summaryrefslogtreecommitdiff
path: root/clang/lib/CodeGen/CGExprCXX.cpp
blob: c69c8830c1e8823b301dd3fb70a52911c2774987 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with code generation of C++ expressions
//
//===----------------------------------------------------------------------===//

#include "clang/Frontend/CodeGenOptions.h"
#include "CodeGenFunction.h"
#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CGObjCRuntime.h"
#include "CGDebugInfo.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/CallSite.h"

using namespace clang;
using namespace CodeGen;

RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
                                          llvm::Value *Callee,
                                          ReturnValueSlot ReturnValue,
                                          llvm::Value *This,
                                          llvm::Value *VTT,
                                          CallExpr::const_arg_iterator ArgBeg,
                                          CallExpr::const_arg_iterator ArgEnd) {
  assert(MD->isInstance() &&
         "Trying to emit a member call expr on a static method!");

  CallArgList Args;

  // Push the this ptr.
  Args.add(RValue::get(This), MD->getThisType(getContext()));

  // If there is a VTT parameter, emit it.
  if (VTT) {
    QualType T = getContext().getPointerType(getContext().VoidPtrTy);
    Args.add(RValue::get(VTT), T);
  }

  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
  
  // And the rest of the call args.
  EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);

  return EmitCall(CGM.getTypes().arrangeFunctionCall(FPT->getResultType(), Args,
                                                     FPT->getExtInfo(),
                                                     required),
                  Callee, ReturnValue, Args, MD);
}

static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
  const Expr *E = Base;
  
  while (true) {
    E = E->IgnoreParens();
    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
      if (CE->getCastKind() == CK_DerivedToBase || 
          CE->getCastKind() == CK_UncheckedDerivedToBase ||
          CE->getCastKind() == CK_NoOp) {
        E = CE->getSubExpr();
        continue;
      }
    }

    break;
  }

  QualType DerivedType = E->getType();
  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
    DerivedType = PTy->getPointeeType();

  return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
}

// FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
// quite what we want.
static const Expr *skipNoOpCastsAndParens(const Expr *E) {
  while (true) {
    if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
      E = PE->getSubExpr();
      continue;
    }

    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
      if (CE->getCastKind() == CK_NoOp) {
        E = CE->getSubExpr();
        continue;
      }
    }
    if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
      if (UO->getOpcode() == UO_Extension) {
        E = UO->getSubExpr();
        continue;
      }
    }
    return E;
  }
}

/// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
/// expr can be devirtualized.
static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
                                               const Expr *Base, 
                                               const CXXMethodDecl *MD) {
  
  // When building with -fapple-kext, all calls must go through the vtable since
  // the kernel linker can do runtime patching of vtables.
  if (Context.getLangOpts().AppleKext)
    return false;

  // If the most derived class is marked final, we know that no subclass can
  // override this member function and so we can devirtualize it. For example:
  //
  // struct A { virtual void f(); }
  // struct B final : A { };
  //
  // void f(B *b) {
  //   b->f();
  // }
  //
  const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
  if (MostDerivedClassDecl->hasAttr<FinalAttr>())
    return true;

  // If the member function is marked 'final', we know that it can't be
  // overridden and can therefore devirtualize it.
  if (MD->hasAttr<FinalAttr>())
    return true;

  // Similarly, if the class itself is marked 'final' it can't be overridden
  // and we can therefore devirtualize the member function call.
  if (MD->getParent()->hasAttr<FinalAttr>())
    return true;

  Base = skipNoOpCastsAndParens(Base);
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
      // This is a record decl. We know the type and can devirtualize it.
      return VD->getType()->isRecordType();
    }
    
    return false;
  }
  
  // We can always devirtualize calls on temporary object expressions.
  if (isa<CXXConstructExpr>(Base))
    return true;
  
  // And calls on bound temporaries.
  if (isa<CXXBindTemporaryExpr>(Base))
    return true;
  
  // Check if this is a call expr that returns a record type.
  if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
    return CE->getCallReturnType()->isRecordType();

  // We can't devirtualize the call.
  return false;
}

// Note: This function also emit constructor calls to support a MSVC
// extensions allowing explicit constructor function call.
RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
                                              ReturnValueSlot ReturnValue) {
  const Expr *callee = CE->getCallee()->IgnoreParens();

  if (isa<BinaryOperator>(callee))
    return EmitCXXMemberPointerCallExpr(CE, ReturnValue);

  const MemberExpr *ME = cast<MemberExpr>(callee);
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());

  CGDebugInfo *DI = getDebugInfo();
  if (DI && CGM.getCodeGenOpts().LimitDebugInfo
      && !isa<CallExpr>(ME->getBase())) {
    QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
      DI->getOrCreateRecordType(PTy->getPointeeType(), 
                                MD->getParent()->getLocation());
    }
  }

  if (MD->isStatic()) {
    // The method is static, emit it as we would a regular call.
    llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
    return EmitCall(getContext().getPointerType(MD->getType()), Callee,
                    ReturnValue, CE->arg_begin(), CE->arg_end());
  }

  // Compute the object pointer.
  llvm::Value *This;
  if (ME->isArrow())
    This = EmitScalarExpr(ME->getBase());
  else
    This = EmitLValue(ME->getBase()).getAddress();

  if (MD->isTrivial()) {
    if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
    if (isa<CXXConstructorDecl>(MD) && 
        cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
      return RValue::get(0);

    if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
      // We don't like to generate the trivial copy/move assignment operator
      // when it isn't necessary; just produce the proper effect here.
      llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
      EmitAggregateCopy(This, RHS, CE->getType());
      return RValue::get(This);
    }
    
    if (isa<CXXConstructorDecl>(MD) && 
        cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
      // Trivial move and copy ctor are the same.
      llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
      EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
                                     CE->arg_begin(), CE->arg_end());
      return RValue::get(This);
    }
    llvm_unreachable("unknown trivial member function");
  }

  // Compute the function type we're calling.
  const CGFunctionInfo *FInfo = 0;
  if (isa<CXXDestructorDecl>(MD))
    FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD),
                                                 Dtor_Complete);
  else if (isa<CXXConstructorDecl>(MD))
    FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(
                                                 cast<CXXConstructorDecl>(MD),
                                                 Ctor_Complete);
  else
    FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD);

  llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo);

