1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
// SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines SValBuilder, the base class for all (complete) SValBuilder
// implementations.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ExprCXX.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
using namespace clang;
using namespace ento;
//===----------------------------------------------------------------------===//
// Basic SVal creation.
//===----------------------------------------------------------------------===//
void SValBuilder::anchor() { }
DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
if (Loc::isLocType(type))
return makeNull();
if (type->isIntegerType())
return makeIntVal(0, type);
// FIXME: Handle floats.
// FIXME: Handle structs.
return UnknownVal();
}
NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
const llvm::APSInt& rhs, QualType type) {
// The Environment ensures we always get a persistent APSInt in
// BasicValueFactory, so we don't need to get the APSInt from
// BasicValueFactory again.
assert(lhs);
assert(!Loc::isLocType(type));
return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
}
NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
BinaryOperator::Opcode op, const SymExpr *rhs,
QualType type) {
assert(rhs);
assert(!Loc::isLocType(type));
return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
}
NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
const SymExpr *rhs, QualType type) {
assert(lhs && rhs);
assert(haveSameType(lhs->getType(Context), rhs->getType(Context)) == true);
assert(!Loc::isLocType(type));
return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
}
NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
QualType fromTy, QualType toTy) {
assert(operand);
assert(!Loc::isLocType(toTy));
return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
}
SVal SValBuilder::convertToArrayIndex(SVal val) {
if (val.isUnknownOrUndef())
return val;
// Common case: we have an appropriately sized integer.
if (nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&val)) {
const llvm::APSInt& I = CI->getValue();
if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
return val;
}
return evalCastFromNonLoc(cast<NonLoc>(val), ArrayIndexTy);
}
nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
return makeTruthVal(boolean->getValue());
}
DefinedOrUnknownSVal
SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
QualType T = region->getValueType();
if (!SymbolManager::canSymbolicate(T))
return UnknownVal();
SymbolRef sym = SymMgr.getRegionValueSymbol(region);
if (Loc::isLocType(T))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedOrUnknownSVal
SValBuilder::getConjuredSymbolVal(const void *symbolTag,
const Expr *expr,
const LocationContext *LCtx,
unsigned count) {
QualType T = expr->getType();
return getConjuredSymbolVal(symbolTag, expr, LCtx, T, count);
}
DefinedOrUnknownSVal
SValBuilder::getConjuredSymbolVal(const void *symbolTag,
const Expr *expr,
const LocationContext *LCtx,
QualType type,
unsigned count) {
if (!SymbolManager::canSymbolicate(type))
return UnknownVal();
SymbolRef sym = SymMgr.getConjuredSymbol(expr, LCtx, type, count, symbolTag);
if (Loc::isLocType(type))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedOrUnknownSVal
SValBuilder::getConjuredSymbolVal(const Stmt *stmt,
const LocationContext *LCtx,
QualType type,
unsigned visitCount) {
if (!SymbolManager::canSymbolicate(type))
return UnknownVal();
SymbolRef sym = SymMgr.getConjuredSymbol(stmt, LCtx, type, visitCount);
if (Loc::isLocType(type))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
const MemRegion *region,
const Expr *expr, QualType type,
unsigned count) {
assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
SymbolRef sym =
SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
if (Loc::isLocType(type))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedOrUnknownSVal
SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
const TypedValueRegion *region) {
QualType T = region->getValueType();
if (!SymbolManager::canSymbolicate(T))
return UnknownVal();
SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
if (Loc::isLocType(T))
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
return nonloc::SymbolVal(sym);
}
DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
}
DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
CanQualType locTy,
const LocationContext *locContext) {
const BlockTextRegion *BC =
MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext);
return loc::MemRegionVal(BD);
}
//===----------------------------------------------------------------------===//
SVal SValBuilder::makeGenericVal(ProgramStateRef State,
BinaryOperator::Opcode Op,
NonLoc LHS, NonLoc RHS,
QualType ResultTy) {
// If operands are tainted, create a symbol to ensure that we propagate taint.
if (State->isTainted(RHS) || State->isTainted(LHS)) {
const SymExpr *symLHS;
const SymExpr *symRHS;
if (const nonloc::ConcreteInt *rInt = dyn_cast<nonloc::ConcreteInt>(&RHS)) {
symLHS = LHS.getAsSymExpr();
return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
}
if (const nonloc::ConcreteInt *lInt = dyn_cast<nonloc::ConcreteInt>(&LHS)) {
symRHS = RHS.getAsSymExpr();
return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
}
symLHS = LHS.getAsSymExpr();
symRHS = RHS.getAsSymExpr();
return makeNonLoc(symLHS, Op, symRHS, ResultTy);
}
return UnknownVal();
}
SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
SVal lhs, SVal rhs, QualType type) {
if (lhs.isUndef() || rhs.isUndef())
return UndefinedVal();
if (lhs.isUnknown() || rhs.isUnknown())
return UnknownVal();
if (isa<Loc>(lhs)) {
if (isa<Loc>(rhs))
return evalBinOpLL(state, op, cast<Loc>(lhs), cast<Loc>(rhs), type);
return evalBinOpLN(state, op, cast<Loc>(lhs), cast<NonLoc>(rhs), type);
}
if (isa<Loc>(rhs)) {
// Support pointer arithmetic where the addend is on the left
// and the pointer on the right.
