1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
|
/*--------------------------------------------------------------------------*/
/*------------------------- File MCFSimplex.h ------------------------------*/
/*--------------------------------------------------------------------------*/
/** @file
* Linear and Quadratic Min Cost Flow problems solver based on the (primal and
* dual) simplex algorithm. Conforms to the standard MCF interface defined in
* MCFClass.h.
*
* \Version 1.00
*
* \date 29 - 08 - 2011
*
* \author Alessandro Bertolini \n
* Antonio Frangioni \n
* Operations Research Group \n
* Dipartimento di Informatica \n
* Universita' di Pisa \n
*
* Copyright © 2008 - 2011 by Alessandro Bertolini, Antonio Frangioni
*/
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/*----------------------------- DEFINITIONS --------------------------------*/
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
#ifndef __MCFSimplex
#define __MCFSimplex /* self-identification: #endif at the end of the file */
/*--------------------------------------------------------------------------*/
/*------------------------------ INCLUDES ----------------------------------*/
/*--------------------------------------------------------------------------*/
#include "MCFClass.h"
/*@} -----------------------------------------------------------------------*/
/*--------------------------- NAMESPACE ------------------------------------*/
/*--------------------------------------------------------------------------*/
#if( OPT_USE_NAMESPACES )
namespace MCFClass_di_unipi_it
{
#endif
/*--------------------------------------------------------------------------*/
/*-------------------------------- MACROS ----------------------------------*/
/*--------------------------------------------------------------------------*/
/** @defgroup MCFSimplex_MACROS Compile-time switches in MCFSimplex.h
There is only one macro in MCFSimplex, but it is very important!
@{ */
#define QUADRATICCOST 0
/**< Setting QUADRATICCOST == 1 the solver can solve problems with linear and
quadratic costs too (but the latter only with the Primal Simplex).
The reason for having a macro is that when quadratic costs are present the
"arcType" struct has the additional field "quadraticCost" to hold it.
Furthermore, the field "ident" is not created because the solver doesn't
use the classical TLU tripartition. Instead, closed arcs and deleted arcs
are characterized as follows:
- closed arcs have the field "cost" to INFINITY (Inf<FNumber>());
- deleted arcs have the field "upper" to INFINITY and the "tail" and
"head" field are NULL.
Furthermore, the solver needs the variables "ignoredEnteringArc" and
"firstIgnoredEnteringArc", used to avoid nasty loops during the execution
of the Quadratic Primal Simplex algorithm.
If, instead, QUADRATICCOST == 0 then the solver can solve only problems
with linear costs. Hence, the field "quadraticCost" is useless and it
isn't created. Furthermore, Primal Simplex and Dual Simplex use the
tripartition TLU to divide the arcs, so the solver creates the field
"ident", which differentiates the set of the arcs in among deleted arcs,
closed arcs, arcs in T, arcs in L, arcs in U.
Thus, with QUADRATICCOST == 0 the solver cannot solve problems with
quadratic costs, but it does solve problems with linear costs faster. */
/*@} end( group( MCFCLASS_MACROS ) ) */
/*--------------------------------------------------------------------------*/
/*---------------------------- CLASSES -------------------------------------*/
/*--------------------------------------------------------------------------*/
/** @defgroup MCFSimplex_CLASSES Classes in MCFSimplex.h
@{ */
/** The MCFSimplex class derives from the abstract base class MCFClass, thus
sharing its (standard) interface, and implements both the Primal and
Dual network simplex algorithms for solving (Linear and Quadratic)
Min Cost Flow problems */
class MCFSimplex: public MCFClass
{
/*--------------------------------------------------------------------------*/
/*----------------------- PUBLIC PART OF THE CLASS -------------------------*/
/*--------------------------------------------------------------------------*/
/*-- --*/
/*-- The following methods and data are the actual interface of the --*/
/*-- class: the standard user should use these methods and data only. --*/
/*-- --*/
/*--------------------------------------------------------------------------*/
public:
/*--------------------------------------------------------------------------*/
/*---------------------------- PUBLIC TYPES --------------------------------*/
/*--------------------------------------------------------------------------*/
/** Public enum describing the parameters of MCFSimplex. */
enum SimplexParam
{
