summaryrefslogtreecommitdiff
path: root/clang/lib/Sema/SemaStmt.cpp
blob: 9052278d7337fb42196ac002df1920b15c72bb56 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for statements.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
using namespace clang;
using namespace sema;

StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
  Expr *E = expr.get();
  if (!E) // FIXME: FullExprArg has no error state?
    return StmtError();

  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
  // void expression for its side effects.  Conversion to void allows any
  // operand, even incomplete types.

  // Same thing in for stmt first clause (when expr) and third clause.
  return Owned(static_cast<Stmt*>(E));
}


StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
                               bool HasLeadingEmptyMacro) {
  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
}

StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
                               SourceLocation EndLoc) {
  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();

  // If we have an invalid decl, just return an error.
  if (DG.isNull()) return StmtError();

  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
}

void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();

  // If we have an invalid decl, just return.
  if (DG.isNull() || !DG.isSingleDecl()) return;
  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());

  // suppress any potential 'unused variable' warning.
  var->setUsed();

  // foreach variables are never actually initialized in the way that
  // the parser came up with.
  var->setInit(0);

  // In ARC, we don't need to retain the iteration variable of a fast
  // enumeration loop.  Rather than actually trying to catch that
  // during declaration processing, we remove the consequences here.
  if (getLangOpts().ObjCAutoRefCount) {
    QualType type = var->getType();

    // Only do this if we inferred the lifetime.  Inferred lifetime
    // will show up as a local qualifier because explicit lifetime
    // should have shown up as an AttributedType instead.
    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
      // Add 'const' and mark the variable as pseudo-strong.
      var->setType(type.withConst());
      var->setARCPseudoStrong(true);
    }
  }
}

/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
///
/// Adding a cast to void (or other expression wrappers) will prevent the
/// warning from firing.
static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
  SourceLocation Loc;
  bool IsNotEqual, CanAssign;

  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
      return false;

    Loc = Op->getOperatorLoc();
    IsNotEqual = Op->getOpcode() == BO_NE;
    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
    if (Op->getOperator() != OO_EqualEqual &&
        Op->getOperator() != OO_ExclaimEqual)
      return false;

    Loc = Op->getOperatorLoc();
    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
  } else {
    // Not a typo-prone comparison.
    return false;
  }

  // Suppress warnings when the operator, suspicious as it may be, comes from
  // a macro expansion.
  if (Loc.isMacroID())
    return false;

  S.Diag(Loc, diag::warn_unused_comparison)
    << (unsigned)IsNotEqual << E->getSourceRange();

  // If the LHS is a plausible entity to assign to, provide a fixit hint to
  // correct common typos.
  if (CanAssign) {
    if (IsNotEqual)
      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
        << FixItHint::CreateReplacement(Loc, "|=");
    else
      S.Diag(Loc, diag::note_equality_comparison_to_assign)
        << FixItHint::CreateReplacement(Loc, "=");
  }

  return true;
}

void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
    return DiagnoseUnusedExprResult(Label->getSubStmt());

  const Expr *E = dyn_cast_or_null<Expr>(S);
  if (!E)
    return;

  SourceLocation Loc;
  SourceRange R1, R2;
  if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
      !E->isUnusedResultAWarning(Loc, R1, R2, Context))
    return;

  // Okay, we have an unused result.  Depending on what the base expression is,
  // we might want to make a more specific diagnostic.  Check for one of these
  // cases now.
  unsigned DiagID = diag::warn_unused_expr;
  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
    E = Temps->getSubExpr();
  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
    E = TempExpr->getSubExpr();

  if (DiagnoseUnusedComparison(*this, E))
    return;

  E = E->IgnoreParenImpCasts();
  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
    if (E->getType()->isVoidType())
      return;

    // If the callee has attribute pure, const, or warn_unused_result, warn with
    // a more specific message to make it clear what is happening.
    if (const Decl *FD = CE->getCalleeDecl()) {
      if (FD->getAttr<WarnUnusedResultAttr>()) {
        Diag(Loc, diag::warn_unused_result) << R1 << R2;
        return;
      }
      if (FD->getAttr<PureAttr>()) {
        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
        return;
      }
      if (FD->getAttr<ConstAttr>()) {
        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
        return;
      }
    }
  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
      Diag(Loc, diag::err_arc_unused_init_message) << R1;
      return;
    }
    const ObjCMethodDecl *MD = ME->getMethodDecl();
    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
      Diag(Loc, diag::warn_unused_result) << R1 << R2;
      return;
    }
  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
    const Expr *Source = POE->getSyntacticForm();
    if (isa<ObjCSubscriptRefExpr>(Source))
      DiagID = diag::warn_unused_container_subscript_expr;
    else
      DiagID = diag::warn_unused_property_expr;
  } else if (const CXXFunctionalCastExpr *FC
                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
      return;
  }
  // Diagnose "(void*) blah" as a typo for "(void) blah".
  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
    QualType T = TI->getType();

    // We really do want to use the non-canonical type here.
    if (T == Context.VoidPtrTy) {
      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());

      Diag(Loc, diag::warn_unused_voidptr)
        << FixItHint::CreateRemoval(TL.getStarLoc());
      return;
    }
  }

  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
}

void Sema::ActOnStartOfCompoundStmt() {
  PushCompoundScope();
}

void Sema::ActOnFinishOfCompoundStmt() {
  PopCompoundScope();
}

sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
  return getCurFunction()->CompoundScopes.back();
}

StmtResult
Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
                        MultiStmtArg elts, bool isStmtExpr) {
  unsigned NumElts = elts.size();
  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
  // If we're in C89 mode, check that we don't have any decls after stmts.  If
  // so, emit an extension diagnostic.
  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
    // Note that __extension__ can be around a decl.
    unsigned i = 0;
    // Skip over all declarations.
    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
      /*empty*/;

    // We found the end of the list or a statement.  Scan for another declstmt.
    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
      /*empty*/;

    if (i != NumElts) {
      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
      Diag(D->getLocation(), diag::ext_mixed_decls_code);
    }
  }
  // Warn about unused expressions in statements.
  for (unsigned i = 0; i != NumElts; ++i) {
    // Ignore statements that are last in a statement expression.
    if (isStmtExpr && i == NumElts - 1)
      continue;

    DiagnoseUnusedExprResult(Elts[i]);
  }

  // Check for suspicious empty body (null statement) in `for' and `while'
  // statements.  Don't do anything for template instantiations, this just adds
  // noise.
  if (NumElts != 0 && !CurrentInstantiationScope &&
      getCurCompoundScope().HasEmptyLoopBodies) {
    for (unsigned i = 0; i != NumElts - 1; ++i)
      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
  }

  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
}

StmtResult
Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
                    SourceLocation DotDotDotLoc, Expr *RHSVal,
                    SourceLocation ColonLoc) {
  assert((LHSVal != 0) && "missing expression in case statement");

  if (getCurFunction()->SwitchStack.empty()) {
    Diag(CaseLoc, diag::err_case_not_in_switch);
    return StmtError();
  }

  if (!getLangOpts().CPlusPlus0x) {
    // C99 6.8.4.2p3: The expression shall be an integer constant.
    // However, GCC allows any evaluatable integer expression.
    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
      LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
      if (!LHSVal)
        return StmtError();
    }

    // GCC extension: The expression shall be an integer constant.

    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
      RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
      // Recover from an error by just forgetting about it.
    }
  }

  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
                                        ColonLoc);
  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
  return Owned(CS);
}

/// ActOnCaseStmtBody - This installs a statement as the body of a case.
void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
  DiagnoseUnusedExprResult(SubStmt);

  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
  CS->setSubStmt(SubStmt);
}

StmtResult
Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
                       Stmt *SubStmt, Scope *CurScope) {
  DiagnoseUnusedExprResult(SubStmt);

  if (getCurFunction()->SwitchStack.empty()) {
    Diag(DefaultLoc, diag::err_default_not_in_switch);
    return Owned(SubStmt);
  }

  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
  return Owned(DS);
}

StmtResult
Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
                     SourceLocation ColonLoc, Stmt *SubStmt) {
  // If the label was multiply defined, reject it now.
  if (TheDecl->getStmt()) {
    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
    Diag(TheDecl->getLocation(), diag::note_previous_definition);
    return Owned(SubStmt);
  }

  // Otherwise, things are good.  Fill in the declaration and return it.
  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
  TheDecl->setStmt(LS);
  if (!TheDecl->isGnuLocal())
    TheDecl->setLocation(IdentLoc);
  return Owned(LS);
}

StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
                                     const AttrVec &Attrs,
                                     Stmt *SubStmt) {
  // Fill in the declaration and return it. Variable length will require to
  // change this to AttributedStmt::Create(Context, ....);
  // and probably using ArrayRef
  AttributedStmt *LS = new (Context) AttributedStmt(AttrLoc, Attrs, SubStmt);
  return Owned(LS);
}

StmtResult
Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
                  Stmt *thenStmt, SourceLocation ElseLoc,
                  Stmt *elseStmt) {
  ExprResult CondResult(CondVal.release());

