1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
|
/// \file
/// Provides a number of useful functions that are roughly equivalent
/// to java HashTable and List for the purposes of Antlr 3 C runtime.
/// Also useable by the C programmer for things like symbol tables pointers
/// and so on.
///
///
// [The "BSD licence"]
// Copyright (c) 2005-2009 Jim Idle, Temporal Wave LLC
// http://www.temporal-wave.com
// http://www.linkedin.com/in/jimidle
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <antlr3.h>
#include "antlr3collections.h"
// Interface functions for hash table
//
// String based keys
//
static void antlr3HashDelete (pANTLR3_HASH_TABLE table, void * key);
static void * antlr3HashGet (pANTLR3_HASH_TABLE table, void * key);
static pANTLR3_HASH_ENTRY antlr3HashRemove (pANTLR3_HASH_TABLE table, void * key);
static ANTLR3_INT32 antlr3HashPut (pANTLR3_HASH_TABLE table, void * key, void * element, void (ANTLR3_CDECL *freeptr)(void *));
// Integer based keys (Lists and so on)
//
static void antlr3HashDeleteI (pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key);
static void * antlr3HashGetI (pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key);
static pANTLR3_HASH_ENTRY antlr3HashRemoveI (pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key);
static ANTLR3_INT32 antlr3HashPutI (pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key, void * element, void (ANTLR3_CDECL *freeptr)(void *));
static void antlr3HashFree (pANTLR3_HASH_TABLE table);
static ANTLR3_UINT32 antlr3HashSize (pANTLR3_HASH_TABLE table);
// -----------
// Interface functions for enumeration
//
static int antlr3EnumNext (pANTLR3_HASH_ENUM en, pANTLR3_HASH_KEY * key, void ** data);
static void antlr3EnumFree (pANTLR3_HASH_ENUM en);
// Interface functions for List
//
static void antlr3ListFree (pANTLR3_LIST list);
static void antlr3ListDelete(pANTLR3_LIST list, ANTLR3_INTKEY key);
static void * antlr3ListGet (pANTLR3_LIST list, ANTLR3_INTKEY key);
static ANTLR3_INT32 antlr3ListPut (pANTLR3_LIST list, ANTLR3_INTKEY key, void * element, void (ANTLR3_CDECL *freeptr)(void *));
static ANTLR3_INT32 antlr3ListAdd (pANTLR3_LIST list, void * element, void (ANTLR3_CDECL *freeptr)(void *));
static void * antlr3ListRemove(pANTLR3_LIST list, ANTLR3_INTKEY key);
static ANTLR3_UINT32 antlr3ListSize (pANTLR3_LIST list);
// Interface functions for Stack
//
static void antlr3StackFree (pANTLR3_STACK stack);
static void * antlr3StackPop (pANTLR3_STACK stack);
static void * antlr3StackGet (pANTLR3_STACK stack, ANTLR3_INTKEY key);
static ANTLR3_BOOLEAN antlr3StackPush (pANTLR3_STACK stack, void * element, void (ANTLR3_CDECL *freeptr)(void *));
static ANTLR3_UINT32 antlr3StackSize (pANTLR3_STACK stack);
static void * antlr3StackPeek (pANTLR3_STACK stack);
// Interface functions for vectors
//
static void ANTLR3_CDECL antlr3VectorFree (pANTLR3_VECTOR vector);
static void antlr3VectorDel (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry);
static void * antlr3VectorGet (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry);
static void * antrl3VectorRemove (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry);
static void antlr3VectorClear (pANTLR3_VECTOR vector);
static ANTLR3_UINT32 antlr3VectorAdd (pANTLR3_VECTOR vector, void * element, void (ANTLR3_CDECL *freeptr)(void *));
static ANTLR3_UINT32 antlr3VectorSet (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry, void * element, void (ANTLR3_CDECL *freeptr)(void *), ANTLR3_BOOLEAN freeExisting);
static ANTLR3_UINT32 antlr3VectorSize (pANTLR3_VECTOR vector);
static ANTLR3_BOOLEAN antlr3VectorSwap (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry1, ANTLR3_UINT32 entry2);
static void newPool (pANTLR3_VECTOR_FACTORY factory);
static void closeVectorFactory (pANTLR3_VECTOR_FACTORY factory);
static pANTLR3_VECTOR newVector (pANTLR3_VECTOR_FACTORY factory);
static void returnVector (pANTLR3_VECTOR_FACTORY factory, pANTLR3_VECTOR vector);
// Interface functions for int TRIE
//
static pANTLR3_TRIE_ENTRY intTrieGet (pANTLR3_INT_TRIE trie, ANTLR3_INTKEY key);
static ANTLR3_BOOLEAN intTrieDel (pANTLR3_INT_TRIE trie, ANTLR3_INTKEY key);
static ANTLR3_BOOLEAN intTrieAdd (pANTLR3_INT_TRIE trie, ANTLR3_INTKEY key, ANTLR3_UINT32 type, ANTLR3_INTKEY intType, void * data, void (ANTLR3_CDECL *freeptr)(void *));
static void intTrieFree (pANTLR3_INT_TRIE trie);
// Interface functions for topological sorter
//
static void addEdge (pANTLR3_TOPO topo, ANTLR3_UINT32 edge, ANTLR3_UINT32 dependency);
static pANTLR3_UINT32 sortToArray (pANTLR3_TOPO topo);
static void sortVector (pANTLR3_TOPO topo, pANTLR3_VECTOR v);
static void freeTopo (pANTLR3_TOPO topo);
// Local function to advance enumeration structure pointers
//
static void antlr3EnumNextEntry(pANTLR3_HASH_ENUM en);
pANTLR3_HASH_TABLE
antlr3HashTableNew(ANTLR3_UINT32 sizeHint)
{
// All we have to do is create the hashtable tracking structure
// and allocate memory for the requested number of buckets.
//
pANTLR3_HASH_TABLE table;
ANTLR3_UINT32 bucket; // Used to traverse the buckets
table = ANTLR3_MALLOC(sizeof(ANTLR3_HASH_TABLE));
// Error out if no memory left
if (table == NULL)
{
return NULL;
}
// Allocate memory for the buckets
//
table->buckets = (pANTLR3_HASH_BUCKET) ANTLR3_MALLOC((size_t) (sizeof(ANTLR3_HASH_BUCKET) * sizeHint));
if (table->buckets == NULL)
{
ANTLR3_FREE((void *)table);
return NULL;
}
// Modulo of the table, (bucket count).
