, indent) << "<key>location</key>\n";
+ EmitLocation(o, SM, LangOpts, L, FM, indent);
+
+ // Output the ranges (if any).
+ PathDiagnosticPiece::range_iterator RI = P.ranges_begin(),
+ RE = P.ranges_end();
+
+ if (RI != RE) {
+ Indent(o, indent) << "<key>ranges</key>\n";
+ Indent(o, indent) << "<array>\n";
+ ++indent;
+ for (; RI != RE; ++RI)
+ EmitRange(o, SM, LangOpts, *RI, FM, indent+1);
+ --indent;
+ Indent(o, indent) << "</array>\n";
+ }
+
+ // Output the call depth.
+ Indent(o, indent) << "<key>depth</key>"
+ << "<integer>" << depth << "</integer>\n";
+
+ // Output the text.
+ assert(!P.getString().empty());
+ Indent(o, indent) << "<key>extended_message</key>\n";
+ Indent(o, indent);
+ EmitString(o, P.getString()) << '\n';
+
+ // Output the short text.
+ // FIXME: Really use a short string.
+ Indent(o, indent) << "<key>message</key>\n";
+ EmitString(o, P.getString()) << '\n';
+
+ // Finish up.
+ --indent;
+ Indent(o, indent); o << "</dict>\n";
+}
+
+static void ReportPiece(raw_ostream &o,
+ const PathDiagnosticPiece &P,
+ const FIDMap& FM, const SourceManager &SM,
+ const LangOptions &LangOpts,
+ unsigned indent,
+ unsigned depth,
+ bool includeControlFlow);
+
+static void ReportCall(raw_ostream &o,
+ const PathDiagnosticCallPiece &P,
+ const FIDMap& FM, const SourceManager &SM,
+ const LangOptions &LangOpts,
+ unsigned indent,
+ unsigned depth) {
+
+ IntrusiveRefCntPtr<PathDiagnosticEventPiece> callEnter =
+ P.getCallEnterEvent();
+
+ if (callEnter)
+ ReportPiece(o, *callEnter, FM, SM, LangOpts, indent, depth, true);
+
+ IntrusiveRefCntPtr<PathDiagnosticEventPiece> callEnterWithinCaller =
+ P.getCallEnterWithinCallerEvent();
+
+ ++depth;
+
+ if (callEnterWithinCaller)
+ ReportPiece(o, *callEnterWithinCaller, FM, SM, LangOpts,
+ indent, depth, true);
+
+ for (PathPieces::const_iterator I = P.path.begin(), E = P.path.end();I!=E;++I)
+ ReportPiece(o, **I, FM, SM, LangOpts, indent, depth, true);
+
+ IntrusiveRefCntPtr<PathDiagnosticEventPiece> callExit =
+ P.getCallExitEvent();
+
+ if (callExit)
+ ReportPiece(o, *callExit, FM, SM, LangOpts, indent, depth, true);
+}
+
+static void ReportMacro(raw_ostream &o,
+ const PathDiagnosticMacroPiece& P,
+ const FIDMap& FM, const SourceManager &SM,
+ const LangOptions &LangOpts,
+ unsigned indent,
+ unsigned depth) {
+
+ for (PathPieces::const_iterator I = P.subPieces.begin(), E=P.subPieces.end();
+ I!=E; ++I) {
+ ReportPiece(o, **I, FM, SM, LangOpts, indent, depth, false);
+ }
+}
+
+static void ReportDiag(raw_ostream &o, const PathDiagnosticPiece& P,
+ const FIDMap& FM, const SourceManager &SM,
+ const LangOptions &LangOpts) {
+ ReportPiece(o, P, FM, SM, LangOpts, 4, 0, true);
+}
+
+static void ReportPiece(raw_ostream &o,
+ const PathDiagnosticPiece &P,
+ const FIDMap& FM, const SourceManager &SM,
+ const LangOptions &LangOpts,
+ unsigned indent,
+ unsigned depth,
+ bool includeControlFlow) {
+ switch (P.getKind()) {
+ case PathDiagnosticPiece::ControlFlow:
+ if (includeControlFlow)
+ ReportControlFlow(o, cast<PathDiagnosticControlFlowPiece>(P), FM, SM,
+ LangOpts, indent);
+ break;
+ case PathDiagnosticPiece::Call:
+ ReportCall(o, cast<PathDiagnosticCallPiece>(P), FM, SM, LangOpts,
+ indent, depth);
+ break;
+ case PathDiagnosticPiece::Event:
+ ReportEvent(o, cast<PathDiagnosticSpotPiece>(P), FM, SM, LangOpts,
+ indent, depth);
+ break;
+ case PathDiagnosticPiece::Macro:
+ ReportMacro(o, cast<PathDiagnosticMacroPiece>(P), FM, SM, LangOpts,
+ indent, depth);
+ break;
+ }
+}
+
+void PlistDiagnostics::FlushDiagnosticsImpl(
+ std::vector<const PathDiagnostic *> &Diags,
+ SmallVectorImpl<std::string> *FilesMade) {
+ // Build up a set of FIDs that we use by scanning the locations and
+ // ranges of the diagnostics.
+ FIDMap FM;
+ SmallVector<FileID, 10> Fids;
+ const SourceManager* SM = 0;
+
+ if (!Diags.empty())
+ SM = &(*(*Diags.begin())->path.begin())->getLocation().getManager();
+
+
+ for (std::vector<const PathDiagnostic*>::iterator DI = Diags.begin(),
+ DE = Diags.end(); DI != DE; ++DI) {
+
+ const PathDiagnostic *D = *DI;
+
+ llvm::SmallVector<const PathPieces *, 5> WorkList;
+ WorkList.push_back(&D->path);
+
+ while (!WorkList.empty()) {
+ const PathPieces &path = *WorkList.back();
+ WorkList.pop_back();
+
+ for (PathPieces::const_iterator I = path.begin(), E = path.end();
+ I!=E; ++I) {
+ const PathDiagnosticPiece *piece = I->getPtr();
+ AddFID(FM, Fids, SM, piece->getLocation().asLocation());
+
+ for (PathDiagnosticPiece::range_iterator RI = piece->ranges_begin(),
+ RE= piece->ranges_end(); RI != RE; ++RI) {
+ AddFID(FM, Fids, SM, RI->getBegin());
+ AddFID(FM, Fids, SM, RI->getEnd());
+ }
+
+ if (const PathDiagnosticCallPiece *call =
+ dyn_cast<PathDiagnosticCallPiece>(piece)) {
+ WorkList.push_back(&call->path);
+ }
+ else if (const PathDiagnosticMacroPiece *macro =
+ dyn_cast<PathDiagnosticMacroPiece>(piece)) {
+ WorkList.push_back(&macro->subPieces);
+ }
+ }
+ }
+ }
+
+ // Open the file.
+ std::string ErrMsg;
+ llvm::raw_fd_ostream o(OutputFile.c_str(), ErrMsg);
+ if (!ErrMsg.empty()) {
+ llvm::errs() << "warning: could not create file: " << OutputFile << '\n';
+ return;
+ }
+
+ // Write the plist header.
+ o << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"
+ "<!DOCTYPE plist PUBLIC \"-//Apple Computer//DTD PLIST 1.0//EN\" "
+ "\"http://www.apple.com/DTDs/PropertyList-1.0.dtd\">\n"
+ "<plist version=\"1.0\">\n";
+
+ // Write the root object: a <dict> containing...
+ // - "files", an <array> mapping from FIDs to file names
+ // - "diagnostics", an <array> containing the path diagnostics
+ o << "<dict>\n"
+ " <key>files</key>\n"
+ " <array>\n";
+
+ for (SmallVectorImpl<FileID>::iterator I=Fids.begin(), E=Fids.end();
+ I!=E; ++I) {
+ o << " ";
+ EmitString(o, SM->getFileEntryForID(*I)->getName()) << '\n';
+ }
+
+ o << " </array>\n"
+ " <key>diagnostics</key>\n"
+ " <array>\n";
+
+ for (std::vector<const PathDiagnostic*>::iterator DI=Diags.begin(),
+ DE = Diags.end(); DI!=DE; ++DI) {
+
+ o << " <dict>\n"
+ " <key>path</key>\n";
+
+ const PathDiagnostic *D = *DI;
+
+ o << " <array>\n";
+
+ for (PathPieces::const_iterator I = D->path.begin(), E = D->path.end();
+ I != E; ++I)
+ ReportDiag(o, **I, FM, *SM, LangOpts);
+
+ o << " </array>\n";
+
+ // Output the bug type and bug category.
+ o << " <key>description</key>";
+ EmitString(o, D->getDescription()) << '\n';
+ o << " <key>category</key>";
+ EmitString(o, D->getCategory()) << '\n';
+ o << " <key>type</key>";
+ EmitString(o, D->getBugType()) << '\n';
+
+ // Output information about the semantic context where
+ // the issue occurred.
+ if (const Decl *DeclWithIssue = D->getDeclWithIssue()) {
+ // FIXME: handle blocks, which have no name.
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(DeclWithIssue)) {
+ StringRef declKind;
+ switch (ND->getKind()) {
+ case Decl::CXXRecord:
+ declKind = "C++ class";
+ break;
+ case Decl::CXXMethod:
+ declKind = "C++ method";
+ break;
+ case Decl::ObjCMethod:
+ declKind = "Objective-C method";
+ break;
+ case Decl::Function:
+ declKind = "function";
+ break;
+ default:
+ break;
+ }
+ if (!declKind.empty()) {
+ const std::string &declName = ND->getDeclName().getAsString();
+ o << " <key>issue_context_kind</key>";
+ EmitString(o, declKind) << '\n';
+ o << " <key>issue_context</key>";
+ EmitString(o, declName) << '\n';
+ }
+ }
+ }
+
+ // Output the location of the bug.
+ o << " <key>location</key>\n";
+ EmitLocation(o, *SM, LangOpts, D->getLocation(), FM, 2);
+
+ // Output the diagnostic to the sub-diagnostic client, if any.
+ if (SubPD) {
+ std::vector<const PathDiagnostic *> SubDiags;
+ SubDiags.push_back(D);
+ SmallVector<std::string, 1> SubFilesMade;
+ SubPD->FlushDiagnosticsImpl(SubDiags, &SubFilesMade);
+
+ if (!SubFilesMade.empty()) {
+ o << " <key>" << SubPD->getName() << "_files</key>\n";
+ o << " <array>\n";
+ for (size_t i = 0, n = SubFilesMade.size(); i < n ; ++i)
+ o << " <string>" << SubFilesMade[i] << "</string>\n";
+ o << " </array>\n";
+ }
+ }
+
+ // Close up the entry.
+ o << " </dict>\n";
+ }
+
+ o << " </array>\n";
+
+ // Finish.
+ o << "</dict>\n</plist>";
+
+ if (FilesMade)
+ FilesMade->push_back(OutputFile);
+}
diff --git a/clang/lib/StaticAnalyzer/Core/ProgramState.cpp b/clang/lib/StaticAnalyzer/Core/ProgramState.cpp
new file mode 100644
index 0000000..b9cfa27
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/ProgramState.cpp
@@ -0,0 +1,709 @@
+//= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements ProgramState and ProgramStateManager.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/CFG.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+// Give the vtable for ConstraintManager somewhere to live.
+// FIXME: Move this elsewhere.
+ConstraintManager::~ConstraintManager() {}
+
+namespace clang { namespace ento {
+/// Increments the number of times this state is referenced.
+
+void ProgramStateRetain(const ProgramState *state) {
+ ++const_cast<ProgramState*>(state)->refCount;
+}
+
+/// Decrement the number of times this state is referenced.
+void ProgramStateRelease(const ProgramState *state) {
+ assert(state->refCount > 0);
+ ProgramState *s = const_cast<ProgramState*>(state);
+ if (--s->refCount == 0) {
+ ProgramStateManager &Mgr = s->getStateManager();
+ Mgr.StateSet.RemoveNode(s);
+ s->~ProgramState();
+ Mgr.freeStates.push_back(s);
+ }
+}
+}}
+
+ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
+ StoreRef st, GenericDataMap gdm)
+ : stateMgr(mgr),
+ Env(env),
+ store(st.getStore()),
+ GDM(gdm),
+ refCount(0) {
+ stateMgr->getStoreManager().incrementReferenceCount(store);
+}
+
+ProgramState::ProgramState(const ProgramState &RHS)
+ : llvm::FoldingSetNode(),
+ stateMgr(RHS.stateMgr),
+ Env(RHS.Env),
+ store(RHS.store),
+ GDM(RHS.GDM),
+ refCount(0) {
+ stateMgr->getStoreManager().incrementReferenceCount(store);
+}
+
+ProgramState::~ProgramState() {
+ if (store)
+ stateMgr->getStoreManager().decrementReferenceCount(store);
+}
+
+ProgramStateManager::~ProgramStateManager() {
+ for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
+ I!=E; ++I)
+ I->second.second(I->second.first);
+}
+
+ProgramStateRef
+ProgramStateManager::removeDeadBindings(ProgramStateRef state,
+ const StackFrameContext *LCtx,
+ SymbolReaper& SymReaper) {
+
+ // This code essentially performs a "mark-and-sweep" of the VariableBindings.
+ // The roots are any Block-level exprs and Decls that our liveness algorithm
+ // tells us are live. We then see what Decls they may reference, and keep
+ // those around. This code more than likely can be made faster, and the
+ // frequency of which this method is called should be experimented with
+ // for optimum performance.
+ ProgramState NewState = *state;
+
+ NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
+
+ // Clean up the store.
+ StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
+ SymReaper);
+ NewState.setStore(newStore);
+ SymReaper.setReapedStore(newStore);
+
+ return getPersistentState(NewState);
+}
+
+ProgramStateRef ProgramStateManager::MarshalState(ProgramStateRef state,
+ const StackFrameContext *InitLoc) {
+ // make up an empty state for now.
+ ProgramState State(this,
+ EnvMgr.getInitialEnvironment(),
+ StoreMgr->getInitialStore(InitLoc),
+ GDMFactory.getEmptyMap());
+
+ return getPersistentState(State);
+}
+
+ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL,
+ const LocationContext *LC,
+ SVal V) const {
+ const StoreRef &newStore =
+ getStateManager().StoreMgr->BindCompoundLiteral(getStore(), CL, LC, V);
+ return makeWithStore(newStore);
+}
+
+ProgramStateRef ProgramState::bindDecl(const VarRegion* VR, SVal IVal) const {
+ const StoreRef &newStore =
+ getStateManager().StoreMgr->BindDecl(getStore(), VR, IVal);
+ return makeWithStore(newStore);
+}
+
+ProgramStateRef ProgramState::bindDeclWithNoInit(const VarRegion* VR) const {
+ const StoreRef &newStore =
+ getStateManager().StoreMgr->BindDeclWithNoInit(getStore(), VR);
+ return makeWithStore(newStore);
+}
+
+ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V) const {
+ ProgramStateManager &Mgr = getStateManager();
+ ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
+ LV, V));
+ const MemRegion *MR = LV.getAsRegion();
+ if (MR && Mgr.getOwningEngine())
+ return Mgr.getOwningEngine()->processRegionChange(newState, MR);
+
+ return newState;
+}
+
+ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
+ ProgramStateManager &Mgr = getStateManager();
+ const MemRegion *R = cast<loc::MemRegionVal>(loc).getRegion();
+ const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
+ ProgramStateRef new_state = makeWithStore(newStore);
+ return Mgr.getOwningEngine() ?
+ Mgr.getOwningEngine()->processRegionChange(new_state, R) :
+ new_state;
+}
+
+ProgramStateRef
+ProgramState::invalidateRegions(ArrayRef<const MemRegion *> Regions,
+ const Expr *E, unsigned Count,
+ const LocationContext *LCtx,
+ StoreManager::InvalidatedSymbols *IS,
+ const CallOrObjCMessage *Call) const {
+ if (!IS) {
+ StoreManager::InvalidatedSymbols invalidated;
+ return invalidateRegionsImpl(Regions, E, Count, LCtx,
+ invalidated, Call);
+ }
+ return invalidateRegionsImpl(Regions, E, Count, LCtx, *IS, Call);
+}
+
+ProgramStateRef
+ProgramState::invalidateRegionsImpl(ArrayRef<const MemRegion *> Regions,
+ const Expr *E, unsigned Count,
+ const LocationContext *LCtx,
+ StoreManager::InvalidatedSymbols &IS,
+ const CallOrObjCMessage *Call) const {
+ ProgramStateManager &Mgr = getStateManager();
+ SubEngine* Eng = Mgr.getOwningEngine();
+
+ if (Eng && Eng->wantsRegionChangeUpdate(this)) {
+ StoreManager::InvalidatedRegions Invalidated;
+ const StoreRef &newStore
+ = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
+ Call, &Invalidated);
+ ProgramStateRef newState = makeWithStore(newStore);
+ return Eng->processRegionChanges(newState, &IS, Regions, Invalidated, Call);
+ }
+
+ const StoreRef &newStore =
+ Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
+ Call, NULL);
+ return makeWithStore(newStore);
+}
+
+ProgramStateRef ProgramState::unbindLoc(Loc LV) const {
+ assert(!isa<loc::MemRegionVal>(LV) && "Use invalidateRegion instead.");
+
+ Store OldStore = getStore();
+ const StoreRef &newStore = getStateManager().StoreMgr->Remove(OldStore, LV);
+
+ if (newStore.getStore() == OldStore)
+ return this;
+
+ return makeWithStore(newStore);
+}
+
+ProgramStateRef
+ProgramState::enterStackFrame(const LocationContext *callerCtx,
+ const StackFrameContext *calleeCtx) const {
+ const StoreRef &new_store =
+ getStateManager().StoreMgr->enterStackFrame(this, callerCtx, calleeCtx);
+ return makeWithStore(new_store);
+}
+
+SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
+ // We only want to do fetches from regions that we can actually bind
+ // values. For example, SymbolicRegions of type 'id<...>' cannot
+ // have direct bindings (but their can be bindings on their subregions).
+ if (!R->isBoundable())
+ return UnknownVal();
+
+ if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
+ QualType T = TR->getValueType();
+ if (Loc::isLocType(T) || T->isIntegerType())
+ return getSVal(R);
+ }
+
+ return UnknownVal();
+}
+
+SVal ProgramState::getSVal(Loc location, QualType T) const {
+ SVal V = getRawSVal(cast<Loc>(location), T);
+
+ // If 'V' is a symbolic value that is *perfectly* constrained to
+ // be a constant value, use that value instead to lessen the burden
+ // on later analysis stages (so we have less symbolic values to reason
+ // about).
+ if (!T.isNull()) {
+ if (SymbolRef sym = V.getAsSymbol()) {
+ if (const llvm::APSInt *Int = getSymVal(sym)) {
+ // FIXME: Because we don't correctly model (yet) sign-extension
+ // and truncation of symbolic values, we need to convert
+ // the integer value to the correct signedness and bitwidth.
+ //
+ // This shows up in the following:
+ //
+ // char foo();
+ // unsigned x = foo();
+ // if (x == 54)
+ // ...
+ //
+ // The symbolic value stored to 'x' is actually the conjured
+ // symbol for the call to foo(); the type of that symbol is 'char',
+ // not unsigned.
+ const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
+
+ if (isa<Loc>(V))
+ return loc::ConcreteInt(NewV);
+ else
+ return nonloc::ConcreteInt(NewV);
+ }
+ }
+ }
+
+ return V;
+}
+
+ProgramStateRef ProgramState::BindExpr(const Stmt *S,
+ const LocationContext *LCtx,
+ SVal V, bool Invalidate) const{
+ Environment NewEnv =
+ getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
+ Invalidate);
+ if (NewEnv == Env)
+ return this;
+
+ ProgramState NewSt = *this;
+ NewSt.Env = NewEnv;
+ return getStateManager().getPersistentState(NewSt);
+}
+
+ProgramStateRef
+ProgramState::bindExprAndLocation(const Stmt *S, const LocationContext *LCtx,
+ SVal location,
+ SVal V) const {
+ Environment NewEnv =
+ getStateManager().EnvMgr.bindExprAndLocation(Env,
+ EnvironmentEntry(S, LCtx),
+ location, V);
+
+ if (NewEnv == Env)
+ return this;
+
+ ProgramState NewSt = *this;
+ NewSt.Env = NewEnv;
+ return getStateManager().getPersistentState(NewSt);
+}
+
+ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
+ DefinedOrUnknownSVal UpperBound,
+ bool Assumption,
+ QualType indexTy) const {
+ if (Idx.isUnknown() || UpperBound.isUnknown())
+ return this;
+
+ // Build an expression for 0 <= Idx < UpperBound.
+ // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
+ // FIXME: This should probably be part of SValBuilder.
+ ProgramStateManager &SM = getStateManager();
+ SValBuilder &svalBuilder = SM.getSValBuilder();
+ ASTContext &Ctx = svalBuilder.getContext();
+
+ // Get the offset: the minimum value of the array index type.
+ BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
+ // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
+ if (indexTy.isNull())
+ indexTy = Ctx.IntTy;
+ nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
+
+ // Adjust the index.
+ SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
+ cast<NonLoc>(Idx), Min, indexTy);
+ if (newIdx.isUnknownOrUndef())
+ return this;
+
+ // Adjust the upper bound.
+ SVal newBound =
+ svalBuilder.evalBinOpNN(this, BO_Add, cast<NonLoc>(UpperBound),
+ Min, indexTy);
+
+ if (newBound.isUnknownOrUndef())
+ return this;
+
+ // Build the actual comparison.
+ SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT,
+ cast<NonLoc>(newIdx), cast<NonLoc>(newBound),
+ Ctx.IntTy);
+ if (inBound.isUnknownOrUndef())
+ return this;
+
+ // Finally, let the constraint manager take care of it.
+ ConstraintManager &CM = SM.getConstraintManager();
+ return CM.assume(this, cast<DefinedSVal>(inBound), Assumption);
+}
+
+ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
+ ProgramState State(this,
+ EnvMgr.getInitialEnvironment(),
+ StoreMgr->getInitialStore(InitLoc),
+ GDMFactory.getEmptyMap());
+
+ return getPersistentState(State);
+}
+
+ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
+ ProgramStateRef FromState,
+ ProgramStateRef GDMState) {
+ ProgramState NewState(*FromState);
+ NewState.GDM = GDMState->GDM;
+ return getPersistentState(NewState);
+}
+
+ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
+
+ llvm::FoldingSetNodeID ID;
+ State.Profile(ID);
+ void *InsertPos;
+
+ if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
+ return I;
+
+ ProgramState *newState = 0;
+ if (!freeStates.empty()) {
+ newState = freeStates.back();
+ freeStates.pop_back();
+ }
+ else {
+ newState = (ProgramState*) Alloc.Allocate<ProgramState>();
+ }
+ new (newState) ProgramState(State);
+ StateSet.InsertNode(newState, InsertPos);
+ return newState;
+}
+
+ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
+ ProgramState NewSt(*this);
+ NewSt.setStore(store);
+ return getStateManager().getPersistentState(NewSt);
+}
+
+void ProgramState::setStore(const StoreRef &newStore) {
+ Store newStoreStore = newStore.getStore();
+ if (newStoreStore)
+ stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
+ if (store)
+ stateMgr->getStoreManager().decrementReferenceCount(store);
+ store = newStoreStore;
+}
+
+//===----------------------------------------------------------------------===//
+// State pretty-printing.
+//===----------------------------------------------------------------------===//
+
+void ProgramState::print(raw_ostream &Out,
+ const char *NL, const char *Sep) const {
+ // Print the store.
+ ProgramStateManager &Mgr = getStateManager();
+ Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
+
+ // Print out the environment.
+ Env.print(Out, NL, Sep);
+
+ // Print out the constraints.
+ Mgr.getConstraintManager().print(this, Out, NL, Sep);
+
+ // Print checker-specific data.
+ Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
+}
+
+void ProgramState::printDOT(raw_ostream &Out) const {
+ print(Out, "\\l", "\\|");
+}
+
+void ProgramState::dump() const {
+ print(llvm::errs());
+}
+
+void ProgramState::printTaint(raw_ostream &Out,
+ const char *NL, const char *Sep) const {
+ TaintMapImpl TM = get<TaintMap>();
+
+ if (!TM.isEmpty())
+ Out <<"Tainted Symbols:" << NL;
+
+ for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
+ Out << I->first << " : " << I->second << NL;
+ }
+}
+
+void ProgramState::dumpTaint() const {
+ printTaint(llvm::errs());
+}
+
+//===----------------------------------------------------------------------===//
+// Generic Data Map.
+//===----------------------------------------------------------------------===//
+
+void *const* ProgramState::FindGDM(void *K) const {
+ return GDM.lookup(K);
+}
+
+void*
+ProgramStateManager::FindGDMContext(void *K,
+ void *(*CreateContext)(llvm::BumpPtrAllocator&),
+ void (*DeleteContext)(void*)) {
+
+ std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
+ if (!p.first) {
+ p.first = CreateContext(Alloc);
+ p.second = DeleteContext;
+ }
+
+ return p.first;
+}
+
+ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
+ ProgramState::GenericDataMap M1 = St->getGDM();
+ ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
+
+ if (M1 == M2)
+ return St;
+
+ ProgramState NewSt = *St;
+ NewSt.GDM = M2;
+ return getPersistentState(NewSt);
+}
+
+ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
+ ProgramState::GenericDataMap OldM = state->getGDM();
+ ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
+
+ if (NewM == OldM)
+ return state;
+
+ ProgramState NewState = *state;
+ NewState.GDM = NewM;
+ return getPersistentState(NewState);
+}
+
+void ScanReachableSymbols::anchor() { }
+
+bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
+ for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
+ if (!scan(*I))
+ return false;
+
+ return true;
+}
+
+bool ScanReachableSymbols::scan(const SymExpr *sym) {
+ unsigned &isVisited = visited[sym];
+ if (isVisited)
+ return true;
+ isVisited = 1;
+
+ if (!visitor.VisitSymbol(sym))
+ return false;
+
+ // TODO: should be rewritten using SymExpr::symbol_iterator.