kAlgPrimal = kLastParam , ///< parameter to set algorithm (Primal/Dual):
kAlgPricing , ///< parameter to set algorithm of pricing
kNumCandList , /**< parameter to set the number of candidate
list for Candidate List Pivot method */
kHotListSize , /**< parameter to set the size of Hot List
for Candidate List Pivot method */
kRecomputeFOLimits , /**< parameter to set the number of iterations
in which quadratic Primal Simplex computes
"manually" the f.o. value */
kEpsOpt /**< parameter to set the precision of the
objective function value for the
quadratic Primal Simplex */
};
/** Public enum describing the pricing rules in MCFSimplex::SetAlg(). */
enum enumPrcngRl
{
kDantzig = 0, ///< Dantzig's rule (most violated constraint)
kFirstEligibleArc , ///< First eligible arc in round-robin
kCandidateListPivot ///< Candidate List Pivot Rule
};
/*--------------------------------------------------------------------------*/
/*--------------------------- PUBLIC METHODS -------------------------------*/
/*--------------------------------------------------------------------------*/
/*---------------------------- CONSTRUCTOR ---------------------------------*/
/*--------------------------------------------------------------------------*/
MCFSimplex( cIndex nmx = 0 , cIndex mmx = 0 );
/**< Constructor of the class, as in MCFClass::MCFClass(). */
/*--------------------------------------------------------------------------*/
/*-------------------------- OTHER INITIALIZATIONS -------------------------*/
/*--------------------------------------------------------------------------*/
void LoadNet( cIndex nmx = 0 , cIndex mmx = 0 , cIndex pn = 0 ,
cIndex pm = 0 , cFRow pU = NULL , cCRow pC = NULL ,
cFRow pDfct = NULL , cIndex_Set pSn = NULL ,
cIndex_Set pEn = NULL );
/**< Inputs a new network, as in MCFClass::LoadNet(). */
/*--------------------------------------------------------------------------*/
void SetAlg( bool UsPrml , char WhchPrc );
/**< Selects which algorithm (Primal vs Dual Network Simplex), and which
pricing rule within the algorithm, is used.
If UsPrml == TRUE then the Primal Network Simplex algorithm is used,
otherwise the Dual Network Simplex is used.
The allowed values for WhchPrc are:
- kDantzig Dantzig's pricing rule, i.e., most violated dual
constraint; this can only be used with the Primal
Network Simplex
- kFirstEligibleArcA "dumb" rule, first eligible arc in round-robin;
- kCandidateListPivot Candidate List Pivot Rule
If this method is *not* called, the Primal Network Simplex with the
Candidate List Pivot Rule (the best setting on most instances) is
used. */
/*--------------------------------------------------------------------------*/
void SetPar( int par , int val );
/**< Set general integer parameters.
@param par is the parameter to set; since this method accepts an int
value, the enum SimplexParam can be used in addition to the
enum MCFParam to specify the integer parameters (every enum
is an int).
@param value is the value to assign to the parameter. */
/*-------------------------------------------------------------------------*/
void SetPar( int par , double val );
/**< Set general float parameters.
@param par is the parameter to set; since this method accepts an int
value, the enum SimplexParam can be used in addition to the
enum MCFParam to specify the float parameters (every enum
is an int).
@param value is the value to assign to the parameter. */
/*--------------------------------------------------------------------------*/
/*-------------------- METHODS FOR SOLVING THE PROBLEM ---------------------*/
/*--------------------------------------------------------------------------*/
void SolveMCF( void );
/*--------------------------------------------------------------------------*/
/*---------------------- METHODS FOR READING RESULTS -----------------------*/
/*--------------------------------------------------------------------------*/
void MCFGetX( FRow F , Index_Set nms = NULL ,
cIndex strt = 0 , Index stp = Inf<Index>() );
/*--------------------------------------------------------------------------*/
void MCFGetRC( CRow CR , cIndex_Set nms = NULL ,
cIndex strt = 0 , Index stp = Inf<Index>() ) ;
CNumber MCFGetRC( cIndex i );
/*--------------------------------------------------------------------------*/
void MCFGetPi( CRow P , cIndex_Set nms = NULL ,
cIndex strt = 0 , Index stp = Inf<Index>() );
/*--------------------------------------------------------------------------*/
FONumber MCFGetFO( void );
/*--------------------------------------------------------------------------*/
/*-------------- METHODS FOR READING THE DATA OF THE PROBLEM ---------------*/
/*--------------------------------------------------------------------------*/
virtual void MCFArcs( Index_Set Startv , Index_Set Endv ,
cIndex_Set nms = NULL , cIndex strt = 0 ,