  // C++ [class.virtual]p12:
  //   Explicit qualification with the scope operator (5.1) suppresses the
  //   virtual call mechanism.
  //
  // We also don't emit a virtual call if the base expression has a record type
  // because then we know what the type is.
  bool UseVirtualCall;
  UseVirtualCall = MD->isVirtual() && !ME->hasQualifier()
                   && !canDevirtualizeMemberFunctionCalls(getContext(),
                                                          ME->getBase(), MD);
  llvm::Value *Callee;
  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
    if (UseVirtualCall) {
      Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
    } else {
      if (getContext().getLangOpts().AppleKext &&
          MD->isVirtual() &&
          ME->hasQualifier())
        Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
      else
        Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
    }
  } else if (const CXXConstructorDecl *Ctor =
               dyn_cast<CXXConstructorDecl>(MD)) {
    Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
  } else if (UseVirtualCall) {
      Callee = BuildVirtualCall(MD, This, Ty); 
  } else {
    if (getContext().getLangOpts().AppleKext &&
        MD->isVirtual() &&
        ME->hasQualifier())
      Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
    else 
      Callee = CGM.GetAddrOfFunction(MD, Ty);
  }

  return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
                           CE->arg_begin(), CE->arg_end());
}

RValue
CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
                                              ReturnValueSlot ReturnValue) {
  const BinaryOperator *BO =
      cast<BinaryOperator>(E->getCallee()->IgnoreParens());
  const Expr *BaseExpr = BO->getLHS();
  const Expr *MemFnExpr = BO->getRHS();
  
  const MemberPointerType *MPT = 
    MemFnExpr->getType()->castAs<MemberPointerType>();

  const FunctionProtoType *FPT = 
    MPT->getPointeeType()->castAs<FunctionProtoType>();
  const CXXRecordDecl *RD = 
    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());

  // Get the member function pointer.
  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);

  // Emit the 'this' pointer.
  llvm::Value *This;
  
  if (BO->getOpcode() == BO_PtrMemI)
    This = EmitScalarExpr(BaseExpr);
  else 
    This = EmitLValue(BaseExpr).getAddress();

  // Ask the ABI to load the callee.  Note that This is modified.
  llvm::Value *Callee =
    CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
  
  CallArgList Args;

  QualType ThisType = 
    getContext().getPointerType(getContext().getTagDeclType(RD));

  // Push the this ptr.
  Args.add(RValue::get(This), ThisType);
  
  // And the rest of the call args
  EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
  return EmitCall(CGM.getTypes().arrangeFunctionCall(Args, FPT), Callee, 
                  ReturnValue, Args);
}

RValue
CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
                                               const CXXMethodDecl *MD,
                                               ReturnValueSlot ReturnValue) {
  assert(MD->isInstance() &&
         "Trying to emit a member call expr on a static method!");
  LValue LV = EmitLValue(E->getArg(0));
  llvm::Value *This = LV.getAddress();

  if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
      MD->isTrivial()) {
    llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
    QualType Ty = E->getType();
    EmitAggregateCopy(This, Src, Ty);
    return RValue::get(This);
  }

  llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
  return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
                           E->arg_begin() + 1, E->arg_end());
}

RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
                                               ReturnValueSlot ReturnValue) {
  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
}

static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
                                            llvm::Value *DestPtr,
                                            const CXXRecordDecl *Base) {
  if (Base->isEmpty())
    return;

  DestPtr = CGF.EmitCastToVoidPtr(DestPtr);

  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
  CharUnits Size = Layout.getNonVirtualSize();
  CharUnits Align = Layout.getNonVirtualAlign();

  llvm::Value *SizeVal = CGF.CGM.getSize(Size);

  // If the type contains a pointer to data member we can't memset it to zero.
  // Instead, create a null constant and copy it to the destination.
  // TODO: there are other patterns besides zero that we can usefully memset,
  // like -1, which happens to be the pattern used by member-pointers.
  // TODO: isZeroInitializable can be over-conservative in the case where a
  // virtual base contains a member pointer.
  if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
    llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);

    llvm::GlobalVariable *NullVariable = 
      new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
                               /*isConstant=*/true, 
                               llvm::GlobalVariable::PrivateLinkage,
                               NullConstant, Twine());
    NullVariable->setAlignment(Align.getQuantity());
    llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);

    // Get and call the appropriate llvm.memcpy overload.
    CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
    return;
  } 
  
  // Otherwise, just memset the whole thing to zero.  This is legal
  // because in LLVM, all default initializers (other than the ones we just
  // handled above) are guaranteed to have a bit pattern of all zeros.
  CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
                           Align.getQuantity());
}

void
CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
                                      AggValueSlot Dest) {
  assert(!Dest.isIgnored() && "Must have a destination!");
  const CXXConstructorDecl *CD = E->getConstructor();
  
  // If we require zero initialization before (or instead of) calling the
  // constructor, as can be the case with a non-user-provided default
  // constructor, emit the zero initialization now, unless destination is
  // already zeroed.
  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
    switch (E->getConstructionKind()) {
    case CXXConstructExpr::CK_Delegating:
      assert(0 && "Delegating constructor should not need zeroing");
    case CXXConstructExpr::CK_Complete:
      EmitNullInitialization(Dest.getAddr(), E->getType());
      break;
    case CXXConstructExpr::CK_VirtualBase:
    case CXXConstructExpr::CK_NonVirtualBase:
      EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
      break;
    }
  }
  
  // If this is a call to a trivial default constructor, do nothing.
  if (CD->isTrivial() && CD->isDefaultConstructor())
    return;
  
  // Elide the constructor if we're constructing from a temporary.
  // The temporary check is required because Sema sets this on NRVO
  // returns.
  if (getContext().getLangOpts().ElideConstructors && E->isElidable()) {
    assert(getContext().hasSameUnqualifiedType(E->getType(),
                                               E->getArg(0)->getType()));
    if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
      EmitAggExpr(E->getArg(0), Dest);
      return;
    }
  }
  
  if (const ConstantArrayType *arrayType 
        = getContext().getAsConstantArrayType(E->getType())) {
    EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 
                               E->arg_begin(), E->arg_end());
  } else {
    CXXCtorType Type = Ctor_Complete;
    bool ForVirtualBase = false;

    switch (E->getConstructionKind()) {
     case CXXConstructExpr::CK_Delegating:
      // We should be emitting a constructor; GlobalDecl will assert this
      Type = CurGD.getCtorType();
      break;

     case CXXConstructExpr::CK_Complete:
      Type = Ctor_Complete;
      break;

     case CXXConstructExpr::CK_VirtualBase:
      ForVirtualBase = true;
      // fall-through

     case CXXConstructExpr::CK_NonVirtualBase:
      Type = Ctor_Base;
    }
    
    // Call the constructor.
    EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
                           E->arg_begin(), E->arg_end());
  }
}

void
CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 
                                            llvm::Value *Src,
                                            const Expr *Exp) {
  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
    Exp = E->getSubExpr();
  assert(isa<CXXConstructExpr>(Exp) && 
         "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
  const CXXConstructorDecl *CD = E->getConstructor();
  RunCleanupsScope Scope(*this);
  