+ switch (sym->getKind()) {
+ case SymExpr::RegionValueKind:
+ case SymExpr::ConjuredKind:
+ case SymExpr::DerivedKind:
+ case SymExpr::ExtentKind:
+ case SymExpr::MetadataKind:
+ break;
+ case SymExpr::CastSymbolKind:
+ return scan(cast<SymbolCast>(sym)->getOperand());
+ case SymExpr::SymIntKind:
+ return scan(cast<SymIntExpr>(sym)->getLHS());
+ case SymExpr::IntSymKind:
+ return scan(cast<IntSymExpr>(sym)->getRHS());
+ case SymExpr::SymSymKind: {
+ const SymSymExpr *x = cast<SymSymExpr>(sym);
+ return scan(x->getLHS()) && scan(x->getRHS());
+ }
+ }
+ return true;
+}
+
+bool ScanReachableSymbols::scan(SVal val) {
+ if (loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(&val))
+ return scan(X->getRegion());
+
+ if (nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(&val))
+ return scan(X->getLoc());
+
+ if (SymbolRef Sym = val.getAsSymbol())
+ return scan(Sym);
+
+ if (const SymExpr *Sym = val.getAsSymbolicExpression())
+ return scan(Sym);
+
+ if (nonloc::CompoundVal *X = dyn_cast<nonloc::CompoundVal>(&val))
+ return scan(*X);
+
+ return true;
+}
+
+bool ScanReachableSymbols::scan(const MemRegion *R) {
+ if (isa<MemSpaceRegion>(R))
+ return true;
+
+ unsigned &isVisited = visited[R];
+ if (isVisited)
+ return true;
+ isVisited = 1;
+
+
+ if (!visitor.VisitMemRegion(R))
+ return false;
+
+ // If this is a symbolic region, visit the symbol for the region.
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
+ if (!visitor.VisitSymbol(SR->getSymbol()))
+ return false;
+
+ // If this is a subregion, also visit the parent regions.
+ if (const SubRegion *SR = dyn_cast<SubRegion>(R))
+ if (!scan(SR->getSuperRegion()))
+ return false;
+
+ // Now look at the binding to this region (if any).
+ if (!scan(state->getSValAsScalarOrLoc(R)))
+ return false;
+
+ // Now look at the subregions.
+ if (!SRM.get())
+ SRM.reset(state->getStateManager().getStoreManager().
+ getSubRegionMap(state->getStore()));
+
+ return SRM->iterSubRegions(R, *this);
+}
+
+bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
+ ScanReachableSymbols S(this, visitor);
+ return S.scan(val);
+}
+
+bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
+ SymbolVisitor &visitor) const {
+ ScanReachableSymbols S(this, visitor);
+ for ( ; I != E; ++I) {
+ if (!S.scan(*I))
+ return false;
+ }
+ return true;
+}
+
+bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
+ const MemRegion * const *E,
+ SymbolVisitor &visitor) const {
+ ScanReachableSymbols S(this, visitor);
+ for ( ; I != E; ++I) {
+ if (!S.scan(*I))
+ return false;
+ }
+ return true;
+}
+
+ProgramStateRef ProgramState::addTaint(const Stmt *S,
+ const LocationContext *LCtx,
+ TaintTagType Kind) const {
+ if (const Expr *E = dyn_cast_or_null<Expr>(S))
+ S = E->IgnoreParens();
+
+ SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
+ if (Sym)
+ return addTaint(Sym, Kind);
+
+ const MemRegion *R = getSVal(S, LCtx).getAsRegion();
+ addTaint(R, Kind);
+
+ // Cannot add taint, so just return the state.
+ return this;
+}
+
+ProgramStateRef ProgramState::addTaint(const MemRegion *R,
+ TaintTagType Kind) const {
+ if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
+ return addTaint(SR->getSymbol(), Kind);
+ return this;
+}
+
+ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
+ TaintTagType Kind) const {
+ // If this is a symbol cast, remove the cast before adding the taint. Taint
+ // is cast agnostic.
+ while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
+ Sym = SC->getOperand();
+
+ ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
+ assert(NewState);
+ return NewState;
+}
+
+bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
+ TaintTagType Kind) const {
+ if (const Expr *E = dyn_cast_or_null<Expr>(S))
+ S = E->IgnoreParens();
+
+ SVal val = getSVal(S, LCtx);
+ return isTainted(val, Kind);
+}
+
+bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
+ if (const SymExpr *Sym = V.getAsSymExpr())
+ return isTainted(Sym, Kind);
+ if (const MemRegion *Reg = V.getAsRegion())
+ return isTainted(Reg, Kind);
+ return false;
+}
+
+bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
+ if (!Reg)
+ return false;
+
+ // Element region (array element) is tainted if either the base or the offset
+ // are tainted.
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
+ return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
+
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
+ return isTainted(SR->getSymbol(), K);
+
+ if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
+ return isTainted(ER->getSuperRegion(), K);
+
+ return false;
+}
+
+bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
+ if (!Sym)
+ return false;
+
+ // Traverse all the symbols this symbol depends on to see if any are tainted.
+ bool Tainted = false;
+ for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
+ SI != SE; ++SI) {
+ assert(isa<SymbolData>(*SI));
+ const TaintTagType *Tag = get<TaintMap>(*SI);
+ Tainted = (Tag && *Tag == Kind);
+
+ // If this is a SymbolDerived with a tainted parent, it's also tainted.
+ if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
+ Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
+
+ // If memory region is tainted, data is also tainted.
+ if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
+ Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
+
+ // If If this is a SymbolCast from a tainted value, it's also tainted.
+ if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
+ Tainted = Tainted || isTainted(SC->getOperand(), Kind);
+
+ if (Tainted)
+ return true;
+ }
+
+ return Tainted;
+}
diff --git a/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp b/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
new file mode 100644
index 0000000..98eb958
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
@@ -0,0 +1,442 @@
+//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines RangeConstraintManager, a class that tracks simple
+// equality and inequality constraints on symbolic values of ProgramState.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SimpleConstraintManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/ImmutableSet.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace { class ConstraintRange {}; }
+static int ConstraintRangeIndex = 0;
+
+/// A Range represents the closed range [from, to]. The caller must
+/// guarantee that from <= to. Note that Range is immutable, so as not
+/// to subvert RangeSet's immutability.
+namespace {
+class Range : public std::pair<const llvm::APSInt*,
+ const llvm::APSInt*> {
+public:
+ Range(const llvm::APSInt &from, const llvm::APSInt &to)
+ : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
+ assert(from <= to);
+ }
+ bool Includes(const llvm::APSInt &v) const {
+ return *first <= v && v <= *second;
+ }
+ const llvm::APSInt &From() const {
+ return *first;
+ }
+ const llvm::APSInt &To() const {
+ return *second;
+ }
+ const llvm::APSInt *getConcreteValue() const {
+ return &From() == &To() ? &From() : NULL;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddPointer(&From());
+ ID.AddPointer(&To());
+ }
+};
+
+
+class RangeTrait : public llvm::ImutContainerInfo<Range> {
+public:
+ // When comparing if one Range is less than another, we should compare
+ // the actual APSInt values instead of their pointers. This keeps the order
+ // consistent (instead of comparing by pointer values) and can potentially
+ // be used to speed up some of the operations in RangeSet.
+ static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
+ return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
+ *lhs.second < *rhs.second);
+ }
+};
+
+/// RangeSet contains a set of ranges. If the set is empty, then
+/// there the value of a symbol is overly constrained and there are no
+/// possible values for that symbol.
+class RangeSet {
+ typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
+ PrimRangeSet ranges; // no need to make const, since it is an
+ // ImmutableSet - this allows default operator=
+ // to work.
+public:
+ typedef PrimRangeSet::Factory Factory;
+ typedef PrimRangeSet::iterator iterator;
+
+ RangeSet(PrimRangeSet RS) : ranges(RS) {}
+
+ iterator begin() const { return ranges.begin(); }
+ iterator end() const { return ranges.end(); }
+
+ bool isEmpty() const { return ranges.isEmpty(); }
+
+ /// Construct a new RangeSet representing '{ [from, to] }'.
+ RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
+ : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
+
+ /// Profile - Generates a hash profile of this RangeSet for use
+ /// by FoldingSet.
+ void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
+
+ /// getConcreteValue - If a symbol is contrained to equal a specific integer
+ /// constant then this method returns that value. Otherwise, it returns
+ /// NULL.
+ const llvm::APSInt* getConcreteValue() const {
+ return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
+ }
+
+private:
+ void IntersectInRange(BasicValueFactory &BV, Factory &F,
+ const llvm::APSInt &Lower,
+ const llvm::APSInt &Upper,
+ PrimRangeSet &newRanges,
+ PrimRangeSet::iterator &i,
+ PrimRangeSet::iterator &e) const {
+ // There are six cases for each range R in the set:
+ // 1. R is entirely before the intersection range.
+ // 2. R is entirely after the intersection range.
+ // 3. R contains the entire intersection range.
+ // 4. R starts before the intersection range and ends in the middle.
+ // 5. R starts in the middle of the intersection range and ends after it.
+ // 6. R is entirely contained in the intersection range.
+ // These correspond to each of the conditions below.
+ for (/* i = begin(), e = end() */; i != e; ++i) {
+ if (i->To() < Lower) {
+ continue;
+ }
+ if (i->From() > Upper) {
+ break;
+ }
+
+ if (i->Includes(Lower)) {
+ if (i->Includes(Upper)) {
+ newRanges = F.add(newRanges, Range(BV.getValue(Lower),
+ BV.getValue(Upper)));
+ break;
+ } else
+ newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
+ } else {
+ if (i->Includes(Upper)) {
+ newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
+ break;
+ } else
+ newRanges = F.add(newRanges, *i);
+ }
+ }
+ }
+
+public:
+ // Returns a set containing the values in the receiving set, intersected with
+ // the closed range [Lower, Upper]. Unlike the Range type, this range uses
+ // modular arithmetic, corresponding to the common treatment of C integer
+ // overflow. Thus, if the Lower bound is greater than the Upper bound, the
+ // range is taken to wrap around. This is equivalent to taking the
+ // intersection with the two ranges [Min, Upper] and [Lower, Max],
+ // or, alternatively, /removing/ all integers between Upper and Lower.
+ RangeSet Intersect(BasicValueFactory &BV, Factory &F,
+ const llvm::APSInt &Lower,
+ const llvm::APSInt &Upper) const {
+ PrimRangeSet newRanges = F.getEmptySet();
+
+ PrimRangeSet::iterator i = begin(), e = end();
+ if (Lower <= Upper)
+ IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
+ else {
+ // The order of the next two statements is important!
+ // IntersectInRange() does not reset the iteration state for i and e.
+ // Therefore, the lower range most be handled first.
+ IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
+ IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
+ }
+ return newRanges;
+ }
+
+ void print(raw_ostream &os) const {
+ bool isFirst = true;
+ os << "{ ";
+ for (iterator i = begin(), e = end(); i != e; ++i) {
+ if (isFirst)
+ isFirst = false;
+ else
+ os << ", ";
+
+ os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
+ << ']';
+ }
+ os << " }";
+ }
+
+ bool operator==(const RangeSet &other) const {
+ return ranges == other.ranges;
+ }
+};
+} // end anonymous namespace
+
+typedef llvm::ImmutableMap<SymbolRef,RangeSet> ConstraintRangeTy;
+
+namespace clang {
+namespace ento {
+template<>
+struct ProgramStateTrait<ConstraintRange>
+ : public ProgramStatePartialTrait<ConstraintRangeTy> {
+ static inline void *GDMIndex() { return &ConstraintRangeIndex; }
+};
+}
+}
+
+namespace {
+class RangeConstraintManager : public SimpleConstraintManager{
+ RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
+public:
+ RangeConstraintManager(SubEngine &subengine)
+ : SimpleConstraintManager(subengine) {}
+
+ ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment);
+
+ ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment);
+
+ const llvm::APSInt* getSymVal(ProgramStateRef St, SymbolRef sym) const;
+
+ // FIXME: Refactor into SimpleConstraintManager?
+ bool isEqual(ProgramStateRef St, SymbolRef sym, const llvm::APSInt& V) const {
+ const llvm::APSInt *i = getSymVal(St, sym);
+ return i ? *i == V : false;
+ }
+
+ ProgramStateRef removeDeadBindings(ProgramStateRef St, SymbolReaper& SymReaper);
+
+ void print(ProgramStateRef St, raw_ostream &Out,
+ const char* nl, const char *sep);
+
+private:
+ RangeSet::Factory F;
+};
+
+} // end anonymous namespace
+
+ConstraintManager* ento::CreateRangeConstraintManager(ProgramStateManager&,
+ SubEngine &subeng) {
+ return new RangeConstraintManager(subeng);
+}
+
+const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
+ SymbolRef sym) const {
+ const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
+ return T ? T->getConcreteValue() : NULL;
+}
+
+/// Scan all symbols referenced by the constraints. If the symbol is not alive
+/// as marked in LSymbols, mark it as dead in DSymbols.
+ProgramStateRef
+RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
+ SymbolReaper& SymReaper) {
+
+ ConstraintRangeTy CR = state->get<ConstraintRange>();
+ ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
+
+ for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
+ SymbolRef sym = I.getKey();
+ if (SymReaper.maybeDead(sym))
+ CR = CRFactory.remove(CR, sym);
+ }
+
+ return state->set<ConstraintRange>(CR);
+}
+
+RangeSet
+RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
+ if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
+ return *V;
+
+ // Lazily generate a new RangeSet representing all possible values for the
+ // given symbol type.
+ QualType T = state->getSymbolManager().getType(sym);
+ BasicValueFactory& BV = state->getBasicVals();
+ return RangeSet(F, BV.getMinValue(T), BV.getMaxValue(T));
+}
+
+//===------------------------------------------------------------------------===
+// assumeSymX methods: public interface for RangeConstraintManager.
+//===------------------------------------------------------------------------===/
+
+// The syntax for ranges below is mathematical, using [x, y] for closed ranges
+// and (x, y) for open ranges. These ranges are modular, corresponding with
+// a common treatment of C integer overflow. This means that these methods
+// do not have to worry about overflow; RangeSet::Intersect can handle such a
+// "wraparound" range.
+// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
+// UINT_MAX, 0, 1, and 2.
+
+ProgramStateRef
+RangeConstraintManager::assumeSymNE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) {
+ BasicValueFactory &BV = state->getBasicVals();
+
+ llvm::APSInt Lower = Int-Adjustment;
+ llvm::APSInt Upper = Lower;
+ --Lower;
+ ++Upper;
+
+ // [Int-Adjustment+1, Int-Adjustment-1]
+ // Notice that the lower bound is greater than the upper bound.
+ RangeSet New = GetRange(state, sym).Intersect(BV, F, Upper, Lower);
+ return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymEQ(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) {
+ // [Int-Adjustment, Int-Adjustment]
+ BasicValueFactory &BV = state->getBasicVals();
+ llvm::APSInt AdjInt = Int-Adjustment;
+ RangeSet New = GetRange(state, sym).Intersect(BV, F, AdjInt, AdjInt);
+ return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymLT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) {
+ BasicValueFactory &BV = state->getBasicVals();
+
+ QualType T = state->getSymbolManager().getType(sym);
+ const llvm::APSInt &Min = BV.getMinValue(T);
+
+ // Special case for Int == Min. This is always false.
+ if (Int == Min)
+ return NULL;
+
+ llvm::APSInt Lower = Min-Adjustment;
+ llvm::APSInt Upper = Int-Adjustment;
+ --Upper;
+
+ RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
+ return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymGT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) {
+ BasicValueFactory &BV = state->getBasicVals();
+
+ QualType T = state->getSymbolManager().getType(sym);
+ const llvm::APSInt &Max = BV.getMaxValue(T);
+
+ // Special case for Int == Max. This is always false.
+ if (Int == Max)
+ return NULL;
+
+ llvm::APSInt Lower = Int-Adjustment;
+ llvm::APSInt Upper = Max-Adjustment;
+ ++Lower;
+
+ RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
+ return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymGE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) {
+ BasicValueFactory &BV = state->getBasicVals();
+
+ QualType T = state->getSymbolManager().getType(sym);
+ const llvm::APSInt &Min = BV.getMinValue(T);
+
+ // Special case for Int == Min. This is always feasible.
+ if (Int == Min)
+ return state;
+
+ const llvm::APSInt &Max = BV.getMaxValue(T);
+
+ llvm::APSInt Lower = Int-Adjustment;
+ llvm::APSInt Upper = Max-Adjustment;
+
+ RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
+ return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymLE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& Int,
+ const llvm::APSInt& Adjustment) {
+ BasicValueFactory &BV = state->getBasicVals();
+
+ QualType T = state->getSymbolManager().getType(sym);
+ const llvm::APSInt &Max = BV.getMaxValue(T);
+
+ // Special case for Int == Max. This is always feasible.
+ if (Int == Max)
+ return state;
+
+ const llvm::APSInt &Min = BV.getMinValue(T);
+
+ llvm::APSInt Lower = Min-Adjustment;
+ llvm::APSInt Upper = Int-Adjustment;
+
+ RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
+ return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
+}
+
+//===------------------------------------------------------------------------===
+// Pretty-printing.
+//===------------------------------------------------------------------------===/
+
+void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
+ const char* nl, const char *sep) {
+
+ ConstraintRangeTy Ranges = St->get<ConstraintRange>();
+
+ if (Ranges.isEmpty()) {
+ Out << nl << sep << "Ranges are empty." << nl;
+ return;
+ }
+
+ Out << nl << sep << "Ranges of symbol values:";
+ for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
+ Out << nl << ' ' << I.getKey() << " : ";
+ I.getData().print(Out);
+ }
+ Out << nl;
+}
diff --git a/clang/lib/StaticAnalyzer/Core/RegionStore.cpp b/clang/lib/StaticAnalyzer/Core/RegionStore.cpp
new file mode 100644
index 0000000..cc3ea8c
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/RegionStore.cpp
@@ -0,0 +1,2009 @@
+//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a basic region store model. In this model, we do have field
+// sensitivity. But we assume nothing about the heap shape. So recursive data
+// structures are largely ignored. Basically we do 1-limiting analysis.
+// Parameter pointers are assumed with no aliasing. Pointee objects of
+// parameters are created lazily.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
+#include "llvm/ADT/ImmutableList.h"
+#include "llvm/ADT/ImmutableMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+using llvm::Optional;
+
+//===----------------------------------------------------------------------===//
+// Representation of binding keys.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class BindingKey {
+public:
+ enum Kind { Direct = 0x0, Default = 0x1 };
+private:
+ llvm ::PointerIntPair<const MemRegion*, 1> P;
+ uint64_t Offset;
+
+ explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
+ : P(r, (unsigned) k), Offset(offset) {}
+public:
+
+ bool isDirect() const { return P.getInt() == Direct; }
+
+ const MemRegion *getRegion() const { return P.getPointer(); }
+ uint64_t getOffset() const { return Offset; }
+
+ void Profile(llvm::FoldingSetNodeID& ID) const {
+ ID.AddPointer(P.getOpaqueValue());
+ ID.AddInteger(Offset);
+ }
+
+ static BindingKey Make(const MemRegion *R, Kind k);
+
+ bool operator<(const BindingKey &X) const {
+ if (P.getOpaqueValue() < X.P.getOpaqueValue())
+ return true;
+ if (P.getOpaqueValue() > X.P.getOpaqueValue())
+ return false;
+ return Offset < X.Offset;
+ }
+
+ bool operator==(const BindingKey &X) const {
+ return P.getOpaqueValue() == X.P.getOpaqueValue() &&
+ Offset == X.Offset;
+ }
+
+ bool isValid() const {
+ return getRegion() != NULL;
+ }
+};
+} // end anonymous namespace
+
+BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ const RegionRawOffset &O = ER->getAsArrayOffset();
+
+ // FIXME: There are some ElementRegions for which we cannot compute
+ // raw offsets yet, including regions with symbolic offsets. These will be
+ // ignored by the store.
+ return BindingKey(O.getRegion(), O.getOffset().getQuantity(), k);
+ }
+
+ return BindingKey(R, 0, k);
+}
+
+namespace llvm {
+ static inline
+ raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
+ os << '(' << K.getRegion() << ',' << K.getOffset()
+ << ',' << (K.isDirect() ? "direct" : "default")
+ << ')';
+ return os;
+ }
+} // end llvm namespace
+
+//===----------------------------------------------------------------------===//
+// Actual Store type.
+//===----------------------------------------------------------------------===//
+
+typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;
+
+//===----------------------------------------------------------------------===//
+// Fine-grained control of RegionStoreManager.
+//===----------------------------------------------------------------------===//
+
+namespace {
+struct minimal_features_tag {};
+struct maximal_features_tag {};
+
+class RegionStoreFeatures {
+ bool SupportsFields;
+public:
+ RegionStoreFeatures(minimal_features_tag) :
+ SupportsFields(false) {}
+
+ RegionStoreFeatures(maximal_features_tag) :
+ SupportsFields(true) {}
+
+ void enableFields(bool t) { SupportsFields = t; }
+
+ bool supportsFields() const { return SupportsFields; }
+};
+}
+
+//===----------------------------------------------------------------------===//
+// Main RegionStore logic.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class RegionStoreSubRegionMap : public SubRegionMap {
+public:
+ typedef llvm::ImmutableSet<const MemRegion*> Set;
+ typedef llvm::DenseMap<const MemRegion*, Set> Map;
+private:
+ Set::Factory F;
+ Map M;
+public:
+ bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
+ Map::iterator I = M.find(Parent);
+
+ if (I == M.end()) {
+ M.insert(std::make_pair(Parent, F.add(F.getEmptySet(), SubRegion)));
+ return true;
+ }
+
+ I->second = F.add(I->second, SubRegion);
+ return false;
+ }
+
+ void process(SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);
+
+ ~RegionStoreSubRegionMap() {}
+
+ const Set *getSubRegions(const MemRegion *Parent) const {
+ Map::const_iterator I = M.find(Parent);
+ return I == M.end() ? NULL : &I->second;
+ }
+
+ bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
+ Map::const_iterator I = M.find(Parent);
+
+ if (I == M.end())
+ return true;
+
+ Set S = I->second;
+ for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
+ if (!V.Visit(Parent, *SI))
+ return false;
+ }
+
+ return true;
+ }
+};
+
+void
+RegionStoreSubRegionMap::process(SmallVectorImpl<const SubRegion*> &WL,
+ const SubRegion *R) {
+ const MemRegion *superR = R->getSuperRegion();
+ if (add(superR, R))
+ if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
+ WL.push_back(sr);
+}
+
+class RegionStoreManager : public StoreManager {
+ const RegionStoreFeatures Features;
+ RegionBindings::Factory RBFactory;
+
+public:
+ RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
+ : StoreManager(mgr),
+ Features(f),
+ RBFactory(mgr.getAllocator()) {}
+
+ SubRegionMap *getSubRegionMap(Store store) {
+ return getRegionStoreSubRegionMap(store);
+ }
+
+ RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);
+
+ Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
+ /// getDefaultBinding - Returns an SVal* representing an optional default
+ /// binding associated with a region and its subregions.
+ Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);
+
+ /// setImplicitDefaultValue - Set the default binding for the provided
+ /// MemRegion to the value implicitly defined for compound literals when
+ /// the value is not specified.
+ StoreRef setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);
+
+ /// ArrayToPointer - Emulates the "decay" of an array to a pointer
+ /// type. 'Array' represents the lvalue of the array being decayed
+ /// to a pointer, and the returned SVal represents the decayed
+ /// version of that lvalue (i.e., a pointer to the first element of
+ /// the array). This is called by ExprEngine when evaluating
+ /// casts from arrays to pointers.
+ SVal ArrayToPointer(Loc Array);
+
+ /// For DerivedToBase casts, create a CXXBaseObjectRegion and return it.
+ virtual SVal evalDerivedToBase(SVal derived, QualType basePtrType);
+
+ /// \brief Evaluates C++ dynamic_cast cast.
+ /// The callback may result in the following 3 scenarios:
+ /// - Successful cast (ex: derived is subclass of base).
+ /// - Failed cast (ex: derived is definitely not a subclass of base).
+ /// - We don't know (base is a symbolic region and we don't have
+ /// enough info to determine if the cast will succeed at run time).
+ /// The function returns an SVal representing the derived class; it's
+ /// valid only if Failed flag is set to false.
+ virtual SVal evalDynamicCast(SVal base, QualType derivedPtrType,bool &Failed);
+
+ StoreRef getInitialStore(const LocationContext *InitLoc) {
+ return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
+ }
+
+ //===-------------------------------------------------------------------===//
+ // Binding values to regions.
+ //===-------------------------------------------------------------------===//
+ RegionBindings invalidateGlobalRegion(MemRegion::Kind K,
+ const Expr *Ex,
+ unsigned Count,
+ const LocationContext *LCtx,
+ RegionBindings B,
+ InvalidatedRegions *Invalidated);
+
+ StoreRef invalidateRegions(Store store, ArrayRef<const MemRegion *> Regions,
+ const Expr *E, unsigned Count,
+ const LocationContext *LCtx,
+ InvalidatedSymbols &IS,
+ const CallOrObjCMessage *Call,
+ InvalidatedRegions *Invalidated);
+
+public: // Made public for helper classes.