//
table->modulo = sizeHint;
table->count = 0; /* Nothing in there yet ( I hope) */
/* Initialize the buckets to empty
*/
for (bucket = 0; bucket < sizeHint; bucket++)
{
table->buckets[bucket].entries = NULL;
}
/* Exclude duplicate entries by default
*/
table->allowDups = ANTLR3_FALSE;
/* Assume that keys should by strduped before they are
* entered in the table.
*/
table->doStrdup = ANTLR3_TRUE;
/* Install the interface
*/
table->get = antlr3HashGet;
table->put = antlr3HashPut;
table->del = antlr3HashDelete;
table->remove = antlr3HashRemove;
table->getI = antlr3HashGetI;
table->putI = antlr3HashPutI;
table->delI = antlr3HashDeleteI;
table->removeI = antlr3HashRemoveI;
table->size = antlr3HashSize;
table->free = antlr3HashFree;
return table;
}
static void
antlr3HashFree(pANTLR3_HASH_TABLE table)
{
ANTLR3_UINT32 bucket; /* Used to traverse the buckets */
pANTLR3_HASH_BUCKET thisBucket;
pANTLR3_HASH_ENTRY entry;
pANTLR3_HASH_ENTRY nextEntry;
/* Free the table, all buckets and all entries, and all the
* keys and data (if the table exists)
*/
if (table != NULL)
{
for (bucket = 0; bucket < table->modulo; bucket++)
{
thisBucket = &(table->buckets[bucket]);
/* Allow sparse tables, though we don't create them as such at present
*/
if ( thisBucket != NULL)
{
entry = thisBucket->entries;
/* Search all entries in the bucket and free them up
*/
while (entry != NULL)
{
/* Save next entry - we do not want to access memory in entry after we
* have freed it.
*/
nextEntry = entry->nextEntry;
/* Free any data pointer, this only happens if the user supplied
* a pointer to a routine that knwos how to free the structure they
* added to the table.
*/
if (entry->free != NULL)
{
entry->free(entry->data);
}
/* Free the key memory - we know that we allocated this
*/
if (entry->keybase.type == ANTLR3_HASH_TYPE_STR && entry->keybase.key.sKey != NULL)
{
ANTLR3_FREE(entry->keybase.key.sKey);
}
/* Free this entry
*/
ANTLR3_FREE(entry);
entry = nextEntry; /* Load next pointer to see if we shoud free it */
}
/* Invalidate the current pointer
*/
thisBucket->entries = NULL;
}
}
/* Now we can free the bucket memory
*/
ANTLR3_FREE(table->buckets);
}
/* Now we free teh memory for the table itself
*/
ANTLR3_FREE(table);
}
/** return the current size of the hash table
*/
static ANTLR3_UINT32 antlr3HashSize (pANTLR3_HASH_TABLE table)
{
return table->count;
}
/** Remove a numeric keyed entry from a hash table if it exists,
* no error if it does not exist.
*/
static pANTLR3_HASH_ENTRY antlr3HashRemoveI (pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key)
{
ANTLR3_UINT32 hash;
pANTLR3_HASH_BUCKET bucket;
pANTLR3_HASH_ENTRY entry;
pANTLR3_HASH_ENTRY * nextPointer;
/* First we need to know the hash of the provided key
*/
hash = (ANTLR3_UINT32)(key % (ANTLR3_INTKEY)(table->modulo));
/* Knowing the hash, we can find the bucket
*/
bucket = table->buckets + hash;
/* Now, we traverse the entries in the bucket until
* we find the key or the end of the entries in the bucket.
* We track the element prior to the one we are examining
* as we need to set its next pointer to the next pointer
* of the entry we are deleting (if we find it).
*/
entry = bucket->entries; /* Entry to examine */
nextPointer = & bucket->entries; /* Where to put the next pointer of the deleted entry */
while (entry != NULL)
{
/* See if this is the entry we wish to delete
*/
if (entry->keybase.key.iKey == key)
{
/* It was the correct entry, so we set the next pointer
* of the previous entry to the next pointer of this
* located one, which takes it out of the chain.
*/
(*nextPointer) = entry->nextEntry;
table->count--;
return entry;
}
else
{
/* We found an entry but it wasn't the one that was wanted, so
* move to the next one, if any.
*/
nextPointer = & (entry->nextEntry); /* Address of the next pointer in the current entry */
entry = entry->nextEntry; /* Address of the next element in the bucket (if any) */
}
}
return NULL; /* Not found */
}
/** Remove the element in the hash table for a particular
* key value, if it exists - no error if it does not.
*/
static pANTLR3_HASH_ENTRY
antlr3HashRemove(pANTLR3_HASH_TABLE table, void * key)
{
ANTLR3_UINT32 hash;
pANTLR3_HASH_BUCKET bucket;
pANTLR3_HASH_ENTRY entry;
pANTLR3_HASH_ENTRY * nextPointer;
/* First we need to know the hash of the provided key
*/
hash = antlr3Hash(key, (ANTLR3_UINT32)strlen((const char *)key));
/* Knowing the hash, we can find the bucket
*/
bucket = table->buckets + (hash % table->modulo);
/* Now, we traverse the entries in the bucket until
* we find the key or the end of the entires in the bucket.
* We track the element prior to the one we are exmaining
* as we need to set its next pointer to the next pointer
* of the entry we are deleting (if we find it).
*/
entry = bucket->entries; /* Entry to examine */
nextPointer = & bucket->entries; /* Where to put the next pointer of the deleted entry */
while (entry != NULL)
{
/* See if this is the entry we wish to delete
*/
if (strcmp((const char *)key, (const char *)entry->keybase.key.sKey) == 0)
{
/* It was the correct entry, so we set the next pointer
* of the previous entry to the next pointer of this
* located one, which takes it out of the chain.
*/
(*nextPointer) = entry->nextEntry;
/* Release the key - if we allocated that
*/
if (table->doStrdup == ANTLR3_TRUE)
{
ANTLR3_FREE(entry->keybase.key.sKey);
}
entry->keybase.key.sKey = NULL;
table->count--;
return entry;
}
else
{
/* We found an entry but it wasn't the one that was wanted, so
* move to the next one, if any.
*/
nextPointer = & (entry->nextEntry); /* Address of the next pointer in the current entry */
entry = entry->nextEntry; /* Address of the next element in the bucket (if any) */
}
}
return NULL; /* Not found */
}
/** Takes the element with the supplied key out of the list, and deletes the data
* calling the supplied free() routine if any.
*/
static void
antlr3HashDeleteI (pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key)
{
pANTLR3_HASH_ENTRY entry;
entry = antlr3HashRemoveI(table, key);
/* Now we can free the elements and the entry in order
*/
if (entry != NULL && entry->free != NULL)
{
/* Call programmer supplied function to release this entry data
*/
entry->free(entry->data);
entry->data = NULL;
}
/* Finally release the space for this entry block.