  // If we require zero initialization before (or instead of) calling the
  // constructor, as can be the case with a non-user-provided default
  // constructor, emit the zero initialization now.
  // FIXME. Do I still need this for a copy ctor synthesis?
  if (E->requiresZeroInitialization())
    EmitNullInitialization(Dest, E->getType());
  
  assert(!getContext().getAsConstantArrayType(E->getType())
         && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
                                 E->arg_begin(), E->arg_end());
}

static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
                                        const CXXNewExpr *E) {
  if (!E->isArray())
    return CharUnits::Zero();

  // No cookie is required if the operator new[] being used is the
  // reserved placement operator new[].
  if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
    return CharUnits::Zero();

  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
}

static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
                                        const CXXNewExpr *e,
                                        unsigned minElements,
                                        llvm::Value *&numElements,
                                        llvm::Value *&sizeWithoutCookie) {
  QualType type = e->getAllocatedType();

  if (!e->isArray()) {
    CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
    sizeWithoutCookie
      = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
    return sizeWithoutCookie;
  }

  // The width of size_t.
  unsigned sizeWidth = CGF.SizeTy->getBitWidth();

  // Figure out the cookie size.
  llvm::APInt cookieSize(sizeWidth,
                         CalculateCookiePadding(CGF, e).getQuantity());

  // Emit the array size expression.
  // We multiply the size of all dimensions for NumElements.
  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
  numElements = CGF.EmitScalarExpr(e->getArraySize());
  assert(isa<llvm::IntegerType>(numElements->getType()));

  // The number of elements can be have an arbitrary integer type;
  // essentially, we need to multiply it by a constant factor, add a
  // cookie size, and verify that the result is representable as a
  // size_t.  That's just a gloss, though, and it's wrong in one
  // important way: if the count is negative, it's an error even if
  // the cookie size would bring the total size >= 0.
  bool isSigned 
    = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
  llvm::IntegerType *numElementsType
    = cast<llvm::IntegerType>(numElements->getType());
  unsigned numElementsWidth = numElementsType->getBitWidth();

  // Compute the constant factor.
  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
  while (const ConstantArrayType *CAT
             = CGF.getContext().getAsConstantArrayType(type)) {
    type = CAT->getElementType();
    arraySizeMultiplier *= CAT->getSize();
  }

  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
  typeSizeMultiplier *= arraySizeMultiplier;

  // This will be a size_t.
  llvm::Value *size;
  
  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
  // Don't bloat the -O0 code.
  if (llvm::ConstantInt *numElementsC =
        dyn_cast<llvm::ConstantInt>(numElements)) {
    const llvm::APInt &count = numElementsC->getValue();

    bool hasAnyOverflow = false;

    // If 'count' was a negative number, it's an overflow.
    if (isSigned && count.isNegative())
      hasAnyOverflow = true;

    // We want to do all this arithmetic in size_t.  If numElements is
    // wider than that, check whether it's already too big, and if so,
    // overflow.
    else if (numElementsWidth > sizeWidth &&
             numElementsWidth - sizeWidth > count.countLeadingZeros())
      hasAnyOverflow = true;

    // Okay, compute a count at the right width.
    llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);

    // If there is a brace-initializer, we cannot allocate fewer elements than
    // there are initializers. If we do, that's treated like an overflow.
    if (adjustedCount.ult(minElements))
      hasAnyOverflow = true;

    // Scale numElements by that.  This might overflow, but we don't
    // care because it only overflows if allocationSize does, too, and
    // if that overflows then we shouldn't use this.
    numElements = llvm::ConstantInt::get(CGF.SizeTy,
                                         adjustedCount * arraySizeMultiplier);

    // Compute the size before cookie, and track whether it overflowed.
    bool overflow;
    llvm::APInt allocationSize
      = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
    hasAnyOverflow |= overflow;

    // Add in the cookie, and check whether it's overflowed.
    if (cookieSize != 0) {
      // Save the current size without a cookie.  This shouldn't be
      // used if there was overflow.
      sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);

      allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
      hasAnyOverflow |= overflow;
    }

    // On overflow, produce a -1 so operator new will fail.
    if (hasAnyOverflow) {
      size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
    } else {
      size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
    }

  // Otherwise, we might need to use the overflow intrinsics.
  } else {
    // There are up to five conditions we need to test for:
    // 1) if isSigned, we need to check whether numElements is negative;
    // 2) if numElementsWidth > sizeWidth, we need to check whether
    //   numElements is larger than something representable in size_t;
    // 3) if minElements > 0, we need to check whether numElements is smaller
    //    than that.
    // 4) we need to compute
    //      sizeWithoutCookie := numElements * typeSizeMultiplier
    //    and check whether it overflows; and
    // 5) if we need a cookie, we need to compute
    //      size := sizeWithoutCookie + cookieSize
    //    and check whether it overflows.

    llvm::Value *hasOverflow = 0;

    // If numElementsWidth > sizeWidth, then one way or another, we're
    // going to have to do a comparison for (2), and this happens to
    // take care of (1), too.
    if (numElementsWidth > sizeWidth) {
      llvm::APInt threshold(numElementsWidth, 1);
      threshold <<= sizeWidth;

      llvm::Value *thresholdV
        = llvm::ConstantInt::get(numElementsType, threshold);

      hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
      numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);

    // Otherwise, if we're signed, we want to sext up to size_t.
    } else if (isSigned) {
      if (numElementsWidth < sizeWidth)
        numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
      
      // If there's a non-1 type size multiplier, then we can do the
      // signedness check at the same time as we do the multiply
      // because a negative number times anything will cause an
      // unsigned overflow.  Otherwise, we have to do it here. But at least
      // in this case, we can subsume the >= minElements check.
      if (typeSizeMultiplier == 1)
        hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
                              llvm::ConstantInt::get(CGF.SizeTy, minElements));

    // Otherwise, zext up to size_t if necessary.
    } else if (numElementsWidth < sizeWidth) {
      numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
    }

    assert(numElements->getType() == CGF.SizeTy);

    if (minElements) {
      // Don't allow allocation of fewer elements than we have initializers.
      if (!hasOverflow) {
        hasOverflow = CGF.Builder.CreateICmpULT(numElements,
                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
      } else if (numElementsWidth > sizeWidth) {
        // The other existing overflow subsumes this check.
        // We do an unsigned comparison, since any signed value < -1 is
        // taken care of either above or below.
        hasOverflow = CGF.Builder.CreateOr(hasOverflow,
                          CGF.Builder.CreateICmpULT(numElements,
                              llvm::ConstantInt::get(CGF.SizeTy, minElements)));
      }
    }

    size = numElements;