+
+ void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
+ RegionStoreSubRegionMap &M);
+
+ RegionBindings addBinding(RegionBindings B, BindingKey K, SVal V);
+
+ RegionBindings addBinding(RegionBindings B, const MemRegion *R,
+ BindingKey::Kind k, SVal V);
+
+ const SVal *lookup(RegionBindings B, BindingKey K);
+ const SVal *lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);
+
+ RegionBindings removeBinding(RegionBindings B, BindingKey K);
+ RegionBindings removeBinding(RegionBindings B, const MemRegion *R,
+ BindingKey::Kind k);
+
+ RegionBindings removeBinding(RegionBindings B, const MemRegion *R) {
+ return removeBinding(removeBinding(B, R, BindingKey::Direct), R,
+ BindingKey::Default);
+ }
+
+public: // Part of public interface to class.
+
+ StoreRef Bind(Store store, Loc LV, SVal V);
+
+ // BindDefault is only used to initialize a region with a default value.
+ StoreRef BindDefault(Store store, const MemRegion *R, SVal V) {
+ RegionBindings B = GetRegionBindings(store);
+ assert(!lookup(B, R, BindingKey::Default));
+ assert(!lookup(B, R, BindingKey::Direct));
+ return StoreRef(addBinding(B, R, BindingKey::Default, V)
+ .getRootWithoutRetain(), *this);
+ }
+
+ StoreRef BindCompoundLiteral(Store store, const CompoundLiteralExpr *CL,
+ const LocationContext *LC, SVal V);
+
+ StoreRef BindDecl(Store store, const VarRegion *VR, SVal InitVal);
+
+ StoreRef BindDeclWithNoInit(Store store, const VarRegion *) {
+ return StoreRef(store, *this);
+ }
+
+ /// BindStruct - Bind a compound value to a structure.
+ StoreRef BindStruct(Store store, const TypedValueRegion* R, SVal V);
+
+ StoreRef BindArray(Store store, const TypedValueRegion* R, SVal V);
+
+ /// KillStruct - Set the entire struct to unknown.
+ StoreRef KillStruct(Store store, const TypedRegion* R, SVal DefaultVal);
+
+ StoreRef Remove(Store store, Loc LV);
+
+ void incrementReferenceCount(Store store) {
+ GetRegionBindings(store).manualRetain();
+ }
+
+ /// If the StoreManager supports it, decrement the reference count of
+ /// the specified Store object. If the reference count hits 0, the memory
+ /// associated with the object is recycled.
+ void decrementReferenceCount(Store store) {
+ GetRegionBindings(store).manualRelease();
+ }
+
+ bool includedInBindings(Store store, const MemRegion *region) const;
+
+ /// \brief Return the value bound to specified location in a given state.
+ ///
+ /// The high level logic for this method is this:
+ /// getBinding (L)
+ /// if L has binding
+ /// return L's binding
+ /// else if L is in killset
+ /// return unknown
+ /// else
+ /// if L is on stack or heap
+ /// return undefined
+ /// else
+ /// return symbolic
+ SVal getBinding(Store store, Loc L, QualType T = QualType());
+
+ SVal getBindingForElement(Store store, const ElementRegion *R);
+
+ SVal getBindingForField(Store store, const FieldRegion *R);
+
+ SVal getBindingForObjCIvar(Store store, const ObjCIvarRegion *R);
+
+ SVal getBindingForVar(Store store, const VarRegion *R);
+
+ SVal getBindingForLazySymbol(const TypedValueRegion *R);
+
+ SVal getBindingForFieldOrElementCommon(Store store, const TypedValueRegion *R,
+ QualType Ty, const MemRegion *superR);
+
+ SVal getLazyBinding(const MemRegion *lazyBindingRegion,
+ Store lazyBindingStore);
+
+ /// Get bindings for the values in a struct and return a CompoundVal, used
+ /// when doing struct copy:
+ /// struct s x, y;
+ /// x = y;
+ /// y's value is retrieved by this method.
+ SVal getBindingForStruct(Store store, const TypedValueRegion* R);
+
+ SVal getBindingForArray(Store store, const TypedValueRegion* R);
+
+ /// Used to lazily generate derived symbols for bindings that are defined
+ /// implicitly by default bindings in a super region.
+ Optional<SVal> getBindingForDerivedDefaultValue(RegionBindings B,
+ const MemRegion *superR,
+ const TypedValueRegion *R,
+ QualType Ty);
+
+ /// Get the state and region whose binding this region R corresponds to.
+ std::pair<Store, const MemRegion*>
+ GetLazyBinding(RegionBindings B, const MemRegion *R,
+ const MemRegion *originalRegion);
+
+ StoreRef CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
+ const TypedRegion *R);
+
+ //===------------------------------------------------------------------===//
+ // State pruning.
+ //===------------------------------------------------------------------===//
+
+ /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
+ /// It returns a new Store with these values removed.
+ StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
+ SymbolReaper& SymReaper);
+
+ StoreRef enterStackFrame(ProgramStateRef state,
+ const LocationContext *callerCtx,
+ const StackFrameContext *calleeCtx);
+
+ //===------------------------------------------------------------------===//
+ // Region "extents".
+ //===------------------------------------------------------------------===//
+
+ // FIXME: This method will soon be eliminated; see the note in Store.h.
+ DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
+ const MemRegion* R, QualType EleTy);
+
+ //===------------------------------------------------------------------===//
+ // Utility methods.
+ //===------------------------------------------------------------------===//
+
+ static inline RegionBindings GetRegionBindings(Store store) {
+ return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
+ }
+
+ void print(Store store, raw_ostream &Out, const char* nl,
+ const char *sep);
+
+ void iterBindings(Store store, BindingsHandler& f) {
+ RegionBindings B = GetRegionBindings(store);
+ for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I) {
+ const BindingKey &K = I.getKey();
+ if (!K.isDirect())
+ continue;
+ if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion())) {
+ // FIXME: Possibly incorporate the offset?
+ if (!f.HandleBinding(*this, store, R, I.getData()))
+ return;
+ }
+ }
+ }
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// RegionStore creation.
+//===----------------------------------------------------------------------===//
+
+StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
+ RegionStoreFeatures F = maximal_features_tag();
+ return new RegionStoreManager(StMgr, F);
+}
+
+StoreManager *
+ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
+ RegionStoreFeatures F = minimal_features_tag();
+ F.enableFields(true);
+ return new RegionStoreManager(StMgr, F);
+}
+
+
+RegionStoreSubRegionMap*
+RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
+ RegionBindings B = GetRegionBindings(store);
+ RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();
+
+ SmallVector<const SubRegion*, 10> WL;
+
+ for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
+ if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
+ M->process(WL, R);
+
+ // We also need to record in the subregion map "intermediate" regions that
+ // don't have direct bindings but are super regions of those that do.
+ while (!WL.empty()) {
+ const SubRegion *R = WL.back();
+ WL.pop_back();
+ M->process(WL, R);
+ }
+
+ return M;
+}
+
+//===----------------------------------------------------------------------===//
+// Region Cluster analysis.
+//===----------------------------------------------------------------------===//
+
+namespace {
+template <typename DERIVED>
+class ClusterAnalysis {
+protected:
+ typedef BumpVector<BindingKey> RegionCluster;
+ typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
+ llvm::DenseMap<const RegionCluster*, unsigned> Visited;
+ typedef SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
+ WorkList;
+
+ BumpVectorContext BVC;
+ ClusterMap ClusterM;
+ WorkList WL;
+
+ RegionStoreManager &RM;
+ ASTContext &Ctx;
+ SValBuilder &svalBuilder;
+
+ RegionBindings B;
+
+ const bool includeGlobals;
+
+public:
+ ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
+ RegionBindings b, const bool includeGlobals)
+ : RM(rm), Ctx(StateMgr.getContext()),
+ svalBuilder(StateMgr.getSValBuilder()),
+ B(b), includeGlobals(includeGlobals) {}
+
+ RegionBindings getRegionBindings() const { return B; }
+
+ RegionCluster &AddToCluster(BindingKey K) {
+ const MemRegion *R = K.getRegion();
+ const MemRegion *baseR = R->getBaseRegion();
+ RegionCluster &C = getCluster(baseR);
+ C.push_back(K, BVC);
+ static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
+ return C;
+ }
+
+ bool isVisited(const MemRegion *R) {
+ return (bool) Visited[&getCluster(R->getBaseRegion())];
+ }
+
+ RegionCluster& getCluster(const MemRegion *R) {
+ RegionCluster *&CRef = ClusterM[R];
+ if (!CRef) {
+ void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
+ CRef = new (Mem) RegionCluster(BVC, 10);
+ }
+ return *CRef;
+ }
+
+ void GenerateClusters() {
+ // Scan the entire set of bindings and make the region clusters.
+ for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
+ RegionCluster &C = AddToCluster(RI.getKey());
+ if (const MemRegion *R = RI.getData().getAsRegion()) {
+ // Generate a cluster, but don't add the region to the cluster
+ // if there aren't any bindings.
+ getCluster(R->getBaseRegion());
+ }
+ if (includeGlobals) {
+ const MemRegion *R = RI.getKey().getRegion();
+ if (isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace()))
+ AddToWorkList(R, C);
+ }
+ }
+ }
+
+ bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
+ if (unsigned &visited = Visited[&C])
+ return false;
+ else
+ visited = 1;
+
+ WL.push_back(std::make_pair(R, &C));
+ return true;
+ }
+
+ bool AddToWorkList(BindingKey K) {
+ return AddToWorkList(K.getRegion());
+ }
+
+ bool AddToWorkList(const MemRegion *R) {
+ const MemRegion *baseR = R->getBaseRegion();
+ return AddToWorkList(baseR, getCluster(baseR));
+ }
+
+ void RunWorkList() {
+ while (!WL.empty()) {
+ const MemRegion *baseR;
+ RegionCluster *C;
+ llvm::tie(baseR, C) = WL.back();
+ WL.pop_back();
+
+ // First visit the cluster.
+ static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());
+
+ // Next, visit the base region.
+ static_cast<DERIVED*>(this)->VisitBaseRegion(baseR);
+ }
+ }
+
+public:
+ void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
+ void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
+ void VisitBaseRegion(const MemRegion *baseR) {}
+};
+}
+
+//===----------------------------------------------------------------------===//
+// Binding invalidation.
+//===----------------------------------------------------------------------===//
+
+void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
+ const MemRegion *R,
+ RegionStoreSubRegionMap &M) {
+
+ if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
+ for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
+ I != E; ++I)
+ RemoveSubRegionBindings(B, *I, M);
+
+ B = removeBinding(B, R);
+}
+
+namespace {
+class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
+{
+ const Expr *Ex;
+ unsigned Count;
+ const LocationContext *LCtx;
+ StoreManager::InvalidatedSymbols &IS;
+ StoreManager::InvalidatedRegions *Regions;
+public:
+ invalidateRegionsWorker(RegionStoreManager &rm,
+ ProgramStateManager &stateMgr,
+ RegionBindings b,
+ const Expr *ex, unsigned count,
+ const LocationContext *lctx,
+ StoreManager::InvalidatedSymbols &is,
+ StoreManager::InvalidatedRegions *r,
+ bool includeGlobals)
+ : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, includeGlobals),
+ Ex(ex), Count(count), LCtx(lctx), IS(is), Regions(r) {}
+
+ void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
+ void VisitBaseRegion(const MemRegion *baseR);
+
+private:
+ void VisitBinding(SVal V);
+};
+}
+
+void invalidateRegionsWorker::VisitBinding(SVal V) {
+ // A symbol? Mark it touched by the invalidation.
+ if (SymbolRef Sym = V.getAsSymbol())
+ IS.insert(Sym);
+
+ if (const MemRegion *R = V.getAsRegion()) {
+ AddToWorkList(R);
+ return;
+ }
+
+ // Is it a LazyCompoundVal? All references get invalidated as well.
+ if (const nonloc::LazyCompoundVal *LCS =
+ dyn_cast<nonloc::LazyCompoundVal>(&V)) {
+
+ const MemRegion *LazyR = LCS->getRegion();
+ RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
+
+ for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
+ const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
+ if (baseR && baseR->isSubRegionOf(LazyR))
+ VisitBinding(RI.getData());
+ }
+
+ return;
+ }
+}
+
+void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
+ BindingKey *I, BindingKey *E) {
+ for ( ; I != E; ++I) {
+ // Get the old binding. Is it a region? If so, add it to the worklist.
+ const BindingKey &K = *I;
+ if (const SVal *V = RM.lookup(B, K))
+ VisitBinding(*V);
+
+ B = RM.removeBinding(B, K);
+ }
+}
+
+void invalidateRegionsWorker::VisitBaseRegion(const MemRegion *baseR) {
+ // Symbolic region? Mark that symbol touched by the invalidation.
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
+ IS.insert(SR->getSymbol());
+
+ // BlockDataRegion? If so, invalidate captured variables that are passed
+ // by reference.
+ if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
+ for (BlockDataRegion::referenced_vars_iterator
+ BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
+ BI != BE; ++BI) {
+ const VarRegion *VR = *BI;
+ const VarDecl *VD = VR->getDecl();
+ if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
+ AddToWorkList(VR);
+ }
+ return;
+ }
+
+ // Otherwise, we have a normal data region. Record that we touched the region.
+ if (Regions)
+ Regions->push_back(baseR);
+
+ if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
+ // Invalidate the region by setting its default value to
+ // conjured symbol. The type of the symbol is irrelavant.
+ DefinedOrUnknownSVal V =
+ svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
+ B = RM.addBinding(B, baseR, BindingKey::Default, V);
+ return;
+ }
+
+ if (!baseR->isBoundable())
+ return;
+
+ const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
+ QualType T = TR->getValueType();
+
+ // Invalidate the binding.
+ if (T->isStructureOrClassType()) {
+ // Invalidate the region by setting its default value to
+ // conjured symbol. The type of the symbol is irrelavant.
+ DefinedOrUnknownSVal V =
+ svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
+ B = RM.addBinding(B, baseR, BindingKey::Default, V);
+ return;
+ }
+
+ if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
+ // Set the default value of the array to conjured symbol.
+ DefinedOrUnknownSVal V =
+ svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
+ AT->getElementType(), Count);
+ B = RM.addBinding(B, baseR, BindingKey::Default, V);
+ return;
+ }
+
+ if (includeGlobals &&
+ isa<NonStaticGlobalSpaceRegion>(baseR->getMemorySpace())) {
+ // If the region is a global and we are invalidating all globals,
+ // just erase the entry. This causes all globals to be lazily
+ // symbolicated from the same base symbol.
+ B = RM.removeBinding(B, baseR);
+ return;
+ }
+
+
+ DefinedOrUnknownSVal V = svalBuilder.getConjuredSymbolVal(baseR, Ex, LCtx,
+ T,Count);
+ assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
+ B = RM.addBinding(B, baseR, BindingKey::Direct, V);
+}
+
+RegionBindings RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
+ const Expr *Ex,
+ unsigned Count,
+ const LocationContext *LCtx,
+ RegionBindings B,
+ InvalidatedRegions *Invalidated) {
+ // Bind the globals memory space to a new symbol that we will use to derive
+ // the bindings for all globals.
+ const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
+ SVal V =
+ svalBuilder.getConjuredSymbolVal(/* SymbolTag = */ (void*) GS, Ex, LCtx,
+ /* symbol type, doesn't matter */ Ctx.IntTy,
+ Count);
+
+ B = removeBinding(B, GS);
+ B = addBinding(B, BindingKey::Make(GS, BindingKey::Default), V);
+
+ // Even if there are no bindings in the global scope, we still need to
+ // record that we touched it.
+ if (Invalidated)
+ Invalidated->push_back(GS);
+
+ return B;
+}
+
+StoreRef RegionStoreManager::invalidateRegions(Store store,
+ ArrayRef<const MemRegion *> Regions,
+ const Expr *Ex, unsigned Count,
+ const LocationContext *LCtx,
+ InvalidatedSymbols &IS,
+ const CallOrObjCMessage *Call,
+ InvalidatedRegions *Invalidated) {
+ invalidateRegionsWorker W(*this, StateMgr,
+ RegionStoreManager::GetRegionBindings(store),
+ Ex, Count, LCtx, IS, Invalidated, false);
+
+ // Scan the bindings and generate the clusters.
+ W.GenerateClusters();
+
+ // Add the regions to the worklist.
+ for (ArrayRef<const MemRegion *>::iterator
+ I = Regions.begin(), E = Regions.end(); I != E; ++I)
+ W.AddToWorkList(*I);
+
+ W.RunWorkList();
+
+ // Return the new bindings.
+ RegionBindings B = W.getRegionBindings();
+
+ // For all globals which are not static nor immutable: determine which global
+ // regions should be invalidated and invalidate them.
+ // TODO: This could possibly be more precise with modules.
+ //
+ // System calls invalidate only system globals.
+ if (Call && Call->isInSystemHeader()) {
+ B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
+ Ex, Count, LCtx, B, Invalidated);
+ // Internal calls might invalidate both system and internal globals.
+ } else {
+ B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
+ Ex, Count, LCtx, B, Invalidated);
+ B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
+ Ex, Count, LCtx, B, Invalidated);
+ }
+
+ return StoreRef(B.getRootWithoutRetain(), *this);
+}
+
+//===----------------------------------------------------------------------===//
+// Extents for regions.
+//===----------------------------------------------------------------------===//
+
+DefinedOrUnknownSVal
+RegionStoreManager::getSizeInElements(ProgramStateRef state,
+ const MemRegion *R,
+ QualType EleTy) {
+ SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
+ const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
+ if (!SizeInt)
+ return UnknownVal();
+
+ CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
+
+ if (Ctx.getAsVariableArrayType(EleTy)) {
+ // FIXME: We need to track extra state to properly record the size
+ // of VLAs. Returning UnknownVal here, however, is a stop-gap so that
+ // we don't have a divide-by-zero below.
+ return UnknownVal();
+ }
+
+ CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
+
+ // If a variable is reinterpreted as a type that doesn't fit into a larger
+ // type evenly, round it down.
+ // This is a signed value, since it's used in arithmetic with signed indices.
+ return svalBuilder.makeIntVal(RegionSize / EleSize, false);
+}
+
+//===----------------------------------------------------------------------===//
+// Location and region casting.
+//===----------------------------------------------------------------------===//
+
+/// ArrayToPointer - Emulates the "decay" of an array to a pointer
+/// type. 'Array' represents the lvalue of the array being decayed
+/// to a pointer, and the returned SVal represents the decayed
+/// version of that lvalue (i.e., a pointer to the first element of
+/// the array). This is called by ExprEngine when evaluating casts
+/// from arrays to pointers.
+SVal RegionStoreManager::ArrayToPointer(Loc Array) {
+ if (!isa<loc::MemRegionVal>(Array))
+ return UnknownVal();
+
+ const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
+ const TypedValueRegion* ArrayR = dyn_cast<TypedValueRegion>(R);
+
+ if (!ArrayR)
+ return UnknownVal();
+
+ // Strip off typedefs from the ArrayRegion's ValueType.
+ QualType T = ArrayR->getValueType().getDesugaredType(Ctx);
+ const ArrayType *AT = cast<ArrayType>(T);
+ T = AT->getElementType();
+
+ NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
+ return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR, Ctx));
+}
+
+SVal RegionStoreManager::evalDerivedToBase(SVal derived, QualType baseType) {
+ const CXXRecordDecl *baseDecl;
+ if (baseType->isPointerType())
+ baseDecl = baseType->getCXXRecordDeclForPointerType();
+ else
+ baseDecl = baseType->getAsCXXRecordDecl();
+
+ assert(baseDecl && "not a CXXRecordDecl?");
+
+ loc::MemRegionVal *derivedRegVal = dyn_cast<loc::MemRegionVal>(&derived);
+ if (!derivedRegVal)
+ return derived;
+
+ const MemRegion *baseReg =
+ MRMgr.getCXXBaseObjectRegion(baseDecl, derivedRegVal->getRegion());
+
+ return loc::MemRegionVal(baseReg);
+}
+
+SVal RegionStoreManager::evalDynamicCast(SVal base, QualType derivedType,
+ bool &Failed) {
+ Failed = false;
+
+ loc::MemRegionVal *baseRegVal = dyn_cast<loc::MemRegionVal>(&base);
+ if (!baseRegVal)
+ return UnknownVal();
+ const MemRegion *BaseRegion = baseRegVal->stripCasts();
+
+ // Assume the derived class is a pointer or a reference to a CXX record.
+ derivedType = derivedType->getPointeeType();
+ assert(!derivedType.isNull());
+ const CXXRecordDecl *DerivedDecl = derivedType->getAsCXXRecordDecl();
+ if (!DerivedDecl && !derivedType->isVoidType())
+ return UnknownVal();
+
+ // Drill down the CXXBaseObject chains, which represent upcasts (casts from
+ // derived to base).
+ const MemRegion *SR = BaseRegion;
+ while (const TypedRegion *TSR = dyn_cast_or_null<TypedRegion>(SR)) {
+ QualType BaseType = TSR->getLocationType()->getPointeeType();
+ assert(!BaseType.isNull());
+ const CXXRecordDecl *SRDecl = BaseType->getAsCXXRecordDecl();
+ if (!SRDecl)
+ return UnknownVal();
+
+ // If found the derived class, the cast succeeds.
+ if (SRDecl == DerivedDecl)
+ return loc::MemRegionVal(TSR);
+
+ // If the region type is a subclass of the derived type.
+ if (!derivedType->isVoidType() && SRDecl->isDerivedFrom(DerivedDecl)) {
+ // This occurs in two cases.
+ // 1) We are processing an upcast.
+ // 2) We are processing a downcast but we jumped directly from the
+ // ancestor to a child of the cast value, so conjure the
+ // appropriate region to represent value (the intermediate node).
+ return loc::MemRegionVal(MRMgr.getCXXBaseObjectRegion(DerivedDecl,
+ BaseRegion));
+ }
+
+ // If super region is not a parent of derived class, the cast definitely
+ // fails.
+ if (!derivedType->isVoidType() &&
+ DerivedDecl->isProvablyNotDerivedFrom(SRDecl)) {
+ Failed = true;
+ return UnknownVal();
+ }
+
+ if (const CXXBaseObjectRegion *R = dyn_cast<CXXBaseObjectRegion>(TSR))
+ // Drill down the chain to get the derived classes.
+ SR = R->getSuperRegion();
+ else {
+ // We reached the bottom of the hierarchy.
+
+ // If this is a cast to void*, return the region.
+ if (derivedType->isVoidType())
+ return loc::MemRegionVal(TSR);
+
+ // We did not find the derived class. We we must be casting the base to
+ // derived, so the cast should fail.
+ Failed = true;
+ return UnknownVal();
+ }
+ }
+
+ return UnknownVal();
+}
+
+//===----------------------------------------------------------------------===//
+// Loading values from regions.
+//===----------------------------------------------------------------------===//
+
+Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
+ const MemRegion *R) {
+
+ if (const SVal *V = lookup(B, R, BindingKey::Direct))
+ return *V;
+
+ return Optional<SVal>();
+}
+
+Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
+ const MemRegion *R) {
+ if (R->isBoundable())
+ if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
+ if (TR->getValueType()->isUnionType())
+ return UnknownVal();
+
+ if (const SVal *V = lookup(B, R, BindingKey::Default))
+ return *V;
+
+ return Optional<SVal>();
+}
+
+SVal RegionStoreManager::getBinding(Store store, Loc L, QualType T) {
+ assert(!isa<UnknownVal>(L) && "location unknown");
+ assert(!isa<UndefinedVal>(L) && "location undefined");
+
+ // For access to concrete addresses, return UnknownVal. Checks
+ // for null dereferences (and similar errors) are done by checkers, not
+ // the Store.
+ // FIXME: We can consider lazily symbolicating such memory, but we really
+ // should defer this when we can reason easily about symbolicating arrays
+ // of bytes.
+ if (isa<loc::ConcreteInt>(L)) {
+ return UnknownVal();
+ }
+ if (!isa<loc::MemRegionVal>(L)) {
+ return UnknownVal();
+ }
+
+ const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();
+
+ if (isa<AllocaRegion>(MR) ||
+ isa<SymbolicRegion>(MR) ||
+ isa<CodeTextRegion>(MR)) {
+ if (T.isNull()) {
+ if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
+ T = TR->getLocationType();
+ else {
+ const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
+ T = SR->getSymbol()->getType(Ctx);
+ }
+ }
+ MR = GetElementZeroRegion(MR, T);
+ }
+
+ // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
+ // instead of 'Loc', and have the other Loc cases handled at a higher level.
+ const TypedValueRegion *R = cast<TypedValueRegion>(MR);
+ QualType RTy = R->getValueType();
+
+ // FIXME: We should eventually handle funny addressing. e.g.:
+ //
+ // int x = ...;
+ // int *p = &x;
+ // char *q = (char*) p;
+ // char c = *q; // returns the first byte of 'x'.
+ //
+ // Such funny addressing will occur due to layering of regions.
+
+ if (RTy->isStructureOrClassType())
+ return getBindingForStruct(store, R);
+
+ // FIXME: Handle unions.
+ if (RTy->isUnionType())
+ return UnknownVal();
+
+ if (RTy->isArrayType())
+ return getBindingForArray(store, R);
+
+ // FIXME: handle Vector types.
