1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
import random
import robots
from robots.algorithms import distance_relaxer
from robots.constants import City
from robots.utils import add_spawns
class CaptureSpawns(object):
def __init__(self, variance=0.1):
self.iterations = 10
self.variance = variance
def __call__(self, whoami, state):
my_robots = state.robots_by_player[whoami]
# Create a distance matrix.
distances = []
for y, row in enumerate(state.cities):
output = []
for x, city in enumerate(row):
d = float('inf')
if city == City.FACTORY:
if state.allegiances.get((x, y)) != whoami:
d = 0
elif city == City.GHOST:
d = None
output.append(d)
distances.append(output)
# Find the shortest path to a target from each cell.
predecessors = distance_relaxer(distances)
# Direct the robots to follow those paths.
results = []
for x, y, energy in my_robots:
if random.random() < self.variance:
result = random.choice('ULDR')
elif predecessors[y][x]:
result = predecessors[y][x]
elif state.allegiances.get((x, y)) != whoami:
result = 'P'
else:
result = random.choice('UDLR')
results.append(result)
return results
if __name__ == '__main__':
# random.seed(42)
map_ = robots.border_map(40, 30, 0)
add_spawns(map_, 300, 'X')
add_spawns(map_, 20, '+')
for y in range(20):
map_[y][20] = 'X'
add_spawns(map_, 6)
game = robots.Game(map_)
game.add_bot(CaptureSpawns(variance=0), 'Alice')
game.add_bot(CaptureSpawns(variance=0.01), 'Bob')
viewer = robots.CursesViewer(game)
viewer.run()
|