*/
ANTLR3_FREE(entry);
}
/** Takes the element with the supplied key out of the list, and deletes the data
* calling the supplied free() routine if any.
*/
static void
antlr3HashDelete (pANTLR3_HASH_TABLE table, void * key)
{
pANTLR3_HASH_ENTRY entry;
entry = antlr3HashRemove(table, key);
/* Now we can free the elements and the entry in order
*/
if (entry != NULL && entry->free != NULL)
{
/* Call programmer supplied function to release this entry data
*/
entry->free(entry->data);
entry->data = NULL;
}
/* Finally release the space for this entry block.
*/
ANTLR3_FREE(entry);
}
/** Return the element pointer in the hash table for a particular
* key value, or NULL if it don't exist (or was itself NULL).
*/
static void *
antlr3HashGetI(pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key)
{
ANTLR3_UINT32 hash;
pANTLR3_HASH_BUCKET bucket;
pANTLR3_HASH_ENTRY entry;
/* First we need to know the hash of the provided key
*/
hash = (ANTLR3_UINT32)(key % (ANTLR3_INTKEY)(table->modulo));
/* Knowing the hash, we can find the bucket
*/
bucket = table->buckets + hash;
/* Now we can inspect the key at each entry in the bucket
* and see if we have a match.
*/
entry = bucket->entries;
while (entry != NULL)
{
if (entry->keybase.key.iKey == key)
{
/* Match was found, return the data pointer for this entry
*/
return entry->data;
}
entry = entry->nextEntry;
}
/* If we got here, then we did not find the key
*/
return NULL;
}
/** Return the element pointer in the hash table for a particular
* key value, or NULL if it don't exist (or was itself NULL).
*/
static void *
antlr3HashGet(pANTLR3_HASH_TABLE table, void * key)
{
ANTLR3_UINT32 hash;
pANTLR3_HASH_BUCKET bucket;
pANTLR3_HASH_ENTRY entry;
/* First we need to know the hash of the provided key
*/
hash = antlr3Hash(key, (ANTLR3_UINT32)strlen((const char *)key));
/* Knowing the hash, we can find the bucket
*/
bucket = table->buckets + (hash % table->modulo);
/* Now we can inspect the key at each entry in the bucket
* and see if we have a match.
*/
entry = bucket->entries;
while (entry != NULL)
{
if (strcmp((const char *)key, (const char *)entry->keybase.key.sKey) == 0)
{
/* Match was found, return the data pointer for this entry
*/
return entry->data;
}
entry = entry->nextEntry;
}
/* If we got here, then we did not find the key
*/
return NULL;
}
/** Add the element pointer in to the table, based upon the
* hash of the provided key.
*/
static ANTLR3_INT32
antlr3HashPutI(pANTLR3_HASH_TABLE table, ANTLR3_INTKEY key, void * element, void (ANTLR3_CDECL *freeptr)(void *))
{
ANTLR3_UINT32 hash;
pANTLR3_HASH_BUCKET bucket;
pANTLR3_HASH_ENTRY entry;
pANTLR3_HASH_ENTRY * newPointer;
/* First we need to know the hash of the provided key
*/
hash = (ANTLR3_UINT32)(key % (ANTLR3_INTKEY)(table->modulo));
/* Knowing the hash, we can find the bucket
*/
bucket = table->buckets + hash;
/* Knowing the bucket, we can traverse the entries until we
* we find a NULL pointer or we find that this is already
* in the table and duplicates were not allowed.
*/
newPointer = &bucket->entries;
while (*newPointer != NULL)
{
/* The value at new pointer is pointing to an existing entry.
* If duplicates are allowed then we don't care what it is, but
* must reject this add if the key is the same as the one we are
* supplied with.
*/
if (table->allowDups == ANTLR3_FALSE)
{
if ((*newPointer)->keybase.key.iKey == key)
{
return ANTLR3_ERR_HASHDUP;
}
}
/* Point to the next entry pointer of the current entry we
* are traversing, if it is NULL we will create our new
* structure and point this to it.
*/
newPointer = &((*newPointer)->nextEntry);
}
/* newPointer is now pointing at the pointer where we need to
* add our new entry, so let's crate the entry and add it in.
*/
entry = (pANTLR3_HASH_ENTRY)ANTLR3_MALLOC((size_t)sizeof(ANTLR3_HASH_ENTRY));
if (entry == NULL)
{
return ANTLR3_ERR_NOMEM;
}
entry->data = element; /* Install the data element supplied */
entry->free = freeptr; /* Function that knows how to release the entry */
entry->keybase.type = ANTLR3_HASH_TYPE_INT; /* Indicate the key type stored here for when we free */
entry->keybase.key.iKey = key; /* Record the key value */
entry->nextEntry = NULL; /* Ensure that the forward pointer ends the chain */
*newPointer = entry; /* Install the next entry in this bucket */
table->count++;
return ANTLR3_SUCCESS;
}
/** Add the element pointer in to the table, based upon the
* hash of the provided key.
*/
static ANTLR3_INT32
antlr3HashPut(pANTLR3_HASH_TABLE table, void * key, void * element, void (ANTLR3_CDECL *freeptr)(void *))
{
ANTLR3_UINT32 hash;
pANTLR3_HASH_BUCKET bucket;
pANTLR3_HASH_ENTRY entry;
pANTLR3_HASH_ENTRY * newPointer;
/* First we need to know the hash of the provided key
*/
hash = antlr3Hash(key, (ANTLR3_UINT32)strlen((const char *)key));
/* Knowing the hash, we can find the bucket
*/
bucket = table->buckets + (hash % table->modulo);
/* Knowign the bucket, we can traverse the entries until we
* we find a NULL pointer ofr we find that this is already
* in the table and duplicates were not allowed.
*/
newPointer = &bucket->entries;
while (*newPointer != NULL)
{
/* The value at new pointer is pointing to an existing entry.
* If duplicates are allowed then we don't care what it is, but
* must reject this add if the key is the same as the one we are
* supplied with.
*/
if (table->allowDups == ANTLR3_FALSE)
{
if (strcmp((const char*) key, (const char *)(*newPointer)->keybase.key.sKey) == 0)
{
return ANTLR3_ERR_HASHDUP;
}
}
/* Point to the next entry pointer of the current entry we
* are traversing, if it is NULL we will create our new
* structure and point this to it.
