summaryrefslogtreecommitdiff
path: root/clang/lib/Analysis/Interval.cpp
blob: bfa1ccf9e8967cc9fcbd7bcdce2215bea1ac2d10 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#include "clang/Analysis/Analyses/Interval.h"
#include "clang/AST/Stmt.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/AST/StmtVisitor.h"

#include "clang/Analysis/Analyses/IntervalSolver/Log.hpp"
#include "clang/Analysis/Analyses/IntervalSolver/Complete.hpp"
#include "clang/Analysis/Analyses/IntervalSolver/VariableAssignment.hpp"
#include "clang/Analysis/Analyses/IntervalSolver/EquationSystem.hpp"
  
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Process.h"
  
#include <deque>
#include <algorithm>
#include <vector>
#include <map>

using namespace clang;

typedef EquationSystem<Complete<int> > EqnSys;
typedef Expression<Complete<int> > EqnExpr;

#include <sstream>
template<typename T>
std::string toString(const T& obj) {
  std::stringstream stream;
  stream << obj;
  return stream.str();
}

IntervalAnalysis :: IntervalAnalysis(AnalysisDeclContext &context)
  : context(&context) {
}

IntervalAnalysis :: ~IntervalAnalysis() {
}

// Two pieces of state:
//  -> condition protecting a node
//  -> node's expression itself
// We can then combine these in a straightforward way to
// get out equation system, whereupon we can solve for what
// we want to know. Then we can have program invariants!
//
// Hooray!

EqnExpr* fromStmt(const Stmt*, EqnSys&);

EqnExpr* fromInteger(const IntegerLiteral* expr, EqnSys& system) {
  return &system.constant(*expr->getValue().getRawData());
}

EqnExpr* fromDeclExpr(const DeclRefExpr* expr, EqnSys& system) {
  return &system.variable(expr->getNameInfo().getAsString());
}

EqnExpr* fromUnary(const UnaryOperator* op, EqnSys& system) {
  switch (op->getOpcode()) {
  case UO_PreInc:
    break;
  case UO_PostInc:
    break;
  }
  return NULL;
}


Addition<Complete<int> >* add = new Addition<Complete<int> >();
Subtraction<Complete<int> >* sub = new Subtraction<Complete<int> >();
Multiplication<Complete<int> >* mul = new Multiplication<Complete<int> >();

EqnExpr* fromBinary(const BinaryOperator* op, EqnSys& system) {
  EqnExpr* left = fromStmt(op->getLHS()->IgnoreParenCasts(), system);
  EqnExpr* right = fromStmt(op->getRHS()->IgnoreParenCasts(), system);
  
  std::vector<EqnExpr*> args;
  args.push_back(left);
  args.push_back(right);
  
  switch (op->getOpcode()) {
  case BO_Add:
    return &system.expression(add, args);
  case BO_Sub:
    return &system.expression(sub, args);
  case BO_Mul:
    return &system.expression(mul, args);
  case BO_LT:
  case BO_LE:
  case BO_GT:
  case BO_GE:
    break;
  } 
  return NULL;
}

EqnExpr* fromDeclStmt(const DeclStmt* stmt, EqnSys& system) {
  for (DeclStmt::const_decl_iterator it = stmt->decl_begin(),
                                     ei = stmt->decl_end();
       it != ei;
       ++it) {
    if ((*it)->getKind() == Decl::Var) {
      const VarDecl* decl = static_cast<const VarDecl*>(*it);
      Variable<Complete<int> > var = system.variable(decl->getNameAsString());
      std::vector<EqnExpr*> args;
      args.push_back(&system.constant(-infinity<Complete<int> >()));
      args.push_back(fromStmt(decl->getInit(), system));
      system[var] = &system.maxExpression(args);
    }
  }
  return NULL;
}