Index stp = Inf<Index>() );
inline Index MCFSNde( cIndex i );
inline Index MCFENde( cIndex i );
/*--------------------------------------------------------------------------*/
void MCFCosts( CRow Costv , cIndex_Set nms = NULL ,
cIndex strt = 0 , Index stp = Inf<Index>() );
inline CNumber MCFCost( cIndex i );
/*--------------------------------------------------------------------------*/
void MCFQCoef( CRow Qv , cIndex_Set nms = NULL ,
cIndex strt = 0 , Index stp = Inf<Index>() );
inline CNumber MCFQCoef( cIndex i );
/*--------------------------------------------------------------------------*/
void MCFUCaps( FRow UCapv , cIndex_Set nms = NULL ,
cIndex strt = 0 , Index stp = Inf<Index>() );
inline FNumber MCFUCap( cIndex i );
/*--------------------------------------------------------------------------*/
void MCFDfcts( FRow Dfctv , cIndex_Set nms = NULL ,
cIndex strt = 0 , Index stp = Inf<Index>() );
inline FNumber MCFDfct( cIndex i );
/*--------------------------------------------------------------------------*/
/*------------- METHODS FOR ADDING / REMOVING / CHANGING DATA --------------*/
/*--------------------------------------------------------------------------*/
/*------- Changing the costs, QCoef, deficits and upper capacities ---------*/
/*--------------------------------------------------------------------------*/
void ChgCosts( cCRow NCost , cIndex_Set nms = NULL ,
cIndex strt = 0 , Index stp = Inf<Index>() );
void ChgCost( Index arc , cCNumber NCost );
/*--------------------------------------------------------------------------*/
void ChgQCoef( cCRow NQCoef = NULL , cIndex_Set nms = NULL ,
cIndex strt = 0 , Index stp = Inf<Index>() );
void ChgQCoef( Index arc , cCNumber NQCoef );
/*--------------------------------------------------------------------------*/
void ChgDfcts( cFRow NDfct , cIndex_Set nms = NULL ,
cIndex strt = 0 , Index stp = Inf<Index>() );
void ChgDfct( Index nod , cFNumber NDfct );
/*--------------------------------------------------------------------------*/
void ChgUCaps( cFRow NCap , cIndex_Set nms = NULL ,
cIndex strt = 0 , Index stp = Inf<Index>() );
void ChgUCap( Index arc , cFNumber NCap );
/*--------------------------------------------------------------------------*/
/*--------------- Modifying the structure of the graph ---------------------*/
/*--------------------------------------------------------------------------*/
void CloseArc( cIndex name );
void DelNode( cIndex name );
bool IsClosedArc( cIndex name );
void OpenArc( cIndex name ) ;
Index AddNode( cFNumber aDfct );
void ChangeArc( cIndex name , cIndex nSS = Inf<Index>() ,
cIndex nEN = Inf<Index>() );
void DelArc( cIndex name );
Index AddArc( cIndex Start , cIndex End , cFNumber aU , cCNumber aC );
bool IsDeletedArc( cIndex name );
/*--------------------------------------------------------------------------*/
/*------------------------------ DESTRUCTOR --------------------------------*/
/*--------------------------------------------------------------------------*/
~MCFSimplex();
/*--------------------------------------------------------------------------*/
/*--------------------- PRIVATE PART OF THE CLASS --------------------------*/
/*--------------------------------------------------------------------------*/
/*-- --*/
/*-- Nobody should ever look at this part: everything that is under this --*/
/*-- advice may be changed without notice in any new release of the code. --*/
/*-- --*/
/*--------------------------------------------------------------------------*/
private:
/*--------------------------------------------------------------------------*/
/*-------------------------- PRIVATE DATA TYPES ----------------------------*/
/*--------------------------------------------------------------------------*/
/*-- --*/
/*-- Let T \subseteq A be a spanning tree, and consider some node v \in V --*/
/*-- \setminus { 0 }. There is an unique (undirected) path, denoted by --*/
/*-- P(v), defined by T from v to the root node 0. The arc in P(v), which --*/
/*-- is incident to v, is called the *basic arc* of v. The other terminal --*/
/*-- node u of this basic arc is called the *father node* of v. The --*/
/*-- spanning tree T is represented saving the basic arc of every node, --*/
/*-- and maintaining the order of the nodes and the depth as to T root --*/
/*-- after a Post-Visit of T. This order is saved in a bidirectional list --*/
/*-- written in the node. --*/
/*-- --*/
/*-- The Primal Simplex uses a different data structure than the Dual --*/
/*-- Simplex, because the Dual Simplex needs additional data (mainly the --*/
/*-- Backward Star and Forward Star. Furthermore, the Primal Simplex uses --*/
/*-- different data structures in the quadratic case. --*/
/*-- --*/
/*--------------------------------------------------------------------------*/