*/
newPointer = &((*newPointer)->nextEntry);
}
/* newPointer is now poiting at the pointer where we need to
* add our new entry, so let's crate the entry and add it in.
*/
entry = (pANTLR3_HASH_ENTRY)ANTLR3_MALLOC((size_t)sizeof(ANTLR3_HASH_ENTRY));
if (entry == NULL)
{
return ANTLR3_ERR_NOMEM;
}
entry->data = element; /* Install the data element supplied */
entry->free = freeptr; /* Function that knows how to release the entry */
entry->keybase.type = ANTLR3_HASH_TYPE_STR; /* Indicate the key type stored here for free() */
if (table->doStrdup == ANTLR3_TRUE)
{
entry->keybase.key.sKey = ANTLR3_STRDUP(key); /* Record the key value */
}
else
{
entry->keybase.key.sKey = key; /* Record the key value */
}
entry->nextEntry = NULL; /* Ensure that the forward pointer ends the chain */
*newPointer = entry; /* Install the next entry in this bucket */
table->count++;
return ANTLR3_SUCCESS;
}
/** \brief Creates an enumeration structure to traverse the hash table.
*
* \param table Table to enumerate
* \return Pointer to enumeration structure.
*/
pANTLR3_HASH_ENUM
antlr3EnumNew (pANTLR3_HASH_TABLE table)
{
pANTLR3_HASH_ENUM en;
/* Allocate structure memory
*/
en = (pANTLR3_HASH_ENUM) ANTLR3_MALLOC((size_t)sizeof(ANTLR3_HASH_ENUM));
/* Check that the allocation was good
*/
if (en == NULL)
{
return (pANTLR3_HASH_ENUM) ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
}
/* Initialize the start pointers
*/
en->table = table;
en->bucket = 0; /* First bucket */
en->entry = en->table->buckets->entries; /* First entry to return */
/* Special case in that the first bucket may not have anything in it
* but the antlr3EnumNext() function expects that the en->entry is
* set to the next valid pointer. Hence if it is not a valid element
* pointer, attempt to find the next one that is, (table may be empty
* of course.
*/
if (en->entry == NULL)
{
antlr3EnumNextEntry(en);
}
/* Install the interface
*/
en->free = antlr3EnumFree;
en->next = antlr3EnumNext;
/* All is good
*/
return en;
}
/** \brief Return the next entry in the hashtable being traversed by the supplied
* enumeration.
*
* \param[in] en Pointer to the enumeration tracking structure
* \param key Pointer to void pointer, where the key pointer is returned.
* \param data Pointer to void pointer where the data pointer is returned.
* \return
* - ANTLR3_SUCCESS if there was a next key
* - ANTLR3_FAIL if there were no more keys
*
* \remark
* No checking of input structure is performed!
*/
static int
antlr3EnumNext (pANTLR3_HASH_ENUM en, pANTLR3_HASH_KEY * key, void ** data)
{
/* If the current entry is valid, then use it
*/
if (en->bucket >= en->table->modulo)
{
/* Already exhausted the table
*/
return ANTLR3_FAIL;
}
/* Pointers are already set to the current entry to return, or
* we would not be at this point in the logic flow.
*/
*key = &(en->entry->keybase);
*data = en->entry->data;
/* Return pointers are set up, so now we move the element
* pointer to the next in the table (if any).
*/
antlr3EnumNextEntry(en);
return ANTLR3_SUCCESS;
}
/** \brief Local function to advance the entry pointer of an enumeration
* structure to the next valid entry (if there is one).
*
* \param[in] enum Pointer to ANTLR3 enumeration structure returned by antlr3EnumNew()
*
* \remark
* - The function always leaves the pointers pointing at a valid entry if there
* is one, so if the entry pointer is NULL when this function exits, there were
* no more entries in the table.
*/
static void
antlr3EnumNextEntry(pANTLR3_HASH_ENUM en)
{
pANTLR3_HASH_BUCKET bucket;
/* See if the current entry pointer is valid first of all
*/
if (en->entry != NULL)
{
/* Current entry was a valid point, see if there is another
* one in the chain.
*/
if (en->entry->nextEntry != NULL)
{
/* Next entry in the enumeration is just the next entry
* in the chain.
*/
en->entry = en->entry->nextEntry;
return;
}
}
/* There were no more entries in the current bucket, if there are
* more buckets then chase them until we find an entry.
*/
en->bucket++;
while (en->bucket < en->table->modulo)
{
/* There was one more bucket, see if it has any elements in it
*/
bucket = en->table->buckets + en->bucket;
if (bucket->entries != NULL)
{
/* There was an entry in this bucket, so we can use it
* for the next entry in the enumeration.
*/
en->entry = bucket->entries;
return;
}
/* There was nothing in the bucket we just examined, move to the
* next one.
*/
en->bucket++;
}
/* Here we have exhausted all buckets and the enumeration pointer will
* have its bucket count = table->modulo which signifies that we are done.
*/
}
/** \brief Frees up the memory structures that represent a hash table
* enumeration.
* \param[in] enum Pointer to ANTLR3 enumeration structure returned by antlr3EnumNew()
*/
static void
antlr3EnumFree (pANTLR3_HASH_ENUM en)
{
/* Nothing to check, we just free it.
*/
ANTLR3_FREE(en);
}
/** Given an input key of arbitrary length, return a hash value of
* it. This can then be used (with suitable modulo) to index other
* structures.