+ if (RTy->isVectorType())
+ return UnknownVal();
+
+ if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
+ return CastRetrievedVal(getBindingForField(store, FR), FR, T, false);
+
+ if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
+ // FIXME: Here we actually perform an implicit conversion from the loaded
+ // value to the element type. Eventually we want to compose these values
+ // more intelligently. For example, an 'element' can encompass multiple
+ // bound regions (e.g., several bound bytes), or could be a subset of
+ // a larger value.
+ return CastRetrievedVal(getBindingForElement(store, ER), ER, T, false);
+ }
+
+ if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
+ // FIXME: Here we actually perform an implicit conversion from the loaded
+ // value to the ivar type. What we should model is stores to ivars
+ // that blow past the extent of the ivar. If the address of the ivar is
+ // reinterpretted, it is possible we stored a different value that could
+ // fit within the ivar. Either we need to cast these when storing them
+ // or reinterpret them lazily (as we do here).
+ return CastRetrievedVal(getBindingForObjCIvar(store, IVR), IVR, T, false);
+ }
+
+ if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
+ // FIXME: Here we actually perform an implicit conversion from the loaded
+ // value to the variable type. What we should model is stores to variables
+ // that blow past the extent of the variable. If the address of the
+ // variable is reinterpretted, it is possible we stored a different value
+ // that could fit within the variable. Either we need to cast these when
+ // storing them or reinterpret them lazily (as we do here).
+ return CastRetrievedVal(getBindingForVar(store, VR), VR, T, false);
+ }
+
+ RegionBindings B = GetRegionBindings(store);
+ const SVal *V = lookup(B, R, BindingKey::Direct);
+
+ // Check if the region has a binding.
+ if (V)
+ return *V;
+
+ // The location does not have a bound value. This means that it has
+ // the value it had upon its creation and/or entry to the analyzed
+ // function/method. These are either symbolic values or 'undefined'.
+ if (R->hasStackNonParametersStorage()) {
+ // All stack variables are considered to have undefined values
+ // upon creation. All heap allocated blocks are considered to
+ // have undefined values as well unless they are explicitly bound
+ // to specific values.
+ return UndefinedVal();
+ }
+
+ // All other values are symbolic.
+ return svalBuilder.getRegionValueSymbolVal(R);
+}
+
+std::pair<Store, const MemRegion *>
+RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R,
+ const MemRegion *originalRegion) {
+
+ if (originalRegion != R) {
+ if (Optional<SVal> OV = getDefaultBinding(B, R)) {
+ if (const nonloc::LazyCompoundVal *V =
+ dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
+ return std::make_pair(V->getStore(), V->getRegion());
+ }
+ }
+
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ const std::pair<Store, const MemRegion *> &X =
+ GetLazyBinding(B, ER->getSuperRegion(), originalRegion);
+
+ if (X.second)
+ return std::make_pair(X.first,
+ MRMgr.getElementRegionWithSuper(ER, X.second));
+ }
+ else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
+ const std::pair<Store, const MemRegion *> &X =
+ GetLazyBinding(B, FR->getSuperRegion(), originalRegion);
+
+ if (X.second)
+ return std::make_pair(X.first,
+ MRMgr.getFieldRegionWithSuper(FR, X.second));
+ }
+ // C++ base object region is another kind of region that we should blast
+ // through to look for lazy compound value. It is like a field region.
+ else if (const CXXBaseObjectRegion *baseReg =
+ dyn_cast<CXXBaseObjectRegion>(R)) {
+ const std::pair<Store, const MemRegion *> &X =
+ GetLazyBinding(B, baseReg->getSuperRegion(), originalRegion);
+
+ if (X.second)
+ return std::make_pair(X.first,
+ MRMgr.getCXXBaseObjectRegionWithSuper(baseReg, X.second));
+ }
+
+ // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
+ // possible for a valid lazy binding.
+ return std::make_pair((Store) 0, (const MemRegion *) 0);
+}
+
+SVal RegionStoreManager::getBindingForElement(Store store,
+ const ElementRegion* R) {
+ // Check if the region has a binding.
+ RegionBindings B = GetRegionBindings(store);
+ if (const Optional<SVal> &V = getDirectBinding(B, R))
+ return *V;
+
+ const MemRegion* superR = R->getSuperRegion();
+
+ // Check if the region is an element region of a string literal.
+ if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
+ // FIXME: Handle loads from strings where the literal is treated as
+ // an integer, e.g., *((unsigned int*)"hello")
+ QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
+ if (T != Ctx.getCanonicalType(R->getElementType()))
+ return UnknownVal();
+
+ const StringLiteral *Str = StrR->getStringLiteral();
+ SVal Idx = R->getIndex();
+ if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
+ int64_t i = CI->getValue().getSExtValue();
+ // Abort on string underrun. This can be possible by arbitrary
+ // clients of getBindingForElement().
+ if (i < 0)
+ return UndefinedVal();
+ int64_t length = Str->getLength();
+ // Technically, only i == length is guaranteed to be null.
+ // However, such overflows should be caught before reaching this point;
+ // the only time such an access would be made is if a string literal was
+ // used to initialize a larger array.
+ char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
+ return svalBuilder.makeIntVal(c, T);
+ }
+ }
+
+ // Check for loads from a code text region. For such loads, just give up.
+ if (isa<CodeTextRegion>(superR))
+ return UnknownVal();
+
+ // Handle the case where we are indexing into a larger scalar object.
+ // For example, this handles:
+ // int x = ...
+ // char *y = &x;
+ // return *y;
+ // FIXME: This is a hack, and doesn't do anything really intelligent yet.
+ const RegionRawOffset &O = R->getAsArrayOffset();
+
+ // If we cannot reason about the offset, return an unknown value.
+ if (!O.getRegion())
+ return UnknownVal();
+
+ if (const TypedValueRegion *baseR =
+ dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
+ QualType baseT = baseR->getValueType();
+ if (baseT->isScalarType()) {
+ QualType elemT = R->getElementType();
+ if (elemT->isScalarType()) {
+ if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
+ if (const Optional<SVal> &V = getDirectBinding(B, superR)) {
+ if (SymbolRef parentSym = V->getAsSymbol())
+ return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
+
+ if (V->isUnknownOrUndef())
+ return *V;
+ // Other cases: give up. We are indexing into a larger object
+ // that has some value, but we don't know how to handle that yet.
+ return UnknownVal();
+ }
+ }
+ }
+ }
+ }
+ return getBindingForFieldOrElementCommon(store, R, R->getElementType(),
+ superR);
+}
+
+SVal RegionStoreManager::getBindingForField(Store store,
+ const FieldRegion* R) {
+
+ // Check if the region has a binding.
+ RegionBindings B = GetRegionBindings(store);
+ if (const Optional<SVal> &V = getDirectBinding(B, R))
+ return *V;
+
+ QualType Ty = R->getValueType();
+ return getBindingForFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
+}
+
+Optional<SVal>
+RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindings B,
+ const MemRegion *superR,
+ const TypedValueRegion *R,
+ QualType Ty) {
+
+ if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
+ const SVal &val = D.getValue();
+ if (SymbolRef parentSym = val.getAsSymbol())
+ return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
+
+ if (val.isZeroConstant())
+ return svalBuilder.makeZeroVal(Ty);
+
+ if (val.isUnknownOrUndef())
+ return val;
+
+ // Lazy bindings are handled later.
+ if (isa<nonloc::LazyCompoundVal>(val))
+ return Optional<SVal>();
+
+ llvm_unreachable("Unknown default value");
+ }
+
+ return Optional<SVal>();
+}
+
+SVal RegionStoreManager::getLazyBinding(const MemRegion *lazyBindingRegion,
+ Store lazyBindingStore) {
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
+ return getBindingForElement(lazyBindingStore, ER);
+
+ return getBindingForField(lazyBindingStore,
+ cast<FieldRegion>(lazyBindingRegion));
+}
+
+SVal RegionStoreManager::getBindingForFieldOrElementCommon(Store store,
+ const TypedValueRegion *R,
+ QualType Ty,
+ const MemRegion *superR) {
+
+ // At this point we have already checked in either getBindingForElement or
+ // getBindingForField if 'R' has a direct binding.
+ RegionBindings B = GetRegionBindings(store);
+
+ // Record whether or not we see a symbolic index. That can completely
+ // be out of scope of our lookup.
+ bool hasSymbolicIndex = false;
+
+ while (superR) {
+ if (const Optional<SVal> &D =
+ getBindingForDerivedDefaultValue(B, superR, R, Ty))
+ return *D;
+
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(superR)) {
+ NonLoc index = ER->getIndex();
+ if (!index.isConstant())
+ hasSymbolicIndex = true;
+ }
+
+ // If our super region is a field or element itself, walk up the region
+ // hierarchy to see if there is a default value installed in an ancestor.
+ if (const SubRegion *SR = dyn_cast<SubRegion>(superR)) {
+ superR = SR->getSuperRegion();
+ continue;
+ }
+ break;
+ }
+
+ // Lazy binding?
+ Store lazyBindingStore = NULL;
+ const MemRegion *lazyBindingRegion = NULL;
+ llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R, R);
+
+ if (lazyBindingRegion)
+ return getLazyBinding(lazyBindingRegion, lazyBindingStore);
+
+ if (R->hasStackNonParametersStorage()) {
+ if (isa<ElementRegion>(R)) {
+ // Currently we don't reason specially about Clang-style vectors. Check
+ // if superR is a vector and if so return Unknown.
+ if (const TypedValueRegion *typedSuperR =
+ dyn_cast<TypedValueRegion>(superR)) {
+ if (typedSuperR->getValueType()->isVectorType())
+ return UnknownVal();
+ }
+ }
+
+ // FIXME: We also need to take ElementRegions with symbolic indexes into
+ // account. This case handles both directly accessing an ElementRegion
+ // with a symbolic offset, but also fields within an element with
+ // a symbolic offset.
+ if (hasSymbolicIndex)
+ return UnknownVal();
+
+ return UndefinedVal();
+ }
+
+ // All other values are symbolic.
+ return svalBuilder.getRegionValueSymbolVal(R);
+}
+
+SVal RegionStoreManager::getBindingForObjCIvar(Store store,
+ const ObjCIvarRegion* R) {
+
+ // Check if the region has a binding.
+ RegionBindings B = GetRegionBindings(store);
+
+ if (const Optional<SVal> &V = getDirectBinding(B, R))
+ return *V;
+
+ const MemRegion *superR = R->getSuperRegion();
+
+ // Check if the super region has a default binding.
+ if (const Optional<SVal> &V = getDefaultBinding(B, superR)) {
+ if (SymbolRef parentSym = V->getAsSymbol())
+ return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
+
+ // Other cases: give up.
+ return UnknownVal();
+ }
+
+ return getBindingForLazySymbol(R);
+}
+
+SVal RegionStoreManager::getBindingForVar(Store store, const VarRegion *R) {
+
+ // Check if the region has a binding.
+ RegionBindings B = GetRegionBindings(store);
+
+ if (const Optional<SVal> &V = getDirectBinding(B, R))
+ return *V;
+
+ // Lazily derive a value for the VarRegion.
+ const VarDecl *VD = R->getDecl();
+ QualType T = VD->getType();
+ const MemSpaceRegion *MS = R->getMemorySpace();
+
+ if (isa<UnknownSpaceRegion>(MS) ||
+ isa<StackArgumentsSpaceRegion>(MS))
+ return svalBuilder.getRegionValueSymbolVal(R);
+
+ if (isa<GlobalsSpaceRegion>(MS)) {
+ if (isa<NonStaticGlobalSpaceRegion>(MS)) {
+ // Is 'VD' declared constant? If so, retrieve the constant value.
+ QualType CT = Ctx.getCanonicalType(T);
+ if (CT.isConstQualified()) {
+ const Expr *Init = VD->getInit();
+ // Do the null check first, as we want to call 'IgnoreParenCasts'.
+ if (Init)
+ if (const IntegerLiteral *IL =
+ dyn_cast<IntegerLiteral>(Init->IgnoreParenCasts())) {
+ const nonloc::ConcreteInt &V = svalBuilder.makeIntVal(IL);
+ return svalBuilder.evalCast(V, Init->getType(), IL->getType());
+ }
+ }
+
+ if (const Optional<SVal> &V
+ = getBindingForDerivedDefaultValue(B, MS, R, CT))
+ return V.getValue();
+
+ return svalBuilder.getRegionValueSymbolVal(R);
+ }
+
+ if (T->isIntegerType())
+ return svalBuilder.makeIntVal(0, T);
+ if (T->isPointerType())
+ return svalBuilder.makeNull();
+
+ return UnknownVal();
+ }
+
+ return UndefinedVal();
+}
+
+SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
+ // All other values are symbolic.
+ return svalBuilder.getRegionValueSymbolVal(R);
+}
+
+SVal RegionStoreManager::getBindingForStruct(Store store,
+ const TypedValueRegion* R) {
+ assert(R->getValueType()->isStructureOrClassType());
+ return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
+}
+
+SVal RegionStoreManager::getBindingForArray(Store store,
+ const TypedValueRegion * R) {
+ assert(Ctx.getAsConstantArrayType(R->getValueType()));
+ return svalBuilder.makeLazyCompoundVal(StoreRef(store, *this), R);
+}
+
+bool RegionStoreManager::includedInBindings(Store store,
+ const MemRegion *region) const {
+ RegionBindings B = GetRegionBindings(store);
+ region = region->getBaseRegion();
+
+ for (RegionBindings::iterator it = B.begin(), ei = B.end(); it != ei; ++it) {
+ const BindingKey &K = it.getKey();
+ if (region == K.getRegion())
+ return true;
+ const SVal &D = it.getData();
+ if (const MemRegion *r = D.getAsRegion())
+ if (r == region)
+ return true;
+ }
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Binding values to regions.
+//===----------------------------------------------------------------------===//
+
+StoreRef RegionStoreManager::Remove(Store store, Loc L) {
+ if (isa<loc::MemRegionVal>(L))
+ if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
+ return StoreRef(removeBinding(GetRegionBindings(store),
+ R).getRootWithoutRetain(),
+ *this);
+
+ return StoreRef(store, *this);
+}
+
+StoreRef RegionStoreManager::Bind(Store store, Loc L, SVal V) {
+ if (isa<loc::ConcreteInt>(L))
+ return StoreRef(store, *this);
+
+ // If we get here, the location should be a region.
+ const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();
+
+ // Check if the region is a struct region.
+ if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R))
+ if (TR->getValueType()->isStructureOrClassType())
+ return BindStruct(store, TR, V);
+
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ if (ER->getIndex().isZeroConstant()) {
+ if (const TypedValueRegion *superR =
+ dyn_cast<TypedValueRegion>(ER->getSuperRegion())) {
+ QualType superTy = superR->getValueType();
+ // For now, just invalidate the fields of the struct/union/class.
+ // This is for test rdar_test_7185607 in misc-ps-region-store.m.
+ // FIXME: Precisely handle the fields of the record.
+ if (superTy->isStructureOrClassType())
+ return KillStruct(store, superR, UnknownVal());
+ }
+ }
+ }
+ else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
+ // Binding directly to a symbolic region should be treated as binding
+ // to element 0.
+ QualType T = SR->getSymbol()->getType(Ctx);
+
+ // FIXME: Is this the right way to handle symbols that are references?
+ if (const PointerType *PT = T->getAs<PointerType>())
+ T = PT->getPointeeType();
+ else
+ T = T->getAs<ReferenceType>()->getPointeeType();
+
+ R = GetElementZeroRegion(SR, T);
+ }
+
+ // Perform the binding.
+ RegionBindings B = GetRegionBindings(store);
+ return StoreRef(addBinding(B, R, BindingKey::Direct,
+ V).getRootWithoutRetain(), *this);
+}
+
+StoreRef RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
+ SVal InitVal) {
+
+ QualType T = VR->getDecl()->getType();
+
+ if (T->isArrayType())
+ return BindArray(store, VR, InitVal);
+ if (T->isStructureOrClassType())
+ return BindStruct(store, VR, InitVal);
+
+ return Bind(store, svalBuilder.makeLoc(VR), InitVal);
+}
+
+// FIXME: this method should be merged into Bind().
+StoreRef RegionStoreManager::BindCompoundLiteral(Store store,
+ const CompoundLiteralExpr *CL,
+ const LocationContext *LC,
+ SVal V) {
+ return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
+ V);
+}
+
+StoreRef RegionStoreManager::setImplicitDefaultValue(Store store,
+ const MemRegion *R,
+ QualType T) {
+ RegionBindings B = GetRegionBindings(store);
+ SVal V;
+
+ if (Loc::isLocType(T))
+ V = svalBuilder.makeNull();
+ else if (T->isIntegerType())
+ V = svalBuilder.makeZeroVal(T);
+ else if (T->isStructureOrClassType() || T->isArrayType()) {
+ // Set the default value to a zero constant when it is a structure
+ // or array. The type doesn't really matter.
+ V = svalBuilder.makeZeroVal(Ctx.IntTy);
+ }
+ else {
+ // We can't represent values of this type, but we still need to set a value
+ // to record that the region has been initialized.
+ // If this assertion ever fires, a new case should be added above -- we
+ // should know how to default-initialize any value we can symbolicate.
+ assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
+ V = UnknownVal();
+ }
+
+ return StoreRef(addBinding(B, R, BindingKey::Default,
+ V).getRootWithoutRetain(), *this);
+}
+
+StoreRef RegionStoreManager::BindArray(Store store, const TypedValueRegion* R,
+ SVal Init) {
+
+ const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
+ QualType ElementTy = AT->getElementType();
+ Optional<uint64_t> Size;
+
+ if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
+ Size = CAT->getSize().getZExtValue();
+
+ // Check if the init expr is a string literal.
+ if (loc::MemRegionVal *MRV = dyn_cast<loc::MemRegionVal>(&Init)) {
+ const StringRegion *S = cast<StringRegion>(MRV->getRegion());
+
+ // Treat the string as a lazy compound value.
+ nonloc::LazyCompoundVal LCV =
+ cast<nonloc::LazyCompoundVal>(svalBuilder.
+ makeLazyCompoundVal(StoreRef(store, *this), S));
+ return CopyLazyBindings(LCV, store, R);
+ }
+
+ // Handle lazy compound values.
+ if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
+ return CopyLazyBindings(*LCV, store, R);
+
+ // Remaining case: explicit compound values.
+
+ if (Init.isUnknown())
+ return setImplicitDefaultValue(store, R, ElementTy);
+
+ nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
+ nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
+ uint64_t i = 0;
+
+ StoreRef newStore(store, *this);
+ for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
+ // The init list might be shorter than the array length.
+ if (VI == VE)
+ break;
+
+ const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
+ const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
+
+ if (ElementTy->isStructureOrClassType())
+ newStore = BindStruct(newStore.getStore(), ER, *VI);
+ else if (ElementTy->isArrayType())
+ newStore = BindArray(newStore.getStore(), ER, *VI);
+ else
+ newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(ER), *VI);
+ }
+
+ // If the init list is shorter than the array length, set the
+ // array default value.
+ if (Size.hasValue() && i < Size.getValue())
+ newStore = setImplicitDefaultValue(newStore.getStore(), R, ElementTy);
+
+ return newStore;
+}
+
+StoreRef RegionStoreManager::BindStruct(Store store, const TypedValueRegion* R,
+ SVal V) {
+
+ if (!Features.supportsFields())
+ return StoreRef(store, *this);
+
+ QualType T = R->getValueType();
+ assert(T->isStructureOrClassType());
+
+ const RecordType* RT = T->getAs<RecordType>();
+ RecordDecl *RD = RT->getDecl();
+
+ if (!RD->isCompleteDefinition())
+ return StoreRef(store, *this);
+
+ // Handle lazy compound values.
+ if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
+ return CopyLazyBindings(*LCV, store, R);
+
+ // We may get non-CompoundVal accidentally due to imprecise cast logic or
+ // that we are binding symbolic struct value. Kill the field values, and if
+ // the value is symbolic go and bind it as a "default" binding.
+ if (V.isUnknown() || !isa<nonloc::CompoundVal>(V)) {
+ SVal SV = isa<nonloc::SymbolVal>(V) ? V : UnknownVal();
+ return KillStruct(store, R, SV);
+ }
+
+ nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
+ nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
+
+ RecordDecl::field_iterator FI, FE;
+ StoreRef newStore(store, *this);
+
+ for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
+
+ if (VI == VE)
+ break;
+
+ // Skip any unnamed bitfields to stay in sync with the initializers.
+ if ((*FI)->isUnnamedBitfield())
+ continue;
+
+ QualType FTy = (*FI)->getType();
+ const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
+
+ if (FTy->isArrayType())
+ newStore = BindArray(newStore.getStore(), FR, *VI);
+ else if (FTy->isStructureOrClassType())
+ newStore = BindStruct(newStore.getStore(), FR, *VI);
+ else
+ newStore = Bind(newStore.getStore(), svalBuilder.makeLoc(FR), *VI);
+ ++VI;
+ }
+
+ // There may be fewer values in the initialize list than the fields of struct.
+ if (FI != FE) {
+ RegionBindings B = GetRegionBindings(newStore.getStore());
+ B = addBinding(B, R, BindingKey::Default, svalBuilder.makeIntVal(0, false));
+ newStore = StoreRef(B.getRootWithoutRetain(), *this);
+ }
+
+ return newStore;
+}
+
+StoreRef RegionStoreManager::KillStruct(Store store, const TypedRegion* R,
+ SVal DefaultVal) {
+ BindingKey key = BindingKey::Make(R, BindingKey::Default);
+
+ // The BindingKey may be "invalid" if we cannot handle the region binding
+ // explicitly. One example is something like array[index], where index
+ // is a symbolic value. In such cases, we want to invalidate the entire
+ // array, as the index assignment could have been to any element. In
+ // the case of nested symbolic indices, we need to march up the region
+ // hierarchy untile we reach a region whose binding we can reason about.
+ const SubRegion *subReg = R;
+
+ while (!key.isValid()) {
+ if (const SubRegion *tmp = dyn_cast<SubRegion>(subReg->getSuperRegion())) {
+ subReg = tmp;
+ key = BindingKey::Make(tmp, BindingKey::Default);
+ }
+ else
+ break;
+ }
+
+ // Remove the old bindings, using 'subReg' as the root of all regions
+ // we will invalidate.
+ RegionBindings B = GetRegionBindings(store);
+ OwningPtr<RegionStoreSubRegionMap>
+ SubRegions(getRegionStoreSubRegionMap(store));
+ RemoveSubRegionBindings(B, subReg, *SubRegions);
+
+ // Set the default value of the struct region to "unknown".
+ if (!key.isValid())
+ return StoreRef(B.getRootWithoutRetain(), *this);
+
+ return StoreRef(addBinding(B, key, DefaultVal).getRootWithoutRetain(), *this);
+}
+
+StoreRef RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
+ Store store,
+ const TypedRegion *R) {
+
+ // Nuke the old bindings stemming from R.
+ RegionBindings B = GetRegionBindings(store);
+
+ OwningPtr<RegionStoreSubRegionMap>
+ SubRegions(getRegionStoreSubRegionMap(store));
+
+ // B and DVM are updated after the call to RemoveSubRegionBindings.
+ RemoveSubRegionBindings(B, R, *SubRegions.get());
+
+ // Now copy the bindings. This amounts to just binding 'V' to 'R'. This
+ // results in a zero-copy algorithm.
+ return StoreRef(addBinding(B, R, BindingKey::Default,
+ V).getRootWithoutRetain(), *this);
+}
+
+//===----------------------------------------------------------------------===//
+// "Raw" retrievals and bindings.
+//===----------------------------------------------------------------------===//
+
+
+RegionBindings RegionStoreManager::addBinding(RegionBindings B, BindingKey K,
+ SVal V) {
+ if (!K.isValid())
+ return B;
+ return RBFactory.add(B, K, V);
+}
+
+RegionBindings RegionStoreManager::addBinding(RegionBindings B,
+ const MemRegion *R,
+ BindingKey::Kind k, SVal V) {
+ return addBinding(B, BindingKey::Make(R, k), V);
+}
+
+const SVal *RegionStoreManager::lookup(RegionBindings B, BindingKey K) {
+ if (!K.isValid())
+ return NULL;
+ return B.lookup(K);
+}
+
+const SVal *RegionStoreManager::lookup(RegionBindings B,
+ const MemRegion *R,
+ BindingKey::Kind k) {
+ return lookup(B, BindingKey::Make(R, k));
+}
+
+RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
+ BindingKey K) {
+ if (!K.isValid())
+ return B;
+ return RBFactory.remove(B, K);
+}
+
+RegionBindings RegionStoreManager::removeBinding(RegionBindings B,
+ const MemRegion *R,
+ BindingKey::Kind k){
+ return removeBinding(B, BindingKey::Make(R, k));
+}
+
+//===----------------------------------------------------------------------===//
+// State pruning.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class removeDeadBindingsWorker :
+ public ClusterAnalysis<removeDeadBindingsWorker> {
+ SmallVector<const SymbolicRegion*, 12> Postponed;
+ SymbolReaper &SymReaper;
+ const StackFrameContext *CurrentLCtx;
+
+public:
+ removeDeadBindingsWorker(RegionStoreManager &rm,
+ ProgramStateManager &stateMgr,
+ RegionBindings b, SymbolReaper &symReaper,
+ const StackFrameContext *LCtx)
+ : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b,
+ /* includeGlobals = */ false),
+ SymReaper(symReaper), CurrentLCtx(LCtx) {}
+
+ // Called by ClusterAnalysis.
