summaryrefslogtreecommitdiff
path: root/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
blob: 98eb958e1e82abf0c1505ad7a3bb763c1ed4056d (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines RangeConstraintManager, a class that tracks simple
//  equality and inequality constraints on symbolic values of ProgramState.
//
//===----------------------------------------------------------------------===//

#include "SimpleConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableSet.h"
#include "llvm/Support/raw_ostream.h"

using namespace clang;
using namespace ento;

namespace { class ConstraintRange {}; }
static int ConstraintRangeIndex = 0;

/// A Range represents the closed range [from, to].  The caller must
/// guarantee that from <= to.  Note that Range is immutable, so as not
/// to subvert RangeSet's immutability.
namespace {
class Range : public std::pair<const llvm::APSInt*,
                                                const llvm::APSInt*> {
public:
  Range(const llvm::APSInt &from, const llvm::APSInt &to)
    : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
    assert(from <= to);
  }
  bool Includes(const llvm::APSInt &v) const {
    return *first <= v && v <= *second;
  }
  const llvm::APSInt &From() const {
    return *first;
  }
  const llvm::APSInt &To() const {
    return *second;
  }
  const llvm::APSInt *getConcreteValue() const {
    return &From() == &To() ? &From() : NULL;
  }

  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddPointer(&From());
    ID.AddPointer(&To());
  }
};


class RangeTrait : public llvm::ImutContainerInfo<Range> {
public:
  // When comparing if one Range is less than another, we should compare
  // the actual APSInt values instead of their pointers.  This keeps the order
  // consistent (instead of comparing by pointer values) and can potentially
  // be used to speed up some of the operations in RangeSet.
  static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
    return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
                                       *lhs.second < *rhs.second);
  }
};

/// RangeSet contains a set of ranges. If the set is empty, then
///  there the value of a symbol is overly constrained and there are no
///  possible values for that symbol.
class RangeSet {
  typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
  PrimRangeSet ranges; // no need to make const, since it is an
                       // ImmutableSet - this allows default operator=
                       // to work.
public:
  typedef PrimRangeSet::Factory Factory;
  typedef PrimRangeSet::iterator iterator;

  RangeSet(PrimRangeSet RS) : ranges(RS) {}

  iterator begin() const { return ranges.begin(); }
  iterator end() const { return ranges.end(); }

  bool isEmpty() const { return ranges.isEmpty(); }

  /// Construct a new RangeSet representing '{ [from, to] }'.
  RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
    : ranges(F.add(F.getEmptySet(), Range(from, to))) {}

  /// Profile - Generates a hash profile of this RangeSet for use
  ///  by FoldingSet.
  void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }

  /// getConcreteValue - If a symbol is contrained to equal a specific integer
  ///  constant then this method returns that value.  Otherwise, it returns
  ///  NULL.
  const llvm::APSInt* getConcreteValue() const {
    return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
  }

private:
  void IntersectInRange(BasicValueFactory &BV, Factory &F,
                        const llvm::APSInt &Lower,
                        const llvm::APSInt &Upper,
                        PrimRangeSet &newRanges,
                        PrimRangeSet::iterator &i,
                        PrimRangeSet::iterator &e) const {
    // There are six cases for each range R in the set:
    //   1. R is entirely before the intersection range.
    //   2. R is entirely after the intersection range.
    //   3. R contains the entire intersection range.
    //   4. R starts before the intersection range and ends in the middle.
    //   5. R starts in the middle of the intersection range and ends after it.
    //   6. R is entirely contained in the intersection range.
    // These correspond to each of the conditions below.
    for (/* i = begin(), e = end() */; i != e; ++i) {
      if (i->To() < Lower) {
        continue;
      }
      if (i->From() > Upper) {
        break;
      }

      if (i->Includes(Lower)) {
        if (i->Includes(Upper)) {
          newRanges = F.add(newRanges, Range(BV.getValue(Lower),
                                             BV.getValue(Upper)));
          break;
        } else
          newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
      } else {
        if (i->Includes(Upper)) {
          newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
          break;
        } else
          newRanges = F.add(newRanges, *i);
      }
    }
  }

public:
  // Returns a set containing the values in the receiving set, intersected with
  // the closed range [Lower, Upper]. Unlike the Range type, this range uses
  // modular arithmetic, corresponding to the common treatment of C integer
  // overflow. Thus, if the Lower bound is greater than the Upper bound, the
  // range is taken to wrap around. This is equivalent to taking the
  // intersection with the two ranges [Min, Upper] and [Lower, Max],
  // or, alternatively, /removing/ all integers between Upper and Lower.
  RangeSet Intersect(BasicValueFactory &BV, Factory &F,
                     const llvm::APSInt &Lower,
                     const llvm::APSInt &Upper) const {
    PrimRangeSet newRanges = F.getEmptySet();