    // Multiply by the type size if necessary.  This multiplier
    // includes all the factors for nested arrays.
    //
    // This step also causes numElements to be scaled up by the
    // nested-array factor if necessary.  Overflow on this computation
    // can be ignored because the result shouldn't be used if
    // allocation fails.
    if (typeSizeMultiplier != 1) {
      llvm::Value *umul_with_overflow
        = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);

      llvm::Value *tsmV =
        llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
      llvm::Value *result =
        CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);

      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
      if (hasOverflow)
        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
      else
        hasOverflow = overflowed;

      size = CGF.Builder.CreateExtractValue(result, 0);

      // Also scale up numElements by the array size multiplier.
      if (arraySizeMultiplier != 1) {
        // If the base element type size is 1, then we can re-use the
        // multiply we just did.
        if (typeSize.isOne()) {
          assert(arraySizeMultiplier == typeSizeMultiplier);
          numElements = size;

        // Otherwise we need a separate multiply.
        } else {
          llvm::Value *asmV =
            llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
          numElements = CGF.Builder.CreateMul(numElements, asmV);
        }
      }
    } else {
      // numElements doesn't need to be scaled.
      assert(arraySizeMultiplier == 1);
    }
    
    // Add in the cookie size if necessary.
    if (cookieSize != 0) {
      sizeWithoutCookie = size;

      llvm::Value *uadd_with_overflow
        = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);

      llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
      llvm::Value *result =
        CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);

      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
      if (hasOverflow)
        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
      else
        hasOverflow = overflowed;

      size = CGF.Builder.CreateExtractValue(result, 0);
    }

    // If we had any possibility of dynamic overflow, make a select to
    // overwrite 'size' with an all-ones value, which should cause
    // operator new to throw.
    if (hasOverflow)
      size = CGF.Builder.CreateSelect(hasOverflow,
                                 llvm::Constant::getAllOnesValue(CGF.SizeTy),
                                      size);
  }

  if (cookieSize == 0)
    sizeWithoutCookie = size;
  else
    assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");

  return size;
}

static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
                                    QualType AllocType, llvm::Value *NewPtr) {

  CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
  if (!CGF.hasAggregateLLVMType(AllocType))
    CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
                                                   Alignment),
                       false);
  else if (AllocType->isAnyComplexType())
    CGF.EmitComplexExprIntoAddr(Init, NewPtr, 
                                AllocType.isVolatileQualified());
  else {
    AggValueSlot Slot
      = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
                              AggValueSlot::IsDestructed,
                              AggValueSlot::DoesNotNeedGCBarriers,
                              AggValueSlot::IsNotAliased);
    CGF.EmitAggExpr(Init, Slot);

    CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init);
  }
}

void
CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 
                                         QualType elementType,
                                         llvm::Value *beginPtr,
                                         llvm::Value *numElements) {
  if (!E->hasInitializer())
    return; // We have a POD type.

  llvm::Value *explicitPtr = beginPtr;
  // Find the end of the array, hoisted out of the loop.
  llvm::Value *endPtr =
    Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");

  unsigned initializerElements = 0;

  const Expr *Init = E->getInitializer();
  llvm::AllocaInst *endOfInit = 0;
  QualType::DestructionKind dtorKind = elementType.isDestructedType();
  EHScopeStack::stable_iterator cleanup;
  llvm::Instruction *cleanupDominator = 0;
  // If the initializer is an initializer list, first do the explicit elements.
  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
    initializerElements = ILE->getNumInits();

    // Enter a partial-destruction cleanup if necessary.
    if (needsEHCleanup(dtorKind)) {
      // In principle we could tell the cleanup where we are more
      // directly, but the control flow can get so varied here that it
      // would actually be quite complex.  Therefore we go through an
      // alloca.
      endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
      cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
      pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
                                       getDestroyer(dtorKind));
      cleanup = EHStack.stable_begin();
    }

    for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
      // Tell the cleanup that it needs to destroy up to this
      // element.  TODO: some of these stores can be trivially
      // observed to be unnecessary.
      if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
      StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr);
      explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next");
    }

    // The remaining elements are filled with the array filler expression.
    Init = ILE->getArrayFiller();
  }

  // Create the continuation block.
  llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");

  // If the number of elements isn't constant, we have to now check if there is
  // anything left to initialize.
  if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
    // If all elements have already been initialized, skip the whole loop.
    if (constNum->getZExtValue() <= initializerElements) {
      // If there was a cleanup, deactivate it.
      if (cleanupDominator)
        DeactivateCleanupBlock(cleanup, cleanupDominator);;
      return;
    }
  } else {
    llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
    llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
                                                "array.isempty");
    Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
    EmitBlock(nonEmptyBB);
  }

  // Enter the loop.
  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
  llvm::BasicBlock *loopBB = createBasicBlock("new.loop");

  EmitBlock(loopBB);

  // Set up the current-element phi.
  llvm::PHINode *curPtr =
    Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
  curPtr->addIncoming(explicitPtr, entryBB);

  // Store the new cleanup position for irregular cleanups.
  if (endOfInit) Builder.CreateStore(curPtr, endOfInit);

  // Enter a partial-destruction cleanup if necessary.
  if (!cleanupDominator && needsEHCleanup(dtorKind)) {
    pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
                                   getDestroyer(dtorKind));
    cleanup = EHStack.stable_begin();
    cleanupDominator = Builder.CreateUnreachable();
  }

  // Emit the initializer into this element.
  StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);

  // Leave the cleanup if we entered one.
  if (cleanupDominator) {
    DeactivateCleanupBlock(cleanup, cleanupDominator);
    cleanupDominator->eraseFromParent();
  }

  // Advance to the next element.
  llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");

  // Check whether we've gotten to the end of the array and, if so,
  // exit the loop.
  llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
  Builder.CreateCondBr(isEnd, contBB, loopBB);
  curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());

  EmitBlock(contBB);
}

static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
                           llvm::Value *NewPtr, llvm::Value *Size) {
  CGF.EmitCastToVoidPtr(NewPtr);
  CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
  CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
                           Alignment.getQuantity(), false);
}
                       