+ void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
+ void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
+
+ void VisitBindingKey(BindingKey K);
+ bool UpdatePostponed();
+ void VisitBinding(SVal V);
+};
+}
+
+void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
+ RegionCluster &C) {
+
+ if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
+ if (SymReaper.isLive(VR))
+ AddToWorkList(baseR, C);
+
+ return;
+ }
+
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
+ if (SymReaper.isLive(SR->getSymbol()))
+ AddToWorkList(SR, C);
+ else
+ Postponed.push_back(SR);
+
+ return;
+ }
+
+ if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
+ AddToWorkList(baseR, C);
+ return;
+ }
+
+ // CXXThisRegion in the current or parent location context is live.
+ if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
+ const StackArgumentsSpaceRegion *StackReg =
+ cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
+ const StackFrameContext *RegCtx = StackReg->getStackFrame();
+ if (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx))
+ AddToWorkList(TR, C);
+ }
+}
+
+void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
+ BindingKey *I, BindingKey *E) {
+ for ( ; I != E; ++I)
+ VisitBindingKey(*I);
+}
+
+void removeDeadBindingsWorker::VisitBinding(SVal V) {
+ // Is it a LazyCompoundVal? All referenced regions are live as well.
+ if (const nonloc::LazyCompoundVal *LCS =
+ dyn_cast<nonloc::LazyCompoundVal>(&V)) {
+
+ const MemRegion *LazyR = LCS->getRegion();
+ RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
+ for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
+ const SubRegion *baseR = dyn_cast<SubRegion>(RI.getKey().getRegion());
+ if (baseR && baseR->isSubRegionOf(LazyR))
+ VisitBinding(RI.getData());
+ }
+ return;
+ }
+
+ // If V is a region, then add it to the worklist.
+ if (const MemRegion *R = V.getAsRegion())
+ AddToWorkList(R);
+
+ // Update the set of live symbols.
+ for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
+ SI!=SE; ++SI)
+ SymReaper.markLive(*SI);
+}
+
+void removeDeadBindingsWorker::VisitBindingKey(BindingKey K) {
+ const MemRegion *R = K.getRegion();
+
+ // Mark this region "live" by adding it to the worklist. This will cause
+ // use to visit all regions in the cluster (if we haven't visited them
+ // already).
+ if (AddToWorkList(R)) {
+ // Mark the symbol for any live SymbolicRegion as "live". This means we
+ // should continue to track that symbol.
+ if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
+ SymReaper.markLive(SymR->getSymbol());
+
+ // For BlockDataRegions, enqueue the VarRegions for variables marked
+ // with __block (passed-by-reference).
+ // via BlockDeclRefExprs.
+ if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
+ for (BlockDataRegion::referenced_vars_iterator
+ RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
+ RI != RE; ++RI) {
+ if ((*RI)->getDecl()->getAttr<BlocksAttr>())
+ AddToWorkList(*RI);
+ }
+
+ // No possible data bindings on a BlockDataRegion.
+ return;
+ }
+ }
+
+ // Visit the data binding for K.
+ if (const SVal *V = RM.lookup(B, K))
+ VisitBinding(*V);
+}
+
+bool removeDeadBindingsWorker::UpdatePostponed() {
+ // See if any postponed SymbolicRegions are actually live now, after
+ // having done a scan.
+ bool changed = false;
+
+ for (SmallVectorImpl<const SymbolicRegion*>::iterator
+ I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
+ if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
+ if (SymReaper.isLive(SR->getSymbol())) {
+ changed |= AddToWorkList(SR);
+ *I = NULL;
+ }
+ }
+ }
+
+ return changed;
+}
+
+StoreRef RegionStoreManager::removeDeadBindings(Store store,
+ const StackFrameContext *LCtx,
+ SymbolReaper& SymReaper) {
+ RegionBindings B = GetRegionBindings(store);
+ removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
+ W.GenerateClusters();
+
+ // Enqueue the region roots onto the worklist.
+ for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
+ E = SymReaper.region_end(); I != E; ++I) {
+ W.AddToWorkList(*I);
+ }
+
+ do W.RunWorkList(); while (W.UpdatePostponed());
+
+ // We have now scanned the store, marking reachable regions and symbols
+ // as live. We now remove all the regions that are dead from the store
+ // as well as update DSymbols with the set symbols that are now dead.
+ for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ const BindingKey &K = I.getKey();
+
+ // If the cluster has been visited, we know the region has been marked.
+ if (W.isVisited(K.getRegion()))
+ continue;
+
+ // Remove the dead entry.
+ B = removeBinding(B, K);
+
+ // Mark all non-live symbols that this binding references as dead.
+ if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
+ SymReaper.maybeDead(SymR->getSymbol());
+
+ SVal X = I.getData();
+ SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
+ for (; SI != SE; ++SI)
+ SymReaper.maybeDead(*SI);
+ }
+
+ return StoreRef(B.getRootWithoutRetain(), *this);
+}
+
+
+StoreRef RegionStoreManager::enterStackFrame(ProgramStateRef state,
+ const LocationContext *callerCtx,
+ const StackFrameContext *calleeCtx)
+{
+ FunctionDecl const *FD = cast<FunctionDecl>(calleeCtx->getDecl());
+ FunctionDecl::param_const_iterator PI = FD->param_begin(),
+ PE = FD->param_end();
+ StoreRef store = StoreRef(state->getStore(), *this);
+
+ if (CallExpr const *CE = dyn_cast<CallExpr>(calleeCtx->getCallSite())) {
+ CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
+
+ // Copy the arg expression value to the arg variables. We check that
+ // PI != PE because the actual number of arguments may be different than
+ // the function declaration.
+ for (; AI != AE && PI != PE; ++AI, ++PI) {
+ SVal ArgVal = state->getSVal(*AI, callerCtx);
+ store = Bind(store.getStore(),
+ svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
+ ArgVal);
+ }
+ } else if (const CXXConstructExpr *CE =
+ dyn_cast<CXXConstructExpr>(calleeCtx->getCallSite())) {
+ CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(),
+ AE = CE->arg_end();
+
+ // Copy the arg expression value to the arg variables.
+ for (; AI != AE; ++AI, ++PI) {
+ SVal ArgVal = state->getSVal(*AI, callerCtx);
+ store = Bind(store.getStore(),
+ svalBuilder.makeLoc(MRMgr.getVarRegion(*PI, calleeCtx)),
+ ArgVal);
+ }
+ } else
+ assert(isa<CXXDestructorDecl>(calleeCtx->getDecl()));
+
+ return store;
+}
+
+//===----------------------------------------------------------------------===//
+// Utility methods.
+//===----------------------------------------------------------------------===//
+
+void RegionStoreManager::print(Store store, raw_ostream &OS,
+ const char* nl, const char *sep) {
+ RegionBindings B = GetRegionBindings(store);
+ OS << "Store (direct and default bindings):" << nl;
+
+ for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
+ OS << ' ' << I.getKey() << " : " << I.getData() << nl;
+}
diff --git a/clang/lib/StaticAnalyzer/Core/SValBuilder.cpp b/clang/lib/StaticAnalyzer/Core/SValBuilder.cpp
new file mode 100644
index 0000000..9e97f5e
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/SValBuilder.cpp
@@ -0,0 +1,386 @@
+// SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines SValBuilder, the base class for all (complete) SValBuilder
+// implementations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ExprCXX.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// Basic SVal creation.
+//===----------------------------------------------------------------------===//
+
+void SValBuilder::anchor() { }
+
+DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
+ if (Loc::isLocType(type))
+ return makeNull();
+
+ if (type->isIntegerType())
+ return makeIntVal(0, type);
+
+ // FIXME: Handle floats.
+ // FIXME: Handle structs.
+ return UnknownVal();
+}
+
+NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
+ const llvm::APSInt& rhs, QualType type) {
+ // The Environment ensures we always get a persistent APSInt in
+ // BasicValueFactory, so we don't need to get the APSInt from
+ // BasicValueFactory again.
+ assert(lhs);
+ assert(!Loc::isLocType(type));
+ return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
+}
+
+NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
+ BinaryOperator::Opcode op, const SymExpr *rhs,
+ QualType type) {
+ assert(rhs);
+ assert(!Loc::isLocType(type));
+ return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
+}
+
+NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
+ const SymExpr *rhs, QualType type) {
+ assert(lhs && rhs);
+ assert(haveSameType(lhs->getType(Context), rhs->getType(Context)) == true);
+ assert(!Loc::isLocType(type));
+ return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
+}
+
+NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
+ QualType fromTy, QualType toTy) {
+ assert(operand);
+ assert(!Loc::isLocType(toTy));
+ return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
+}
+
+SVal SValBuilder::convertToArrayIndex(SVal val) {
+ if (val.isUnknownOrUndef())
+ return val;
+
+ // Common case: we have an appropriately sized integer.
+ if (nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&val)) {
+ const llvm::APSInt& I = CI->getValue();
+ if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
+ return val;
+ }
+
+ return evalCastFromNonLoc(cast<NonLoc>(val), ArrayIndexTy);
+}
+
+nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
+ return makeTruthVal(boolean->getValue());
+}
+
+DefinedOrUnknownSVal
+SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
+ QualType T = region->getValueType();
+
+ if (!SymbolManager::canSymbolicate(T))
+ return UnknownVal();
+
+ SymbolRef sym = SymMgr.getRegionValueSymbol(region);
+
+ if (Loc::isLocType(T))
+ return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
+
+ return nonloc::SymbolVal(sym);
+}
+
+DefinedOrUnknownSVal
+SValBuilder::getConjuredSymbolVal(const void *symbolTag,
+ const Expr *expr,
+ const LocationContext *LCtx,
+ unsigned count) {
+ QualType T = expr->getType();
+ return getConjuredSymbolVal(symbolTag, expr, LCtx, T, count);
+}
+
+DefinedOrUnknownSVal
+SValBuilder::getConjuredSymbolVal(const void *symbolTag,
+ const Expr *expr,
+ const LocationContext *LCtx,
+ QualType type,
+ unsigned count) {
+ if (!SymbolManager::canSymbolicate(type))
+ return UnknownVal();
+
+ SymbolRef sym = SymMgr.getConjuredSymbol(expr, LCtx, type, count, symbolTag);
+
+ if (Loc::isLocType(type))
+ return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
+
+ return nonloc::SymbolVal(sym);
+}
+
+
+DefinedOrUnknownSVal
+SValBuilder::getConjuredSymbolVal(const Stmt *stmt,
+ const LocationContext *LCtx,
+ QualType type,
+ unsigned visitCount) {
+ if (!SymbolManager::canSymbolicate(type))
+ return UnknownVal();
+
+ SymbolRef sym = SymMgr.getConjuredSymbol(stmt, LCtx, type, visitCount);
+
+ if (Loc::isLocType(type))
+ return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
+
+ return nonloc::SymbolVal(sym);
+}
+
+DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
+ const MemRegion *region,
+ const Expr *expr, QualType type,
+ unsigned count) {
+ assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
+
+ SymbolRef sym =
+ SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
+
+ if (Loc::isLocType(type))
+ return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
+
+ return nonloc::SymbolVal(sym);
+}
+
+DefinedOrUnknownSVal
+SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
+ const TypedValueRegion *region) {
+ QualType T = region->getValueType();
+
+ if (!SymbolManager::canSymbolicate(T))
+ return UnknownVal();
+
+ SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
+
+ if (Loc::isLocType(T))
+ return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
+
+ return nonloc::SymbolVal(sym);
+}
+
+DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
+ return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
+}
+
+DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
+ CanQualType locTy,
+ const LocationContext *locContext) {
+ const BlockTextRegion *BC =
+ MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
+ const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext);
+ return loc::MemRegionVal(BD);
+}
+
+//===----------------------------------------------------------------------===//
+
+SVal SValBuilder::makeGenericVal(ProgramStateRef State,
+ BinaryOperator::Opcode Op,
+ NonLoc LHS, NonLoc RHS,
+ QualType ResultTy) {
+ // If operands are tainted, create a symbol to ensure that we propagate taint.
+ if (State->isTainted(RHS) || State->isTainted(LHS)) {
+ const SymExpr *symLHS;
+ const SymExpr *symRHS;
+
+ if (const nonloc::ConcreteInt *rInt = dyn_cast<nonloc::ConcreteInt>(&RHS)) {
+ symLHS = LHS.getAsSymExpr();
+ return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
+ }
+
+ if (const nonloc::ConcreteInt *lInt = dyn_cast<nonloc::ConcreteInt>(&LHS)) {
+ symRHS = RHS.getAsSymExpr();
+ return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
+ }
+
+ symLHS = LHS.getAsSymExpr();
+ symRHS = RHS.getAsSymExpr();
+ return makeNonLoc(symLHS, Op, symRHS, ResultTy);
+ }
+ return UnknownVal();
+}
+
+
+SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
+ SVal lhs, SVal rhs, QualType type) {
+
+ if (lhs.isUndef() || rhs.isUndef())
+ return UndefinedVal();
+
+ if (lhs.isUnknown() || rhs.isUnknown())
+ return UnknownVal();
+
+ if (isa<Loc>(lhs)) {
+ if (isa<Loc>(rhs))
+ return evalBinOpLL(state, op, cast<Loc>(lhs), cast<Loc>(rhs), type);
+
+ return evalBinOpLN(state, op, cast<Loc>(lhs), cast<NonLoc>(rhs), type);
+ }
+
+ if (isa<Loc>(rhs)) {
+ // Support pointer arithmetic where the addend is on the left
+ // and the pointer on the right.
+ assert(op == BO_Add);
+
+ // Commute the operands.
+ return evalBinOpLN(state, op, cast<Loc>(rhs), cast<NonLoc>(lhs), type);
+ }
+
+ return evalBinOpNN(state, op, cast<NonLoc>(lhs), cast<NonLoc>(rhs), type);
+}
+
+DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
+ DefinedOrUnknownSVal lhs,
+ DefinedOrUnknownSVal rhs) {
+ return cast<DefinedOrUnknownSVal>(evalBinOp(state, BO_EQ, lhs, rhs,
+ Context.IntTy));
+}
+
+/// Recursively check if the pointer types are equal modulo const, volatile,
+/// and restrict qualifiers. Assumes the input types are canonical.
+/// TODO: This is based off of code in SemaCast; can we reuse it.
+static bool haveSimilarTypes(ASTContext &Context, QualType T1,
+ QualType T2) {
+ while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
+ Qualifiers Quals1, Quals2;
+ T1 = Context.getUnqualifiedArrayType(T1, Quals1);
+ T2 = Context.getUnqualifiedArrayType(T2, Quals2);
+
+ // Make sure that non cvr-qualifiers the other qualifiers (e.g., address
+ // spaces) are identical.
+ Quals1.removeCVRQualifiers();
+ Quals2.removeCVRQualifiers();
+ if (Quals1 != Quals2)
+ return false;
+ }
+
+ if (T1 != T2)
+ return false;
+
+ return true;
+}
+
+// FIXME: should rewrite according to the cast kind.
+SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
+ castTy = Context.getCanonicalType(castTy);
+ originalTy = Context.getCanonicalType(originalTy);
+ if (val.isUnknownOrUndef() || castTy == originalTy)
+ return val;
+
+ // For const casts, just propagate the value.
+ if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
+ if (haveSimilarTypes(Context, Context.getPointerType(castTy),
+ Context.getPointerType(originalTy)))
+ return val;
+
+ // Check for casts from pointers to integers.
+ if (castTy->isIntegerType() && Loc::isLocType(originalTy))
+ return evalCastFromLoc(cast<Loc>(val), castTy);
+
+ // Check for casts from integers to pointers.
+ if (Loc::isLocType(castTy) && originalTy->isIntegerType()) {
+ if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&val)) {
+ if (const MemRegion *R = LV->getLoc().getAsRegion()) {
+ StoreManager &storeMgr = StateMgr.getStoreManager();
+ R = storeMgr.castRegion(R, castTy);
+ return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
+ }
+ return LV->getLoc();
+ }
+ return dispatchCast(val, castTy);
+ }
+
+ // Just pass through function and block pointers.
+ if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
+ assert(Loc::isLocType(castTy));
+ return val;
+ }
+
+ // Check for casts from array type to another type.
+ if (originalTy->isArrayType()) {
+ // We will always decay to a pointer.
+ val = StateMgr.ArrayToPointer(cast<Loc>(val));
+
+ // Are we casting from an array to a pointer? If so just pass on
+ // the decayed value.
+ if (castTy->isPointerType())
+ return val;
+
+ // Are we casting from an array to an integer? If so, cast the decayed
+ // pointer value to an integer.
+ assert(castTy->isIntegerType());
+
+ // FIXME: Keep these here for now in case we decide soon that we
+ // need the original decayed type.
+ // QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
+ // QualType pointerTy = C.getPointerType(elemTy);
+ return evalCastFromLoc(cast<Loc>(val), castTy);
+ }
+
+ // Check for casts from a region to a specific type.
+ if (const MemRegion *R = val.getAsRegion()) {
+ // FIXME: We should handle the case where we strip off view layers to get
+ // to a desugared type.
+
+ if (!Loc::isLocType(castTy)) {
+ // FIXME: There can be gross cases where one casts the result of a function
+ // (that returns a pointer) to some other value that happens to fit
+ // within that pointer value. We currently have no good way to
+ // model such operations. When this happens, the underlying operation
+ // is that the caller is reasoning about bits. Conceptually we are
+ // layering a "view" of a location on top of those bits. Perhaps
+ // we need to be more lazy about mutual possible views, even on an
+ // SVal? This may be necessary for bit-level reasoning as well.
+ return UnknownVal();
+ }
+
+ // We get a symbolic function pointer for a dereference of a function
+ // pointer, but it is of function type. Example:
+
+ // struct FPRec {
+ // void (*my_func)(int * x);
+ // };
+ //
+ // int bar(int x);
+ //
+ // int f1_a(struct FPRec* foo) {
+ // int x;
+ // (*foo->my_func)(&x);
+ // return bar(x)+1; // no-warning
+ // }
+
+ assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
+ originalTy->isBlockPointerType() || castTy->isReferenceType());
+
+ StoreManager &storeMgr = StateMgr.getStoreManager();
+
+ // Delegate to store manager to get the result of casting a region to a
+ // different type. If the MemRegion* returned is NULL, this expression
+ // Evaluates to UnknownVal.
+ R = storeMgr.castRegion(R, castTy);
+ return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
+ }
+
+ return dispatchCast(val, castTy);
+}
diff --git a/clang/lib/StaticAnalyzer/Core/SVals.cpp b/clang/lib/StaticAnalyzer/Core/SVals.cpp
new file mode 100644
index 0000000..b94aff4
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/SVals.cpp
@@ -0,0 +1,331 @@
+//= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines SVal, Loc, and NonLoc, classes that represent
+// abstract r-values for use with path-sensitive value tracking.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Basic/IdentifierTable.h"
+using namespace clang;
+using namespace ento;
+using llvm::APSInt;
+
+//===----------------------------------------------------------------------===//
+// Symbol iteration within an SVal.
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// Utility methods.
+//===----------------------------------------------------------------------===//
+
+bool SVal::hasConjuredSymbol() const {
+ if (const nonloc::SymbolVal* SV = dyn_cast<nonloc::SymbolVal>(this)) {
+ SymbolRef sym = SV->getSymbol();
+ if (isa<SymbolConjured>(sym))
+ return true;
+ }
+
+ if (const loc::MemRegionVal *RV = dyn_cast<loc::MemRegionVal>(this)) {
+ const MemRegion *R = RV->getRegion();
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
+ SymbolRef sym = SR->getSymbol();
+ if (isa<SymbolConjured>(sym))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+const FunctionDecl *SVal::getAsFunctionDecl() const {
+ if (const loc::MemRegionVal* X = dyn_cast<loc::MemRegionVal>(this)) {
+ const MemRegion* R = X->getRegion();
+ if (const FunctionTextRegion *CTR = R->getAs<FunctionTextRegion>())
+ return CTR->getDecl();
+ }
+
+ return 0;
+}
+
+/// \brief If this SVal is a location (subclasses Loc) and wraps a symbol,
+/// return that SymbolRef. Otherwise return 0.
+///
+/// Implicit casts (ex: void* -> char*) can turn Symbolic region into Element
+/// region. If that is the case, gets the underlining region.
+SymbolRef SVal::getAsLocSymbol() const {
+ // FIXME: should we consider SymbolRef wrapped in CodeTextRegion?
+ if (const nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(this))
+ return X->getLoc().getAsLocSymbol();
+
+ if (const loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(this)) {
+ const MemRegion *R = X->stripCasts();
+ if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
+ return SymR->getSymbol();
+ }
+ return 0;
+}
+
+/// Get the symbol in the SVal or its base region.
+SymbolRef SVal::getLocSymbolInBase() const {
+ const loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(this);
+
+ if (!X)
+ return 0;
+
+ const MemRegion *R = X->getRegion();
+
+ while (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
+ if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SR))
+ return SymR->getSymbol();
+ else
+ R = SR->getSuperRegion();
+ }
+
+ return 0;
+}
+
+// TODO: The next 3 functions have to be simplified.
+
+/// \brief If this SVal wraps a symbol return that SymbolRef.
+/// Otherwise return 0.
+SymbolRef SVal::getAsSymbol() const {
+ // FIXME: should we consider SymbolRef wrapped in CodeTextRegion?
+ if (const nonloc::SymbolVal *X = dyn_cast<nonloc::SymbolVal>(this))
+ return X->getSymbol();
+
+ return getAsLocSymbol();
+}
+
+/// getAsSymbolicExpression - If this Sval wraps a symbolic expression then
+/// return that expression. Otherwise return NULL.
+const SymExpr *SVal::getAsSymbolicExpression() const {
+ if (const nonloc::SymbolVal *X = dyn_cast<nonloc::SymbolVal>(this))
+ return X->getSymbol();
+
+ return getAsSymbol();
+}
+
+const SymExpr* SVal::getAsSymExpr() const {
+ const SymExpr* Sym = getAsSymbol();
+ if (!Sym)
+ Sym = getAsSymbolicExpression();
+ return Sym;
+}
+
+const MemRegion *SVal::getAsRegion() const {
+ if (const loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(this))
+ return X->getRegion();
+
+ if (const nonloc::LocAsInteger *X = dyn_cast<nonloc::LocAsInteger>(this)) {
+ return X->getLoc().getAsRegion();
+ }
+
+ return 0;
+}
+
+const MemRegion *loc::MemRegionVal::stripCasts() const {
+ const MemRegion *R = getRegion();
+ return R ? R->StripCasts() : NULL;
+}
+
+const void *nonloc::LazyCompoundVal::getStore() const {
+ return static_cast<const LazyCompoundValData*>(Data)->getStore();
+}
+
+const TypedRegion *nonloc::LazyCompoundVal::getRegion() const {
+ return static_cast<const LazyCompoundValData*>(Data)->getRegion();
+}
+
+//===----------------------------------------------------------------------===//
+// Other Iterators.
+//===----------------------------------------------------------------------===//
+
+nonloc::CompoundVal::iterator nonloc::CompoundVal::begin() const {
+ return getValue()->begin();
+}
+
+nonloc::CompoundVal::iterator nonloc::CompoundVal::end() const {
+ return getValue()->end();
+}
+
+//===----------------------------------------------------------------------===//
+// Useful predicates.
+//===----------------------------------------------------------------------===//
+
+bool SVal::isConstant() const {
+ return isa<nonloc::ConcreteInt>(this) || isa<loc::ConcreteInt>(this);
+}
+
+bool SVal::isConstant(int I) const {
+ if (isa<loc::ConcreteInt>(*this))
+ return cast<loc::ConcreteInt>(*this).getValue() == I;
+ else if (isa<nonloc::ConcreteInt>(*this))
+ return cast<nonloc::ConcreteInt>(*this).getValue() == I;
+ else
+ return false;
+}
+
+bool SVal::isZeroConstant() const {
+ return isConstant(0);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Transfer function dispatch for Non-Locs.
+//===----------------------------------------------------------------------===//
+
+SVal nonloc::ConcreteInt::evalBinOp(SValBuilder &svalBuilder,
+ BinaryOperator::Opcode Op,
+ const nonloc::ConcreteInt& R) const {
+ const llvm::APSInt* X =
+ svalBuilder.getBasicValueFactory().evalAPSInt(Op, getValue(), R.getValue());
+
+ if (X)
+ return nonloc::ConcreteInt(*X);
+ else
+ return UndefinedVal();
+}
+
+nonloc::ConcreteInt
+nonloc::ConcreteInt::evalComplement(SValBuilder &svalBuilder) const {
+ return svalBuilder.makeIntVal(~getValue());
+}
+
+nonloc::ConcreteInt
+nonloc::ConcreteInt::evalMinus(SValBuilder &svalBuilder) const {
+ return svalBuilder.makeIntVal(-getValue());
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer function dispatch for Locs.
+//===----------------------------------------------------------------------===//
+
+SVal loc::ConcreteInt::evalBinOp(BasicValueFactory& BasicVals,
+ BinaryOperator::Opcode Op,
+ const loc::ConcreteInt& R) const {
+
+ assert (Op == BO_Add || Op == BO_Sub ||
+ (Op >= BO_LT && Op <= BO_NE));
+
+ const llvm::APSInt* X = BasicVals.evalAPSInt(Op, getValue(), R.getValue());
+
+ if (X)
+ return loc::ConcreteInt(*X);
+ else
+ return UndefinedVal();
+}
+
+//===----------------------------------------------------------------------===//
+// Pretty-Printing.