  VarDecl *ConditionVar = 0;
  if (CondVar) {
    ConditionVar = cast<VarDecl>(CondVar);
    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
    if (CondResult.isInvalid())
      return StmtError();
  }
  Expr *ConditionExpr = CondResult.takeAs<Expr>();
  if (!ConditionExpr)
    return StmtError();

  DiagnoseUnusedExprResult(thenStmt);

  if (!elseStmt) {
    DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
                          diag::warn_empty_if_body);
  }

  DiagnoseUnusedExprResult(elseStmt);

  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
                                    thenStmt, ElseLoc, elseStmt));
}

/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
/// the specified width and sign.  If an overflow occurs, detect it and emit
/// the specified diagnostic.
void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
                                              unsigned NewWidth, bool NewSign,
                                              SourceLocation Loc,
                                              unsigned DiagID) {
  // Perform a conversion to the promoted condition type if needed.
  if (NewWidth > Val.getBitWidth()) {
    // If this is an extension, just do it.
    Val = Val.extend(NewWidth);
    Val.setIsSigned(NewSign);

    // If the input was signed and negative and the output is
    // unsigned, don't bother to warn: this is implementation-defined
    // behavior.
    // FIXME: Introduce a second, default-ignored warning for this case?
  } else if (NewWidth < Val.getBitWidth()) {
    // If this is a truncation, check for overflow.
    llvm::APSInt ConvVal(Val);
    ConvVal = ConvVal.trunc(NewWidth);
    ConvVal.setIsSigned(NewSign);
    ConvVal = ConvVal.extend(Val.getBitWidth());
    ConvVal.setIsSigned(Val.isSigned());
    if (ConvVal != Val)
      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);

    // Regardless of whether a diagnostic was emitted, really do the
    // truncation.
    Val = Val.trunc(NewWidth);
    Val.setIsSigned(NewSign);
  } else if (NewSign != Val.isSigned()) {
    // Convert the sign to match the sign of the condition.  This can cause
    // overflow as well: unsigned(INTMIN)
    // We don't diagnose this overflow, because it is implementation-defined
    // behavior.
    // FIXME: Introduce a second, default-ignored warning for this case?
    llvm::APSInt OldVal(Val);
    Val.setIsSigned(NewSign);
  }
}

namespace {
  struct CaseCompareFunctor {
    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
                    const llvm::APSInt &RHS) {
      return LHS.first < RHS;
    }
    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
      return LHS.first < RHS.first;
    }
    bool operator()(const llvm::APSInt &LHS,
                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
      return LHS < RHS.first;
    }
  };
}

/// CmpCaseVals - Comparison predicate for sorting case values.
///
static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
  if (lhs.first < rhs.first)
    return true;

  if (lhs.first == rhs.first &&
      lhs.second->getCaseLoc().getRawEncoding()
       < rhs.second->getCaseLoc().getRawEncoding())
    return true;
  return false;
}

/// CmpEnumVals - Comparison predicate for sorting enumeration values.
///
static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
{
  return lhs.first < rhs.first;
}

/// EqEnumVals - Comparison preficate for uniqing enumeration values.
///
static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
{
  return lhs.first == rhs.first;
}

/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
/// potentially integral-promoted expression @p expr.
static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
    expr = cleanups->getSubExpr();
  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
    if (impcast->getCastKind() != CK_IntegralCast) break;
    expr = impcast->getSubExpr();
  }
  return expr->getType();
}

StmtResult
Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
                             Decl *CondVar) {
  ExprResult CondResult;

  VarDecl *ConditionVar = 0;
  if (CondVar) {
    ConditionVar = cast<VarDecl>(CondVar);
    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
    if (CondResult.isInvalid())
      return StmtError();

    Cond = CondResult.release();
  }

  if (!Cond)
    return StmtError();

  CondResult
    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
                          PDiag(diag::err_typecheck_statement_requires_integer),
                                   PDiag(diag::err_switch_incomplete_class_type)
                                     << Cond->getSourceRange(),
                                   PDiag(diag::err_switch_explicit_conversion),
                                         PDiag(diag::note_switch_conversion),
                                   PDiag(diag::err_switch_multiple_conversions),
                                         PDiag(diag::note_switch_conversion),
                                         PDiag(0),
                                         /*AllowScopedEnumerations*/ true);
  if (CondResult.isInvalid()) return StmtError();
  Cond = CondResult.take();

  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
  CondResult = UsualUnaryConversions(Cond);
  if (CondResult.isInvalid()) return StmtError();
  Cond = CondResult.take();

  if (!CondVar) {
    CheckImplicitConversions(Cond, SwitchLoc);
    CondResult = MaybeCreateExprWithCleanups(Cond);
    if (CondResult.isInvalid())
      return StmtError();
    Cond = CondResult.take();
  }

  getCurFunction()->setHasBranchIntoScope();

  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
  getCurFunction()->SwitchStack.push_back(SS);
  return Owned(SS);
}

static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
  if (Val.getBitWidth() < BitWidth)
    Val = Val.extend(BitWidth);
  else if (Val.getBitWidth() > BitWidth)
    Val = Val.trunc(BitWidth);
  Val.setIsSigned(IsSigned);
}

StmtResult
Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
                            Stmt *BodyStmt) {
  SwitchStmt *SS = cast<SwitchStmt>(Switch);
  assert(SS == getCurFunction()->SwitchStack.back() &&
         "switch stack missing push/pop!");

  SS->setBody(BodyStmt, SwitchLoc);
  getCurFunction()->SwitchStack.pop_back();

  Expr *CondExpr = SS->getCond();
  if (!CondExpr) return StmtError();

  QualType CondType = CondExpr->getType();

  Expr *CondExprBeforePromotion = CondExpr;
  QualType CondTypeBeforePromotion =
      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);

  // C++ 6.4.2.p2:
  // Integral promotions are performed (on the switch condition).
  //
  // A case value unrepresentable by the original switch condition
  // type (before the promotion) doesn't make sense, even when it can
  // be represented by the promoted type.  Therefore we need to find
  // the pre-promotion type of the switch condition.
  if (!CondExpr->isTypeDependent()) {
    // We have already converted the expression to an integral or enumeration
    // type, when we started the switch statement. If we don't have an
    // appropriate type now, just return an error.
    if (!CondType->isIntegralOrEnumerationType())
      return StmtError();

    if (CondExpr->isKnownToHaveBooleanValue()) {
      // switch(bool_expr) {...} is often a programmer error, e.g.
      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
      // One can always use an if statement instead of switch(bool_expr).
      Diag(SwitchLoc, diag::warn_bool_switch_condition)
          << CondExpr->getSourceRange();
    }
  }

  // Get the bitwidth of the switched-on value before promotions.  We must
  // convert the integer case values to this width before comparison.
  bool HasDependentValue
    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
  unsigned CondWidth
    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
  bool CondIsSigned 
    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();

  // Accumulate all of the case values in a vector so that we can sort them
  // and detect duplicates.  This vector contains the APInt for the case after
  // it has been converted to the condition type.
  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
  CaseValsTy CaseVals;

  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
  CaseRangesTy CaseRanges;

  DefaultStmt *TheDefaultStmt = 0;

  bool CaseListIsErroneous = false;

  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
       SC = SC->getNextSwitchCase()) {

    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
      if (TheDefaultStmt) {
        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);

        // FIXME: Remove the default statement from the switch block so that
        // we'll return a valid AST.  This requires recursing down the AST and
        // finding it, not something we are set up to do right now.  For now,
        // just lop the entire switch stmt out of the AST.
        CaseListIsErroneous = true;
      }
      TheDefaultStmt = DS;

    } else {
      CaseStmt *CS = cast<CaseStmt>(SC);

      Expr *Lo = CS->getLHS();

      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
        HasDependentValue = true;
        break;
      }

      llvm::APSInt LoVal;

      if (getLangOpts().CPlusPlus0x) {
        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
        // constant expression of the promoted type of the switch condition.
        ExprResult ConvLo =
          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
        if (ConvLo.isInvalid()) {
          CaseListIsErroneous = true;
          continue;
        }
        Lo = ConvLo.take();
      } else {
        // We already verified that the expression has a i-c-e value (C99
        // 6.8.4.2p3) - get that value now.
        LoVal = Lo->EvaluateKnownConstInt(Context);

        // If the LHS is not the same type as the condition, insert an implicit
        // cast.
        Lo = DefaultLvalueConversion(Lo).take();
        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
      }

      // Convert the value to the same width/sign as the condition had prior to
      // integral promotions.
      //
      // FIXME: This causes us to reject valid code:
      //   switch ((char)c) { case 256: case 0: return 0; }
      // Here we claim there is a duplicated condition value, but there is not.
      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
                                         Lo->getLocStart(),
                                         diag::warn_case_value_overflow);

      CS->setLHS(Lo);