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
                               QualType ElementType,
                               llvm::Value *NewPtr,
                               llvm::Value *NumElements,
                               llvm::Value *AllocSizeWithoutCookie) {
  const Expr *Init = E->getInitializer();
  if (E->isArray()) {
    if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
      CXXConstructorDecl *Ctor = CCE->getConstructor();
      bool RequiresZeroInitialization = false;
      if (Ctor->isTrivial()) {
        // If new expression did not specify value-initialization, then there
        // is no initialization.
        if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
          return;
      
        if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
          // Optimization: since zero initialization will just set the memory
          // to all zeroes, generate a single memset to do it in one shot.
          EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
          return;
        }

        RequiresZeroInitialization = true;
      }

      CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
                                     CCE->arg_begin(),  CCE->arg_end(),
                                     RequiresZeroInitialization);
      return;
    } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
               CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
      // Optimization: since zero initialization will just set the memory
      // to all zeroes, generate a single memset to do it in one shot.
      EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
      return;
    }
    CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
    return;
  }

  if (!Init)
    return;

  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
}

namespace {
  /// A cleanup to call the given 'operator delete' function upon
  /// abnormal exit from a new expression.
  class CallDeleteDuringNew : public EHScopeStack::Cleanup {
    size_t NumPlacementArgs;
    const FunctionDecl *OperatorDelete;
    llvm::Value *Ptr;
    llvm::Value *AllocSize;

    RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }

  public:
    static size_t getExtraSize(size_t NumPlacementArgs) {
      return NumPlacementArgs * sizeof(RValue);
    }

    CallDeleteDuringNew(size_t NumPlacementArgs,
                        const FunctionDecl *OperatorDelete,
                        llvm::Value *Ptr,
                        llvm::Value *AllocSize) 
      : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
        Ptr(Ptr), AllocSize(AllocSize) {}

    void setPlacementArg(unsigned I, RValue Arg) {
      assert(I < NumPlacementArgs && "index out of range");
      getPlacementArgs()[I] = Arg;
    }

    void Emit(CodeGenFunction &CGF, Flags flags) {
      const FunctionProtoType *FPT
        = OperatorDelete->getType()->getAs<FunctionProtoType>();
      assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
             (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));

      CallArgList DeleteArgs;

      // The first argument is always a void*.
      FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
      DeleteArgs.add(RValue::get(Ptr), *AI++);

      // A member 'operator delete' can take an extra 'size_t' argument.
      if (FPT->getNumArgs() == NumPlacementArgs + 2)
        DeleteArgs.add(RValue::get(AllocSize), *AI++);

      // Pass the rest of the arguments, which must match exactly.
      for (unsigned I = 0; I != NumPlacementArgs; ++I)
        DeleteArgs.add(getPlacementArgs()[I], *AI++);

      // Call 'operator delete'.
      CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT),
                   CGF.CGM.GetAddrOfFunction(OperatorDelete),
                   ReturnValueSlot(), DeleteArgs, OperatorDelete);
    }
  };

  /// A cleanup to call the given 'operator delete' function upon
  /// abnormal exit from a new expression when the new expression is
  /// conditional.
  class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
    size_t NumPlacementArgs;
    const FunctionDecl *OperatorDelete;
    DominatingValue<RValue>::saved_type Ptr;
    DominatingValue<RValue>::saved_type AllocSize;

    DominatingValue<RValue>::saved_type *getPlacementArgs() {
      return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
    }

  public:
    static size_t getExtraSize(size_t NumPlacementArgs) {
      return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
    }

    CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
                                   const FunctionDecl *OperatorDelete,
                                   DominatingValue<RValue>::saved_type Ptr,
                              DominatingValue<RValue>::saved_type AllocSize)
      : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
        Ptr(Ptr), AllocSize(AllocSize) {}

    void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
      assert(I < NumPlacementArgs && "index out of range");
      getPlacementArgs()[I] = Arg;
    }

    void Emit(CodeGenFunction &CGF, Flags flags) {
      const FunctionProtoType *FPT
        = OperatorDelete->getType()->getAs<FunctionProtoType>();
      assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
             (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));

      CallArgList DeleteArgs;

      // The first argument is always a void*.
      FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
      DeleteArgs.add(Ptr.restore(CGF), *AI++);

      // A member 'operator delete' can take an extra 'size_t' argument.
      if (FPT->getNumArgs() == NumPlacementArgs + 2) {
        RValue RV = AllocSize.restore(CGF);
        DeleteArgs.add(RV, *AI++);
      }

      // Pass the rest of the arguments, which must match exactly.
      for (unsigned I = 0; I != NumPlacementArgs; ++I) {
        RValue RV = getPlacementArgs()[I].restore(CGF);
        DeleteArgs.add(RV, *AI++);
      }

      // Call 'operator delete'.
      CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT),
                   CGF.CGM.GetAddrOfFunction(OperatorDelete),
                   ReturnValueSlot(), DeleteArgs, OperatorDelete);
    }
  };
}

/// Enter a cleanup to call 'operator delete' if the initializer in a
/// new-expression throws.
static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
                                  const CXXNewExpr *E,
                                  llvm::Value *NewPtr,
                                  llvm::Value *AllocSize,
                                  const CallArgList &NewArgs) {
  // If we're not inside a conditional branch, then the cleanup will
  // dominate and we can do the easier (and more efficient) thing.
  if (!CGF.isInConditionalBranch()) {
    CallDeleteDuringNew *Cleanup = CGF.EHStack
      .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
                                                 E->getNumPlacementArgs(),
                                                 E->getOperatorDelete(),
                                                 NewPtr, AllocSize);
    for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
      Cleanup->setPlacementArg(I, NewArgs[I+1].RV);

    return;
  }

  // Otherwise, we need to save all this stuff.
  DominatingValue<RValue>::saved_type SavedNewPtr =
    DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
  DominatingValue<RValue>::saved_type SavedAllocSize =
    DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));

  CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
    .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
                                                 E->getNumPlacementArgs(),
                                                 E->getOperatorDelete(),
                                                 SavedNewPtr,
                                                 SavedAllocSize);
  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
    Cleanup->setPlacementArg(I,
                     DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));

  CGF.initFullExprCleanup();
}

llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
  // The element type being allocated.
  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());

  // 1. Build a call to the allocation function.
  FunctionDecl *allocator = E->getOperatorNew();
  const FunctionProtoType *allocatorType =
    allocator->getType()->castAs<FunctionProtoType>();

  CallArgList allocatorArgs;

  // The allocation size is the first argument.
  QualType sizeType = getContext().getSizeType();

  // If there is a brace-initializer, cannot allocate fewer elements than inits.
  unsigned minElements = 0;
  if (E->isArray() && E->hasInitializer()) {
    if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
      minElements = ILE->getNumInits();
  }

  llvm::Value *numElements = 0;
  llvm::Value *allocSizeWithoutCookie = 0;
  llvm::Value *allocSize =
    EmitCXXNewAllocSize(*this, E, minElements, numElements,
                        allocSizeWithoutCookie);
  
  allocatorArgs.add(RValue::get(allocSize), sizeType);