struct arcPType; // pre-declaration of the arc structure (pointers to arcs
// are contained in the node structure) for Primal Simplex
struct arcDType; // pre-declaration of the arc structure (pointers to arcs
// are contained in the node structure) for Dual Simplex
typedef double iteratorType; // type for the iteration counter and array
// "whenInT2"
struct nodePType { // node structure for Primal Simplex - - - - - - - -
nodePType *prevInT; // previous node in the order of the Post-Visit on T
nodePType *nextInT; // next node in the order of the Post-Visit on T
arcPType *enteringTArc; // entering basic arc of this node
FNumber balance; // supply/demand of this node; a node is called a
// supply node, a demand node, or a transshipment
// node depending upon whether balance is larger
// than, smaller than, or equal to zero
#if( QUADRATICCOST )
CNumber sumQuadratic; // the sum of the quadratic coefficients of the tree's arcs
// from root of T to the node
FONumber potential; // the node potential corresponding with the flow
// conservation constrait of this node
#else
CNumber potential; // the node potential corresponding with the flow
// conservation constrait of this node
#endif
int subTreeLevel; // the depth of the node in T as to T root
}; // end( struct( nodePType ) )
struct nodeDType { // node structure for Dual Simplex - - - - - - - - -
nodeDType *prevInT; // previous node in the order of the Post-Visit on T
nodeDType *nextInT; // next node in the order of the Post-Visit on T
arcDType *enteringTArc; // entering basic arc of this node
FNumber balance; // supply/demand of this node; a node is called a
// supply node, a demand node, or a transshipment
// node depending upon whether balance is larger
// than, smaller than, or equal to zero
#if( QUADRATICCOST )
CNumber sumQuadratic; // the sum of the quadratic coefficients of the tree's arcs
// from root of T to the node
FONumber potential; // the node potential corresponding with the flow
// conservation constrait of this node
#else
CNumber potential; // the node potential corresponding with the flow
// conservation constrait of this node
#endif
int subTreeLevel; // the depth of the node in T as to T root
iteratorType whenInT2; // the last iteration where a node is in subtree T2
Index numArcs; // the number of the arcs which enter/exit from node
arcDType *firstBs; // the first arc in the node's Backward Star
arcDType *firstFs; // the first arc in the node's Forward Star
}; // end( struct( nodeDType ) )
struct arcPType { // arc structure for Primal Simplex - - - - - - - -
nodePType *tail; // tail node
nodePType *head; // head node
FNumber flow; // arc flow
CNumber cost; // arc linear cost
#if( QUADRATICCOST )
CNumber quadraticCost; // arc quadratic cost
#else
char ident; // tells if arc is deleted, closed, in T, L, or U
#endif
FNumber upper; // arc upper bound
}; // end( struct( arcPType ) )
struct arcDType { // arc structure for Primal Simplex - - - - - - - -
nodeDType *tail; // tail node
nodeDType *head; // head node
FNumber flow; // arc flow
CNumber cost; // arc linear cost
#if( QUADRATICCOST )
CNumber quadraticCost; // arc quadratic cost
#else
char ident; // indicates if arc is deleted, closed, in T, in L, or in U
#endif
FNumber upper; // arc upper bound
arcDType *nextBs; // the next arc in the Backward Star of the arc's head
arcDType *nextFs; // the next arc in the Forward Star of the arc's tail
}; // end( struct( arcDType ) )
struct primalCandidType { // Primal Candidate List- - - - - - - - - - - - -
arcPType *arc; // pointer to the violating primal bound arc
#if(QUADRATICCOST )
FONumber absRC; // absolute value of the arc's reduced cost
#else
CNumber absRC; // absolute value of the arc's reduced cost
#endif
}; // end( struct( primalCandidateType ) )
struct dualCandidType { // Dual Candidate List- - - - - - - - - - - - - -
nodeDType *node; // deepest node violating the dual bound arc
FNumber absInfeas; // absolute value of the arc's flow infeasibility
}; // end( struct( dualCandidateType ) )
/*--------------------------------------------------------------------------*/
/*----------------------- PRIVATE DATA STRUCTURES -------------------------*/
/*--------------------------------------------------------------------------*/
bool usePrimalSimplex; // TRUE if the Primal Network Simplex is used
char pricingRule; // which pricing rule is used
nodePType *nodesP; // vector of nodes: points to the n + 1 node
// structs (including the dummy root node)
// where the first node is indexed by zero
// and the last node is the dummy root node
nodePType *dummyRootP; // the dummy root node
nodePType *stopNodesP; // first infeasible node address = nodes + n
arcPType *arcsP; // vector of arcs; this variable points to
// the m arc structs.