      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
      if (CS->getRHS()) {
        if (CS->getRHS()->isTypeDependent() ||
            CS->getRHS()->isValueDependent()) {
          HasDependentValue = true;
          break;
        }
        CaseRanges.push_back(std::make_pair(LoVal, CS));
      } else
        CaseVals.push_back(std::make_pair(LoVal, CS));
    }
  }

  if (!HasDependentValue) {
    // If we don't have a default statement, check whether the
    // condition is constant.
    llvm::APSInt ConstantCondValue;
    bool HasConstantCond = false;
    if (!HasDependentValue && !TheDefaultStmt) {
      HasConstantCond
        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
                                                 Expr::SE_AllowSideEffects);
      assert(!HasConstantCond ||
             (ConstantCondValue.getBitWidth() == CondWidth &&
              ConstantCondValue.isSigned() == CondIsSigned));
    }
    bool ShouldCheckConstantCond = HasConstantCond;

    // Sort all the scalar case values so we can easily detect duplicates.
    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);

    if (!CaseVals.empty()) {
      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
        if (ShouldCheckConstantCond &&
            CaseVals[i].first == ConstantCondValue)
          ShouldCheckConstantCond = false;

        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
          // If we have a duplicate, report it.
          Diag(CaseVals[i].second->getLHS()->getLocStart(),
               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
               diag::note_duplicate_case_prev);
          // FIXME: We really want to remove the bogus case stmt from the
          // substmt, but we have no way to do this right now.
          CaseListIsErroneous = true;
        }
      }
    }

    // Detect duplicate case ranges, which usually don't exist at all in
    // the first place.
    if (!CaseRanges.empty()) {
      // Sort all the case ranges by their low value so we can easily detect
      // overlaps between ranges.
      std::stable_sort(CaseRanges.begin(), CaseRanges.end());

      // Scan the ranges, computing the high values and removing empty ranges.
      std::vector<llvm::APSInt> HiVals;
      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
        llvm::APSInt &LoVal = CaseRanges[i].first;
        CaseStmt *CR = CaseRanges[i].second;
        Expr *Hi = CR->getRHS();
        llvm::APSInt HiVal;

        if (getLangOpts().CPlusPlus0x) {
          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
          // constant expression of the promoted type of the switch condition.
          ExprResult ConvHi =
            CheckConvertedConstantExpression(Hi, CondType, HiVal,
                                             CCEK_CaseValue);
          if (ConvHi.isInvalid()) {
            CaseListIsErroneous = true;
            continue;
          }
          Hi = ConvHi.take();
        } else {
          HiVal = Hi->EvaluateKnownConstInt(Context);

          // If the RHS is not the same type as the condition, insert an
          // implicit cast.
          Hi = DefaultLvalueConversion(Hi).take();
          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
        }

        // Convert the value to the same width/sign as the condition.
        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
                                           Hi->getLocStart(),
                                           diag::warn_case_value_overflow);

        CR->setRHS(Hi);

        // If the low value is bigger than the high value, the case is empty.
        if (LoVal > HiVal) {
          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
            << SourceRange(CR->getLHS()->getLocStart(),
                           Hi->getLocEnd());
          CaseRanges.erase(CaseRanges.begin()+i);
          --i, --e;
          continue;
        }

        if (ShouldCheckConstantCond &&
            LoVal <= ConstantCondValue &&
            ConstantCondValue <= HiVal)
          ShouldCheckConstantCond = false;

        HiVals.push_back(HiVal);
      }

      // Rescan the ranges, looking for overlap with singleton values and other
      // ranges.  Since the range list is sorted, we only need to compare case
      // ranges with their neighbors.
      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
        llvm::APSInt &CRLo = CaseRanges[i].first;
        llvm::APSInt &CRHi = HiVals[i];
        CaseStmt *CR = CaseRanges[i].second;

        // Check to see whether the case range overlaps with any
        // singleton cases.
        CaseStmt *OverlapStmt = 0;
        llvm::APSInt OverlapVal(32);

        // Find the smallest value >= the lower bound.  If I is in the
        // case range, then we have overlap.
        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
                                                  CaseVals.end(), CRLo,
                                                  CaseCompareFunctor());
        if (I != CaseVals.end() && I->first < CRHi) {
          OverlapVal  = I->first;   // Found overlap with scalar.
          OverlapStmt = I->second;
        }

        // Find the smallest value bigger than the upper bound.
        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
          OverlapStmt = (I-1)->second;
        }

        // Check to see if this case stmt overlaps with the subsequent
        // case range.
        if (i && CRLo <= HiVals[i-1]) {
          OverlapVal  = HiVals[i-1];       // Found overlap with range.
          OverlapStmt = CaseRanges[i-1].second;
        }

        if (OverlapStmt) {
          // If we have a duplicate, report it.
          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
            << OverlapVal.toString(10);
          Diag(OverlapStmt->getLHS()->getLocStart(),
               diag::note_duplicate_case_prev);
          // FIXME: We really want to remove the bogus case stmt from the
          // substmt, but we have no way to do this right now.
          CaseListIsErroneous = true;
        }
      }
    }

    // Complain if we have a constant condition and we didn't find a match.
    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
      // TODO: it would be nice if we printed enums as enums, chars as
      // chars, etc.
      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
        << ConstantCondValue.toString(10)
        << CondExpr->getSourceRange();
    }

    // Check to see if switch is over an Enum and handles all of its
    // values.  We only issue a warning if there is not 'default:', but
    // we still do the analysis to preserve this information in the AST
    // (which can be used by flow-based analyes).
    //
    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();

    // If switch has default case, then ignore it.
    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
      const EnumDecl *ED = ET->getDecl();
      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
        EnumValsTy;
      EnumValsTy EnumVals;

      // Gather all enum values, set their type and sort them,
      // allowing easier comparison with CaseVals.
      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
           EDI != ED->enumerator_end(); ++EDI) {
        llvm::APSInt Val = EDI->getInitVal();
        AdjustAPSInt(Val, CondWidth, CondIsSigned);
        EnumVals.push_back(std::make_pair(Val, *EDI));
      }
      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
      EnumValsTy::iterator EIend =
        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);

      // See which case values aren't in enum.
      EnumValsTy::const_iterator EI = EnumVals.begin();
      for (CaseValsTy::const_iterator CI = CaseVals.begin();
           CI != CaseVals.end(); CI++) {
        while (EI != EIend && EI->first < CI->first)
          EI++;
        if (EI == EIend || EI->first > CI->first)
          Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
            << CondTypeBeforePromotion;
      }
      // See which of case ranges aren't in enum
      EI = EnumVals.begin();
      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
           RI != CaseRanges.end() && EI != EIend; RI++) {
        while (EI != EIend && EI->first < RI->first)
          EI++;

        if (EI == EIend || EI->first != RI->first) {
          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
            << CondTypeBeforePromotion;
        }

        llvm::APSInt Hi = 
          RI->second->getRHS()->EvaluateKnownConstInt(Context);
        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
        while (EI != EIend && EI->first < Hi)
          EI++;
        if (EI == EIend || EI->first != Hi)
          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
            << CondTypeBeforePromotion;
      }

      // Check which enum vals aren't in switch
      CaseValsTy::const_iterator CI = CaseVals.begin();
      CaseRangesTy::const_iterator RI = CaseRanges.begin();
      bool hasCasesNotInSwitch = false;

      SmallVector<DeclarationName,8> UnhandledNames;

      for (EI = EnumVals.begin(); EI != EIend; EI++){
        // Drop unneeded case values
        llvm::APSInt CIVal;
        while (CI != CaseVals.end() && CI->first < EI->first)
          CI++;

        if (CI != CaseVals.end() && CI->first == EI->first)
          continue;

        // Drop unneeded case ranges
        for (; RI != CaseRanges.end(); RI++) {
          llvm::APSInt Hi =
            RI->second->getRHS()->EvaluateKnownConstInt(Context);
          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
          if (EI->first <= Hi)
            break;
        }

        if (RI == CaseRanges.end() || EI->first < RI->first) {
          hasCasesNotInSwitch = true;
          UnhandledNames.push_back(EI->second->getDeclName());
        }
      }

      if (TheDefaultStmt && UnhandledNames.empty())
        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);

      // Produce a nice diagnostic if multiple values aren't handled.
      switch (UnhandledNames.size()) {
      case 0: break;
      case 1:
        Diag(CondExpr->getExprLoc(), TheDefaultStmt 
          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
          << UnhandledNames[0];
        break;
      case 2:
        Diag(CondExpr->getExprLoc(), TheDefaultStmt 
          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
          << UnhandledNames[0] << UnhandledNames[1];
        break;
      case 3:
        Diag(CondExpr->getExprLoc(), TheDefaultStmt
          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
        break;
      default:
        Diag(CondExpr->getExprLoc(), TheDefaultStmt
          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
          << (unsigned)UnhandledNames.size()
          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
        break;
      }

      if (!hasCasesNotInSwitch)
        SS->setAllEnumCasesCovered();
    }
  }

  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
                        diag::warn_empty_switch_body);

  // FIXME: If the case list was broken is some way, we don't have a good system
  // to patch it up.  Instead, just return the whole substmt as broken.
  if (CaseListIsErroneous)
    return StmtError();

  return Owned(SS);
}

StmtResult
Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
                     Decl *CondVar, Stmt *Body) {
  ExprResult CondResult(Cond.release());