  // Emit the rest of the arguments.
  // FIXME: Ideally, this should just use EmitCallArgs.
  CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();

  // First, use the types from the function type.
  // We start at 1 here because the first argument (the allocation size)
  // has already been emitted.
  for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
       ++i, ++placementArg) {
    QualType argType = allocatorType->getArgType(i);

    assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
                                               placementArg->getType()) &&
           "type mismatch in call argument!");

    EmitCallArg(allocatorArgs, *placementArg, argType);
  }

  // Either we've emitted all the call args, or we have a call to a
  // variadic function.
  assert((placementArg == E->placement_arg_end() ||
          allocatorType->isVariadic()) &&
         "Extra arguments to non-variadic function!");

  // If we still have any arguments, emit them using the type of the argument.
  for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
       placementArg != placementArgsEnd; ++placementArg) {
    EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
  }

  // Emit the allocation call.  If the allocator is a global placement
  // operator, just "inline" it directly.
  RValue RV;
  if (allocator->isReservedGlobalPlacementOperator()) {
    assert(allocatorArgs.size() == 2);
    RV = allocatorArgs[1].RV;
    // TODO: kill any unnecessary computations done for the size
    // argument.
  } else {
    RV = EmitCall(CGM.getTypes().arrangeFunctionCall(allocatorArgs,
                                                     allocatorType),
                  CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
                  allocatorArgs, allocator);
  }

  // Emit a null check on the allocation result if the allocation
  // function is allowed to return null (because it has a non-throwing
  // exception spec; for this part, we inline
  // CXXNewExpr::shouldNullCheckAllocation()) and we have an
  // interesting initializer.
  bool nullCheck = allocatorType->isNothrow(getContext()) &&
    (!allocType.isPODType(getContext()) || E->hasInitializer());

  llvm::BasicBlock *nullCheckBB = 0;
  llvm::BasicBlock *contBB = 0;

  llvm::Value *allocation = RV.getScalarVal();
  unsigned AS =
    cast<llvm::PointerType>(allocation->getType())->getAddressSpace();

  // The null-check means that the initializer is conditionally
  // evaluated.
  ConditionalEvaluation conditional(*this);

  if (nullCheck) {
    conditional.begin(*this);

    nullCheckBB = Builder.GetInsertBlock();
    llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
    contBB = createBasicBlock("new.cont");

    llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
    Builder.CreateCondBr(isNull, contBB, notNullBB);
    EmitBlock(notNullBB);
  }

  // If there's an operator delete, enter a cleanup to call it if an
  // exception is thrown.
  EHScopeStack::stable_iterator operatorDeleteCleanup;
  llvm::Instruction *cleanupDominator = 0;
  if (E->getOperatorDelete() &&
      !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
    EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
    operatorDeleteCleanup = EHStack.stable_begin();
    cleanupDominator = Builder.CreateUnreachable();
  }

  assert((allocSize == allocSizeWithoutCookie) ==
         CalculateCookiePadding(*this, E).isZero());
  if (allocSize != allocSizeWithoutCookie) {
    assert(E->isArray());
    allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
                                                       numElements,
                                                       E, allocType);
  }

  llvm::Type *elementPtrTy
    = ConvertTypeForMem(allocType)->getPointerTo(AS);
  llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);

  EmitNewInitializer(*this, E, allocType, result, numElements,
                     allocSizeWithoutCookie);
  if (E->isArray()) {
    // NewPtr is a pointer to the base element type.  If we're
    // allocating an array of arrays, we'll need to cast back to the
    // array pointer type.
    llvm::Type *resultType = ConvertTypeForMem(E->getType());
    if (result->getType() != resultType)
      result = Builder.CreateBitCast(result, resultType);
  }

  // Deactivate the 'operator delete' cleanup if we finished
  // initialization.
  if (operatorDeleteCleanup.isValid()) {
    DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
    cleanupDominator->eraseFromParent();
  }

  if (nullCheck) {
    conditional.end(*this);

    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
    EmitBlock(contBB);

    llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
    PHI->addIncoming(result, notNullBB);
    PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
                     nullCheckBB);

    result = PHI;
  }
  
  return result;
}

void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
                                     llvm::Value *Ptr,
                                     QualType DeleteTy) {
  assert(DeleteFD->getOverloadedOperator() == OO_Delete);

  const FunctionProtoType *DeleteFTy =
    DeleteFD->getType()->getAs<FunctionProtoType>();

  CallArgList DeleteArgs;

  // Check if we need to pass the size to the delete operator.
  llvm::Value *Size = 0;
  QualType SizeTy;
  if (DeleteFTy->getNumArgs() == 2) {
    SizeTy = DeleteFTy->getArgType(1);
    CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
    Size = llvm::ConstantInt::get(ConvertType(SizeTy), 
                                  DeleteTypeSize.getQuantity());
  }
  
  QualType ArgTy = DeleteFTy->getArgType(0);
  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);

  if (Size)
    DeleteArgs.add(RValue::get(Size), SizeTy);

  // Emit the call to delete.
  EmitCall(CGM.getTypes().arrangeFunctionCall(DeleteArgs, DeleteFTy),
           CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(), 
           DeleteArgs, DeleteFD);
}

namespace {
  /// Calls the given 'operator delete' on a single object.
  struct CallObjectDelete : EHScopeStack::Cleanup {
    llvm::Value *Ptr;
    const FunctionDecl *OperatorDelete;
    QualType ElementType;

    CallObjectDelete(llvm::Value *Ptr,
                     const FunctionDecl *OperatorDelete,
                     QualType ElementType)
      : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}

    void Emit(CodeGenFunction &CGF, Flags flags) {
      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
    }
  };
}