*/
ANTLR3_API ANTLR3_UINT32
antlr3Hash(void * key, ANTLR3_UINT32 keylen)
{
/* Accumulate the hash value of the key
*/
ANTLR3_UINT32 hash;
pANTLR3_UINT8 keyPtr;
ANTLR3_UINT32 i1;
hash = 0;
keyPtr = (pANTLR3_UINT8) key;
/* Iterate the key and accumulate the hash
*/
while(keylen > 0)
{
hash = (hash << 4) + (*(keyPtr++));
if ((i1=hash&0xf0000000) != 0)
{
hash = hash ^ (i1 >> 24);
hash = hash ^ i1;
}
keylen--;
}
return hash;
}
ANTLR3_API pANTLR3_LIST
antlr3ListNew (ANTLR3_UINT32 sizeHint)
{
pANTLR3_LIST list;
/* Allocate memory
*/
list = (pANTLR3_LIST)ANTLR3_MALLOC((size_t)sizeof(ANTLR3_LIST));
if (list == NULL)
{
return (pANTLR3_LIST)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
}
/* Now we need to add a new table
*/
list->table = antlr3HashTableNew(sizeHint);
if (list->table == (pANTLR3_HASH_TABLE)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM))
{
return (pANTLR3_LIST)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
}
/* Allocation was good, install interface
*/
list->free = antlr3ListFree;
list->del = antlr3ListDelete;
list->get = antlr3ListGet;
list->add = antlr3ListAdd;
list->remove = antlr3ListRemove;
list->put = antlr3ListPut;
list->size = antlr3ListSize;
return list;
}
static ANTLR3_UINT32 antlr3ListSize (pANTLR3_LIST list)
{
return list->table->size(list->table);
}
static void
antlr3ListFree (pANTLR3_LIST list)
{
/* Free the hashtable that stores the list
*/
list->table->free(list->table);
/* Free the allocation for the list itself
*/
ANTLR3_FREE(list);
}
static void
antlr3ListDelete (pANTLR3_LIST list, ANTLR3_INTKEY key)
{
list->table->delI(list->table, key);
}
static void *
antlr3ListGet (pANTLR3_LIST list, ANTLR3_INTKEY key)
{
return list->table->getI(list->table, key);
}
/** Add the supplied element to the list, at the next available key
*/
static ANTLR3_INT32 antlr3ListAdd (pANTLR3_LIST list, void * element, void (ANTLR3_CDECL *freeptr)(void *))
{
ANTLR3_INTKEY key;
key = list->table->size(list->table) + 1;
return list->put(list, key, element, freeptr);
}
/** Remove from the list, but don't free the element, just send it back to the
* caller.
*/
static void *
antlr3ListRemove (pANTLR3_LIST list, ANTLR3_INTKEY key)
{
pANTLR3_HASH_ENTRY entry;
entry = list->table->removeI(list->table, key);
if (entry != NULL)
{
return entry->data;
}
else
{
return NULL;
}
}
static ANTLR3_INT32
antlr3ListPut (pANTLR3_LIST list, ANTLR3_INTKEY key, void * element, void (ANTLR3_CDECL *freeptr)(void *))
{
return list->table->putI(list->table, key, element, freeptr);
}
ANTLR3_API pANTLR3_STACK
antlr3StackNew (ANTLR3_UINT32 sizeHint)
{
pANTLR3_STACK stack;
/* Allocate memory
*/
stack = (pANTLR3_STACK)ANTLR3_MALLOC((size_t)sizeof(ANTLR3_STACK));
if (stack == NULL)
{
return (pANTLR3_STACK)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
}
/* Now we need to add a new table
*/
stack->vector = antlr3VectorNew(sizeHint);
stack->top = NULL;
if (stack->vector == (pANTLR3_VECTOR)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM))
{
return (pANTLR3_STACK)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
}
/* Looks good, now add the interface
*/
stack->get = antlr3StackGet;
stack->free = antlr3StackFree;
stack->pop = antlr3StackPop;
stack->push = antlr3StackPush;
stack->size = antlr3StackSize;
stack->peek = antlr3StackPeek;
return stack;
}
static ANTLR3_UINT32 antlr3StackSize (pANTLR3_STACK stack)
{
return stack->vector->count;
}
static void
antlr3StackFree (pANTLR3_STACK stack)
{
/* Free the list that supports the stack
*/
stack->vector->free(stack->vector);
stack->vector = NULL;
stack->top = NULL;
ANTLR3_FREE(stack);
}
static void *
antlr3StackPop (pANTLR3_STACK stack)
{
// Delete the element that is currently at the top of the stack
//
stack->vector->del(stack->vector, stack->vector->count - 1);
// And get the element that is the now the top of the stack (if anything)
// NOTE! This is not quite like a 'real' stack, which would normally return you
// the current top of the stack, then remove it from the stack.
// TODO: Review this, it is correct for follow sets which is what this was done for
// but is not as obvious when using it as a 'real'stack.
//
stack->top = stack->vector->get(stack->vector, stack->vector->count - 1);
return stack->top;
}
static void *
antlr3StackGet (pANTLR3_STACK stack, ANTLR3_INTKEY key)
{
return stack->vector->get(stack->vector, (ANTLR3_UINT32)key);
}
static void *
antlr3StackPeek (pANTLR3_STACK stack)
{
return stack->top;
}
static ANTLR3_BOOLEAN
antlr3StackPush (pANTLR3_STACK stack, void * element, void (ANTLR3_CDECL *freeptr)(void *))
{
stack->top = element;
return (ANTLR3_BOOLEAN)(stack->vector->add(stack->vector, element, freeptr));
}
ANTLR3_API pANTLR3_VECTOR
antlr3VectorNew (ANTLR3_UINT32 sizeHint)
{
pANTLR3_VECTOR vector;
// Allocate memory for the vector structure itself
//
vector = (pANTLR3_VECTOR) ANTLR3_MALLOC((size_t)(sizeof(ANTLR3_VECTOR)));
if (vector == NULL)
{
return (pANTLR3_VECTOR)ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
}
// Now fill in the defaults
//
antlr3SetVectorApi(vector, sizeHint);
// And everything is hunky dory
//
return vector;
}
ANTLR3_API void
antlr3SetVectorApi (pANTLR3_VECTOR vector, ANTLR3_UINT32 sizeHint)
{
ANTLR3_UINT32 initialSize;
// Allow vectors to be guessed by ourselves, so input size can be zero
//
if (sizeHint > ANTLR3_VECTOR_INTERNAL_SIZE)
{
initialSize = sizeHint;
}
else
{
initialSize = ANTLR3_VECTOR_INTERNAL_SIZE;
}
if (sizeHint > ANTLR3_VECTOR_INTERNAL_SIZE)
{
vector->elements = (pANTLR3_VECTOR_ELEMENT)ANTLR3_MALLOC((size_t)(sizeof(ANTLR3_VECTOR_ELEMENT) * initialSize));
}
else
{
vector->elements = vector->internal;
}
if (vector->elements == NULL)
{
ANTLR3_FREE(vector);
return;
}
// Memory allocated successfully
//
vector->count = 0; // No entries yet of course
vector->elementsSize = initialSize; // Available entries
// Now we can install the API
//
vector->add = antlr3VectorAdd;
vector->del = antlr3VectorDel;
vector->get = antlr3VectorGet;
vector->free = antlr3VectorFree;
vector->set = antlr3VectorSet;
vector->remove = antrl3VectorRemove;
vector->clear = antlr3VectorClear;
vector->size = antlr3VectorSize;
vector->swap = antlr3VectorSwap;
// Assume that this is not a factory made vector
//
vector->factoryMade = ANTLR3_FALSE;
}
// Clear the entries in a vector.
// Clearing the vector leaves its capacity the same but
// it walks the entries first to see if any of them
// have a free routine that must be called.
