1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
#include <iostream>
#include <vector>
#include <map>
#include <string>
#include <sstream>
#include <math.h>
#include "Operator.hpp"
#include "Expression.hpp"
#include "MaxStrategy.hpp"
#include "EquationSystem.hpp"
#include "Complete.hpp"
extern "C" {
#include "EquationSystemParser.h"
#include "EquationSystemLexer.h"
}
using namespace std;
template<typename T>
Expression<T>* treeToExpression(pANTLR3_BASE_TREE node, EquationSystem<T>& system, bool topLevel=true) {
ANTLR3_UINT32 num = node->getChildCount(node);
string name = (char*) node->getText(node)->chars;
// leaf node - constant or variable
if (num == 0) {
if (name == "inf") {
return system.newExpression(new Constant<T>(infinity<T>()));
} else {
stringstream stream(name);
T output;
if (stream >> output) {
return system.newExpression(new Constant<T>(output));
} else {
return system.newExpression(system.newVariable(name));
}
}
}
// other operators
std::vector<Expression<T>*> args;
pANTLR3_BASE_TREE childNode;
for (unsigned int i = 0; i < num; ++i) {
childNode = (pANTLR3_BASE_TREE) node->getChild(node, i);
args.push_back(treeToExpression(childNode, system, false));
}
if (name == "max") {
return system.newMaxExpression(args);
} else {
Operator<T>* op = NULL;
if (name == "min") {
op = new Minimum<T>();
} else if (name == "+") {
op = new Addition<T>();
} else if (name == "-") {
op = new Subtraction<T>();
} else if (name == ";") {
op = new Comma<T>();
} else if (name == "GUARD") {
op = new Guard<T>();
} else {
std::cerr << "Unknown leaf node type: " << name << std::endl;
throw "Unknown leaf node type";
}
return system.newExpression(op, args);
}
}
template<typename T>
void treeToSystem(pANTLR3_BASE_TREE node, EquationSystem<T>& system) {
ANTLR3_UINT32 num = node->getChildCount(node);
if (num % 2 == 1)
throw "Big problem here.";
pANTLR3_BASE_TREE varNode;
pANTLR3_BASE_TREE exprNode;
for (unsigned int i = 0; i < num; i += 2) {
varNode = (pANTLR3_BASE_TREE) node->getChild(node, i);
exprNode = (pANTLR3_BASE_TREE) node->getChild(node, i+1);
string varName = (char*) varNode->getText(varNode)->chars;
Variable<T>* var = system.newVariable(varName);
vector<Expression<T>*> args;
args.push_back(system.newExpression(new Constant<T>(-infinity<T>())));
args.push_back(treeToExpression(exprNode, system));
system[*var] = system.newMaxExpression(args);
}
}
typedef Complete<int> ZBar;
int main (int argc, char* argv[]) {
FixpointAlgorithm<ZBar>* algorithm = NULL;
if (argc > 2 && !strcmp(argv[2], "naive")) {
algorithm = new NaiveFixpoint<ZBar>();
cout << "Naive fixpoint" << endl;
} else {
algorithm = new RecursiveFixpoint<ZBar>();
cout << "Recursive fixpoint" << endl;
}
pANTLR3_INPUT_STREAM input;
pEquationSystemLexer lex;
pANTLR3_COMMON_TOKEN_STREAM tokens;
pEquationSystemParser parser;
input = antlr3FileStreamNew((pANTLR3_UINT8)argv[1], ANTLR3_ENC_8BIT);
lex = EquationSystemLexerNew(input);
tokens = antlr3CommonTokenStreamSourceNew(ANTLR3_SIZE_HINT, TOKENSOURCE(lex));
parser = EquationSystemParserNew(tokens);
EquationSystemParser_equation_system_return ret = parser -> equation_system(parser);
EquationSystem<ZBar> system;
treeToSystem<ZBar>(ret.tree, system);
// DO MORE HERE
VariableAssignment<ZBar> rho = system.minFixpoint(*algorithm);
std::cout << rho << std::endl;
const std::vector<Variable<ZBar>*> vars = system.vars();
for (unsigned int i = 0, size = vars.size(); i < size; ++i) {
cout << vars[i]->name() << " = " << rho[*vars[i]] << endl;
}
parser -> free(parser);
tokens -> free(tokens);
lex -> free(lex);
input -> close(input);
return 0;
}
|