  VarDecl *ConditionVar = 0;
  if (CondVar) {
    ConditionVar = cast<VarDecl>(CondVar);
    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
    if (CondResult.isInvalid())
      return StmtError();
  }
  Expr *ConditionExpr = CondResult.take();
  if (!ConditionExpr)
    return StmtError();

  DiagnoseUnusedExprResult(Body);

  if (isa<NullStmt>(Body))
    getCurCompoundScope().setHasEmptyLoopBodies();

  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
                                       Body, WhileLoc));
}

StmtResult
Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
                  SourceLocation WhileLoc, SourceLocation CondLParen,
                  Expr *Cond, SourceLocation CondRParen) {
  assert(Cond && "ActOnDoStmt(): missing expression");

  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
  if (CondResult.isInvalid() || CondResult.isInvalid())
    return StmtError();
  Cond = CondResult.take();

  CheckImplicitConversions(Cond, DoLoc);
  CondResult = MaybeCreateExprWithCleanups(Cond);
  if (CondResult.isInvalid())
    return StmtError();
  Cond = CondResult.take();

  DiagnoseUnusedExprResult(Body);

  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
}

StmtResult
Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
                   Stmt *First, FullExprArg second, Decl *secondVar,
                   FullExprArg third,
                   SourceLocation RParenLoc, Stmt *Body) {
  if (!getLangOpts().CPlusPlus) {
    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
      // declare identifiers for objects having storage class 'auto' or
      // 'register'.
      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
           DI!=DE; ++DI) {
        VarDecl *VD = dyn_cast<VarDecl>(*DI);
        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
          VD = 0;
        if (VD == 0)
          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
        // FIXME: mark decl erroneous!
      }
    }
  }

  ExprResult SecondResult(second.release());
  VarDecl *ConditionVar = 0;
  if (secondVar) {
    ConditionVar = cast<VarDecl>(secondVar);
    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
    if (SecondResult.isInvalid())
      return StmtError();
  }

  Expr *Third  = third.release().takeAs<Expr>();

  DiagnoseUnusedExprResult(First);
  DiagnoseUnusedExprResult(Third);
  DiagnoseUnusedExprResult(Body);

  if (isa<NullStmt>(Body))
    getCurCompoundScope().setHasEmptyLoopBodies();

  return Owned(new (Context) ForStmt(Context, First,
                                     SecondResult.take(), ConditionVar,
                                     Third, Body, ForLoc, LParenLoc,
                                     RParenLoc));
}

/// In an Objective C collection iteration statement:
///   for (x in y)
/// x can be an arbitrary l-value expression.  Bind it up as a
/// full-expression.
StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
  // Reduce placeholder expressions here.  Note that this rejects the
  // use of pseudo-object l-values in this position.
  ExprResult result = CheckPlaceholderExpr(E);
  if (result.isInvalid()) return StmtError();
  E = result.take();

  CheckImplicitConversions(E);

  result = MaybeCreateExprWithCleanups(E);
  if (result.isInvalid()) return StmtError();

  return Owned(static_cast<Stmt*>(result.take()));
}

ExprResult
Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
  assert(collection);

  // Bail out early if we've got a type-dependent expression.
  if (collection->isTypeDependent()) return Owned(collection);

  // Perform normal l-value conversion.
  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
  if (result.isInvalid())
    return ExprError();
  collection = result.take();

  // The operand needs to have object-pointer type.
  // TODO: should we do a contextual conversion?
  const ObjCObjectPointerType *pointerType =
    collection->getType()->getAs<ObjCObjectPointerType>();
  if (!pointerType)
    return Diag(forLoc, diag::err_collection_expr_type)
             << collection->getType() << collection->getSourceRange();

  // Check that the operand provides
  //   - countByEnumeratingWithState:objects:count:
  const ObjCObjectType *objectType = pointerType->getObjectType();
  ObjCInterfaceDecl *iface = objectType->getInterface();

  // If we have a forward-declared type, we can't do this check.
  // Under ARC, it is an error not to have a forward-declared class.
  if (iface && 
      RequireCompleteType(forLoc, QualType(objectType, 0),
                          getLangOpts().ObjCAutoRefCount
                            ? PDiag(diag::err_arc_collection_forward)
                                << collection->getSourceRange()
                          : PDiag(0))) {
    // Otherwise, if we have any useful type information, check that
    // the type declares the appropriate method.
  } else if (iface || !objectType->qual_empty()) {
    IdentifierInfo *selectorIdents[] = {
      &Context.Idents.get("countByEnumeratingWithState"),
      &Context.Idents.get("objects"),
      &Context.Idents.get("count")
    };
    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);

    ObjCMethodDecl *method = 0;

    // If there's an interface, look in both the public and private APIs.
    if (iface) {
      method = iface->lookupInstanceMethod(selector);
      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
    }

    // Also check protocol qualifiers.
    if (!method)
      method = LookupMethodInQualifiedType(selector, pointerType,
                                           /*instance*/ true);

    // If we didn't find it anywhere, give up.
    if (!method) {
      Diag(forLoc, diag::warn_collection_expr_type)
        << collection->getType() << selector << collection->getSourceRange();
    }

    // TODO: check for an incompatible signature?
  }

  // Wrap up any cleanups in the expression.
  return Owned(MaybeCreateExprWithCleanups(collection));
}

StmtResult
Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
                                 SourceLocation LParenLoc,
                                 Stmt *First, Expr *Second,
                                 SourceLocation RParenLoc, Stmt *Body) {
  if (First) {
    QualType FirstType;
    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
      if (!DS->isSingleDecl())
        return StmtError(Diag((*DS->decl_begin())->getLocation(),
                         diag::err_toomany_element_decls));

      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
      FirstType = D->getType();
      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
      // declare identifiers for objects having storage class 'auto' or
      // 'register'.
      if (!D->hasLocalStorage())
        return StmtError(Diag(D->getLocation(),
                              diag::err_non_variable_decl_in_for));
    } else {
      Expr *FirstE = cast<Expr>(First);
      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
        return StmtError(Diag(First->getLocStart(),
                   diag::err_selector_element_not_lvalue)
          << First->getSourceRange());

      FirstType = static_cast<Expr*>(First)->getType();
    }
    if (!FirstType->isDependentType() &&
        !FirstType->isObjCObjectPointerType() &&
        !FirstType->isBlockPointerType())
        Diag(ForLoc, diag::err_selector_element_type)
          << FirstType << First->getSourceRange();
  }

  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
                                                   ForLoc, RParenLoc));
}

namespace {

enum BeginEndFunction {
  BEF_begin,
  BEF_end
};

/// Build a variable declaration for a for-range statement.
static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
                                     QualType Type, const char *Name) {
  DeclContext *DC = SemaRef.CurContext;
  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
                                  TInfo, SC_Auto, SC_None);
  Decl->setImplicit();
  return Decl;
}

/// Finish building a variable declaration for a for-range statement.
/// \return true if an error occurs.
static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
                                  SourceLocation Loc, int diag) {
  // Deduce the type for the iterator variable now rather than leaving it to
  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
  TypeSourceInfo *InitTSI = 0;
  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
          Sema::DAR_Failed)
    SemaRef.Diag(Loc, diag) << Init->getType();
  if (!InitTSI) {
    Decl->setInvalidDecl();
    return true;
  }
  Decl->setTypeSourceInfo(InitTSI);
  Decl->setType(InitTSI->getType());

  // In ARC, infer lifetime.
  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
  // we're doing the equivalent of fast iteration.
  if (SemaRef.getLangOpts().ObjCAutoRefCount && 
      SemaRef.inferObjCARCLifetime(Decl))
    Decl->setInvalidDecl();

  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
                               /*TypeMayContainAuto=*/false);
  SemaRef.FinalizeDeclaration(Decl);
  SemaRef.CurContext->addHiddenDecl(Decl);
  return false;
}

/// Produce a note indicating which begin/end function was implicitly called
/// by a C++0x for-range statement. This is often not obvious from the code,
/// nor from the diagnostics produced when analysing the implicit expressions
/// required in a for-range statement.
void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
                                  BeginEndFunction BEF) {
  CallExpr *CE = dyn_cast<CallExpr>(E);
  if (!CE)
    return;
  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
  if (!D)
    return;
  SourceLocation Loc = D->getLocation();

  std::string Description;
  bool IsTemplate = false;
  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
    Description = SemaRef.getTemplateArgumentBindingsText(
      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
    IsTemplate = true;
  }

  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
    << BEF << IsTemplate << Description << E->getType();
}