assert(op == BO_Add);
// Commute the operands.
return evalBinOpLN(state, op, cast<Loc>(rhs), cast<NonLoc>(lhs), type);
}
return evalBinOpNN(state, op, cast<NonLoc>(lhs), cast<NonLoc>(rhs), type);
}
DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
DefinedOrUnknownSVal lhs,
DefinedOrUnknownSVal rhs) {
return cast<DefinedOrUnknownSVal>(evalBinOp(state, BO_EQ, lhs, rhs,
Context.IntTy));
}
/// Recursively check if the pointer types are equal modulo const, volatile,
/// and restrict qualifiers. Assumes the input types are canonical.
/// TODO: This is based off of code in SemaCast; can we reuse it.
static bool haveSimilarTypes(ASTContext &Context, QualType T1,
QualType T2) {
while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
Qualifiers Quals1, Quals2;
T1 = Context.getUnqualifiedArrayType(T1, Quals1);
T2 = Context.getUnqualifiedArrayType(T2, Quals2);
// Make sure that non cvr-qualifiers the other qualifiers (e.g., address
// spaces) are identical.
Quals1.removeCVRQualifiers();
Quals2.removeCVRQualifiers();
if (Quals1 != Quals2)
return false;
}
if (T1 != T2)
return false;
return true;
}
// FIXME: should rewrite according to the cast kind.
SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
castTy = Context.getCanonicalType(castTy);
originalTy = Context.getCanonicalType(originalTy);
if (val.isUnknownOrUndef() || castTy == originalTy)
return val;
// For const casts, just propagate the value.
if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
if (haveSimilarTypes(Context, Context.getPointerType(castTy),
Context.getPointerType(originalTy)))
return val;
// Check for casts from pointers to integers.
if (castTy->isIntegerType() && Loc::isLocType(originalTy))
return evalCastFromLoc(cast<Loc>(val), castTy);
// Check for casts from integers to pointers.
if (Loc::isLocType(castTy) && originalTy->isIntegerType()) {
if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&val)) {
if (const MemRegion *R = LV->getLoc().getAsRegion()) {
StoreManager &storeMgr = StateMgr.getStoreManager();
R = storeMgr.castRegion(R, castTy);
return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
}
return LV->getLoc();
}
return dispatchCast(val, castTy);
}
// Just pass through function and block pointers.
if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
assert(Loc::isLocType(castTy));
return val;
}
// Check for casts from array type to another type.
if (originalTy->isArrayType()) {
// We will always decay to a pointer.
val = StateMgr.ArrayToPointer(cast<Loc>(val));
// Are we casting from an array to a pointer? If so just pass on
// the decayed value.
if (castTy->isPointerType())
return val;
// Are we casting from an array to an integer? If so, cast the decayed
// pointer value to an integer.
assert(castTy->isIntegerType());
// FIXME: Keep these here for now in case we decide soon that we
// need the original decayed type.
// QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
// QualType pointerTy = C.getPointerType(elemTy);
return evalCastFromLoc(cast<Loc>(val), castTy);
}
// Check for casts from a region to a specific type.
if (const MemRegion *R = val.getAsRegion()) {
// FIXME: We should handle the case where we strip off view layers to get
// to a desugared type.
if (!Loc::isLocType(castTy)) {
// FIXME: There can be gross cases where one casts the result of a function
// (that returns a pointer) to some other value that happens to fit
// within that pointer value. We currently have no good way to
// model such operations. When this happens, the underlying operation
// is that the caller is reasoning about bits. Conceptually we are
// layering a "view" of a location on top of those bits. Perhaps
// we need to be more lazy about mutual possible views, even on an
// SVal? This may be necessary for bit-level reasoning as well.
return UnknownVal();
}
// We get a symbolic function pointer for a dereference of a function
// pointer, but it is of function type. Example:
// struct FPRec {
// void (*my_func)(int * x);
// };
//
// int bar(int x);
//
// int f1_a(struct FPRec* foo) {
// int x;
// (*foo->my_func)(&x);
// return bar(x)+1; // no-warning
// }
assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
originalTy->isBlockPointerType() || castTy->isReferenceType());
StoreManager &storeMgr = StateMgr.getStoreManager();
// Delegate to store manager to get the result of casting a region to a
// different type. If the MemRegion* returned is NULL, this expression
// Evaluates to UnknownVal.
R = storeMgr.castRegion(R, castTy);
return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
}
return dispatchCast(val, castTy);
}
|