/// Emit the code for deleting a single object.
static void EmitObjectDelete(CodeGenFunction &CGF,
                             const FunctionDecl *OperatorDelete,
                             llvm::Value *Ptr,
                             QualType ElementType,
                             bool UseGlobalDelete) {
  // Find the destructor for the type, if applicable.  If the
  // destructor is virtual, we'll just emit the vcall and return.
  const CXXDestructorDecl *Dtor = 0;
  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
    CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
      Dtor = RD->getDestructor();

      if (Dtor->isVirtual()) {
        if (UseGlobalDelete) {
          // If we're supposed to call the global delete, make sure we do so
          // even if the destructor throws.
          CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
                                                    Ptr, OperatorDelete, 
                                                    ElementType);
        }
        
        llvm::Type *Ty =
          CGF.getTypes().GetFunctionType(
                         CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete));
          
        llvm::Value *Callee
          = CGF.BuildVirtualCall(Dtor, 
                                 UseGlobalDelete? Dtor_Complete : Dtor_Deleting,
                                 Ptr, Ty);
        CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
                              0, 0);

        if (UseGlobalDelete) {
          CGF.PopCleanupBlock();
        }
        
        return;
      }
    }
  }

  // Make sure that we call delete even if the dtor throws.
  // This doesn't have to a conditional cleanup because we're going
  // to pop it off in a second.
  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
                                            Ptr, OperatorDelete, ElementType);

  if (Dtor)
    CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
                              /*ForVirtualBase=*/false, Ptr);
  else if (CGF.getLangOpts().ObjCAutoRefCount &&
           ElementType->isObjCLifetimeType()) {
    switch (ElementType.getObjCLifetime()) {
    case Qualifiers::OCL_None:
    case Qualifiers::OCL_ExplicitNone:
    case Qualifiers::OCL_Autoreleasing:
      break;

    case Qualifiers::OCL_Strong: {
      // Load the pointer value.
      llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 
                                             ElementType.isVolatileQualified());
        
      CGF.EmitARCRelease(PtrValue, /*precise*/ true);
      break;
    }
        
    case Qualifiers::OCL_Weak:
      CGF.EmitARCDestroyWeak(Ptr);
      break;
    }
  }
           
  CGF.PopCleanupBlock();
}

namespace {
  /// Calls the given 'operator delete' on an array of objects.
  struct CallArrayDelete : EHScopeStack::Cleanup {
    llvm::Value *Ptr;
    const FunctionDecl *OperatorDelete;
    llvm::Value *NumElements;
    QualType ElementType;
    CharUnits CookieSize;

    CallArrayDelete(llvm::Value *Ptr,
                    const FunctionDecl *OperatorDelete,
                    llvm::Value *NumElements,
                    QualType ElementType,
                    CharUnits CookieSize)
      : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
        ElementType(ElementType), CookieSize(CookieSize) {}

    void Emit(CodeGenFunction &CGF, Flags flags) {
      const FunctionProtoType *DeleteFTy =
        OperatorDelete->getType()->getAs<FunctionProtoType>();
      assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);

      CallArgList Args;
      
      // Pass the pointer as the first argument.
      QualType VoidPtrTy = DeleteFTy->getArgType(0);
      llvm::Value *DeletePtr
        = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
      Args.add(RValue::get(DeletePtr), VoidPtrTy);

      // Pass the original requested size as the second argument.
      if (DeleteFTy->getNumArgs() == 2) {
        QualType size_t = DeleteFTy->getArgType(1);
        llvm::IntegerType *SizeTy
          = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
        
        CharUnits ElementTypeSize =
          CGF.CGM.getContext().getTypeSizeInChars(ElementType);

        // The size of an element, multiplied by the number of elements.
        llvm::Value *Size
          = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
        Size = CGF.Builder.CreateMul(Size, NumElements);

        // Plus the size of the cookie if applicable.
        if (!CookieSize.isZero()) {
          llvm::Value *CookieSizeV
            = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
          Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
        }

        Args.add(RValue::get(Size), size_t);
      }

      // Emit the call to delete.
      CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Args, DeleteFTy),
                   CGF.CGM.GetAddrOfFunction(OperatorDelete),
                   ReturnValueSlot(), Args, OperatorDelete);
    }
  };
}

/// Emit the code for deleting an array of objects.
static void EmitArrayDelete(CodeGenFunction &CGF,
                            const CXXDeleteExpr *E,
                            llvm::Value *deletedPtr,
                            QualType elementType) {
  llvm::Value *numElements = 0;
  llvm::Value *allocatedPtr = 0;
  CharUnits cookieSize;
  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
                                      numElements, allocatedPtr, cookieSize);

  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");

  // Make sure that we call delete even if one of the dtors throws.
  const FunctionDecl *operatorDelete = E->getOperatorDelete();
  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
                                           allocatedPtr, operatorDelete,
                                           numElements, elementType,
                                           cookieSize);

  // Destroy the elements.
  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
    assert(numElements && "no element count for a type with a destructor!");

    llvm::Value *arrayEnd =
      CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");

    // Note that it is legal to allocate a zero-length array, and we
    // can never fold the check away because the length should always
    // come from a cookie.
    CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
                         CGF.getDestroyer(dtorKind),
                         /*checkZeroLength*/ true,
                         CGF.needsEHCleanup(dtorKind));
  }

  // Pop the cleanup block.
  CGF.PopCleanupBlock();
}

void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
  
  // Get at the argument before we performed the implicit conversion
  // to void*.
  const Expr *Arg = E->getArgument();
  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
    if (ICE->getCastKind() != CK_UserDefinedConversion &&
        ICE->getType()->isVoidPointerType())
      Arg = ICE->getSubExpr();
    else
      break;
  }

  llvm::Value *Ptr = EmitScalarExpr(Arg);

  // Null check the pointer.
  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");

  llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");

  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
  EmitBlock(DeleteNotNull);

  // We might be deleting a pointer to array.  If so, GEP down to the
  // first non-array element.
  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
  QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
  if (DeleteTy->isConstantArrayType()) {
    llvm::Value *Zero = Builder.getInt32(0);
    SmallVector<llvm::Value*,8> GEP;

    GEP.push_back(Zero); // point at the outermost array

    // For each layer of array type we're pointing at:
    while (const ConstantArrayType *Arr
             = getContext().getAsConstantArrayType(DeleteTy)) {
      // 1. Unpeel the array type.
      DeleteTy = Arr->getElementType();

      // 2. GEP to the first element of the array.
      GEP.push_back(Zero);
    }

    Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
  }

  assert(ConvertTypeForMem(DeleteTy) ==
         cast<llvm::PointerType>(Ptr->getType())->getElementType());

  if (E->isArrayForm()) {
    EmitArrayDelete(*this, E, Ptr, DeleteTy);
  } else {
    EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
                     E->isGlobalDelete());
  }

  EmitBlock(DeleteEnd);
}

static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
  // void __cxa_bad_typeid();
  llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
  
  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
}

static void EmitBadTypeidCall(CodeGenFunction &CGF) {
  llvm::Value *Fn = getBadTypeidFn(CGF);
  CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
  CGF.Builder.CreateUnreachable();
}

static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
                                         const Expr *E, 
                                         llvm::Type *StdTypeInfoPtrTy) {
  // Get the vtable pointer.
  llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();