/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
/// given LookupResult is non-empty, it is assumed to describe a member which
/// will be invoked. Otherwise, the function will be found via argument
/// dependent lookup.
static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
                                            SourceLocation Loc,
                                            VarDecl *Decl,
                                            BeginEndFunction BEF,
                                            const DeclarationNameInfo &NameInfo,
                                            LookupResult &MemberLookup,
                                            Expr *Range) {
  ExprResult CallExpr;
  if (!MemberLookup.empty()) {
    ExprResult MemberRef =
      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
                                       /*IsPtr=*/false, CXXScopeSpec(),
                                       /*TemplateKWLoc=*/SourceLocation(),
                                       /*FirstQualifierInScope=*/0,
                                       MemberLookup,
                                       /*TemplateArgs=*/0);
    if (MemberRef.isInvalid())
      return ExprError();
    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
                                     Loc, 0);
    if (CallExpr.isInvalid())
      return ExprError();
  } else {
    UnresolvedSet<0> FoundNames;
    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
    // std is an associated namespace.
    UnresolvedLookupExpr *Fn =
      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
                                   NestedNameSpecifierLoc(), NameInfo,
                                   /*NeedsADL=*/true, /*Overloaded=*/false,
                                   FoundNames.begin(), FoundNames.end(),
                                   /*LookInStdNamespace=*/true);
    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
                                               0, /*AllowTypoCorrection=*/false);
    if (CallExpr.isInvalid()) {
      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
        << Range->getType();
      return ExprError();
    }
  }
  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
                            diag::err_for_range_iter_deduction_failure)) {
    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
    return ExprError();
  }
  return CallExpr;
}

}

/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
///
/// C++0x [stmt.ranged]:
///   A range-based for statement is equivalent to
///
///   {
///     auto && __range = range-init;
///     for ( auto __begin = begin-expr,
///           __end = end-expr;
///           __begin != __end;
///           ++__begin ) {
///       for-range-declaration = *__begin;
///       statement
///     }
///   }
///
/// The body of the loop is not available yet, since it cannot be analysed until
/// we have determined the type of the for-range-declaration.
StmtResult
Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
                           SourceLocation RParenLoc) {
  if (!First || !Range)
    return StmtError();

  DeclStmt *DS = dyn_cast<DeclStmt>(First);
  assert(DS && "first part of for range not a decl stmt");

  if (!DS->isSingleDecl()) {
    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
    return StmtError();
  }
  if (DS->getSingleDecl()->isInvalidDecl())
    return StmtError();

  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
    return StmtError();

  // Build  auto && __range = range-init
  SourceLocation RangeLoc = Range->getLocStart();
  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
                                           Context.getAutoRRefDeductType(),
                                           "__range");
  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
                            diag::err_for_range_deduction_failure))
    return StmtError();

  // Claim the type doesn't contain auto: we've already done the checking.
  DeclGroupPtrTy RangeGroup =
    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
  if (RangeDecl.isInvalid())
    return StmtError();

  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
                              RParenLoc);
}

/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
StmtResult
Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
                           Expr *Inc, Stmt *LoopVarDecl,
                           SourceLocation RParenLoc) {
  Scope *S = getCurScope();

  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
  QualType RangeVarType = RangeVar->getType();

  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());

  StmtResult BeginEndDecl = BeginEnd;
  ExprResult NotEqExpr = Cond, IncrExpr = Inc;

  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
    SourceLocation RangeLoc = RangeVar->getLocation();

    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();

    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
                                                VK_LValue, ColonLoc);
    if (BeginRangeRef.isInvalid())
      return StmtError();

    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
                                              VK_LValue, ColonLoc);
    if (EndRangeRef.isInvalid())
      return StmtError();

    QualType AutoType = Context.getAutoDeductType();
    Expr *Range = RangeVar->getInit();
    if (!Range)
      return StmtError();
    QualType RangeType = Range->getType();

    if (RequireCompleteType(RangeLoc, RangeType,
                            PDiag(diag::err_for_range_incomplete_type)))
      return StmtError();

    // Build auto __begin = begin-expr, __end = end-expr.
    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
                                             "__begin");
    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
                                           "__end");

    // Build begin-expr and end-expr and attach to __begin and __end variables.
    ExprResult BeginExpr, EndExpr;
    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
      // - if _RangeT is an array type, begin-expr and end-expr are __range and
      //   __range + __bound, respectively, where __bound is the array bound. If
      //   _RangeT is an array of unknown size or an array of incomplete type,
      //   the program is ill-formed;

      // begin-expr is __range.
      BeginExpr = BeginRangeRef;
      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
                                diag::err_for_range_iter_deduction_failure)) {
        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
        return StmtError();
      }

      // Find the array bound.
      ExprResult BoundExpr;
      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
                                                 Context.getPointerDiffType(),
                                                 RangeLoc));
      else if (const VariableArrayType *VAT =
               dyn_cast<VariableArrayType>(UnqAT))
        BoundExpr = VAT->getSizeExpr();
      else {
        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
        // UnqAT is not incomplete and Range is not type-dependent.
        llvm_unreachable("Unexpected array type in for-range");
      }

      // end-expr is __range + __bound.
      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
                           BoundExpr.get());
      if (EndExpr.isInvalid())
        return StmtError();
      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
                                diag::err_for_range_iter_deduction_failure)) {
        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
        return StmtError();
      }
    } else {
      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
                                        ColonLoc);
      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
                                      ColonLoc);

      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);

      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
        // - if _RangeT is a class type, the unqualified-ids begin and end are
        //   looked up in the scope of class _RangeT as if by class member access
        //   lookup (3.4.5), and if either (or both) finds at least one
        //   declaration, begin-expr and end-expr are __range.begin() and
        //   __range.end(), respectively;
        LookupQualifiedName(BeginMemberLookup, D);
        LookupQualifiedName(EndMemberLookup, D);

        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
            << RangeType << BeginMemberLookup.empty();
          return StmtError();
        }
      } else {
        // - otherwise, begin-expr and end-expr are begin(__range) and
        //   end(__range), respectively, where begin and end are looked up with
        //   argument-dependent lookup (3.4.2). For the purposes of this name
        //   lookup, namespace std is an associated namespace.
      }

      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
                                            BEF_begin, BeginNameInfo,
                                            BeginMemberLookup,
                                            BeginRangeRef.get());
      if (BeginExpr.isInvalid())
        return StmtError();

      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
                                          BEF_end, EndNameInfo,
                                          EndMemberLookup, EndRangeRef.get());
      if (EndExpr.isInvalid())
        return StmtError();
    }

    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
    if (!Context.hasSameType(BeginType, EndType)) {
      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
        << BeginType << EndType;
      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
    }

    Decl *BeginEndDecls[] = { BeginVar, EndVar };
    // Claim the type doesn't contain auto: we've already done the checking.
    DeclGroupPtrTy BeginEndGroup =
      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);

    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
                                           VK_LValue, ColonLoc);
    if (BeginRef.isInvalid())
      return StmtError();

    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
                                         VK_LValue, ColonLoc);
    if (EndRef.isInvalid())
      return StmtError();

    // Build and check __begin != __end expression.
    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
                           BeginRef.get(), EndRef.get());
    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
    if (NotEqExpr.isInvalid()) {
      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
      if (!Context.hasSameType(BeginType, EndType))
        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
      return StmtError();
    }

    // Build and check ++__begin expression.
    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
                                VK_LValue, ColonLoc);
    if (BeginRef.isInvalid())
      return StmtError();

    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
    if (IncrExpr.isInvalid()) {
      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
      return StmtError();
    }

    // Build and check *__begin  expression.
    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
                                VK_LValue, ColonLoc);
    if (BeginRef.isInvalid())
      return StmtError();

    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
    if (DerefExpr.isInvalid()) {
      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
      return StmtError();
    }

    // Attach  *__begin  as initializer for VD.
    if (!LoopVar->isInvalidDecl()) {
      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
                           /*TypeMayContainAuto=*/true);
      if (LoopVar->isInvalidDecl())
        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
    }
  } else {
    // The range is implicitly used as a placeholder when it is dependent.
    RangeVar->setUsed();
  }

  return Owned(new (Context) CXXForRangeStmt(RangeDS,
                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
                                             NotEqExpr.take(), IncrExpr.take(),
                                             LoopVarDS, /*Body=*/0, ForLoc,
                                             ColonLoc, RParenLoc));
}

/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
/// body cannot be performed until after the type of the range variable is
/// determined.
StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
  if (!S || !B)
    return StmtError();

  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
  ForStmt->setBody(B);

  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
                        diag::warn_empty_range_based_for_body);

  return S;
}

StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
                               SourceLocation LabelLoc,
                               LabelDecl *TheDecl) {
  getCurFunction()->setHasBranchIntoScope();
  TheDecl->setUsed();
  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
}

StmtResult
Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
                            Expr *E) {
  // Convert operand to void*
  if (!E->isTypeDependent()) {
    QualType ETy = E->getType();
    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
    ExprResult ExprRes = Owned(E);
    AssignConvertType ConvTy =
      CheckSingleAssignmentConstraints(DestTy, ExprRes);
    if (ExprRes.isInvalid())
      return StmtError();
    E = ExprRes.take();
    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
      return StmtError();
    E = MaybeCreateExprWithCleanups(E);
  }

  getCurFunction()->setHasIndirectGoto();