//
static void
antlr3VectorClear (pANTLR3_VECTOR vector)
{
ANTLR3_UINT32 entry;
// We must traverse every entry in the vector and if it has
// a pointer to a free function then we call it with the
// the entry pointer
//
for (entry = 0; entry < vector->count; entry++)
{
if (vector->elements[entry].freeptr != NULL)
{
vector->elements[entry].freeptr(vector->elements[entry].element);
}
vector->elements[entry].freeptr = NULL;
vector->elements[entry].element = NULL;
}
// Having called any free pointers, we just reset the entry count
// back to zero.
//
vector->count = 0;
}
static
void ANTLR3_CDECL antlr3VectorFree (pANTLR3_VECTOR vector)
{
ANTLR3_UINT32 entry;
// We must traverse every entry in the vector and if it has
// a pointer to a free function then we call it with the
// the entry pointer
//
for (entry = 0; entry < vector->count; entry++)
{
if (vector->elements[entry].freeptr != NULL)
{
vector->elements[entry].freeptr(vector->elements[entry].element);
}
vector->elements[entry].freeptr = NULL;
vector->elements[entry].element = NULL;
}
if (vector->factoryMade == ANTLR3_FALSE)
{
// The entries are freed, so free the element allocation
//
if (vector->elementsSize > ANTLR3_VECTOR_INTERNAL_SIZE)
{
ANTLR3_FREE(vector->elements);
}
vector->elements = NULL;
// Finally, free the allocation for the vector itself
//
ANTLR3_FREE(vector);
}
}
static void antlr3VectorDel (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry)
{
// Check this is a valid request first
//
if (entry >= vector->count)
{
return;
}
// Valid request, check for free pointer and call it if present
//
if (vector->elements[entry].freeptr != NULL)
{
vector->elements[entry].freeptr(vector->elements[entry].element);
vector->elements[entry].freeptr = NULL;
}
if (entry == vector->count - 1)
{
// Ensure the pointer is never reused by accident, but otherwise just
// decrement the pointer.
//
vector->elements[entry].element = NULL;
}
else
{
// Need to shuffle trailing pointers back over the deleted entry
//
ANTLR3_MEMMOVE(vector->elements + entry, vector->elements + entry + 1, sizeof(ANTLR3_VECTOR_ELEMENT) * (vector->count - entry - 1));
}
// One less entry in the vector now
//
vector->count--;
}
static void * antlr3VectorGet (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry)
{
// Ensure this is a valid request
//
if (entry < vector->count)
{
return vector->elements[entry].element;
}
else
{
// I know nothing, Mr. Fawlty!
//
return NULL;
}
}
/// Remove the entry from the vector, but do not free any entry, even if it has
/// a free pointer.
///
static void * antrl3VectorRemove (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry)
{
void * element;
// Check this is a valid request first
//
if (entry >= vector->count)
{
return NULL;
}
// Valid request, return the sorted pointer
//
element = vector->elements[entry].element;
if (entry == vector->count - 1)
{
// Ensure the pointer is never reused by accident, but otherwise just
// decrement the pointer.
///
vector->elements[entry].element = NULL;
vector->elements[entry].freeptr = NULL;
}
else
{
// Need to shuffle trailing pointers back over the deleted entry
//
ANTLR3_MEMMOVE(vector->elements + entry, vector->elements + entry + 1, sizeof(ANTLR3_VECTOR_ELEMENT) * (vector->count - entry - 1));
}
// One less entry in the vector now
//
vector->count--;
return element;
}
static void
antlr3VectorResize (pANTLR3_VECTOR vector, ANTLR3_UINT32 hint)
{
ANTLR3_UINT32 newSize;
// Need to resize the element pointers. We double the allocation
// we already have unless asked for a specific increase.
//
if (hint == 0 || hint < vector->elementsSize)
{
newSize = vector->elementsSize * 2;
}
else
{
newSize = hint * 2;
}
// Now we know how many we need, so we see if we have just expanded
// past the built in vector elements or were already past that
//
if (vector->elementsSize > ANTLR3_VECTOR_INTERNAL_SIZE)
{
// We were already larger than the internal size, so we just
// use realloc so that the pointers are copied for us
//
vector->elements = (pANTLR3_VECTOR_ELEMENT)ANTLR3_REALLOC(vector->elements, (sizeof(ANTLR3_VECTOR_ELEMENT)* newSize));
}
else
{
// The current size was less than or equal to the internal array size and as we always start
// with a size that is at least the maximum internal size, then we must need to allocate new memory
// for external pointers. We don't want to take the time to calculate if a requested element
// is part of the internal or external entries, so we copy the internal ones to the new space
//
vector->elements = (pANTLR3_VECTOR_ELEMENT)ANTLR3_MALLOC((sizeof(ANTLR3_VECTOR_ELEMENT)* newSize));
ANTLR3_MEMCPY(vector->elements, vector->internal, ANTLR3_VECTOR_INTERNAL_SIZE * sizeof(ANTLR3_VECTOR_ELEMENT));
}
vector->elementsSize = newSize;
}
/// Add the supplied pointer and freeing function pointer to the list,
/// expanding the vector if needed.
///
static ANTLR3_UINT32 antlr3VectorAdd (pANTLR3_VECTOR vector, void * element, void (ANTLR3_CDECL *freeptr)(void *))
{
// Do we need to resize the vector table?
//
if (vector->count == vector->elementsSize)
{
antlr3VectorResize(vector, 0); // Give no hint, we let it add 1024 or double it
}
// Insert the new entry
//
vector->elements[vector->count].element = element;
vector->elements[vector->count].freeptr = freeptr;
vector->count++; // One more element counted
return (ANTLR3_UINT32)(vector->count);
}
/// Replace the element at the specified entry point with the supplied
/// entry.
///
static ANTLR3_UINT32
antlr3VectorSet (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry, void * element, void (ANTLR3_CDECL *freeptr)(void *), ANTLR3_BOOLEAN freeExisting)
{
// If the vector is currently not big enough, then we expand it
//
if (entry >= vector->elementsSize)
{
antlr3VectorResize(vector, entry); // We will get at least this many
}
// Valid request, replace the current one, freeing any prior entry if told to
//
if ( entry < vector->count // If actually replacing an element
&& freeExisting // And told to free any existing element
&& vector->elements[entry].freeptr != NULL // And the existing element has a free pointer
)
{
vector->elements[entry].freeptr(vector->elements[entry].element);
}
// Install the new pointers
//
vector->elements[entry].freeptr = freeptr;
vector->elements[entry].element = element;
if (entry >= vector->count)
{
vector->count = entry + 1;
}
return (ANTLR3_UINT32)(entry); // Indicates the replacement was successful
}
/// Replace the element at the specified entry point with the supplied
/// entry.