arcPType *dummyArcsP; // vector of artificial dummy arcs: points
// to the artificial dummy arc variables and
// contains n arc structs. The artificial
// arcs are used to build artificial feasible
// starting bases. For each node i, there is
// exactly one dummy arc defined to connect
// the node i with the dummy root node.
arcPType *stopArcsP; // first infeasible arc address = arcs + m
arcPType *stopDummyP; // first infeasible dummy arc address
// = arcs + m + n
arcPType *arcToStartP; // Dantzig Rule and First Eligible Arc Rule
// start their search from this arc
nodeDType *nodesD; // vector of nodes: points to the n + 1 node
// structs (including the dummy root node)
// where the first node is indexed by zero
// and the last node is the dummy root node
nodeDType *dummyRootD; // the dummy root node
nodeDType *stopNodesD; // first infeasible node address = nodes + n
arcDType *arcsD; // vector of arcs; this variable points to
// the m arc structs.
arcDType *dummyArcsD; // vector of artificial dummy arcs: points to
// to the artificial dummy arc variables and
// contains n arc structs. The artificial
// arcs are used to build artificial feasible
// starting bases. For each node i, there is
// exactly one dummy arc defined to connect
// the node i with the dummy root node.
arcDType *stopArcsD; // first infeasible arc address = arcs + m
arcDType *stopDummyD; // first infeasible dummy arc address
// = arcs + m + n
arcDType *arcToStartD; // Dantzig Rule and First Eligible Arc Rule
// start their search from this arc
iteratorType iterator; // the current number of iterations
primalCandidType *candP; // every element points to an element of the
// arcs vector which contains an arc violating
// dual bound
dualCandidType *candD; // every element points to an element of the
// arcs vector which contains an arc violating
// primal bond
Index numGroup; // number of the candidate lists
Index tempCandidateListSize; // hot list dimension (it is variable)
Index groupPos; // contains the actual candidate list
Index numCandidateList; // number of candidate lists
Index hotListSize; // number of candidate lists and hot list dimension
Index forcedNumCandidateList; // value used to force the number of candidate list
Index forcedHotListSize; // value used to force the number of candidate list
// and hot list dimension
bool newSession; // true if algorithm is just started
CNumber MAX_ART_COST; // large cost for artificial arcs
FNumber *modifiedBalance; // vector of balance used by the PostVisit
FONumber EpsOpt; // the precision of the objective function value
// for the quadratic case of the Primal Simplex
int recomputeFOLimits; // after how many iterations the quadratic Primal
// Simplex computes "manually" the o.f. value
#if( QUADRATICCOST )
FONumber foValue; // the temporary objective function value
#endif
/*--------------------------------------------------------------------------*/
/*-------------------------- PRIVATE METHODS -------------------------------*/
/*--------------------------------------------------------------------------*/
void MemAlloc( void );
/**< Method to allocate memory for the main data structures. It creates the
vector of nodes, the vector of arcs (real and dummy). If the algorithm is
using the Dual Simplex, it creates also the vectors whenInT2, firstIn and
nextIn, usefull to identify the next entering. */
/*--------------------------------------------------------------------------*/
void MemDeAlloc( bool whatDeAlloc );
/**< Method to deallocate memory for the main data structures created in
MemAlloc(). */
/*--------------------------------------------------------------------------*/
void MemAllocCandidateList( void );
/**< Method to allocate memory for the data structure used by the Candidate
List Pivot Rule. It creates the vector of candP (or candD in the Dual
Simplex case), determining the size of this vector on the basis of number
of arcs or nodes. */
/*--------------------------------------------------------------------------*/
void MemDeAllocCandidateList( void );
/**< Method to deallocate memory for the data structures created in
MemAllocCandidateList(). */
/*--------------------------------------------------------------------------*/
void CreateInitialPrimalBase( void );
/**< Method to create an initial feasible primal base. Add one node (dummyRoot)
to the network and connect this dummy root to each real node with n dummy
arcs. For each source node i, a dummy arc (i, r) exists. For each sink or
transit node j, a dummy arc (r, j) exists. The source nodes send their flows
to the dummy root through their dummy arcs, so the dummy root send all to
the sink nodes. The dummy root balance is 0, the costs of dummy arcs are
fixed to "infinity". */
/*--------------------------------------------------------------------------*/
void CreateInitialDualBase( void );
/**< Method to create an initial feasible dual base. Add one node (dummyRoot)
to the network and connect this dummy root to each real node with n dummy
arcs. The source nodes send their flows to the dummy root through their
dummy arcs, so the dummy root send all to the sink nodes. The dummy root
balance is 0, the costs of dummy arcs are fixed to "infinity". */
/*--------------------------------------------------------------------------*/
void CreateAdditionalDualStructures( void );
/**< The Dual Simplex needs nodes' Backward and Forward Star to work. So when
the Primal Simplex runs, these structures don't exist. When the Dual
Simplex starts, these structure are created in this method. */
/*--------------------------------------------------------------------------*/
void PrimalSimplex( void );
/**< Main method to implement the Primal Simplex algorithm. */
/*--------------------------------------------------------------------------*/
void DualSimplex( void );
/**< Main method to implement the Dual Simplex algorithm. */
/*--------------------------------------------------------------------------*/
template<class N, class A>
void UpdateT( A *h , A *k , N *h1 , N *h2 , N *k1 , N *k2 );
/**< Method to update the spanning tree T every iteration.