  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
}

StmtResult
Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
  Scope *S = CurScope->getContinueParent();
  if (!S) {
    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
  }

  return Owned(new (Context) ContinueStmt(ContinueLoc));
}

StmtResult
Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
  Scope *S = CurScope->getBreakParent();
  if (!S) {
    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
  }

  return Owned(new (Context) BreakStmt(BreakLoc));
}

/// \brief Determine whether the given expression is a candidate for
/// copy elision in either a return statement or a throw expression.
///
/// \param ReturnType If we're determining the copy elision candidate for
/// a return statement, this is the return type of the function. If we're
/// determining the copy elision candidate for a throw expression, this will
/// be a NULL type.
///
/// \param E The expression being returned from the function or block, or
/// being thrown.
///
/// \param AllowFunctionParameter Whether we allow function parameters to
/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
/// we re-use this logic to determine whether we should try to move as part of
/// a return or throw (which does allow function parameters).
///
/// \returns The NRVO candidate variable, if the return statement may use the
/// NRVO, or NULL if there is no such candidate.
const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
                                             Expr *E,
                                             bool AllowFunctionParameter) {
  QualType ExprType = E->getType();
  // - in a return statement in a function with ...
  // ... a class return type ...
  if (!ReturnType.isNull()) {
    if (!ReturnType->isRecordType())
      return 0;
    // ... the same cv-unqualified type as the function return type ...
    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
      return 0;
  }

  // ... the expression is the name of a non-volatile automatic object
  // (other than a function or catch-clause parameter)) ...
  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
  if (!DR)
    return 0;
  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
  if (!VD)
    return 0;

  // ...object (other than a function or catch-clause parameter)...
  if (VD->getKind() != Decl::Var &&
      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
    return 0;
  if (VD->isExceptionVariable()) return 0;

  // ...automatic...
  if (!VD->hasLocalStorage()) return 0;

  // ...non-volatile...
  if (VD->getType().isVolatileQualified()) return 0;
  if (VD->getType()->isReferenceType()) return 0;

  // __block variables can't be allocated in a way that permits NRVO.
  if (VD->hasAttr<BlocksAttr>()) return 0;

  // Variables with higher required alignment than their type's ABI
  // alignment cannot use NRVO.
  if (VD->hasAttr<AlignedAttr>() &&
      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
    return 0;

  return VD;
}

/// \brief Perform the initialization of a potentially-movable value, which
/// is the result of return value.
///
/// This routine implements C++0x [class.copy]p33, which attempts to treat
/// returned lvalues as rvalues in certain cases (to prefer move construction),
/// then falls back to treating them as lvalues if that failed.
ExprResult
Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
                                      const VarDecl *NRVOCandidate,
                                      QualType ResultType,
                                      Expr *Value,
                                      bool AllowNRVO) {
  // C++0x [class.copy]p33:
  //   When the criteria for elision of a copy operation are met or would
  //   be met save for the fact that the source object is a function
  //   parameter, and the object to be copied is designated by an lvalue,
  //   overload resolution to select the constructor for the copy is first
  //   performed as if the object were designated by an rvalue.
  ExprResult Res = ExprError();
  if (AllowNRVO &&
      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
                              Value->getType(), CK_LValueToRValue,
                              Value, VK_XValue);

    Expr *InitExpr = &AsRvalue;
    InitializationKind Kind
      = InitializationKind::CreateCopy(Value->getLocStart(),
                                       Value->getLocStart());
    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);

    //   [...] If overload resolution fails, or if the type of the first
    //   parameter of the selected constructor is not an rvalue reference
    //   to the object's type (possibly cv-qualified), overload resolution
    //   is performed again, considering the object as an lvalue.
    if (Seq) {
      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
           StepEnd = Seq.step_end();
           Step != StepEnd; ++Step) {
        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
          continue;

        CXXConstructorDecl *Constructor
        = cast<CXXConstructorDecl>(Step->Function.Function);

        const RValueReferenceType *RRefType
          = Constructor->getParamDecl(0)->getType()
                                                 ->getAs<RValueReferenceType>();

        // If we don't meet the criteria, break out now.
        if (!RRefType ||
            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
                            Context.getTypeDeclType(Constructor->getParent())))
          break;

        // Promote "AsRvalue" to the heap, since we now need this
        // expression node to persist.
        Value = ImplicitCastExpr::Create(Context, Value->getType(),
                                         CK_LValueToRValue, Value, 0,
                                         VK_XValue);

        // Complete type-checking the initialization of the return type
        // using the constructor we found.
        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
      }
    }
  }

  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
  // above, or overload resolution failed. Either way, we need to try
  // (again) now with the return value expression as written.
  if (Res.isInvalid())
    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);

  return Res;
}

/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
/// for capturing scopes.
///
StmtResult
Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
  // If this is the first return we've seen, infer the return type.
  // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
  // rules which allows multiple return statements.
  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
  if (CurCap->HasImplicitReturnType) {
    QualType ReturnT;
    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
      if (Result.isInvalid())
        return StmtError();
      RetValExp = Result.take();

      if (!RetValExp->isTypeDependent())
        ReturnT = RetValExp->getType();
      else
        ReturnT = Context.DependentTy;
    } else { 
      if (RetValExp) {
        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
        // initializer list, because it is not an expression (even
        // though we represent it as one). We still deduce 'void'.
        Diag(ReturnLoc, diag::err_lambda_return_init_list)
          << RetValExp->getSourceRange();
      }

      ReturnT = Context.VoidTy;
    }
    // We require the return types to strictly match here.
    if (!CurCap->ReturnType.isNull() &&
        !CurCap->ReturnType->isDependentType() &&
        !ReturnT->isDependentType() &&
        !Context.hasSameType(ReturnT, CurCap->ReturnType)) { 
      Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible) 
          << ReturnT << CurCap->ReturnType
          << (getCurLambda() != 0);
      return StmtError();
    }
    CurCap->ReturnType = ReturnT;
  }
  QualType FnRetType = CurCap->ReturnType;
  assert(!FnRetType.isNull());

  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
      return StmtError();
    }
  } else {
    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
    if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
      return StmtError();
    }
  }

  // Otherwise, verify that this result type matches the previous one.  We are
  // pickier with blocks than for normal functions because we don't have GCC
  // compatibility to worry about here.
  const VarDecl *NRVOCandidate = 0;
  if (FnRetType->isDependentType()) {
    // Delay processing for now.  TODO: there are lots of dependent
    // types we can conclusively prove aren't void.
  } else if (FnRetType->isVoidType()) {
    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
        !(getLangOpts().CPlusPlus &&
          (RetValExp->isTypeDependent() ||
           RetValExp->getType()->isVoidType()))) {
      if (!getLangOpts().CPlusPlus &&
          RetValExp->getType()->isVoidType())
        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
      else {
        Diag(ReturnLoc, diag::err_return_block_has_expr);
        RetValExp = 0;
      }
    }
  } else if (!RetValExp) {
    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
  } else if (!RetValExp->isTypeDependent()) {
    // we have a non-void block with an expression, continue checking

    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
    // function return.

    // In C++ the return statement is handled via a copy initialization.
    // the C version of which boils down to CheckSingleAssignmentConstraints.
    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
                                                                   FnRetType,
                                                          NRVOCandidate != 0);
    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
                                                     FnRetType, RetValExp);
    if (Res.isInvalid()) {
      // FIXME: Cleanup temporaries here, anyway?
      return StmtError();
    }
    RetValExp = Res.take();
    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
  }

  if (RetValExp) {
    CheckImplicitConversions(RetValExp, ReturnLoc);
    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
  }
  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
                                                NRVOCandidate);

  // If we need to check for the named return value optimization, save the
  // return statement in our scope for later processing.
  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() && 
      !CurContext->isDependentContext())
    FunctionScopes.back()->Returns.push_back(Result);

  return Owned(Result);
}

StmtResult
Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
  // Check for unexpanded parameter packs.
  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
    return StmtError();
  
  if (isa<CapturingScopeInfo>(getCurFunction()))
    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);

  QualType FnRetType;
  QualType RelatedRetType;
  if (const FunctionDecl *FD = getCurFunctionDecl()) {
    FnRetType = FD->getResultType();
    if (FD->hasAttr<NoReturnAttr>() ||
        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
        << FD->getDeclName();
  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
    FnRetType = MD->getResultType();
    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
      // In the implementation of a method with a related return type, the
      // type used to type-check the validity of return statements within the 
      // method body is a pointer to the type of the class being implemented.
      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
    }
  } else // If we don't have a function/method context, bail.
    return StmtError();

  ReturnStmt *Result = 0;
  if (FnRetType->isVoidType()) {
    if (RetValExp) {
      if (isa<InitListExpr>(RetValExp)) {
        // We simply never allow init lists as the return value of void
        // functions. This is compatible because this was never allowed before,
        // so there's no legacy code to deal with.
        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
        int FunctionKind = 0;
        if (isa<ObjCMethodDecl>(CurDecl))
          FunctionKind = 1;
        else if (isa<CXXConstructorDecl>(CurDecl))
          FunctionKind = 2;
        else if (isa<CXXDestructorDecl>(CurDecl))
          FunctionKind = 3;

        Diag(ReturnLoc, diag::err_return_init_list)
          << CurDecl->getDeclName() << FunctionKind
          << RetValExp->getSourceRange();