EqnExpr* fromAssignment(const BinaryOperator* op, EqnSys& system) {
  EqnExpr* left = fromStmt(op->getLHS()->IgnoreParenCasts(), system);
  EqnExpr* right = fromStmt(op->getRHS()->IgnoreParenCasts(), system);
  Variable<Complete<int> >* var = static_cast<Variable<Complete<int> >*>(left);

  std::vector<EqnExpr*> args;
  args.push_back(&system.constant(-infinity<Complete<int> >()));
  args.push_back(right);
  if (system[*var] != NULL)
    args.push_back(system[*var]);
  system[*var] = &system.maxExpression(args);

  return NULL;
}

EqnExpr* fromStmt(const Stmt* stmt, EqnSys& system) {
  if (!stmt)
    return NULL;
  switch (stmt->getStmtClass()) {
  case Stmt::IntegerLiteralClass:
    return fromInteger(static_cast<const IntegerLiteral*>(stmt), system);
  case Stmt::DeclRefExprClass:
    return fromDeclExpr(static_cast<const DeclRefExpr*>(stmt), system);
  case Stmt::UnaryOperatorClass:
    return fromUnary(static_cast<const UnaryOperator*>(stmt), system);
  case Stmt::DeclStmtClass:
    return fromDeclStmt(static_cast<const DeclStmt*>(stmt), system);
  case Stmt::BinaryOperatorClass:
    {
      const BinaryOperator* binop = static_cast<const BinaryOperator*>(stmt);
      if (binop->isAssignmentOp())
        return fromAssignment(binop, system);
      else
        return fromBinary(binop, system);
    }
  }
  return NULL;
}

void runOnBlock(std::string id, const CFGBlock* block, EqnSys& system) {
  for (CFGBlock::const_iterator it = block->begin(),
                                ei = block->end();
       it != ei;
       ++it) {
    const CFGStmt* cfg_stmt = it->getAs<CFGStmt>();
    const Stmt* stmt = static_cast<const Stmt*>(cfg_stmt->getStmt());
    EqnExpr* expr = fromStmt(stmt, system);
  }
  fromStmt(block->getTerminatorCondition(), system);

  /*if (terminator.getStmt() != NULL) {
    if (terminator.getStmt()->getStmtClass() == Stmt::IfStmtClass) {
      const IfStmt* if_stmt = static_cast<const IfStmt*>(terminator.getStmt());
      llvm::errs() << "If: \n";
      if_stmt->dump();
    } else {
      llvm::errs() << "\n";
      terminator.getStmt()->dump();
    }
    }*/
  return; // TODO: return a generated expression
}

void IntervalAnalysis::runOnAllBlocks() {
  llvm::errs() << "Enter run on all blocks\n";

  const CFG *cfg = this->context->getCFG();

  EqnSys system;

  std::set<const CFGBlock*> seen;
  std::deque<const CFGBlock*> todo;
  todo.push_back(&cfg->getEntry());

  while (!todo.empty()) {
    const CFGBlock* block = todo.front();
    if (seen.find(todo.front()) != seen.end()) {
      todo.pop_front();
      continue;
    }
    llvm::errs() << (void*)block << "\n";
    seen.insert(block);
    todo.pop_front();
    runOnBlock(toString(block), block, system);
    llvm::errs() << "-> ";
    for (CFGBlock::const_succ_iterator it = block->succ_begin(),
                                       ei = block->succ_end();
         it != ei;
         it++ ) {
      llvm::errs() << (void*) *it << ", ";
      todo.push_back(*it);
    }
    llvm::errs() << "\n\n";
  }

  llvm::errs() << "Exit run on all blocks\n";

  llvm::errs() << toString(system) << "\n";

  system.indexMaxExpressions();
  DynamicMaxStrategy<Complete<int> > strategy(system);
  DynamicVariableAssignment<Complete<int> > rho(system, strategy);
  strategy.setRho(rho);

  for (unsigned int i = 0, size = system.variableCount(); i < size; ++i) {
    Variable<Complete<int> >& var = system.variable(i);
    llvm::errs() << toString(var.name()) << " = " << toString(rho[var]) << "\n";
  }

  //  cfg->dump(context->getASTContext().getLangOpts(),
  //            llvm::sys::Process::StandardErrHasColors());
}


const void *IntervalAnalysis::getTag() { static int x; return &x; }