The spanning tree T is implemented with a bidirectional list stored
in the node structure, which represents the nodes' order after a
Post-Visit. The parameter of the method are the outgoing arc "h", the
incoming arc "k", and the four nodes on the extremity of these arcs
(for example h2 is the deepest node of the outgoing arc). Removing the
arc "h" splits T in two subtrees: T1 (which contains the root of T) and
T2, which will be re-connected by the incoming arc "k".
T2 will be reordered; in fact, the node "k2" becomes the root of T2
instead of "h2" and the hierarchy of T2 will be overturned. Then T2 will
be moved; the root of T2 is changed, therefore the predecessor of the
root will become the node "k1".
This method uses the methods cutAndUpdateSubtree() and pasteSubtree().
First it cuts the node "k2" and its subtree from T using
cutAndUpdateSubtree(). Moreover the method cutAndUpdateSubtree()
updates the field "subTreeLevel" of every subtree's nodes, since k2's
subtree will be moved from the bottom to the top of T2. Then the method
pasteSubtree() puts this subtree in the bidirectional list after the node
"k1". The same operations will be applied to the old precedessor of "k2"
(which will become one of the childs of "k2"). This second subtree will
be cut, the subTreeLevel fields will be updated, and it will be inserted
in the bidirectional list after the k2's subtree. This is iterated until
the node "h2" is reached. */
/*--------------------------------------------------------------------------*/
template<class N>
N* CutAndUpdateSubtree( N *root, int delta );
/**< This method cuts a generic subtree from the spanning tree T. Then it
updates the field "subTreeLevel" of every subtree's nodes adding the value
"delta". This method returns the last node of the subtree. */
/*--------------------------------------------------------------------------*/
template<class N>
void PasteSubtree( N *root , N *lastNode , N *previousNode );
/**< This method inserts a generic subtree with root passed by parameter into
the spanning tree T, between the nodes "previousNode" and "lastNode". */
/*--------------------------------------------------------------------------*/
arcPType* RuleDantzig( void );
/**< This method returns an arc which violates the dual conditions. It searchs
the arc with most violation of dual conditions in the entire set of real
arcs. It can be used only by the Primal Simplex in the case of networks
with linear costs. */
/*--------------------------------------------------------------------------*/
arcPType* PRuleFirstEligibleArc( void );
/**< This method returns the first found arc which violates the dual conditions
in the case of Primal Simplex, the primal condition in the case of Dual
Simplex. It can be used only in the case of networks with linear costs. */
/*--------------------------------------------------------------------------*/
arcDType* DRuleFirstEligibleArc( void );
/**< This method returns the first found arc which violates the dual conditions
in the case of Primal Simplex, the primal condition in the case of Dual
Simplex. It can be used only in the case of networks with linear costs. */
/*--------------------------------------------------------------------------*/
arcPType* RulePrimalCandidateListPivot( void );
/**< This method returns an arc which violates the dual conditions. It searches
the arc with most violation of dual conditions in a small set of candidate
arcs. In every iteration the method rebuilds this set of arcs executing three
phases:
- in the first phase it analyzes the remaining arcs and delete the arcs which
don't violate the dual condition any more;
- in the second phase it tries to fill the set, so it searchs other arcs
which violate the dual condition: the set of arcs is divided into "buckets"
which are searched sequentially until the candidate list is full; the
last visited bucket is retained, and the search is restarted from that
one at later iterations
- in the third phase the small set of candidate arcs is ordered according
to the violation of dual condition by the method SortPrimalCandidateList()
using an implementation of the algorithm "quicksort".