        // Drop the expression.
        RetValExp = 0;
      } else if (!RetValExp->isTypeDependent()) {
        // C99 6.8.6.4p1 (ext_ since GCC warns)
        unsigned D = diag::ext_return_has_expr;
        if (RetValExp->getType()->isVoidType())
          D = diag::ext_return_has_void_expr;
        else {
          ExprResult Result = Owned(RetValExp);
          Result = IgnoredValueConversions(Result.take());
          if (Result.isInvalid())
            return StmtError();
          RetValExp = Result.take();
          RetValExp = ImpCastExprToType(RetValExp,
                                        Context.VoidTy, CK_ToVoid).take();
        }

        // return (some void expression); is legal in C++.
        if (D != diag::ext_return_has_void_expr ||
            !getLangOpts().CPlusPlus) {
          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();

          int FunctionKind = 0;
          if (isa<ObjCMethodDecl>(CurDecl))
            FunctionKind = 1;
          else if (isa<CXXConstructorDecl>(CurDecl))
            FunctionKind = 2;
          else if (isa<CXXDestructorDecl>(CurDecl))
            FunctionKind = 3;

          Diag(ReturnLoc, D)
            << CurDecl->getDeclName() << FunctionKind
            << RetValExp->getSourceRange();
        }
      }

      if (RetValExp) {
        CheckImplicitConversions(RetValExp, ReturnLoc);
        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
      }
    }

    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
  } else if (!RetValExp && !FnRetType->isDependentType()) {
    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
    // C99 6.8.6.4p1 (ext_ since GCC warns)
    if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;

    if (FunctionDecl *FD = getCurFunctionDecl())
      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
    else
      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
    Result = new (Context) ReturnStmt(ReturnLoc);
  } else {
    const VarDecl *NRVOCandidate = 0;
    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
      // we have a non-void function with an expression, continue checking

      if (!RelatedRetType.isNull()) {
        // If we have a related result type, perform an extra conversion here.
        // FIXME: The diagnostics here don't really describe what is happening.
        InitializedEntity Entity =
            InitializedEntity::InitializeTemporary(RelatedRetType);
        
        ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(),
                                                   RetValExp);
        if (Res.isInvalid()) {
          // FIXME: Cleanup temporaries here, anyway?
          return StmtError();
        }
        RetValExp = Res.takeAs<Expr>();
      }

      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
      // function return.

      // In C++ the return statement is handled via a copy initialization,
      // the C version of which boils down to CheckSingleAssignmentConstraints.
      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
                                                                     FnRetType,
                                                            NRVOCandidate != 0);
      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
                                                       FnRetType, RetValExp);
      if (Res.isInvalid()) {
        // FIXME: Cleanup temporaries here, anyway?
        return StmtError();
      }

      RetValExp = Res.takeAs<Expr>();
      if (RetValExp)
        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
    }

    if (RetValExp) {
      CheckImplicitConversions(RetValExp, ReturnLoc);
      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
    }
    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
  }

  // If we need to check for the named return value optimization, save the
  // return statement in our scope for later processing.
  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
      !CurContext->isDependentContext())
    FunctionScopes.back()->Returns.push_back(Result);
  
  return Owned(Result);
}

/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
/// ignore "noop" casts in places where an lvalue is required by an inline asm.
/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
/// provide a strong guidance to not use it.
///
/// This method checks to see if the argument is an acceptable l-value and
/// returns false if it is a case we can handle.
static bool CheckAsmLValue(const Expr *E, Sema &S) {
  // Type dependent expressions will be checked during instantiation.
  if (E->isTypeDependent())
    return false;

  if (E->isLValue())
    return false;  // Cool, this is an lvalue.

  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
  // are supposed to allow.
  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
  if (E != E2 && E2->isLValue()) {
    if (!S.getLangOpts().HeinousExtensions)
      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
        << E->getSourceRange();
    else
      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
        << E->getSourceRange();
    // Accept, even if we emitted an error diagnostic.
    return false;
  }

  // None of the above, just randomly invalid non-lvalue.
  return true;
}

/// isOperandMentioned - Return true if the specified operand # is mentioned
/// anywhere in the decomposed asm string.
static bool isOperandMentioned(unsigned OpNo, 
                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
    if (!Piece.isOperand()) continue;
    
    // If this is a reference to the input and if the input was the smaller
    // one, then we have to reject this asm.
    if (Piece.getOperandNo() == OpNo)
      return true;
  }
 
  return false;
}

StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
                              bool IsVolatile, unsigned NumOutputs,
                              unsigned NumInputs, IdentifierInfo **Names,
                              MultiExprArg constraints, MultiExprArg exprs,
                              Expr *asmString, MultiExprArg clobbers,
                              SourceLocation RParenLoc, bool MSAsm) {
  unsigned NumClobbers = clobbers.size();
  StringLiteral **Constraints =
    reinterpret_cast<StringLiteral**>(constraints.get());
  Expr **Exprs = exprs.get();
  StringLiteral *AsmString = cast<StringLiteral>(asmString);
  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());

  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;

  // The parser verifies that there is a string literal here.
  if (!AsmString->isAscii())
    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
      << AsmString->getSourceRange());

  for (unsigned i = 0; i != NumOutputs; i++) {
    StringLiteral *Literal = Constraints[i];
    if (!Literal->isAscii())
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
        << Literal->getSourceRange());

    StringRef OutputName;
    if (Names[i])
      OutputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
    if (!Context.getTargetInfo().validateOutputConstraint(Info))
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_output_constraint)
                       << Info.getConstraintStr());

    // Check that the output exprs are valid lvalues.
    Expr *OutputExpr = Exprs[i];
    if (CheckAsmLValue(OutputExpr, *this)) {
      return StmtError(Diag(OutputExpr->getLocStart(),
                  diag::err_asm_invalid_lvalue_in_output)
        << OutputExpr->getSourceRange());
    }

    OutputConstraintInfos.push_back(Info);
  }

  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;

  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
    StringLiteral *Literal = Constraints[i];
    if (!Literal->isAscii())
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
        << Literal->getSourceRange());

    StringRef InputName;
    if (Names[i])
      InputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
                                                NumOutputs, Info)) {
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_input_constraint)
                       << Info.getConstraintStr());
    }

    Expr *InputExpr = Exprs[i];

    // Only allow void types for memory constraints.
    if (Info.allowsMemory() && !Info.allowsRegister()) {
      if (CheckAsmLValue(InputExpr, *this))
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_lvalue_in_input)
                         << Info.getConstraintStr()
                         << InputExpr->getSourceRange());
    }

    if (Info.allowsRegister()) {
      if (InputExpr->getType()->isVoidType()) {
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_type_in_input)
          << InputExpr->getType() << Info.getConstraintStr()
          << InputExpr->getSourceRange());
      }
    }

    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
    if (Result.isInvalid())
      return StmtError();

    Exprs[i] = Result.take();
    InputConstraintInfos.push_back(Info);
  }

  // Check that the clobbers are valid.
  for (unsigned i = 0; i != NumClobbers; i++) {
    StringLiteral *Literal = Clobbers[i];
    if (!Literal->isAscii())
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
        << Literal->getSourceRange());

    StringRef Clobber = Literal->getString();

    if (!Context.getTargetInfo().isValidClobber(Clobber))
      return StmtError(Diag(Literal->getLocStart(),
                  diag::err_asm_unknown_register_name) << Clobber);
  }

  AsmStmt *NS =
    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
                          NumOutputs, NumInputs, Names, Constraints, Exprs,
                          AsmString, NumClobbers, Clobbers, RParenLoc);
  // Validate the asm string, ensuring it makes sense given the operands we
  // have.
  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
  unsigned DiagOffs;
  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
           << AsmString->getSourceRange();
    return StmtError();
  }

  // Validate tied input operands for type mismatches.
  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];

    // If this is a tied constraint, verify that the output and input have
    // either exactly the same type, or that they are int/ptr operands with the
    // same size (int/long, int*/long, are ok etc).
    if (!Info.hasTiedOperand()) continue;

    unsigned TiedTo = Info.getTiedOperand();
    unsigned InputOpNo = i+NumOutputs;
    Expr *OutputExpr = Exprs[TiedTo];
    Expr *InputExpr = Exprs[InputOpNo];

    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
      continue;

    QualType InTy = InputExpr->getType();
    QualType OutTy = OutputExpr->getType();
    if (Context.hasSameType(InTy, OutTy))
      continue;  // All types can be tied to themselves.