    PrimRangeSet::iterator i = begin(), e = end();
    if (Lower <= Upper)
      IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
    else {
      // The order of the next two statements is important!
      // IntersectInRange() does not reset the iteration state for i and e.
      // Therefore, the lower range most be handled first.
      IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
      IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
    }
    return newRanges;
  }

  void print(raw_ostream &os) const {
    bool isFirst = true;
    os << "{ ";
    for (iterator i = begin(), e = end(); i != e; ++i) {
      if (isFirst)
        isFirst = false;
      else
        os << ", ";

      os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
         << ']';
    }
    os << " }";
  }

  bool operator==(const RangeSet &other) const {
    return ranges == other.ranges;
  }
};
} // end anonymous namespace

typedef llvm::ImmutableMap<SymbolRef,RangeSet> ConstraintRangeTy;

namespace clang {
namespace ento {
template<>
struct ProgramStateTrait<ConstraintRange>
  : public ProgramStatePartialTrait<ConstraintRangeTy> {
  static inline void *GDMIndex() { return &ConstraintRangeIndex; }
};
}
}

namespace {
class RangeConstraintManager : public SimpleConstraintManager{
  RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
public:
  RangeConstraintManager(SubEngine &subengine)
    : SimpleConstraintManager(subengine) {}

  ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
                             const llvm::APSInt& Int,
                             const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
                             const llvm::APSInt& Int,
                             const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
                             const llvm::APSInt& Int,
                             const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
                             const llvm::APSInt& Int,
                             const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
                             const llvm::APSInt& Int,
                             const llvm::APSInt& Adjustment);

  ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
                             const llvm::APSInt& Int,
                             const llvm::APSInt& Adjustment);

  const llvm::APSInt* getSymVal(ProgramStateRef St, SymbolRef sym) const;

  // FIXME: Refactor into SimpleConstraintManager?
  bool isEqual(ProgramStateRef St, SymbolRef sym, const llvm::APSInt& V) const {
    const llvm::APSInt *i = getSymVal(St, sym);
    return i ? *i == V : false;
  }

  ProgramStateRef removeDeadBindings(ProgramStateRef St, SymbolReaper& SymReaper);

  void print(ProgramStateRef St, raw_ostream &Out,
             const char* nl, const char *sep);

private:
  RangeSet::Factory F;
};

} // end anonymous namespace

ConstraintManager* ento::CreateRangeConstraintManager(ProgramStateManager&,
                                                    SubEngine &subeng) {
  return new RangeConstraintManager(subeng);
}

const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
                                                      SymbolRef sym) const {
  const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
  return T ? T->getConcreteValue() : NULL;
}

/// Scan all symbols referenced by the constraints. If the symbol is not alive
/// as marked in LSymbols, mark it as dead in DSymbols.
ProgramStateRef 
RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
                                           SymbolReaper& SymReaper) {

  ConstraintRangeTy CR = state->get<ConstraintRange>();
  ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();

  for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
    SymbolRef sym = I.getKey();
    if (SymReaper.maybeDead(sym))
      CR = CRFactory.remove(CR, sym);
  }

  return state->set<ConstraintRange>(CR);
}

RangeSet
RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
  if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
    return *V;

  // Lazily generate a new RangeSet representing all possible values for the
  // given symbol type.
  QualType T = state->getSymbolManager().getType(sym);
  BasicValueFactory& BV = state->getBasicVals();
  return RangeSet(F, BV.getMinValue(T), BV.getMaxValue(T));
}

//===------------------------------------------------------------------------===
// assumeSymX methods: public interface for RangeConstraintManager.
//===------------------------------------------------------------------------===/

// The syntax for ranges below is mathematical, using [x, y] for closed ranges
// and (x, y) for open ranges. These ranges are modular, corresponding with
// a common treatment of C integer overflow. This means that these methods
// do not have to worry about overflow; RangeSet::Intersect can handle such a
// "wraparound" range.
// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
// UINT_MAX, 0, 1, and 2.