At last the method returns the first arc in the ordered small set. If the
arc doesn't exist (the set is empty), it returns NULL. */
/*--------------------------------------------------------------------------*/
inline void InitializePrimalCandidateList( void );
/**< Method to initialize some important details for Primal Candidate List
Rule. */
/*--------------------------------------------------------------------------*/
inline void SortPrimalCandidateList( Index min , Index max );
/**< Method to order the little set of candidate arcs according to
infeasibility of dual conditions. It implements the "quicksort"
algorithm. */
/*--------------------------------------------------------------------------*/
arcDType* RuleDualCandidateListPivot( void );
/**< Similar to RulePrimalCandidateListPivot() for the Dual Simplex. */
/*--------------------------------------------------------------------------*/
inline void InitializeDualCandidateList( void );
/**< Method to initialize some important details for Dual Candidate List Rule.
*/
/*--------------------------------------------------------------------------*/
inline void SortDualCandidateList( Index min , Index max );
/**< Similar to SortPrimalCandidateList() for the Dual Simplex. */
/*--------------------------------------------------------------------------*/
template<class N, class RCT>
inline void AddPotential( N *r , RCT delta );
/**< Method to quickly update the dual solutions. During the change of the
base, the potential of node "k2" (deepest node in T of incoming arc "k",
and new root of T2) changes according to the new structure of T. In fact,
the precedessor of "k2" changes: now the predecessor of "k2"is "k1" (the
other node of the incoming arc "k"). This change of predecessor causes a
change of potential of "k2". The change of potential of "k2" causes the
changes of potential of all nodes of T2. This method computes the change
of potential of "k2" and applies it on all the nodes of T2. */
/*--------------------------------------------------------------------------*/
template<class N>
inline void ComputePotential( N *r );
/**< Method to update the dual solutions. It computes all the potential of the
nodes of the subtree which has r as root. */
/*--------------------------------------------------------------------------*/
inline void ResetWhenInT2( void );
/**< Method to order the small set of candidate arcs according to dual
infeasibility. It implements the algorithm "quicksort". */
/*--------------------------------------------------------------------------*/
void CreateInitialPModifiedBalanceVector( void );
/**< Method to initialize the vector of modified balance for the postvisit on
T in the Primal Simplex data structure. */
/*--------------------------------------------------------------------------*/
void PostPVisit( nodePType *r );
/**< Method to calculate the flow on the basic arcs with the Primal Simplex's
data structure. It uses the set of the upper bound arcs, the construction
of a modified balance vector and the postvisit on T. */
/*--------------------------------------------------------------------------*/
void BalanceFlow( nodePType *r );
/**< This method works after the method PostPVisit (in a Primal context). It
restores primal admissimibility on the r's subtree. It starts from the leaf
of the subtree and goes up to the root, using the method AdjustFlow. */
/*--------------------------------------------------------------------------*/
void AdjustFlow( nodePType *r );
/**< This method checks the primal admissibility of the r's basic entering arc.
If it is out of bounds, the method removes it from the tree (and keeps the
relative dummy arc) and push flow in the cycle (some tree's arc and the old
entering arc) to restores the right balances of the node. */
/*--------------------------------------------------------------------------*/
void CreateInitialDModifiedBalanceVector( void );
/**< Method to initialize the vector of modified balance for the postvisit on
T in the Dual Simplex data structure. */
/*--------------------------------------------------------------------------*/
void PostDVisit( nodeDType *r );
/**< Method to calculate the flow on the basic arcs with the Dual Simplex's data
structure, using the set of the upper bound arcs, the construction of a
modified balance vector and the postvisit on T. */
/*--------------------------------------------------------------------------*/
template<class N, class A>
inline N* Father( N *n, A *a );
/**< Method to find the predecessor of the node in the tree. */
/*--------------------------------------------------------------------------*/
#if(QUADRATICCOST)
template<class A>
inline FONumber ReductCost( A *a );
#else
template<class A>
inline CNumber ReductCost( A *a );
#endif
/**< Method to calculate the reduct cost of the arc. */
/*--------------------------------------------------------------------------*/
inline FONumber GetFO( void );
/**< Method to calculate the temporary (or the final) objective function
value. */
/*--------------------------------------------------------------------------*/
void PrintPNode( nodePType *nodo );
/**< Method to print the "name" of the node in the Primal Simplex. */
/*--------------------------------------------------------------------------*/
void PrintPArc( arcPType *arc );