    // Decide if the input and output are in the same domain (integer/ptr or
    // floating point.
    enum AsmDomain {
      AD_Int, AD_FP, AD_Other
    } InputDomain, OutputDomain;

    if (InTy->isIntegerType() || InTy->isPointerType())
      InputDomain = AD_Int;
    else if (InTy->isRealFloatingType())
      InputDomain = AD_FP;
    else
      InputDomain = AD_Other;

    if (OutTy->isIntegerType() || OutTy->isPointerType())
      OutputDomain = AD_Int;
    else if (OutTy->isRealFloatingType())
      OutputDomain = AD_FP;
    else
      OutputDomain = AD_Other;

    // They are ok if they are the same size and in the same domain.  This
    // allows tying things like:
    //   void* to int*
    //   void* to int            if they are the same size.
    //   double to long double   if they are the same size.
    //
    uint64_t OutSize = Context.getTypeSize(OutTy);
    uint64_t InSize = Context.getTypeSize(InTy);
    if (OutSize == InSize && InputDomain == OutputDomain &&
        InputDomain != AD_Other)
      continue;

    // If the smaller input/output operand is not mentioned in the asm string,
    // then we can promote the smaller one to a larger input and the asm string
    // won't notice.
    bool SmallerValueMentioned = false;
    
    // If this is a reference to the input and if the input was the smaller
    // one, then we have to reject this asm.
    if (isOperandMentioned(InputOpNo, Pieces)) {
      // This is a use in the asm string of the smaller operand.  Since we
      // codegen this by promoting to a wider value, the asm will get printed
      // "wrong".
      SmallerValueMentioned |= InSize < OutSize;
    }
    if (isOperandMentioned(TiedTo, Pieces)) {
      // If this is a reference to the output, and if the output is the larger
      // value, then it's ok because we'll promote the input to the larger type.
      SmallerValueMentioned |= OutSize < InSize;
    }

    // If the smaller value wasn't mentioned in the asm string, and if the
    // output was a register, just extend the shorter one to the size of the
    // larger one.
    if (!SmallerValueMentioned && InputDomain != AD_Other &&
        OutputConstraintInfos[TiedTo].allowsRegister())
      continue;
    
    // Either both of the operands were mentioned or the smaller one was
    // mentioned.  One more special case that we'll allow: if the tied input is
    // integer, unmentioned, and is a constant, then we'll allow truncating it
    // down to the size of the destination.
    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
        !isOperandMentioned(InputOpNo, Pieces) &&
        InputExpr->isEvaluatable(Context)) {
      CastKind castKind =
        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
      Exprs[InputOpNo] = InputExpr;
      NS->setInputExpr(i, InputExpr);
      continue;
    }
    
    Diag(InputExpr->getLocStart(),
         diag::err_asm_tying_incompatible_types)
      << InTy << OutTy << OutputExpr->getSourceRange()
      << InputExpr->getSourceRange();
    return StmtError();
  }

  return Owned(NS);
}

StmtResult
Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
                           SourceLocation RParen, Decl *Parm,
                           Stmt *Body) {
  VarDecl *Var = cast_or_null<VarDecl>(Parm);
  if (Var && Var->isInvalidDecl())
    return StmtError();

  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
}

StmtResult
Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
}

StmtResult
Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
                         MultiStmtArg CatchStmts, Stmt *Finally) {
  if (!getLangOpts().ObjCExceptions)
    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";

  getCurFunction()->setHasBranchProtectedScope();
  unsigned NumCatchStmts = CatchStmts.size();
  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
                                     CatchStmts.release(),
                                     NumCatchStmts,
                                     Finally));
}

StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
                                                  Expr *Throw) {
  if (Throw) {
    Throw = MaybeCreateExprWithCleanups(Throw);
    ExprResult Result = DefaultLvalueConversion(Throw);
    if (Result.isInvalid())
      return StmtError();

    Throw = Result.take();
    QualType ThrowType = Throw->getType();
    // Make sure the expression type is an ObjC pointer or "void *".
    if (!ThrowType->isDependentType() &&
        !ThrowType->isObjCObjectPointerType()) {
      const PointerType *PT = ThrowType->getAs<PointerType>();
      if (!PT || !PT->getPointeeType()->isVoidType())
        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
                         << Throw->getType() << Throw->getSourceRange());
    }
  }

  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
}

StmtResult
Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
                           Scope *CurScope) {
  if (!getLangOpts().ObjCExceptions)
    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";

  if (!Throw) {
    // @throw without an expression designates a rethrow (which much occur
    // in the context of an @catch clause).
    Scope *AtCatchParent = CurScope;
    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
      AtCatchParent = AtCatchParent->getParent();
    if (!AtCatchParent)
      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
  }
  
  return BuildObjCAtThrowStmt(AtLoc, Throw);
}

ExprResult
Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
  ExprResult result = DefaultLvalueConversion(operand);
  if (result.isInvalid())
    return ExprError();
  operand = result.take();

  // Make sure the expression type is an ObjC pointer or "void *".
  QualType type = operand->getType();
  if (!type->isDependentType() &&
      !type->isObjCObjectPointerType()) {
    const PointerType *pointerType = type->getAs<PointerType>();
    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
               << type << operand->getSourceRange();
  }

  // The operand to @synchronized is a full-expression.
  return MaybeCreateExprWithCleanups(operand);
}

StmtResult
Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
                                  Stmt *SyncBody) {
  // We can't jump into or indirect-jump out of a @synchronized block.
  getCurFunction()->setHasBranchProtectedScope();
  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
}

/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
/// and creates a proper catch handler from them.
StmtResult
Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
                         Stmt *HandlerBlock) {
  // There's nothing to test that ActOnExceptionDecl didn't already test.
  return Owned(new (Context) CXXCatchStmt(CatchLoc,
                                          cast_or_null<VarDecl>(ExDecl),
                                          HandlerBlock));
}

StmtResult
Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
  getCurFunction()->setHasBranchProtectedScope();
  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
}

namespace {

class TypeWithHandler {
  QualType t;
  CXXCatchStmt *stmt;
public:
  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
  : t(type), stmt(statement) {}

  // An arbitrary order is fine as long as it places identical
  // types next to each other.
  bool operator<(const TypeWithHandler &y) const {
    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
      return true;
    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
      return false;
    else
      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
  }

  bool operator==(const TypeWithHandler& other) const {
    return t == other.t;
  }

  CXXCatchStmt *getCatchStmt() const { return stmt; }
  SourceLocation getTypeSpecStartLoc() const {
    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
  }
};

}

/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
/// handlers and creates a try statement from them.
StmtResult
Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
                       MultiStmtArg RawHandlers) {
  // Don't report an error if 'try' is used in system headers.
  if (!getLangOpts().CXXExceptions &&
      !getSourceManager().isInSystemHeader(TryLoc))
      Diag(TryLoc, diag::err_exceptions_disabled) << "try";

  unsigned NumHandlers = RawHandlers.size();
  assert(NumHandlers > 0 &&
         "The parser shouldn't call this if there are no handlers.");
  Stmt **Handlers = RawHandlers.get();

  SmallVector<TypeWithHandler, 8> TypesWithHandlers;

  for (unsigned i = 0; i < NumHandlers; ++i) {
    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
    if (!Handler->getExceptionDecl()) {
      if (i < NumHandlers - 1)
        return StmtError(Diag(Handler->getLocStart(),
                              diag::err_early_catch_all));

      continue;
    }

    const QualType CaughtType = Handler->getCaughtType();
    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
  }

  // Detect handlers for the same type as an earlier one.
  if (NumHandlers > 1) {
    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());

    TypeWithHandler prev = TypesWithHandlers[0];
    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
      TypeWithHandler curr = TypesWithHandlers[i];

      if (curr == prev) {
        Diag(curr.getTypeSpecStartLoc(),
             diag::warn_exception_caught_by_earlier_handler)
          << curr.getCatchStmt()->getCaughtType().getAsString();
        Diag(prev.getTypeSpecStartLoc(),
             diag::note_previous_exception_handler)
          << prev.getCatchStmt()->getCaughtType().getAsString();
      }

      prev = curr;
    }
  }

  getCurFunction()->setHasBranchProtectedScope();

  // FIXME: We should detect handlers that cannot catch anything because an
  // earlier handler catches a superclass. Need to find a method that is not
  // quadratic for this.
  // Neither of these are explicitly forbidden, but every compiler detects them
  // and warns.

  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
                                  Handlers, NumHandlers));
}

StmtResult
Sema::ActOnSEHTryBlock(bool IsCXXTry,
                       SourceLocation TryLoc,
                       Stmt *TryBlock,
                       Stmt *Handler) {
  assert(TryBlock && Handler);

  getCurFunction()->setHasBranchProtectedScope();

  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
}

StmtResult
Sema::ActOnSEHExceptBlock(SourceLocation Loc,
                          Expr *FilterExpr,
                          Stmt *Block) {
  assert(FilterExpr && Block);

  if(!FilterExpr->getType()->isIntegerType()) {
    return StmtError(Diag(FilterExpr->getExprLoc(),
                     diag::err_filter_expression_integral)
                     << FilterExpr->getType());
  }

  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
}

StmtResult
Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
                           Stmt *Block) {
  assert(Block);
  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
}

StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
                                            bool IsIfExists,
                                            NestedNameSpecifierLoc QualifierLoc,
                                            DeclarationNameInfo NameInfo,
                                            Stmt *Nested)
{
  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
                                             QualifierLoc, NameInfo, 
                                             cast<CompoundStmt>(Nested));
}


StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, 
                                            bool IsIfExists,
                                            CXXScopeSpec &SS, 
                                            UnqualifiedId &Name,
                                            Stmt *Nested) {
  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, 
                                    SS.getWithLocInContext(Context),
                                    GetNameFromUnqualifiedId(Name),
                                    Nested);
}