+//===----------------------------------------------------------------------===//
+
+void SVal::dump() const { dumpToStream(llvm::errs()); }
+
+void SVal::dumpToStream(raw_ostream &os) const {
+ switch (getBaseKind()) {
+ case UnknownKind:
+ os << "Unknown";
+ break;
+ case NonLocKind:
+ cast<NonLoc>(this)->dumpToStream(os);
+ break;
+ case LocKind:
+ cast<Loc>(this)->dumpToStream(os);
+ break;
+ case UndefinedKind:
+ os << "Undefined";
+ break;
+ }
+}
+
+void NonLoc::dumpToStream(raw_ostream &os) const {
+ switch (getSubKind()) {
+ case nonloc::ConcreteIntKind: {
+ const nonloc::ConcreteInt& C = *cast<nonloc::ConcreteInt>(this);
+ if (C.getValue().isUnsigned())
+ os << C.getValue().getZExtValue();
+ else
+ os << C.getValue().getSExtValue();
+ os << ' ' << (C.getValue().isUnsigned() ? 'U' : 'S')
+ << C.getValue().getBitWidth() << 'b';
+ break;
+ }
+ case nonloc::SymbolValKind: {
+ os << cast<nonloc::SymbolVal>(this)->getSymbol();
+ break;
+ }
+ case nonloc::LocAsIntegerKind: {
+ const nonloc::LocAsInteger& C = *cast<nonloc::LocAsInteger>(this);
+ os << C.getLoc() << " [as " << C.getNumBits() << " bit integer]";
+ break;
+ }
+ case nonloc::CompoundValKind: {
+ const nonloc::CompoundVal& C = *cast<nonloc::CompoundVal>(this);
+ os << "compoundVal{";
+ bool first = true;
+ for (nonloc::CompoundVal::iterator I=C.begin(), E=C.end(); I!=E; ++I) {
+ if (first) {
+ os << ' '; first = false;
+ }
+ else
+ os << ", ";
+
+ (*I).dumpToStream(os);
+ }
+ os << "}";
+ break;
+ }
+ case nonloc::LazyCompoundValKind: {
+ const nonloc::LazyCompoundVal &C = *cast<nonloc::LazyCompoundVal>(this);
+ os << "lazyCompoundVal{" << const_cast<void *>(C.getStore())
+ << ',' << C.getRegion()
+ << '}';
+ break;
+ }
+ default:
+ assert (false && "Pretty-printed not implemented for this NonLoc.");
+ break;
+ }
+}
+
+void Loc::dumpToStream(raw_ostream &os) const {
+ switch (getSubKind()) {
+ case loc::ConcreteIntKind:
+ os << cast<loc::ConcreteInt>(this)->getValue().getZExtValue() << " (Loc)";
+ break;
+ case loc::GotoLabelKind:
+ os << "&&" << cast<loc::GotoLabel>(this)->getLabel()->getName();
+ break;
+ case loc::MemRegionKind:
+ os << '&' << cast<loc::MemRegionVal>(this)->getRegion()->getString();
+ break;
+ case loc::ObjCPropRefKind: {
+ const ObjCPropertyRefExpr *E = cast<loc::ObjCPropRef>(this)->getPropRefExpr();
+ os << "objc-prop{";
+ if (E->isSuperReceiver())
+ os << "super.";
+ else if (E->getBase())
+ os << "<base>.";
+
+ if (E->isImplicitProperty())
+ os << E->getImplicitPropertyGetter()->getSelector().getAsString();
+ else
+ os << E->getExplicitProperty()->getName();
+
+ os << "}";
+ break;
+ }
+ default:
+ llvm_unreachable("Pretty-printing not implemented for this Loc.");
+ }
+}
diff --git a/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp b/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp
new file mode 100644
index 0000000..a76a2da
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.cpp
@@ -0,0 +1,307 @@
+//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines SimpleConstraintManager, a class that holds code shared
+// between BasicConstraintManager and RangeConstraintManager.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SimpleConstraintManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+
+namespace clang {
+
+namespace ento {
+
+SimpleConstraintManager::~SimpleConstraintManager() {}
+
+bool SimpleConstraintManager::canReasonAbout(SVal X) const {
+ nonloc::SymbolVal *SymVal = dyn_cast<nonloc::SymbolVal>(&X);
+ if (SymVal && SymVal->isExpression()) {
+ const SymExpr *SE = SymVal->getSymbol();
+
+ if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
+ switch (SIE->getOpcode()) {
+ // We don't reason yet about bitwise-constraints on symbolic values.
+ case BO_And:
+ case BO_Or:
+ case BO_Xor:
+ return false;
+ // We don't reason yet about these arithmetic constraints on
+ // symbolic values.
+ case BO_Mul:
+ case BO_Div:
+ case BO_Rem:
+ case BO_Shl:
+ case BO_Shr:
+ return false;
+ // All other cases.
+ default:
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ return true;
+}
+
+ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
+ DefinedSVal Cond,
+ bool Assumption) {
+ if (isa<NonLoc>(Cond))
+ return assume(state, cast<NonLoc>(Cond), Assumption);
+ else
+ return assume(state, cast<Loc>(Cond), Assumption);
+}
+
+ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state, Loc cond,
+ bool assumption) {
+ state = assumeAux(state, cond, assumption);
+ return SU.processAssume(state, cond, assumption);
+}
+
+ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
+ Loc Cond, bool Assumption) {
+
+ BasicValueFactory &BasicVals = state->getBasicVals();
+
+ switch (Cond.getSubKind()) {
+ default:
+ assert (false && "'Assume' not implemented for this Loc.");
+ return state;
+
+ case loc::MemRegionKind: {
+ // FIXME: Should this go into the storemanager?
+
+ const MemRegion *R = cast<loc::MemRegionVal>(Cond).getRegion();
+ const SubRegion *SubR = dyn_cast<SubRegion>(R);
+
+ while (SubR) {
+ // FIXME: now we only find the first symbolic region.
+ if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) {
+ const llvm::APSInt &zero = BasicVals.getZeroWithPtrWidth();
+ if (Assumption)
+ return assumeSymNE(state, SymR->getSymbol(), zero, zero);
+ else
+ return assumeSymEQ(state, SymR->getSymbol(), zero, zero);
+ }
+ SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
+ }
+
+ // FALL-THROUGH.
+ }
+
+ case loc::GotoLabelKind:
+ return Assumption ? state : NULL;
+
+ case loc::ConcreteIntKind: {
+ bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0;
+ bool isFeasible = b ? Assumption : !Assumption;
+ return isFeasible ? state : NULL;
+ }
+ } // end switch
+}
+
+ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
+ NonLoc cond,
+ bool assumption) {
+ state = assumeAux(state, cond, assumption);
+ return SU.processAssume(state, cond, assumption);
+}
+
+static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
+ // FIXME: This should probably be part of BinaryOperator, since this isn't
+ // the only place it's used. (This code was copied from SimpleSValBuilder.cpp.)
+ switch (op) {
+ default:
+ llvm_unreachable("Invalid opcode.");
+ case BO_LT: return BO_GE;
+ case BO_GT: return BO_LE;
+ case BO_LE: return BO_GT;
+ case BO_GE: return BO_LT;
+ case BO_EQ: return BO_NE;
+ case BO_NE: return BO_EQ;
+ }
+}
+
+
+ProgramStateRef SimpleConstraintManager::assumeAuxForSymbol(
+ ProgramStateRef State,
+ SymbolRef Sym,
+ bool Assumption) {
+ QualType T = State->getSymbolManager().getType(Sym);
+ const llvm::APSInt &zero = State->getBasicVals().getValue(0, T);
+ if (Assumption)
+ return assumeSymNE(State, Sym, zero, zero);
+ else
+ return assumeSymEQ(State, Sym, zero, zero);
+}
+
+ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
+ NonLoc Cond,
+ bool Assumption) {
+
+ // We cannot reason about SymSymExprs, and can only reason about some
+ // SymIntExprs.
+ if (!canReasonAbout(Cond)) {
+ // Just add the constraint to the expression without trying to simplify.
+ SymbolRef sym = Cond.getAsSymExpr();
+ return assumeAuxForSymbol(state, sym, Assumption);
+ }
+
+ BasicValueFactory &BasicVals = state->getBasicVals();
+ SymbolManager &SymMgr = state->getSymbolManager();
+
+ switch (Cond.getSubKind()) {
+ default:
+ llvm_unreachable("'Assume' not implemented for this NonLoc");
+
+ case nonloc::SymbolValKind: {
+ nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
+ SymbolRef sym = SV.getSymbol();
+ assert(sym);
+
+ // Handle SymbolData.
+ if (!SV.isExpression()) {
+ return assumeAuxForSymbol(state, sym, Assumption);
+
+ // Handle symbolic expression.
+ } else {
+ // We can only simplify expressions whose RHS is an integer.
+ const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym);
+ if (!SE)
+ return assumeAuxForSymbol(state, sym, Assumption);
+
+ BinaryOperator::Opcode op = SE->getOpcode();
+ // Implicitly compare non-comparison expressions to 0.
+ if (!BinaryOperator::isComparisonOp(op)) {
+ QualType T = SymMgr.getType(SE);
+ const llvm::APSInt &zero = BasicVals.getValue(0, T);
+ op = (Assumption ? BO_NE : BO_EQ);
+ return assumeSymRel(state, SE, op, zero);
+ }
+ // From here on out, op is the real comparison we'll be testing.
+ if (!Assumption)
+ op = NegateComparison(op);
+
+ return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
+ }
+ }
+
+ case nonloc::ConcreteIntKind: {
+ bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
+ bool isFeasible = b ? Assumption : !Assumption;
+ return isFeasible ? state : NULL;
+ }
+
+ case nonloc::LocAsIntegerKind:
+ return assumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
+ Assumption);
+ } // end switch
+}
+
+static llvm::APSInt computeAdjustment(const SymExpr *LHS,
+ SymbolRef &Sym) {
+ llvm::APSInt DefaultAdjustment;
+ DefaultAdjustment = 0;
+
+ // First check if the LHS is a simple symbol reference.
+ if (isa<SymbolData>(LHS))
+ return DefaultAdjustment;
+
+ // Next, see if it's a "($sym+constant1)" expression.
+ const SymIntExpr *SE = dyn_cast<SymIntExpr>(LHS);
+
+ // We cannot simplify "($sym1+$sym2)".
+ if (!SE)
+ return DefaultAdjustment;
+
+ // Get the constant out of the expression "($sym+constant1)" or
+ // "<expr>+constant1".
+ Sym = SE->getLHS();
+ switch (SE->getOpcode()) {
+ case BO_Add:
+ return SE->getRHS();
+ case BO_Sub:
+ return -SE->getRHS();
+ default:
+ // We cannot simplify non-additive operators.
+ return DefaultAdjustment;
+ }
+}
+
+ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef state,
+ const SymExpr *LHS,
+ BinaryOperator::Opcode op,
+ const llvm::APSInt& Int) {
+ assert(BinaryOperator::isComparisonOp(op) &&
+ "Non-comparison ops should be rewritten as comparisons to zero.");
+
+ // We only handle simple comparisons of the form "$sym == constant"
+ // or "($sym+constant1) == constant2".
+ // The adjustment is "constant1" in the above expression. It's used to
+ // "slide" the solution range around for modular arithmetic. For example,
+ // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
+ // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
+ // the subclasses of SimpleConstraintManager to handle the adjustment.
+ SymbolRef Sym = LHS;
+ llvm::APSInt Adjustment = computeAdjustment(LHS, Sym);
+
+ // FIXME: This next section is a hack. It silently converts the integers to
+ // be of the same type as the symbol, which is not always correct. Really the
+ // comparisons should be performed using the Int's type, then mapped back to
+ // the symbol's range of values.
+ ProgramStateManager &StateMgr = state->getStateManager();
+ ASTContext &Ctx = StateMgr.getContext();
+
+ QualType T = Sym->getType(Ctx);
+ assert(T->isIntegerType() || Loc::isLocType(T));
+ unsigned bitwidth = Ctx.getTypeSize(T);
+ bool isSymUnsigned
+ = T->isUnsignedIntegerOrEnumerationType() || Loc::isLocType(T);
+
+ // Convert the adjustment.
+ Adjustment.setIsUnsigned(isSymUnsigned);
+ Adjustment = Adjustment.extOrTrunc(bitwidth);
+
+ // Convert the right-hand side integer.
+ llvm::APSInt ConvertedInt(Int, isSymUnsigned);
+ ConvertedInt = ConvertedInt.extOrTrunc(bitwidth);
+
+ switch (op) {
+ default:
+ // No logic yet for other operators. assume the constraint is feasible.
+ return state;
+
+ case BO_EQ:
+ return assumeSymEQ(state, Sym, ConvertedInt, Adjustment);
+
+ case BO_NE:
+ return assumeSymNE(state, Sym, ConvertedInt, Adjustment);
+
+ case BO_GT:
+ return assumeSymGT(state, Sym, ConvertedInt, Adjustment);
+
+ case BO_GE:
+ return assumeSymGE(state, Sym, ConvertedInt, Adjustment);
+
+ case BO_LT:
+ return assumeSymLT(state, Sym, ConvertedInt, Adjustment);
+
+ case BO_LE:
+ return assumeSymLE(state, Sym, ConvertedInt, Adjustment);
+ } // end switch
+}
+
+} // end of namespace ento
+
+} // end of namespace clang
diff --git a/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.h b/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.h
new file mode 100644
index 0000000..e082d9d
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/SimpleConstraintManager.h
@@ -0,0 +1,101 @@
+//== SimpleConstraintManager.h ----------------------------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Code shared between BasicConstraintManager and RangeConstraintManager.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_GR_SIMPLE_CONSTRAINT_MANAGER_H
+#define LLVM_CLANG_GR_SIMPLE_CONSTRAINT_MANAGER_H
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+
+namespace clang {
+
+namespace ento {
+
+class SimpleConstraintManager : public ConstraintManager {
+ SubEngine &SU;
+public:
+ SimpleConstraintManager(SubEngine &subengine) : SU(subengine) {}
+ virtual ~SimpleConstraintManager();
+
+ //===------------------------------------------------------------------===//
+ // Common implementation for the interface provided by ConstraintManager.
+ //===------------------------------------------------------------------===//
+
+ ProgramStateRef assume(ProgramStateRef state, DefinedSVal Cond,
+ bool Assumption);
+
+ ProgramStateRef assume(ProgramStateRef state, Loc Cond, bool Assumption);
+
+ ProgramStateRef assume(ProgramStateRef state, NonLoc Cond, bool Assumption);
+
+ ProgramStateRef assumeSymRel(ProgramStateRef state,
+ const SymExpr *LHS,
+ BinaryOperator::Opcode op,
+ const llvm::APSInt& Int);
+
+protected:
+
+ //===------------------------------------------------------------------===//
+ // Interface that subclasses must implement.
+ //===------------------------------------------------------------------===//
+
+ // Each of these is of the form "$sym+Adj <> V", where "<>" is the comparison
+ // operation for the method being invoked.
+ virtual ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment) = 0;
+
+ virtual ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment) = 0;
+
+ virtual ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment) = 0;
+
+ virtual ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment) = 0;
+
+ virtual ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment) = 0;
+
+ virtual ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
+ const llvm::APSInt& V,
+ const llvm::APSInt& Adjustment) = 0;
+
+ //===------------------------------------------------------------------===//
+ // Internal implementation.
+ //===------------------------------------------------------------------===//
+
+ bool canReasonAbout(SVal X) const;
+
+ ProgramStateRef assumeAux(ProgramStateRef state,
+ Loc Cond,
+ bool Assumption);
+
+ ProgramStateRef assumeAux(ProgramStateRef state,
+ NonLoc Cond,
+ bool Assumption);
+
+ ProgramStateRef assumeAuxForSymbol(ProgramStateRef State,
+ SymbolRef Sym,
+ bool Assumption);
+};
+
+} // end GR namespace
+
+} // end clang namespace
+
+#endif
diff --git a/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp b/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
new file mode 100644
index 0000000..d0558f1
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp
@@ -0,0 +1,973 @@
+// SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+class SimpleSValBuilder : public SValBuilder {
+protected:
+ virtual SVal dispatchCast(SVal val, QualType castTy);
+ virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
+ virtual SVal evalCastFromLoc(Loc val, QualType castTy);
+
+public:
+ SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
+ ProgramStateManager &stateMgr)
+ : SValBuilder(alloc, context, stateMgr) {}
+ virtual ~SimpleSValBuilder() {}
+
+ virtual SVal evalMinus(NonLoc val);
+ virtual SVal evalComplement(NonLoc val);
+ virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
+ NonLoc lhs, NonLoc rhs, QualType resultTy);
+ virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
+ Loc lhs, Loc rhs, QualType resultTy);
+ virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
+ Loc lhs, NonLoc rhs, QualType resultTy);
+
+ /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
+ /// (integer) value, that value is returned. Otherwise, returns NULL.
+ virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V);
+
+ SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
+ const llvm::APSInt &RHS, QualType resultTy);
+};
+} // end anonymous namespace
+
+SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
+ ASTContext &context,
+ ProgramStateManager &stateMgr) {
+ return new SimpleSValBuilder(alloc, context, stateMgr);
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer function for Casts.
+//===----------------------------------------------------------------------===//
+
+SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
+ assert(isa<Loc>(&Val) || isa<NonLoc>(&Val));
+ return isa<Loc>(Val) ? evalCastFromLoc(cast<Loc>(Val), CastTy)
+ : evalCastFromNonLoc(cast<NonLoc>(Val), CastTy);
+}
+
+SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
+
+ bool isLocType = Loc::isLocType(castTy);
+
+ if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) {
+ if (isLocType)
+ return LI->getLoc();
+
+ // FIXME: Correctly support promotions/truncations.
+ unsigned castSize = Context.getTypeSize(castTy);
+ if (castSize == LI->getNumBits())
+ return val;
+ return makeLocAsInteger(LI->getLoc(), castSize);
+ }
+
+ if (const SymExpr *se = val.getAsSymbolicExpression()) {
+ QualType T = Context.getCanonicalType(se->getType(Context));
+ // If types are the same or both are integers, ignore the cast.
+ // FIXME: Remove this hack when we support symbolic truncation/extension.
+ // HACK: If both castTy and T are integers, ignore the cast. This is
+ // not a permanent solution. Eventually we want to precisely handle
+ // extension/truncation of symbolic integers. This prevents us from losing
+ // precision when we assign 'x = y' and 'y' is symbolic and x and y are
+ // different integer types.
+ if (haveSameType(T, castTy))
+ return val;
+
+ if (!isLocType)
+ return makeNonLoc(se, T, castTy);
+ return UnknownVal();
+ }
+
+ // If value is a non integer constant, produce unknown.
+ if (!isa<nonloc::ConcreteInt>(val))
+ return UnknownVal();
+
+ // Only handle casts from integers to integers - if val is an integer constant
+ // being cast to a non integer type, produce unknown.
+ if (!isLocType && !castTy->isIntegerType())
+ return UnknownVal();
+
+ llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue();
+ i.setIsUnsigned(castTy->isUnsignedIntegerOrEnumerationType() ||
+ Loc::isLocType(castTy));
+ i = i.extOrTrunc(Context.getTypeSize(castTy));
+
+ if (isLocType)
+ return makeIntLocVal(i);
+ else
+ return makeIntVal(i);
+}
+
+SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
+
+ // Casts from pointers -> pointers, just return the lval.
+ //
+ // Casts from pointers -> references, just return the lval. These
+ // can be introduced by the frontend for corner cases, e.g
+ // casting from va_list* to __builtin_va_list&.
+ //
+ if (Loc::isLocType(castTy) || castTy->isReferenceType())
+ return val;
+
+ // FIXME: Handle transparent unions where a value can be "transparently"
+ // lifted into a union type.
+ if (castTy->isUnionType())
+ return UnknownVal();
+
+ if (castTy->isIntegerType()) {
+ unsigned BitWidth = Context.getTypeSize(castTy);
+
+ if (!isa<loc::ConcreteInt>(val))
+ return makeLocAsInteger(val, BitWidth);
+
+ llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue();
+ i.setIsUnsigned(castTy->isUnsignedIntegerOrEnumerationType() ||
+ Loc::isLocType(castTy));
+ i = i.extOrTrunc(BitWidth);
+ return makeIntVal(i);
+ }
+
+ // All other cases: return 'UnknownVal'. This includes casting pointers
+ // to floats, which is probably badness it itself, but this is a good
+ // intermediate solution until we do something better.
+ return UnknownVal();
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer function for unary operators.
+//===----------------------------------------------------------------------===//
+
+SVal SimpleSValBuilder::evalMinus(NonLoc val) {
+ switch (val.getSubKind()) {
+ case nonloc::ConcreteIntKind:
+ return cast<nonloc::ConcreteInt>(val).evalMinus(*this);
+ default:
+ return UnknownVal();
+ }
+}
+
+SVal SimpleSValBuilder::evalComplement(NonLoc X) {
+ switch (X.getSubKind()) {
+ case nonloc::ConcreteIntKind:
+ return cast<nonloc::ConcreteInt>(X).evalComplement(*this);
+ default:
+ return UnknownVal();
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Transfer function for binary operators.
+//===----------------------------------------------------------------------===//
+
+static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
+ switch (op) {
+ default:
+ llvm_unreachable("Invalid opcode.");
+ case BO_LT: return BO_GE;
+ case BO_GT: return BO_LE;
+ case BO_LE: return BO_GT;
+ case BO_GE: return BO_LT;
+ case BO_EQ: return BO_NE;
+ case BO_NE: return BO_EQ;
+ }
+}
+
+static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
+ switch (op) {
+ default:
+ llvm_unreachable("Invalid opcode.");
+ case BO_LT: return BO_GT;
+ case BO_GT: return BO_LT;
+ case BO_LE: return BO_GE;
+ case BO_GE: return BO_LE;
+ case BO_EQ:
+ case BO_NE:
+ return op;
+ }
+}
+
+SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
+ BinaryOperator::Opcode op,
+ const llvm::APSInt &RHS,
+ QualType resultTy) {
+ bool isIdempotent = false;
+
+ // Check for a few special cases with known reductions first.
+ switch (op) {
+ default:
+ // We can't reduce this case; just treat it normally.
+ break;
+ case BO_Mul:
+ // a*0 and a*1
+ if (RHS == 0)
+ return makeIntVal(0, resultTy);
+ else if (RHS == 1)
+ isIdempotent = true;
+ break;
+ case BO_Div:
+ // a/0 and a/1
+ if (RHS == 0)
+ // This is also handled elsewhere.
+ return UndefinedVal();
+ else if (RHS == 1)
+ isIdempotent = true;
+ break;
+ case BO_Rem:
+ // a%0 and a%1
+ if (RHS == 0)
+ // This is also handled elsewhere.
+ return UndefinedVal();
+ else if (RHS == 1)
+ return makeIntVal(0, resultTy);
+ break;
+ case BO_Add:
+ case BO_Sub:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_Xor:
+ // a+0, a-0, a<<0, a>>0, a^0
+ if (RHS == 0)
+ isIdempotent = true;
+ break;
+ case BO_And:
+ // a&0 and a&(~0)
+ if (RHS == 0)
+ return makeIntVal(0, resultTy);
+ else if (RHS.isAllOnesValue())
+ isIdempotent = true;
+ break;
+ case BO_Or:
+ // a|0 and a|(~0)
+ if (RHS == 0)
+ isIdempotent = true;
+ else if (RHS.isAllOnesValue()) {
+ const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
+ return nonloc::ConcreteInt(Result);
+ }
+ break;
+ }
+
+ // Idempotent ops (like a*1) can still change the type of an expression.
+ // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
+ // dirty work.
+ if (isIdempotent)
+ return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
+
+ // If we reach this point, the expression cannot be simplified.
+ // Make a SymbolVal for the entire expression.
+ return makeNonLoc(LHS, op, RHS, resultTy);
+}
+
+SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
+ BinaryOperator::Opcode op,
+ NonLoc lhs, NonLoc rhs,
+ QualType resultTy) {
+ // Handle trivial case where left-side and right-side are the same.
+ if (lhs == rhs)
+ switch (op) {
+ default:
+ break;
+ case BO_EQ:
+ case BO_LE:
+ case BO_GE:
+ return makeTruthVal(true, resultTy);
+ case BO_LT:
+ case BO_GT:
+ case BO_NE:
+ return makeTruthVal(false, resultTy);
+ case BO_Xor:
+ case BO_Sub:
+ return makeIntVal(0, resultTy);
+ case BO_Or:
+ case BO_And:
+ return evalCastFromNonLoc(lhs, resultTy);
+ }
+
+ while (1) {
+ switch (lhs.getSubKind()) {
+ default:
+ return makeGenericVal(state, op, lhs, rhs, resultTy);
+ case nonloc::LocAsIntegerKind: {
+ Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
+ switch (rhs.getSubKind()) {
+ case nonloc::LocAsIntegerKind:
+ return evalBinOpLL(state, op, lhsL,
+ cast<nonloc::LocAsInteger>(rhs).getLoc(),
+ resultTy);
+ case nonloc::ConcreteIntKind: {
+ // Transform the integer into a location and compare.
+ llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
+ i.setIsUnsigned(true);
+ i = i.extOrTrunc(Context.getTypeSize(Context.VoidPtrTy));
+ return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
+ }
+ default:
+ switch (op) {
+ case BO_EQ:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ return makeTruthVal(true, resultTy);
+ default:
+ // This case also handles pointer arithmetic.
+ return makeGenericVal(state, op, lhs, rhs, resultTy);
+ }
+ }
+ }
+ case nonloc::ConcreteIntKind: {
+ const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);
+
+ // Is the RHS a symbol we can simplify?
+ // FIXME: This was mostly copy/pasted from the LHS-is-a-symbol case.
+ if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
+ SymbolRef RSym = srhs->getSymbol();
+ if (RSym->getType(Context)->isIntegerType()) {
+ if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
+ // The symbol evaluates to a constant.