  // C++ [expr.typeid]p2:
  //   If the glvalue expression is obtained by applying the unary * operator to
  //   a pointer and the pointer is a null pointer value, the typeid expression
  //   throws the std::bad_typeid exception.
  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
    if (UO->getOpcode() == UO_Deref) {
      llvm::BasicBlock *BadTypeidBlock = 
        CGF.createBasicBlock("typeid.bad_typeid");
      llvm::BasicBlock *EndBlock =
        CGF.createBasicBlock("typeid.end");

      llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
      CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);

      CGF.EmitBlock(BadTypeidBlock);
      EmitBadTypeidCall(CGF);
      CGF.EmitBlock(EndBlock);
    }
  }

  llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 
                                        StdTypeInfoPtrTy->getPointerTo());

  // Load the type info.
  Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
  return CGF.Builder.CreateLoad(Value);
}

llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
  llvm::Type *StdTypeInfoPtrTy = 
    ConvertType(E->getType())->getPointerTo();
  
  if (E->isTypeOperand()) {
    llvm::Constant *TypeInfo = 
      CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
    return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
  }

  // C++ [expr.typeid]p2:
  //   When typeid is applied to a glvalue expression whose type is a
  //   polymorphic class type, the result refers to a std::type_info object
  //   representing the type of the most derived object (that is, the dynamic
  //   type) to which the glvalue refers.
  if (E->getExprOperand()->isGLValue()) {
    if (const RecordType *RT =
          E->getExprOperand()->getType()->getAs<RecordType>()) {
      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
      if (RD->isPolymorphic())
        return EmitTypeidFromVTable(*this, E->getExprOperand(), 
                                    StdTypeInfoPtrTy);
    }
  }

  QualType OperandTy = E->getExprOperand()->getType();
  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
                               StdTypeInfoPtrTy);
}

static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
  // void *__dynamic_cast(const void *sub,
  //                      const abi::__class_type_info *src,
  //                      const abi::__class_type_info *dst,
  //                      std::ptrdiff_t src2dst_offset);
  
  llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
  llvm::Type *PtrDiffTy = 
    CGF.ConvertType(CGF.getContext().getPointerDiffType());

  llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
  
  llvm::FunctionType *FTy =
    llvm::FunctionType::get(Int8PtrTy, Args, false);
  
  return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast");
}

static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
  // void __cxa_bad_cast();
  llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
}

static void EmitBadCastCall(CodeGenFunction &CGF) {
  llvm::Value *Fn = getBadCastFn(CGF);
  CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
  CGF.Builder.CreateUnreachable();
}

static llvm::Value *
EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
                    QualType SrcTy, QualType DestTy,
                    llvm::BasicBlock *CastEnd) {
  llvm::Type *PtrDiffLTy = 
    CGF.ConvertType(CGF.getContext().getPointerDiffType());
  llvm::Type *DestLTy = CGF.ConvertType(DestTy);

  if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
    if (PTy->getPointeeType()->isVoidType()) {
      // C++ [expr.dynamic.cast]p7:
      //   If T is "pointer to cv void," then the result is a pointer to the
      //   most derived object pointed to by v.

      // Get the vtable pointer.
      llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());

      // Get the offset-to-top from the vtable.
      llvm::Value *OffsetToTop = 
        CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
      OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");

      // Finally, add the offset to the pointer.
      Value = CGF.EmitCastToVoidPtr(Value);
      Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);

      return CGF.Builder.CreateBitCast(Value, DestLTy);
    }
  }

  QualType SrcRecordTy;
  QualType DestRecordTy;
  
  if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
    SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
    DestRecordTy = DestPTy->getPointeeType();
  } else {
    SrcRecordTy = SrcTy;
    DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
  }

  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
  assert(DestRecordTy->isRecordType() && "dest type must be a record type!");

  llvm::Value *SrcRTTI =
    CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
  llvm::Value *DestRTTI =
    CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());

  // FIXME: Actually compute a hint here.
  llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL);

  // Emit the call to __dynamic_cast.
  Value = CGF.EmitCastToVoidPtr(Value);
  Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value,
                                  SrcRTTI, DestRTTI, OffsetHint);
  Value = CGF.Builder.CreateBitCast(Value, DestLTy);

  /// C++ [expr.dynamic.cast]p9:
  ///   A failed cast to reference type throws std::bad_cast
  if (DestTy->isReferenceType()) {
    llvm::BasicBlock *BadCastBlock = 
      CGF.createBasicBlock("dynamic_cast.bad_cast");

    llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
    CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);

    CGF.EmitBlock(BadCastBlock);
    EmitBadCastCall(CGF);
  }

  return Value;
}

static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
                                          QualType DestTy) {
  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
  if (DestTy->isPointerType())
    return llvm::Constant::getNullValue(DestLTy);

  /// C++ [expr.dynamic.cast]p9:
  ///   A failed cast to reference type throws std::bad_cast
  EmitBadCastCall(CGF);

  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
  return llvm::UndefValue::get(DestLTy);
}

llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
                                              const CXXDynamicCastExpr *DCE) {
  QualType DestTy = DCE->getTypeAsWritten();

  if (DCE->isAlwaysNull())
    return EmitDynamicCastToNull(*this, DestTy);

  QualType SrcTy = DCE->getSubExpr()->getType();

  // C++ [expr.dynamic.cast]p4: 
  //   If the value of v is a null pointer value in the pointer case, the result
  //   is the null pointer value of type T.
  bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
  
  llvm::BasicBlock *CastNull = 0;
  llvm::BasicBlock *CastNotNull = 0;
  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
  
  if (ShouldNullCheckSrcValue) {
    CastNull = createBasicBlock("dynamic_cast.null");
    CastNotNull = createBasicBlock("dynamic_cast.notnull");

    llvm::Value *IsNull = Builder.CreateIsNull(Value);
    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
    EmitBlock(CastNotNull);
  }

  Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);

  if (ShouldNullCheckSrcValue) {
    EmitBranch(CastEnd);

    EmitBlock(CastNull);
    EmitBranch(CastEnd);
  }

  EmitBlock(CastEnd);

  if (ShouldNullCheckSrcValue) {
    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
    PHI->addIncoming(Value, CastNotNull);
    PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);

    Value = PHI;
  }

  return Value;
}

void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
  RunCleanupsScope Scope(*this);
  LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
                                 Slot.getAlignment());

  CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
  for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
                                         e = E->capture_init_end();
       i != e; ++i, ++CurField) {
    // Emit initialization
    
    LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
    ArrayRef<VarDecl *> ArrayIndexes;
    if (CurField->getType()->isArrayType())
      ArrayIndexes = E->getCaptureInitIndexVars(i);
    EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
  }
}