/**< Method to print the "name" of the arc in the Primal Simplex. */
/*--------------------------------------------------------------------------*/
void PrintDNode( nodeDType *nodo );
/**< Method to print the "name" of the node in the Dual Simplex. */
/*--------------------------------------------------------------------------*/
void PrintDArc( arcDType *arc );
/**< Method to print the "name" of the arc in the Dual Simplex. */
/*--------------------------------------------------------------------------*/
nodePType* RecoverPNode( Index ind );
/**< Method to find a node (in the Primal Simplex) using its index. */
/*--------------------------------------------------------------------------*/
arcPType* RecoverPArc( nodePType *tail , nodePType *head );
/**< Method to find an arc (in the Primal Simplex) using 2 pointers to tail
node and head node. */
/*--------------------------------------------------------------------------*/
nodeDType* RecoverDNode( Index ind );
/**< Method to find a node (in the Dual Simplex) using its index. */
/*--------------------------------------------------------------------------*/
arcDType* RecoverDArc( nodeDType *tail , nodeDType *head );
/**< Method to find an arc (in the Dual Simplex) using 2 pointers to tail
node and head node. */
/*--------------------------------------------------------------------------*/
void infoPNode( nodePType *node , int tab );
/**< Method to print some information of the node (in the Primal Simplex). */
/*--------------------------------------------------------------------------*/
void infoPArc( arcPType *arc , int ind , int tab );
/**< Method to print some information of the arc (in the Primal Simplex). */
/*--------------------------------------------------------------------------*/
void infoDNode( nodeDType *node , int tab );
/**< Method to print some information of the node (in the Dual Simplex). */
/*--------------------------------------------------------------------------*/
void infoDArc( arcDType *arc , int ind , int tab );
/**< Method to print some information of the arc (in the Dual Simplex). */
/*--------------------------------------------------------------------------*/
void ShowSituation( int tab );
/**< Method to show the actual complete situation. */
/*--------------------------------------------------------------------------*/
}; // end( class MCFSimplex )
/* @} end( group( MCFSimplex_CLASSES ) ) */
#endif /* MCFSimplex.h included */
/*-------------------------------------------------------------------------*/
/*-------------------inline methods implementation-------------------------*/
/*-------------------------------------------------------------------------*/
inline MCFClass::Index MCFSimplex::MCFSNde( MCFClass::cIndex i )
{
if( usePrimalSimplex )
return( Index( ( (arcsP + i)->tail - nodesP + 1 ) - USENAME0 ) );
else
return( Index( ( (arcsD + i)->tail - nodesD + 1 ) - USENAME0 ) );
}
/*-------------------------------------------------------------------------*/
inline MCFClass::Index MCFSimplex::MCFENde( MCFClass::cIndex i )
{
if( usePrimalSimplex )
return( Index( ( (arcsP + i)->head - nodesP + 1 ) - USENAME0 ) );
else
return( Index( ( (arcsD + i)->head - nodesD + 1 ) - USENAME0 ) );
}
/*-------------------------------------------------------------------------*/
inline MCFClass::CNumber MCFSimplex::MCFCost( MCFClass::cIndex i )
{
if( usePrimalSimplex )
return( (arcsP + i)->cost );
else
return( (arcsD + i)->cost );
}
/*-------------------------------------------------------------------------*/
inline MCFClass::CNumber MCFSimplex::MCFQCoef( MCFClass::cIndex )
{
#if( QUADRATICCOST )
if( usePrimalSimplex )
return( (arcsP + i)->quadraticCost );
else
return( (arcsD + i)->quadraticCost );
#else
return( 0 );
#endif
}
/*-------------------------------------------------------------------------*/
inline MCFClass::FNumber MCFSimplex::MCFUCap( MCFClass::cIndex i )
{
if( usePrimalSimplex )
return( (arcsP + i)->upper );
else
return( (arcsD + i)->upper );
}
/*-------------------------------------------------------------------------*/
inline MCFClass::FNumber MCFSimplex::MCFDfct( MCFClass::cIndex i )
{
if( usePrimalSimplex )
return( (nodesP + i)->balance );
else
return( (nodesD + i)->balance );
}
/*-------------------------------------------------------------------------*/
#if( QUADRATICCOST )
template <class A>
inline MCFSimplex::FONumber MCFSimplex::ReductCost( A *a )
{
FONumber redc = (a->tail)->potential - (a->head)->potential;
redc = redc + a->cost;
redc = redc + a->quadraticCost * a->flow;
return( redc );
}
#else
template <class A>
inline MCFSimplex::CNumber MCFSimplex::ReductCost( A *a )
{
CNumber redc = (a->tail)->potential - (a->head)->potential;
redc = redc + a->cost;
return( redc );
}
#endif
/*-------------------------------------------------------------------------*/
#if( OPT_USE_NAMESPACES )
}; // end( namespace MCFClass_di_unipi_it )
#endif
/*-------------------------------------------------------------------------*/
/*-------------------------------------------------------------------------*/
/*-------------------------------------------------------------------------*/
/*---------------------- End File MCFSimplex.h ----------------------------*/
/*-------------------------------------------------------------------------*/
|