+ const llvm::APSInt *rhs_I;
+ if (BinaryOperator::isRelationalOp(op))
+ rhs_I = &BasicVals.Convert(lhsInt.getValue(), *Constant);
+ else
+ rhs_I = &BasicVals.Convert(resultTy, *Constant);
+
+ rhs = nonloc::ConcreteInt(*rhs_I);
+ }
+ }
+ }
+
+ if (isa<nonloc::ConcreteInt>(rhs)) {
+ return lhsInt.evalBinOp(*this, op, cast<nonloc::ConcreteInt>(rhs));
+ } else {
+ const llvm::APSInt& lhsValue = lhsInt.getValue();
+
+ // Swap the left and right sides and flip the operator if doing so
+ // allows us to better reason about the expression (this is a form
+ // of expression canonicalization).
+ // While we're at it, catch some special cases for non-commutative ops.
+ NonLoc tmp = rhs;
+ rhs = lhs;
+ lhs = tmp;
+
+ switch (op) {
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ op = ReverseComparison(op);
+ continue;
+ case BO_EQ:
+ case BO_NE:
+ case BO_Add:
+ case BO_Mul:
+ case BO_And:
+ case BO_Xor:
+ case BO_Or:
+ continue;
+ case BO_Shr:
+ if (lhsValue.isAllOnesValue() && lhsValue.isSigned())
+ // At this point lhs and rhs have been swapped.
+ return rhs;
+ // FALL-THROUGH
+ case BO_Shl:
+ if (lhsValue == 0)
+ // At this point lhs and rhs have been swapped.
+ return rhs;
+ return makeGenericVal(state, op, rhs, lhs, resultTy);
+ default:
+ return makeGenericVal(state, op, rhs, lhs, resultTy);
+ }
+ }
+ }
+ case nonloc::SymbolValKind: {
+ nonloc::SymbolVal *selhs = cast<nonloc::SymbolVal>(&lhs);
+
+ // LHS is a symbolic expression.
+ if (selhs->isExpression()) {
+
+ // Only handle LHS of the form "$sym op constant", at least for now.
+ const SymIntExpr *symIntExpr =
+ dyn_cast<SymIntExpr>(selhs->getSymbol());
+
+ if (!symIntExpr)
+ return makeGenericVal(state, op, lhs, rhs, resultTy);
+
+ // Is this a logical not? (!x is represented as x == 0.)
+ if (op == BO_EQ && rhs.isZeroConstant()) {
+ // We know how to negate certain expressions. Simplify them here.
+
+ BinaryOperator::Opcode opc = symIntExpr->getOpcode();
+ switch (opc) {
+ default:
+ // We don't know how to negate this operation.
+ // Just handle it as if it were a normal comparison to 0.
+ break;
+ case BO_LAnd:
+ case BO_LOr:
+ llvm_unreachable("Logical operators handled by branching logic.");
+ case BO_Assign:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ case BO_Comma:
+ llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ llvm_unreachable("Pointer arithmetic not handled here.");
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ // Negate the comparison and make a value.
+ opc = NegateComparison(opc);
+ assert(symIntExpr->getType(Context) == resultTy);
+ return makeNonLoc(symIntExpr->getLHS(), opc,
+ symIntExpr->getRHS(), resultTy);
+ }
+ }
+
+ // For now, only handle expressions whose RHS is a constant.
+ const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs);
+ if (!rhsInt)
+ return makeGenericVal(state, op, lhs, rhs, resultTy);
+
+ // If both the LHS and the current expression are additive,
+ // fold their constants.
+ if (BinaryOperator::isAdditiveOp(op)) {
+ BinaryOperator::Opcode lop = symIntExpr->getOpcode();
+ if (BinaryOperator::isAdditiveOp(lop)) {
+ // resultTy may not be the best type to convert to, but it's
+ // probably the best choice in expressions with mixed type
+ // (such as x+1U+2LL). The rules for implicit conversions should
+ // choose a reasonable type to preserve the expression, and will
+ // at least match how the value is going to be used.
+ const llvm::APSInt &first =
+ BasicVals.Convert(resultTy, symIntExpr->getRHS());
+ const llvm::APSInt &second =
+ BasicVals.Convert(resultTy, rhsInt->getValue());
+ const llvm::APSInt *newRHS;
+ if (lop == op)
+ newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
+ else
+ newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
+ return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
+ }
+ }
+
+ // Otherwise, make a SymbolVal out of the expression.
+ return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
+
+ // LHS is a simple symbol (not a symbolic expression).
+ } else {
+ nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs);
+ SymbolRef Sym = slhs->getSymbol();
+ QualType lhsType = Sym->getType(Context);
+
+ // The conversion type is usually the result type, but not in the case
+ // of relational expressions.
+ QualType conversionType = resultTy;
+ if (BinaryOperator::isRelationalOp(op))
+ conversionType = lhsType;
+
+ // Does the symbol simplify to a constant? If so, "fold" the constant
+ // by setting 'lhs' to a ConcreteInt and try again.
+ if (lhsType->isIntegerType())
+ if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
+ // The symbol evaluates to a constant. If necessary, promote the
+ // folded constant (LHS) to the result type.
+ const llvm::APSInt &lhs_I = BasicVals.Convert(conversionType,
+ *Constant);
+ lhs = nonloc::ConcreteInt(lhs_I);
+
+ // Also promote the RHS (if necessary).
+
+ // For shifts, it is not necessary to promote the RHS.
+ if (BinaryOperator::isShiftOp(op))
+ continue;
+
+ // Other operators: do an implicit conversion. This shouldn't be
+ // necessary once we support truncation/extension of symbolic values.
+ if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){
+ rhs = nonloc::ConcreteInt(BasicVals.Convert(conversionType,
+ rhs_I->getValue()));
+ }
+
+ continue;
+ }
+
+ // Is the RHS a symbol we can simplify?
+ if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
+ SymbolRef RSym = srhs->getSymbol();
+ if (RSym->getType(Context)->isIntegerType()) {
+ if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
+ // The symbol evaluates to a constant.
+ const llvm::APSInt &rhs_I = BasicVals.Convert(conversionType,
+ *Constant);
+ rhs = nonloc::ConcreteInt(rhs_I);
+ }
+ }
+ }
+
+ if (isa<nonloc::ConcreteInt>(rhs)) {
+ return MakeSymIntVal(slhs->getSymbol(), op,
+ cast<nonloc::ConcreteInt>(rhs).getValue(),
+ resultTy);
+ }
+
+ return makeGenericVal(state, op, lhs, rhs, resultTy);
+ }
+ }
+ }
+ }
+}
+
+// FIXME: all this logic will change if/when we have MemRegion::getLocation().
+SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
+ BinaryOperator::Opcode op,
+ Loc lhs, Loc rhs,
+ QualType resultTy) {
+ // Only comparisons and subtractions are valid operations on two pointers.
+ // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
+ // However, if a pointer is casted to an integer, evalBinOpNN may end up
+ // calling this function with another operation (PR7527). We don't attempt to
+ // model this for now, but it could be useful, particularly when the
+ // "location" is actually an integer value that's been passed through a void*.
+ if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
+ return UnknownVal();
+
+ // Special cases for when both sides are identical.
+ if (lhs == rhs) {
+ switch (op) {
+ default:
+ llvm_unreachable("Unimplemented operation for two identical values");
+ case BO_Sub:
+ return makeZeroVal(resultTy);
+ case BO_EQ:
+ case BO_LE:
+ case BO_GE:
+ return makeTruthVal(true, resultTy);
+ case BO_NE:
+ case BO_LT:
+ case BO_GT:
+ return makeTruthVal(false, resultTy);
+ }
+ }
+
+ switch (lhs.getSubKind()) {
+ default:
+ llvm_unreachable("Ordering not implemented for this Loc.");
+
+ case loc::GotoLabelKind:
+ // The only thing we know about labels is that they're non-null.
+ if (rhs.isZeroConstant()) {
+ switch (op) {
+ default:
+ break;
+ case BO_Sub:
+ return evalCastFromLoc(lhs, resultTy);
+ case BO_EQ:
+ case BO_LE:
+ case BO_LT:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ case BO_GT:
+ case BO_GE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+ // There may be two labels for the same location, and a function region may
+ // have the same address as a label at the start of the function (depending
+ // on the ABI).
+ // FIXME: we can probably do a comparison against other MemRegions, though.
+ // FIXME: is there a way to tell if two labels refer to the same location?
+ return UnknownVal();
+
+ case loc::ConcreteIntKind: {
+ // If one of the operands is a symbol and the other is a constant,
+ // build an expression for use by the constraint manager.
+ if (SymbolRef rSym = rhs.getAsLocSymbol()) {
+ // We can only build expressions with symbols on the left,
+ // so we need a reversible operator.
+ if (!BinaryOperator::isComparisonOp(op))
+ return UnknownVal();
+
+ const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
+ return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
+ }
+
+ // If both operands are constants, just perform the operation.
+ if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
+ SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op,
+ *rInt);
+ if (Loc *Result = dyn_cast<Loc>(&ResultVal))
+ return evalCastFromLoc(*Result, resultTy);
+ else
+ return UnknownVal();
+ }
+
+ // Special case comparisons against NULL.
+ // This must come after the test if the RHS is a symbol, which is used to
+ // build constraints. The address of any non-symbolic region is guaranteed
+ // to be non-NULL, as is any label.
+ assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
+ if (lhs.isZeroConstant()) {
+ switch (op) {
+ default:
+ break;
+ case BO_EQ:
+ case BO_GT:
+ case BO_GE:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ case BO_LT:
+ case BO_LE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+
+ // Comparing an arbitrary integer to a region or label address is
+ // completely unknowable.
+ return UnknownVal();
+ }
+ case loc::MemRegionKind: {
+ if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
+ // If one of the operands is a symbol and the other is a constant,
+ // build an expression for use by the constraint manager.
+ if (SymbolRef lSym = lhs.getAsLocSymbol())
+ return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
+
+ // Special case comparisons to NULL.
+ // This must come after the test if the LHS is a symbol, which is used to
+ // build constraints. The address of any non-symbolic region is guaranteed
+ // to be non-NULL.
+ if (rInt->isZeroConstant()) {
+ switch (op) {
+ default:
+ break;
+ case BO_Sub:
+ return evalCastFromLoc(lhs, resultTy);
+ case BO_EQ:
+ case BO_LT:
+ case BO_LE:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ case BO_GT:
+ case BO_GE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+
+ // Comparing a region to an arbitrary integer is completely unknowable.
+ return UnknownVal();
+ }
+
+ // Get both values as regions, if possible.
+ const MemRegion *LeftMR = lhs.getAsRegion();
+ assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
+
+ const MemRegion *RightMR = rhs.getAsRegion();
+ if (!RightMR)
+ // The RHS is probably a label, which in theory could address a region.
+ // FIXME: we can probably make a more useful statement about non-code
+ // regions, though.
+ return UnknownVal();
+
+ // If both values wrap regions, see if they're from different base regions.
+ const MemRegion *LeftBase = LeftMR->getBaseRegion();
+ const MemRegion *RightBase = RightMR->getBaseRegion();
+ if (LeftBase != RightBase &&
+ !isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) {
+ switch (op) {
+ default:
+ return UnknownVal();
+ case BO_EQ:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+
+ // The two regions are from the same base region. See if they're both a
+ // type of region we know how to compare.
+ const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
+ const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
+
+ // Heuristic: assume that no symbolic region (whose memory space is
+ // unknown) is on the stack.
+ // FIXME: we should be able to be more precise once we can do better
+ // aliasing constraints for symbolic regions, but this is a reasonable,
+ // albeit unsound, assumption that holds most of the time.
+ if (isa<StackSpaceRegion>(LeftMS) ^ isa<StackSpaceRegion>(RightMS)) {
+ switch (op) {
+ default:
+ break;
+ case BO_EQ:
+ return makeTruthVal(false, resultTy);
+ case BO_NE:
+ return makeTruthVal(true, resultTy);
+ }
+ }
+
+ // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
+ // ElementRegion path and the FieldRegion path below should be unified.
+ if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
+ // First see if the right region is also an ElementRegion.
+ const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
+ if (!RightER)
+ return UnknownVal();
+
+ // Next, see if the two ERs have the same super-region and matching types.
+ // FIXME: This should do something useful even if the types don't match,
+ // though if both indexes are constant the RegionRawOffset path will
+ // give the correct answer.
+ if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
+ LeftER->getElementType() == RightER->getElementType()) {
+ // Get the left index and cast it to the correct type.
+ // If the index is unknown or undefined, bail out here.
+ SVal LeftIndexVal = LeftER->getIndex();
+ NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
+ if (!LeftIndex)
+ return UnknownVal();
+ LeftIndexVal = evalCastFromNonLoc(*LeftIndex, resultTy);
+ LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
+ if (!LeftIndex)
+ return UnknownVal();
+
+ // Do the same for the right index.
+ SVal RightIndexVal = RightER->getIndex();
+ NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
+ if (!RightIndex)
+ return UnknownVal();
+ RightIndexVal = evalCastFromNonLoc(*RightIndex, resultTy);
+ RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
+ if (!RightIndex)
+ return UnknownVal();
+
+ // Actually perform the operation.
+ // evalBinOpNN expects the two indexes to already be the right type.
+ return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
+ }
+
+ // If the element indexes aren't comparable, see if the raw offsets are.
+ RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
+ RegionRawOffset RightOffset = RightER->getAsArrayOffset();
+
+ if (LeftOffset.getRegion() != NULL &&
+ LeftOffset.getRegion() == RightOffset.getRegion()) {
+ CharUnits left = LeftOffset.getOffset();
+ CharUnits right = RightOffset.getOffset();
+
+ switch (op) {
+ default:
+ return UnknownVal();
+ case BO_LT:
+ return makeTruthVal(left < right, resultTy);
+ case BO_GT:
+ return makeTruthVal(left > right, resultTy);
+ case BO_LE:
+ return makeTruthVal(left <= right, resultTy);
+ case BO_GE:
+ return makeTruthVal(left >= right, resultTy);
+ case BO_EQ:
+ return makeTruthVal(left == right, resultTy);
+ case BO_NE:
+ return makeTruthVal(left != right, resultTy);
+ }
+ }
+
+ // If we get here, we have no way of comparing the ElementRegions.
+ return UnknownVal();
+ }
+
+ // See if both regions are fields of the same structure.
+ // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
+ if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
+ // Only comparisons are meaningful here!
+ if (!BinaryOperator::isComparisonOp(op))
+ return UnknownVal();
+
+ // First see if the right region is also a FieldRegion.
+ const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
+ if (!RightFR)
+ return UnknownVal();
+
+ // Next, see if the two FRs have the same super-region.
+ // FIXME: This doesn't handle casts yet, and simply stripping the casts
+ // doesn't help.
+ if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
+ return UnknownVal();
+
+ const FieldDecl *LeftFD = LeftFR->getDecl();
+ const FieldDecl *RightFD = RightFR->getDecl();
+ const RecordDecl *RD = LeftFD->getParent();
+
+ // Make sure the two FRs are from the same kind of record. Just in case!
+ // FIXME: This is probably where inheritance would be a problem.
+ if (RD != RightFD->getParent())
+ return UnknownVal();
+
+ // We know for sure that the two fields are not the same, since that
+ // would have given us the same SVal.
+ if (op == BO_EQ)
+ return makeTruthVal(false, resultTy);
+ if (op == BO_NE)
+ return makeTruthVal(true, resultTy);
+
+ // Iterate through the fields and see which one comes first.
+ // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
+ // members and the units in which bit-fields reside have addresses that
+ // increase in the order in which they are declared."
+ bool leftFirst = (op == BO_LT || op == BO_LE);
+ for (RecordDecl::field_iterator I = RD->field_begin(),
+ E = RD->field_end(); I!=E; ++I) {
+ if (*I == LeftFD)
+ return makeTruthVal(leftFirst, resultTy);
+ if (*I == RightFD)
+ return makeTruthVal(!leftFirst, resultTy);
+ }
+
+ llvm_unreachable("Fields not found in parent record's definition");
+ }
+
+ // If we get here, we have no way of comparing the regions.
+ return UnknownVal();
+ }
+ }
+}
+
+SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
+ BinaryOperator::Opcode op,
+ Loc lhs, NonLoc rhs, QualType resultTy) {
+
+ // Special case: rhs is a zero constant.
+ if (rhs.isZeroConstant())
+ return lhs;
+
+ // Special case: 'rhs' is an integer that has the same width as a pointer and
+ // we are using the integer location in a comparison. Normally this cannot be
+ // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
+ // can generate comparisons that trigger this code.
+ // FIXME: Are all locations guaranteed to have pointer width?
+ if (BinaryOperator::isComparisonOp(op)) {
+ if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
+ const llvm::APSInt *x = &rhsInt->getValue();
+ ASTContext &ctx = Context;
+ if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
+ // Convert the signedness of the integer (if necessary).
+ if (x->isSigned())
+ x = &getBasicValueFactory().getValue(*x, true);
+
+ return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
+ }
+ }
+ }
+
+ // We are dealing with pointer arithmetic.
+
+ // Handle pointer arithmetic on constant values.
+ if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
+ if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) {
+ const llvm::APSInt &leftI = lhsInt->getValue();
+ assert(leftI.isUnsigned());
+ llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
+
+ // Convert the bitwidth of rightI. This should deal with overflow
+ // since we are dealing with concrete values.
+ rightI = rightI.extOrTrunc(leftI.getBitWidth());
+
+ // Offset the increment by the pointer size.
+ llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
+ rightI *= Multiplicand;
+
+ // Compute the adjusted pointer.
+ switch (op) {
+ case BO_Add:
+ rightI = leftI + rightI;
+ break;
+ case BO_Sub:
+ rightI = leftI - rightI;
+ break;
+ default:
+ llvm_unreachable("Invalid pointer arithmetic operation");
+ }
+ return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
+ }
+ }
+
+ // Handle cases where 'lhs' is a region.
+ if (const MemRegion *region = lhs.getAsRegion()) {
+ rhs = cast<NonLoc>(convertToArrayIndex(rhs));
+ SVal index = UnknownVal();
+ const MemRegion *superR = 0;
+ QualType elementType;
+
+ if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
+ assert(op == BO_Add || op == BO_Sub);
+ index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
+ getArrayIndexType());
+ superR = elemReg->getSuperRegion();
+ elementType = elemReg->getElementType();
+ }
+ else if (isa<SubRegion>(region)) {
+ superR = region;
+ index = rhs;
+ if (const PointerType *PT = resultTy->getAs<PointerType>()) {
+ elementType = PT->getPointeeType();
+ }
+ else {
+ const ObjCObjectPointerType *OT =
+ resultTy->getAs<ObjCObjectPointerType>();
+ elementType = OT->getPointeeType();
+ }
+ }
+
+ if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) {
+ return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
+ superR, getContext()));
+ }
+ }
+ return UnknownVal();
+}
+
+const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
+ SVal V) {
+ if (V.isUnknownOrUndef())
+ return NULL;
+
+ if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V))
+ return &X->getValue();
+
+ if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V))
+ return &X->getValue();
+
+ if (SymbolRef Sym = V.getAsSymbol())
+ return state->getSymVal(Sym);
+
+ // FIXME: Add support for SymExprs.
+ return NULL;
+}
diff --git a/clang/lib/StaticAnalyzer/Core/Store.cpp b/clang/lib/StaticAnalyzer/Core/Store.cpp
new file mode 100644
index 0000000..11748ae
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/Store.cpp
@@ -0,0 +1,362 @@
+//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defined the types Store and StoreManager.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclObjC.h"
+
+using namespace clang;
+using namespace ento;
+
+StoreManager::StoreManager(ProgramStateManager &stateMgr)
+ : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
+ MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
+
+StoreRef StoreManager::enterStackFrame(ProgramStateRef state,
+ const LocationContext *callerCtx,
+ const StackFrameContext *calleeCtx) {
+ return StoreRef(state->getStore(), *this);
+}
+
+const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
+ QualType EleTy, uint64_t index) {
+ NonLoc idx = svalBuilder.makeArrayIndex(index);
+ return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
+}
+
+// FIXME: Merge with the implementation of the same method in MemRegion.cpp
+static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const RecordDecl *D = RT->getDecl();
+ if (!D->getDefinition())
+ return false;
+ }
+
+ return true;
+}
+
+StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
+ return StoreRef(store, *this);
+}
+
+const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
+ QualType T) {
+ NonLoc idx = svalBuilder.makeZeroArrayIndex();
+ assert(!T.isNull());
+ return MRMgr.getElementRegion(T, idx, R, Ctx);
+}
+
+const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
+
+ ASTContext &Ctx = StateMgr.getContext();
+
+ // Handle casts to Objective-C objects.
+ if (CastToTy->isObjCObjectPointerType())
+ return R->StripCasts();
+
+ if (CastToTy->isBlockPointerType()) {
+ // FIXME: We may need different solutions, depending on the symbol
+ // involved. Blocks can be casted to/from 'id', as they can be treated
+ // as Objective-C objects. This could possibly be handled by enhancing
+ // our reasoning of downcasts of symbolic objects.
+ if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
+ return R;
+
+ // We don't know what to make of it. Return a NULL region, which
+ // will be interpretted as UnknownVal.
+ return NULL;
+ }
+
+ // Now assume we are casting from pointer to pointer. Other cases should
+ // already be handled.
+ QualType PointeeTy = CastToTy->getPointeeType();
+ QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
+
+ // Handle casts to void*. We just pass the region through.
+ if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
+ return R;
+
+ // Handle casts from compatible types.
+ if (R->isBoundable())
+ if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
+ QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
+ if (CanonPointeeTy == ObjTy)
+ return R;
+ }
+
+ // Process region cast according to the kind of the region being cast.
+ switch (R->getKind()) {
+ case MemRegion::CXXThisRegionKind:
+ case MemRegion::GenericMemSpaceRegionKind:
+ case MemRegion::StackLocalsSpaceRegionKind:
+ case MemRegion::StackArgumentsSpaceRegionKind:
+ case MemRegion::HeapSpaceRegionKind:
+ case MemRegion::UnknownSpaceRegionKind:
+ case MemRegion::StaticGlobalSpaceRegionKind:
+ case MemRegion::GlobalInternalSpaceRegionKind:
+ case MemRegion::GlobalSystemSpaceRegionKind:
+ case MemRegion::GlobalImmutableSpaceRegionKind: {
+ llvm_unreachable("Invalid region cast");
+ }
+
+ case MemRegion::FunctionTextRegionKind:
+ case MemRegion::BlockTextRegionKind:
+ case MemRegion::BlockDataRegionKind:
+ case MemRegion::StringRegionKind:
+ // FIXME: Need to handle arbitrary downcasts.
+ case MemRegion::SymbolicRegionKind:
+ case MemRegion::AllocaRegionKind:
+ case MemRegion::CompoundLiteralRegionKind:
+ case MemRegion::FieldRegionKind:
+ case MemRegion::ObjCIvarRegionKind:
+ case MemRegion::ObjCStringRegionKind:
+ case MemRegion::VarRegionKind:
+ case MemRegion::CXXTempObjectRegionKind:
+ case MemRegion::CXXBaseObjectRegionKind:
+ return MakeElementRegion(R, PointeeTy);
+
+ case MemRegion::ElementRegionKind: {
+ // If we are casting from an ElementRegion to another type, the
+ // algorithm is as follows:
+ //
+ // (1) Compute the "raw offset" of the ElementRegion from the
+ // base region. This is done by calling 'getAsRawOffset()'.
+ //
+ // (2a) If we get a 'RegionRawOffset' after calling
+ // 'getAsRawOffset()', determine if the absolute offset
+ // can be exactly divided into chunks of the size of the
+ // casted-pointee type. If so, create a new ElementRegion with
+ // the pointee-cast type as the new ElementType and the index
+ // being the offset divded by the chunk size. If not, create
+ // a new ElementRegion at offset 0 off the raw offset region.
+ //
+ // (2b) If we don't a get a 'RegionRawOffset' after calling
+ // 'getAsRawOffset()', it means that we are at offset 0.
+ //
+ // FIXME: Handle symbolic raw offsets.
+
+ const ElementRegion *elementR = cast<ElementRegion>(R);
+ const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
+ const MemRegion *baseR = rawOff.getRegion();
+
+ // If we cannot compute a raw offset, throw up our hands and return
+ // a NULL MemRegion*.
+ if (!baseR)
+ return NULL;
+
+ CharUnits off = rawOff.getOffset();
+
+ if (off.isZero()) {
+ // Edge case: we are at 0 bytes off the beginning of baseR. We
+ // check to see if type we are casting to is the same as the base
+ // region. If so, just return the base region.
+ if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
+ QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
+ QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
+ if (CanonPointeeTy == ObjTy)
+ return baseR;
+ }
+
+ // Otherwise, create a new ElementRegion at offset 0.
+ return MakeElementRegion(baseR, PointeeTy);
+ }
+
+ // We have a non-zero offset from the base region. We want to determine
+ // if the offset can be evenly divided by sizeof(PointeeTy). If so,
+ // we create an ElementRegion whose index is that value. Otherwise, we
+ // create two ElementRegions, one that reflects a raw offset and the other
+ // that reflects the cast.
+
+ // Compute the index for the new ElementRegion.
+ int64_t newIndex = 0;
+ const MemRegion *newSuperR = 0;
+
+ // We can only compute sizeof(PointeeTy) if it is a complete type.
+ if (IsCompleteType(Ctx, PointeeTy)) {
+ // Compute the size in **bytes**.
+ CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
+ if (!pointeeTySize.isZero()) {
+ // Is the offset a multiple of the size? If so, we can layer the
+ // ElementRegion (with elementType == PointeeTy) directly on top of
+ // the base region.
+ if (off % pointeeTySize == 0) {
+ newIndex = off / pointeeTySize;
+ newSuperR = baseR;
+ }
+ }
+ }
+
+ if (!newSuperR) {
+ // Create an intermediate ElementRegion to represent the raw byte.
+ // This will be the super region of the final ElementRegion.
+ newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
+ }
+
+ return MakeElementRegion(newSuperR, PointeeTy, newIndex);
+ }
+ }
+
+ llvm_unreachable("unreachable");
+}
+
+
+/// CastRetrievedVal - Used by subclasses of StoreManager to implement
+/// implicit casts that arise from loads from regions that are reinterpreted
+/// as another region.
+SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
+ QualType castTy, bool performTestOnly) {
+
+ if (castTy.isNull() || V.isUnknownOrUndef())
+ return V;
+
+ ASTContext &Ctx = svalBuilder.getContext();
+
+ if (performTestOnly) {
+ // Automatically translate references to pointers.
+ QualType T = R->getValueType();
+ if (const ReferenceType *RT = T->getAs<ReferenceType>())
+ T = Ctx.getPointerType(RT->getPointeeType());
+
+ assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
+ return V;
+ }
+
+ return svalBuilder.dispatchCast(V, castTy);
+}
+
+SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
+ if (Base.isUnknownOrUndef())
+ return Base;
+
+ Loc BaseL = cast<Loc>(Base);
+ const MemRegion* BaseR = 0;
+
+ switch (BaseL.getSubKind()) {
+ case loc::MemRegionKind:
+ BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
+ break;
+
+ case loc::GotoLabelKind:
+ // These are anormal cases. Flag an undefined value.
+ return UndefinedVal();
+
+ case loc::ConcreteIntKind:
+ // While these seem funny, this can happen through casts.
+ // FIXME: What we should return is the field offset. For example,
+ // add the field offset to the integer value. That way funny things
+ // like this work properly: &(((struct foo *) 0xa)->f)
+ return Base;
+
+ default:
+ llvm_unreachable("Unhandled Base.");
+ }
+
+ // NOTE: We must have this check first because ObjCIvarDecl is a subclass
+ // of FieldDecl.
+ if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
+ return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
+
+ return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
+}
+
+SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
+ return getLValueFieldOrIvar(decl, base);
+}
+
+SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
+ SVal Base) {
+
+ // If the base is an unknown or undefined value, just return it back.
+ // FIXME: For absolute pointer addresses, we just return that value back as
+ // well, although in reality we should return the offset added to that
+ // value.
+ if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
+ return Base;
+
+ const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
+
+ // Pointer of any type can be cast and used as array base.
+ const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
+
+ // Convert the offset to the appropriate size and signedness.
+ Offset = cast<NonLoc>(svalBuilder.convertToArrayIndex(Offset));
+
+ if (!ElemR) {
+ //
+ // If the base region is not an ElementRegion, create one.
+ // This can happen in the following example:
+ //
+ // char *p = __builtin_alloc(10);
+ // p[1] = 8;
+ //
+ // Observe that 'p' binds to an AllocaRegion.
+ //
+ return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
+ BaseRegion, Ctx));
+ }
+
+ SVal BaseIdx = ElemR->getIndex();
+
+ if (!isa<nonloc::ConcreteInt>(BaseIdx))
+ return UnknownVal();
+
+ const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
+
+ // Only allow non-integer offsets if the base region has no offset itself.
+ // FIXME: This is a somewhat arbitrary restriction. We should be using
+ // SValBuilder here to add the two offsets without checking their types.
+ if (!isa<nonloc::ConcreteInt>(Offset)) {
+ if (isa<ElementRegion>(BaseRegion->StripCasts()))
+ return UnknownVal();
+
+ return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
+ ElemR->getSuperRegion(),
+ Ctx));
+ }
+
+ const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
+ assert(BaseIdxI.isSigned());
+
+ // Compute the new index.
+ nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
+ OffI));
+
+ // Construct the new ElementRegion.
+ const MemRegion *ArrayR = ElemR->getSuperRegion();
+ return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
+ Ctx));
+}
+
+StoreManager::BindingsHandler::~BindingsHandler() {}
+
+bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
+ Store store,
+ const MemRegion* R,
+ SVal val) {
+ SymbolRef SymV = val.getAsLocSymbol();
+ if (!SymV || SymV != Sym)
+ return true;
+
+ if (Binding) {
+ First = false;
+ return false;
+ }
+ else
+ Binding = R;
+
+ return true;
+}
+
+void SubRegionMap::anchor() { }
+void SubRegionMap::Visitor::anchor() { }
diff --git a/clang/lib/StaticAnalyzer/Core/SubEngine.cpp b/clang/lib/StaticAnalyzer/Core/SubEngine.cpp
new file mode 100644
index 0000000..350f4b8
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/SubEngine.cpp
@@ -0,0 +1,14 @@
+//== SubEngine.cpp - Interface of the subengine of CoreEngine ------*- C++ -*-//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
+
+using namespace clang::ento;
+
+void SubEngine::anchor() { }
diff --git a/clang/lib/StaticAnalyzer/Core/SymbolManager.cpp b/clang/lib/StaticAnalyzer/Core/SymbolManager.cpp
new file mode 100644
index 0000000..adefb58
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/SymbolManager.cpp
@@ -0,0 +1,540 @@
+//== SymbolManager.h - Management of Symbolic Values ------------*- C++ -*--==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines SymbolManager, a class that manages symbolic values
+// created for use by ExprEngine and related classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
+#include "clang/Analysis/Analyses/LiveVariables.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+void SymExpr::anchor() { }
+
+void SymExpr::dump() const {
+ dumpToStream(llvm::errs());
+}
+
+static void print(raw_ostream &os, BinaryOperator::Opcode Op) {
+ switch (Op) {
+ default:
+ llvm_unreachable("operator printing not implemented");
+ case BO_Mul: os << '*' ; break;
+ case BO_Div: os << '/' ; break;
+ case BO_Rem: os << '%' ; break;
+ case BO_Add: os << '+' ; break;
+ case BO_Sub: os << '-' ; break;
+ case BO_Shl: os << "<<" ; break;
+ case BO_Shr: os << ">>" ; break;
+ case BO_LT: os << "<" ; break;
+ case BO_GT: os << '>' ; break;
+ case BO_LE: os << "<=" ; break;
+ case BO_GE: os << ">=" ; break;
+ case BO_EQ: os << "==" ; break;
+ case BO_NE: os << "!=" ; break;
+ case BO_And: os << '&' ; break;
+ case BO_Xor: os << '^' ; break;
+ case BO_Or: os << '|' ; break;
+ }
+}
+
+void SymIntExpr::dumpToStream(raw_ostream &os) const {
+ os << '(';
+ getLHS()->dumpToStream(os);
+ os << ") ";
+ print(os, getOpcode());
+ os << ' ' << getRHS().getZExtValue();
+ if (getRHS().isUnsigned()) os << 'U';
+}
+
+void IntSymExpr::dumpToStream(raw_ostream &os) const {
+ os << ' ' << getLHS().getZExtValue();
+ if (getLHS().isUnsigned()) os << 'U';
+ print(os, getOpcode());
+ os << '(';
+ getRHS()->dumpToStream(os);
+ os << ") ";
+}
+
+void SymSymExpr::dumpToStream(raw_ostream &os) const {
+ os << '(';
+ getLHS()->dumpToStream(os);
+ os << ") ";
+ os << '(';
+ getRHS()->dumpToStream(os);
+ os << ')';
+}
+
+void SymbolCast::dumpToStream(raw_ostream &os) const {
+ os << '(' << ToTy.getAsString() << ") (";
+ Operand->dumpToStream(os);
+ os << ')';
+}
+
+void SymbolConjured::dumpToStream(raw_ostream &os) const {
+ os << "conj_$" << getSymbolID() << '{' << T.getAsString() << '}';
+}
+
+void SymbolDerived::dumpToStream(raw_ostream &os) const {
+ os << "derived_$" << getSymbolID() << '{'
+ << getParentSymbol() << ',' << getRegion() << '}';
+}
+
+void SymbolExtent::dumpToStream(raw_ostream &os) const {
+ os << "extent_$" << getSymbolID() << '{' << getRegion() << '}';
+}
+
+void SymbolMetadata::dumpToStream(raw_ostream &os) const {
+ os << "meta_$" << getSymbolID() << '{'
+ << getRegion() << ',' << T.getAsString() << '}';
+}
+
+void SymbolData::anchor() { }
+
+void SymbolRegionValue::dumpToStream(raw_ostream &os) const {
+ os << "reg_$" << getSymbolID() << "<" << R << ">";
+}
+
+bool SymExpr::symbol_iterator::operator==(const symbol_iterator &X) const {
+ return itr == X.itr;
+}
+
+bool SymExpr::symbol_iterator::operator!=(const symbol_iterator &X) const {
+ return itr != X.itr;
+}
+
+SymExpr::symbol_iterator::symbol_iterator(const SymExpr *SE) {
+ itr.push_back(SE);
+ while (!isa<SymbolData>(itr.back())) expand();
+}
+
+SymExpr::symbol_iterator &SymExpr::symbol_iterator::operator++() {
+ assert(!itr.empty() && "attempting to iterate on an 'end' iterator");
+ assert(isa<SymbolData>(itr.back()));
+ itr.pop_back();
+ if (!itr.empty())
+ while (!isa<SymbolData>(itr.back())) expand();
+ return *this;
+}
+
+SymbolRef SymExpr::symbol_iterator::operator*() {
+ assert(!itr.empty() && "attempting to dereference an 'end' iterator");
+ return cast<SymbolData>(itr.back());
+}
+
+void SymExpr::symbol_iterator::expand() {
+ const SymExpr *SE = itr.back();
+ itr.pop_back();
+
+ switch (SE->getKind()) {
+ case SymExpr::RegionValueKind:
+ case SymExpr::ConjuredKind:
+ case SymExpr::DerivedKind:
+ case SymExpr::ExtentKind:
+ case SymExpr::MetadataKind:
+ return;
+ case SymExpr::CastSymbolKind:
+ itr.push_back(cast<SymbolCast>(SE)->getOperand());
+ return;
+ case SymExpr::SymIntKind:
+ itr.push_back(cast<SymIntExpr>(SE)->getLHS());
+ return;
+ case SymExpr::IntSymKind:
+ itr.push_back(cast<IntSymExpr>(SE)->getRHS());
+ return;
+ case SymExpr::SymSymKind: {
+ const SymSymExpr *x = cast<SymSymExpr>(SE);
+ itr.push_back(x->getLHS());
+ itr.push_back(x->getRHS());
+ return;
+ }
+ }
+ llvm_unreachable("unhandled expansion case");
+}
+
+const SymbolRegionValue*
+SymbolManager::getRegionValueSymbol(const TypedValueRegion* R) {
+ llvm::FoldingSetNodeID profile;
+ SymbolRegionValue::Profile(profile, R);
+ void *InsertPos;
+ SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
+ if (!SD) {
+ SD = (SymExpr*) BPAlloc.Allocate<SymbolRegionValue>();
+ new (SD) SymbolRegionValue(SymbolCounter, R);
+ DataSet.InsertNode(SD, InsertPos);
+ ++SymbolCounter;
+ }
+
+ return cast<SymbolRegionValue>(SD);
+}
+
+const SymbolConjured*
+SymbolManager::getConjuredSymbol(const Stmt *E, const LocationContext *LCtx,
+ QualType T, unsigned Count,
+ const void *SymbolTag) {
+
+ llvm::FoldingSetNodeID profile;
+ SymbolConjured::Profile(profile, E, T, Count, LCtx, SymbolTag);
+ void *InsertPos;
+ SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
+ if (!SD) {
+ SD = (SymExpr*) BPAlloc.Allocate<SymbolConjured>();
+ new (SD) SymbolConjured(SymbolCounter, E, LCtx, T, Count, SymbolTag);
+ DataSet.InsertNode(SD, InsertPos);
+ ++SymbolCounter;
+ }
+
+ return cast<SymbolConjured>(SD);
+}
+
+const SymbolDerived*
+SymbolManager::getDerivedSymbol(SymbolRef parentSymbol,
+ const TypedValueRegion *R) {
+
+ llvm::FoldingSetNodeID profile;
+ SymbolDerived::Profile(profile, parentSymbol, R);
+ void *InsertPos;
+ SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
+ if (!SD) {
+ SD = (SymExpr*) BPAlloc.Allocate<SymbolDerived>();
+ new (SD) SymbolDerived(SymbolCounter, parentSymbol, R);
+ DataSet.InsertNode(SD, InsertPos);
+ ++SymbolCounter;
+ }
+
+ return cast<SymbolDerived>(SD);
+}
+
+const SymbolExtent*
+SymbolManager::getExtentSymbol(const SubRegion *R) {
+ llvm::FoldingSetNodeID profile;
+ SymbolExtent::Profile(profile, R);
+ void *InsertPos;
+ SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
+ if (!SD) {
+ SD = (SymExpr*) BPAlloc.Allocate<SymbolExtent>();
+ new (SD) SymbolExtent(SymbolCounter, R);
+ DataSet.InsertNode(SD, InsertPos);
+ ++SymbolCounter;
+ }
+
+ return cast<SymbolExtent>(SD);
+}
+
+const SymbolMetadata*
+SymbolManager::getMetadataSymbol(const MemRegion* R, const Stmt *S, QualType T,
+ unsigned Count, const void *SymbolTag) {
+
+ llvm::FoldingSetNodeID profile;
+ SymbolMetadata::Profile(profile, R, S, T, Count, SymbolTag);
+ void *InsertPos;
+ SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
+ if (!SD) {
+ SD = (SymExpr*) BPAlloc.Allocate<SymbolMetadata>();
+ new (SD) SymbolMetadata(SymbolCounter, R, S, T, Count, SymbolTag);
+ DataSet.InsertNode(SD, InsertPos);
+ ++SymbolCounter;
+ }
+
+ return cast<SymbolMetadata>(SD);
+}
+
+const SymbolCast*
+SymbolManager::getCastSymbol(const SymExpr *Op,
+ QualType From, QualType To) {
+ llvm::FoldingSetNodeID ID;
+ SymbolCast::Profile(ID, Op, From, To);
+ void *InsertPos;
+ SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
+ if (!data) {
+ data = (SymbolCast*) BPAlloc.Allocate<SymbolCast>();
+ new (data) SymbolCast(Op, From, To);
+ DataSet.InsertNode(data, InsertPos);
+ }
+
+ return cast<SymbolCast>(data);
+}
+
+const SymIntExpr *SymbolManager::getSymIntExpr(const SymExpr *lhs,
+ BinaryOperator::Opcode op,
+ const llvm::APSInt& v,
+ QualType t) {
+ llvm::FoldingSetNodeID ID;
+ SymIntExpr::Profile(ID, lhs, op, v, t);
+ void *InsertPos;
+ SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!data) {
+ data = (SymIntExpr*) BPAlloc.Allocate<SymIntExpr>();
+ new (data) SymIntExpr(lhs, op, v, t);
+ DataSet.InsertNode(data, InsertPos);
+ }
+
+ return cast<SymIntExpr>(data);
+}
+
+const IntSymExpr *SymbolManager::getIntSymExpr(const llvm::APSInt& lhs,
+ BinaryOperator::Opcode op,
+ const SymExpr *rhs,
+ QualType t) {
+ llvm::FoldingSetNodeID ID;
+ IntSymExpr::Profile(ID, lhs, op, rhs, t);
+ void *InsertPos;
+ SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!data) {
+ data = (IntSymExpr*) BPAlloc.Allocate<IntSymExpr>();
+ new (data) IntSymExpr(lhs, op, rhs, t);
+ DataSet.InsertNode(data, InsertPos);
+ }
+
+ return cast<IntSymExpr>(data);
+}
+
+const SymSymExpr *SymbolManager::getSymSymExpr(const SymExpr *lhs,
+ BinaryOperator::Opcode op,
+ const SymExpr *rhs,
+ QualType t) {
+ llvm::FoldingSetNodeID ID;
+ SymSymExpr::Profile(ID, lhs, op, rhs, t);
+ void *InsertPos;
+ SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
+
+ if (!data) {
+ data = (SymSymExpr*) BPAlloc.Allocate<SymSymExpr>();
+ new (data) SymSymExpr(lhs, op, rhs, t);
+ DataSet.InsertNode(data, InsertPos);
+ }
+
+ return cast<SymSymExpr>(data);
+}
+
+QualType SymbolConjured::getType(ASTContext&) const {
+ return T;
+}
+
+QualType SymbolDerived::getType(ASTContext &Ctx) const {
+ return R->getValueType();
+}
+
+QualType SymbolExtent::getType(ASTContext &Ctx) const {
+ return Ctx.getSizeType();
+}
+
+QualType SymbolMetadata::getType(ASTContext&) const {
+ return T;
+}
+
+QualType SymbolRegionValue::getType(ASTContext &C) const {
+ return R->getValueType();
+}
+
+SymbolManager::~SymbolManager() {
+ for (SymbolDependTy::const_iterator I = SymbolDependencies.begin(),
+ E = SymbolDependencies.end(); I != E; ++I) {
+ delete I->second;
+ }
+
+}
+
+bool SymbolManager::canSymbolicate(QualType T) {
+ T = T.getCanonicalType();
+
+ if (Loc::isLocType(T))
+ return true;
+
+ if (T->isIntegerType())
+ return T->isScalarType();
+
+ if (T->isRecordType() && !T->isUnionType())
+ return true;
+
+ return false;
+}
+
+void SymbolManager::addSymbolDependency(const SymbolRef Primary,
+ const SymbolRef Dependent) {
+ SymbolDependTy::iterator I = SymbolDependencies.find(Primary);
+ SymbolRefSmallVectorTy *dependencies = 0;
+ if (I == SymbolDependencies.end()) {
+ dependencies = new SymbolRefSmallVectorTy();
+ SymbolDependencies[Primary] = dependencies;
+ } else {
+ dependencies = I->second;
+ }
+ dependencies->push_back(Dependent);
+}
+
+const SymbolRefSmallVectorTy *SymbolManager::getDependentSymbols(
+ const SymbolRef Primary) {
+ SymbolDependTy::const_iterator I = SymbolDependencies.find(Primary);
+ if (I == SymbolDependencies.end())
+ return 0;
+ return I->second;
+}
+
+void SymbolReaper::markDependentsLive(SymbolRef sym) {
+ // Do not mark dependents more then once.
+ SymbolMapTy::iterator LI = TheLiving.find(sym);
+ assert(LI != TheLiving.end() && "The primary symbol is not live.");
+ if (LI->second == HaveMarkedDependents)
+ return;
+ LI->second = HaveMarkedDependents;
+
+ if (const SymbolRefSmallVectorTy *Deps = SymMgr.getDependentSymbols(sym)) {
+ for (SymbolRefSmallVectorTy::const_iterator I = Deps->begin(),
+ E = Deps->end(); I != E; ++I) {
+ if (TheLiving.find(*I) != TheLiving.end())
+ continue;
+ markLive(*I);
+ }
+ }
+}
+
+void SymbolReaper::markLive(SymbolRef sym) {
+ TheLiving[sym] = NotProcessed;
+ TheDead.erase(sym);
+ markDependentsLive(sym);
+}
+
+void SymbolReaper::markLive(const MemRegion *region) {
+ RegionRoots.insert(region);
+}
+
+void SymbolReaper::markInUse(SymbolRef sym) {
+ if (isa<SymbolMetadata>(sym))
+ MetadataInUse.insert(sym);
+}
+
+bool SymbolReaper::maybeDead(SymbolRef sym) {
+ if (isLive(sym))
+ return false;
+
+ TheDead.insert(sym);
+ return true;
+}
+
+bool SymbolReaper::isLiveRegion(const MemRegion *MR) {
+ if (RegionRoots.count(MR))
+ return true;
+
+ MR = MR->getBaseRegion();
+
+ if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
+ return isLive(SR->getSymbol());
+
+ if (const VarRegion *VR = dyn_cast<VarRegion>(MR))
+ return isLive(VR, true);
+
+ // FIXME: This is a gross over-approximation. What we really need is a way to
+ // tell if anything still refers to this region. Unlike SymbolicRegions,
+ // AllocaRegions don't have associated symbols, though, so we don't actually
+ // have a way to track their liveness.
+ if (isa<AllocaRegion>(MR))
+ return true;
+
+ if (isa<CXXThisRegion>(MR))
+ return true;
+
+ if (isa<MemSpaceRegion>(MR))
+ return true;
+
+ return false;
+}
+
+bool SymbolReaper::isLive(SymbolRef sym) {
+ if (TheLiving.count(sym)) {
+ markDependentsLive(sym);
+ return true;
+ }
+
+ if (const SymbolDerived *derived = dyn_cast<SymbolDerived>(sym)) {
+ if (isLive(derived->getParentSymbol())) {
+ markLive(sym);
+ return true;
+ }
+ return false;
+ }
+
+ if (const SymbolExtent *extent = dyn_cast<SymbolExtent>(sym)) {
+ if (isLiveRegion(extent->getRegion())) {
+ markLive(sym);
+ return true;
+ }
+ return false;
+ }
+
+ if (const SymbolMetadata *metadata = dyn_cast<SymbolMetadata>(sym)) {
+ if (MetadataInUse.count(sym)) {
+ if (isLiveRegion(metadata->getRegion())) {
+ markLive(sym);
+ MetadataInUse.erase(sym);
+ return true;
+ }
+ }
+ return false;
+ }
+
+ // Interogate the symbol. It may derive from an input value to
+ // the analyzed function/method.
+ return isa<SymbolRegionValue>(sym);
+}
+
+bool
+SymbolReaper::isLive(const Stmt *ExprVal, const LocationContext *ELCtx) const {
+ if (LCtx != ELCtx) {
+ // If the reaper's location context is a parent of the expression's
+ // location context, then the expression value is now "out of scope".
+ if (LCtx->isParentOf(ELCtx))
+ return false;
+ return true;
+ }
+
+ return LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, ExprVal);
+}
+
+bool SymbolReaper::isLive(const VarRegion *VR, bool includeStoreBindings) const{
+ const StackFrameContext *VarContext = VR->getStackFrame();
+ const StackFrameContext *CurrentContext = LCtx->getCurrentStackFrame();
+
+ if (VarContext == CurrentContext) {
+ if (LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, VR->getDecl()))
+ return true;
+
+ if (!includeStoreBindings)
+ return false;
+
+ unsigned &cachedQuery =
+ const_cast<SymbolReaper*>(this)->includedRegionCache[VR];
+
+ if (cachedQuery) {
+ return cachedQuery == 1;
+ }
+
+ // Query the store to see if the region occurs in any live bindings.
+ if (Store store = reapedStore.getStore()) {
+ bool hasRegion =
+ reapedStore.getStoreManager().includedInBindings(store, VR);
+ cachedQuery = hasRegion ? 1 : 2;
+ return hasRegion;
+ }
+
+ return false;
+ }
+
+ return VarContext->isParentOf(CurrentContext);
+}
+
+SymbolVisitor::~SymbolVisitor() {}
diff --git a/clang/lib/StaticAnalyzer/Core/TextPathDiagnostics.cpp b/clang/lib/StaticAnalyzer/Core/TextPathDiagnostics.cpp
new file mode 100644
index 0000000..fe912df
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Core/TextPathDiagnostics.cpp
@@ -0,0 +1,69 @@
+//===--- TextPathDiagnostics.cpp - Text Diagnostics for Paths ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the TextPathDiagnostics object.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Core/PathDiagnosticConsumers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+using namespace ento;
+using namespace llvm;
+
+namespace {
+
+/// \brief Simple path diagnostic client used for outputting as diagnostic notes
+/// the sequence of events.
+class TextPathDiagnostics : public PathDiagnosticConsumer {
+ const std::string OutputFile;
+ DiagnosticsEngine &Diag;
+
+public:
+ TextPathDiagnostics(const std::string& output, DiagnosticsEngine &diag)
+ : OutputFile(output), Diag(diag) {}
+
+ void FlushDiagnosticsImpl(std::vector<const PathDiagnostic *> &Diags,
+ SmallVectorImpl<std::string> *FilesMade);
+
+ virtual StringRef getName() const {
+ return "TextPathDiagnostics";
+ }
+
+ PathGenerationScheme getGenerationScheme() const { return Minimal; }
+ bool supportsLogicalOpControlFlow() const { return true; }
+ bool supportsAllBlockEdges() const { return true; }
+ virtual bool useVerboseDescription() const { return true; }
+};
+
+} // end anonymous namespace
+
+PathDiagnosticConsumer*
+ento::createTextPathDiagnosticConsumer(const std::string& out,
+ const Preprocessor &PP) {
+ return new TextPathDiagnostics(out, PP.getDiagnostics());
+}
+
+void TextPathDiagnostics::FlushDiagnosticsImpl(
+ std::vector<const PathDiagnostic *> &Diags,
+ SmallVectorImpl<std::string> *FilesMade) {
+ for (std::vector<const PathDiagnostic *>::iterator it = Diags.begin(),
+ et = Diags.end(); it != et; ++it) {
+ const PathDiagnostic *D = *it;
+ for (PathPieces::const_iterator I = D->path.begin(), E = D->path.end();
+ I != E; ++I) {
+ unsigned diagID =
+ Diag.getDiagnosticIDs()->getCustomDiagID(DiagnosticIDs::Note,
+ (*I)->getString());
+ Diag.Report((*I)->getLocation().asLocation(), diagID);
+ }
+ }
+}