///
static ANTLR3_BOOLEAN
antlr3VectorSwap (pANTLR3_VECTOR vector, ANTLR3_UINT32 entry1, ANTLR3_UINT32 entry2)
{
void * tempEntry;
void (ANTLR3_CDECL *freeptr)(void *);
// If the vector is currently not big enough, then we do nothing
//
if (entry1 >= vector->elementsSize || entry2 >= vector->elementsSize)
{
return ANTLR3_FALSE;
}
// Valid request, swap them
//
tempEntry = vector->elements[entry1].element;
freeptr = vector->elements[entry1].freeptr;
// Install the new pointers
//
vector->elements[entry1].freeptr = vector->elements[entry2].freeptr;
vector->elements[entry1].element = vector->elements[entry2].element;
vector->elements[entry2].freeptr = freeptr;
vector->elements[entry2].element = tempEntry;
return ANTLR3_TRUE;
}
static ANTLR3_UINT32 antlr3VectorSize (pANTLR3_VECTOR vector)
{
return vector->count;
}
#ifdef ANTLR3_WINDOWS
#pragma warning (push)
#pragma warning (disable : 4100)
#endif
/// Vector factory creation
///
ANTLR3_API pANTLR3_VECTOR_FACTORY
antlr3VectorFactoryNew (ANTLR3_UINT32 sizeHint)
{
pANTLR3_VECTOR_FACTORY factory;
// Allocate memory for the factory
//
factory = (pANTLR3_VECTOR_FACTORY)ANTLR3_MALLOC((size_t)(sizeof(ANTLR3_VECTOR_FACTORY)));
if (factory == NULL)
{
return NULL;
}
// Factory memory is good, so create a new vector pool
//
factory->pools = NULL;
factory->thisPool = -1;
newPool(factory);
// Initialize the API, ignore the hint as this algorithm does
// a better job really.
//
antlr3SetVectorApi(&(factory->unTruc), ANTLR3_VECTOR_INTERNAL_SIZE);
factory->unTruc.factoryMade = ANTLR3_TRUE;
// Install the factory API
//
factory->close = closeVectorFactory;
factory->newVector = newVector;
factory->returnVector = returnVector;
// Create a stack to accumulate reusable vectors
//
factory->freeStack = antlr3StackNew(16);
return factory;
}
#ifdef ANTLR3_WINDOWS
#pragma warning (pop)
#endif
static void
returnVector (pANTLR3_VECTOR_FACTORY factory, pANTLR3_VECTOR vector)
{
// First we need to clear out anything that is still in the vector
//
vector->clear(vector);
// We have a free stack available so we can add the vector we were
// given into the free chain. The vector has to have come from this
// factory, so we already know how to release its memory when it
// dies by virtue of the factory being closed.
//
factory->freeStack->push(factory->freeStack, vector, NULL);
// TODO: remove this line once happy printf("Returned vector %08X to the pool, stack size is %d\n", vector, factory->freeStack->size(factory->freeStack));
}
static void
newPool(pANTLR3_VECTOR_FACTORY factory)
{
/* Increment factory count
*/
factory->thisPool++;
/* Ensure we have enough pointers allocated
*/
factory->pools = (pANTLR3_VECTOR *)
ANTLR3_REALLOC( (void *)factory->pools, /* Current pools pointer (starts at NULL) */
(ANTLR3_UINT32)((factory->thisPool + 1) * sizeof(pANTLR3_VECTOR *)) /* Memory for new pool pointers */
);
/* Allocate a new pool for the factory
*/
factory->pools[factory->thisPool] =
(pANTLR3_VECTOR)
ANTLR3_MALLOC((size_t)(sizeof(ANTLR3_VECTOR) * ANTLR3_FACTORY_VPOOL_SIZE));
/* Reset the counters
*/
factory->nextVector = 0;
/* Done
*/
return;
}
static void
closeVectorFactory (pANTLR3_VECTOR_FACTORY factory)
{
pANTLR3_VECTOR pool;
ANTLR3_INT32 poolCount;
ANTLR3_UINT32 limit;
ANTLR3_UINT32 vector;
pANTLR3_VECTOR check;
// First see if we have a free chain stack to release?
//
if (factory->freeStack != NULL)
{
factory->freeStack->free(factory->freeStack);
}
/* We iterate the vector pools one at a time
*/
for (poolCount = 0; poolCount <= factory->thisPool; poolCount++)
{
/* Pointer to current pool
*/
pool = factory->pools[poolCount];
/* Work out how many tokens we need to check in this pool.
*/
limit = (poolCount == factory->thisPool ? factory->nextVector : ANTLR3_FACTORY_VPOOL_SIZE);
/* Marginal condition, we might be at the start of a brand new pool
* where the nextToken is 0 and nothing has been allocated.
*/
if (limit > 0)
{
/* We have some vectors allocated from this pool
*/
for (vector = 0; vector < limit; vector++)
{
/* Next one in the chain
*/
check = pool + vector;
// Call the free function on each of the vectors in the pool,
// which in turn will cause any elements it holds that also have a free
// pointer to be freed. However, because any vector may be in any other
// vector, we don't free the element allocations yet. We do that in a
// a specific pass, coming up next. The vector free function knows that
// this is a factory allocated pool vector and so it won't free things it
// should not.
//
check->free(check);
}
}
}
/* We iterate the vector pools one at a time once again, but this time
* we are going to free up any allocated element pointers. Note that we are doing this
* so that we do not try to release vectors twice. When building ASTs we just copy
* the vectors all over the place and they may be embedded in this vector pool
* numerous times.
*/
for (poolCount = 0; poolCount <= factory->thisPool; poolCount++)
{
/* Pointer to current pool
*/
pool = factory->pools[poolCount];
/* Work out how many tokens we need to check in this pool.
*/
limit = (poolCount == factory->thisPool ? factory->nextVector : ANTLR3_FACTORY_VPOOL_SIZE);
/* Marginal condition, we might be at the start of a brand new pool
* where the nextToken is 0 and nothing has been allocated.
*/
if (limit > 0)
{
/* We have some vectors allocated from this pool
*/
for (vector = 0; vector < limit; vector++)
{
/* Next one in the chain
*/
check = pool + vector;
// Anything in here should be factory made, but we do this just
// to triple check. We just free up the elements if they were
// allocated beyond the internal size.