ProgramStateRef 
RangeConstraintManager::assumeSymNE(ProgramStateRef state, SymbolRef sym,
                                    const llvm::APSInt& Int,
                                    const llvm::APSInt& Adjustment) {
  BasicValueFactory &BV = state->getBasicVals();

  llvm::APSInt Lower = Int-Adjustment;
  llvm::APSInt Upper = Lower;
  --Lower;
  ++Upper;

  // [Int-Adjustment+1, Int-Adjustment-1]
  // Notice that the lower bound is greater than the upper bound.
  RangeSet New = GetRange(state, sym).Intersect(BV, F, Upper, Lower);
  return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
}

ProgramStateRef 
RangeConstraintManager::assumeSymEQ(ProgramStateRef state, SymbolRef sym,
                                    const llvm::APSInt& Int,
                                    const llvm::APSInt& Adjustment) {
  // [Int-Adjustment, Int-Adjustment]
  BasicValueFactory &BV = state->getBasicVals();
  llvm::APSInt AdjInt = Int-Adjustment;
  RangeSet New = GetRange(state, sym).Intersect(BV, F, AdjInt, AdjInt);
  return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
}

ProgramStateRef 
RangeConstraintManager::assumeSymLT(ProgramStateRef state, SymbolRef sym,
                                    const llvm::APSInt& Int,
                                    const llvm::APSInt& Adjustment) {
  BasicValueFactory &BV = state->getBasicVals();

  QualType T = state->getSymbolManager().getType(sym);
  const llvm::APSInt &Min = BV.getMinValue(T);

  // Special case for Int == Min. This is always false.
  if (Int == Min)
    return NULL;

  llvm::APSInt Lower = Min-Adjustment;
  llvm::APSInt Upper = Int-Adjustment;
  --Upper;

  RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
  return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
}

ProgramStateRef 
RangeConstraintManager::assumeSymGT(ProgramStateRef state, SymbolRef sym,
                                    const llvm::APSInt& Int,
                                    const llvm::APSInt& Adjustment) {
  BasicValueFactory &BV = state->getBasicVals();

  QualType T = state->getSymbolManager().getType(sym);
  const llvm::APSInt &Max = BV.getMaxValue(T);

  // Special case for Int == Max. This is always false.
  if (Int == Max)
    return NULL;

  llvm::APSInt Lower = Int-Adjustment;
  llvm::APSInt Upper = Max-Adjustment;
  ++Lower;

  RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
  return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
}

ProgramStateRef 
RangeConstraintManager::assumeSymGE(ProgramStateRef state, SymbolRef sym,
                                    const llvm::APSInt& Int,
                                    const llvm::APSInt& Adjustment) {
  BasicValueFactory &BV = state->getBasicVals();

  QualType T = state->getSymbolManager().getType(sym);
  const llvm::APSInt &Min = BV.getMinValue(T);

  // Special case for Int == Min. This is always feasible.
  if (Int == Min)
    return state;

  const llvm::APSInt &Max = BV.getMaxValue(T);

  llvm::APSInt Lower = Int-Adjustment;
  llvm::APSInt Upper = Max-Adjustment;

  RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
  return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
}

ProgramStateRef 
RangeConstraintManager::assumeSymLE(ProgramStateRef state, SymbolRef sym,
                                    const llvm::APSInt& Int,
                                    const llvm::APSInt& Adjustment) {
  BasicValueFactory &BV = state->getBasicVals();

  QualType T = state->getSymbolManager().getType(sym);
  const llvm::APSInt &Max = BV.getMaxValue(T);

  // Special case for Int == Max. This is always feasible.
  if (Int == Max)
    return state;

  const llvm::APSInt &Min = BV.getMinValue(T);

  llvm::APSInt Lower = Min-Adjustment;
  llvm::APSInt Upper = Int-Adjustment;

  RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
  return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
}

//===------------------------------------------------------------------------===
// Pretty-printing.
//===------------------------------------------------------------------------===/

void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
                                   const char* nl, const char *sep) {

  ConstraintRangeTy Ranges = St->get<ConstraintRange>();

  if (Ranges.isEmpty()) {
    Out << nl << sep << "Ranges are empty." << nl;
    return;
  }

  Out << nl << sep << "Ranges of symbol values:";
  for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
    Out << nl << ' ' << I.getKey() << " : ";
    I.getData().print(Out);
  }
  Out << nl;
}