//
if (check->factoryMade == ANTLR3_TRUE && check->elementsSize > ANTLR3_VECTOR_INTERNAL_SIZE)
{
ANTLR3_FREE(check->elements);
check->elements = NULL;
}
}
}
// We can now free this pool allocation as we have called free on every element in every vector
// and freed any memory for pointers the grew beyond the internal size limit.
//
ANTLR3_FREE(factory->pools[poolCount]);
factory->pools[poolCount] = NULL;
}
/* All the pools are deallocated we can free the pointers to the pools
* now.
*/
ANTLR3_FREE(factory->pools);
/* Finally, we can free the space for the factory itself
*/
ANTLR3_FREE(factory);
}
static pANTLR3_VECTOR
newVector(pANTLR3_VECTOR_FACTORY factory)
{
pANTLR3_VECTOR vector;
// If we have anything on the re claim stack, reuse it
//
vector = factory->freeStack->peek(factory->freeStack);
if (vector != NULL)
{
// Cool we got something we could reuse
//
factory->freeStack->pop(factory->freeStack);
// TODO: remove this line once happy printf("Reused vector %08X from stack, size is now %d\n", vector, factory->freeStack->size(factory->freeStack));
return vector;
}
// See if we need a new vector pool before allocating a new
// one
//
if (factory->nextVector >= ANTLR3_FACTORY_VPOOL_SIZE)
{
// We ran out of vectors in the current pool, so we need a new pool
//
newPool(factory);
}
// Assuming everything went well (we are trying for performance here so doing minimal
// error checking. Then we can work out what the pointer is to the next vector.
//
vector = factory->pools[factory->thisPool] + factory->nextVector;
factory->nextVector++;
// We have our token pointer now, so we can initialize it to the predefined model.
//
antlr3SetVectorApi(vector, ANTLR3_VECTOR_INTERNAL_SIZE);
vector->factoryMade = ANTLR3_TRUE;
// We know that the pool vectors are created at the default size, which means they
// will start off using their internal entry pointers. We must intialize our pool vector
// to point to its own internal entry table and not the pre-made one.
//
vector->elements = vector->internal;
// TODO: remove this line once happy printf("Used a new vector at %08X from the pools as nothing on the reusue stack\n", vector);
// And we are done
//
return vector;
}
/** Array of left most significant bit positions for an 8 bit
* element provides an efficient way to find the highest bit
* that is set in an n byte value (n>0). Assuming the values will all hit the data cache,
* coding without conditional elements should allow branch
* prediction to work well and of course a parallel instruction cache
* will whip through this. Otherwise we must loop shifting a one
* bit and masking. The values we tend to be placing in out integer
* patricia trie are usually a lot lower than the 64 bits we
* allow for the key allows. Hence there is a lot of redundant looping and
* shifting in a while loop. Whereas, the lookup table is just
* a few ands and indirect lookups, while testing for 0. This
* is likely to be done in parallel on many processors available
* when I wrote this. If this code survives as long as yacc, then
* I may already be dead by the time you read this and maybe there is
* a single machine instruction to perform the operation. What
* else are you going to do with all those transistors? Jim 2007
*
* The table is probably obvious but it is just the number 0..7
* of the MSB in each integer value 0..256
*/
static ANTLR3_UINT8 bitIndex[256] =
{
0, // 0 - Just for padding
0, // 1
1, 1, // 2..3
2, 2, 2, 2, // 4..7
3, 3, 3, 3, 3, 3, 3, 3, // 8+
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, // 16+
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, // 32+
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, // 64+
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // 128+
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
};
/** Rather than use the bit index of a trie node to shift
* 0x01 left that many times, then & with the result, it is
* faster to use the bit index as an index into this table
* which holds precomputed masks for any of the 64 bits
* we need to mask off singly. The data values will stay in
* cache while ever a trie is in heavy use, such as in
* memoization. It is also pretty enough to be ASCII art.
*/
static ANTLR3_UINT64 bitMask[64] =
{
0x0000000000000001ULL, 0x0000000000000002ULL, 0x0000000000000004ULL, 0x0000000000000008ULL,
0x0000000000000010ULL, 0x0000000000000020ULL, 0x0000000000000040ULL, 0x0000000000000080ULL,
0x0000000000000100ULL, 0x0000000000000200ULL, 0x0000000000000400ULL, 0x0000000000000800ULL,
0x0000000000001000ULL, 0x0000000000002000ULL, 0x0000000000004000ULL, 0x0000000000008000ULL,
0x0000000000010000ULL, 0x0000000000020000ULL, 0x0000000000040000ULL, 0x0000000000080000ULL,
0x0000000000100000ULL, 0x0000000000200000ULL, 0x0000000000400000ULL, 0x0000000000800000ULL,
0x0000000001000000ULL, 0x0000000002000000ULL, 0x0000000004000000ULL, 0x0000000008000000ULL,
0x0000000010000000ULL, 0x0000000020000000ULL, 0x0000000040000000ULL, 0x0000000080000000ULL,
0x0000000100000000ULL, 0x0000000200000000ULL, 0x0000000400000000ULL, 0x0000000800000000ULL,
0x0000001000000000ULL, 0x0000002000000000ULL, 0x0000004000000000ULL, 0x0000008000000000ULL,
0x0000010000000000ULL, 0x0000020000000000ULL, 0x0000040000000000ULL, 0x0000080000000000ULL,
0x0000100000000000ULL, 0x0000200000000000ULL, 0x0000400000000000ULL, 0x0000800000000000ULL,
0x0001000000000000ULL, 0x0002000000000000ULL, 0x0004000000000000ULL, 0x0008000000000000ULL,
0x0010000000000000ULL, 0x0020000000000000ULL, 0x0040000000000000ULL, 0x0080000000000000ULL,
0x0100000000000000ULL, 0x0200000000000000ULL, 0x0400000000000000ULL, 0x0800000000000000ULL,
0x1000000000000000ULL, 0x2000000000000000ULL, 0x4000000000000000ULL, 0x8000000000000000ULL
};
/* INT TRIE Implementation of depth 64 bits, being the number of bits
* in a 64 bit integer.
*/
pANTLR3_INT_TRIE
antlr3IntTrieNew(ANTLR3_UINT32 depth)
{
pANTLR3_INT_TRIE trie;
trie = (pANTLR3_INT_TRIE) ANTLR3_CALLOC(1, sizeof(ANTLR3_INT_TRIE)); /* Base memory required */
if (trie == NULL)
{
return (pANTLR3_INT_TRIE) ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
}
/* Now we need to allocate the root node. This makes it easier
* to use the tree as we don't have to do anything special
* for the root node.
*/
trie->root = (pANTLR3_INT_TRIE_NODE) ANTLR3_CALLOC(1, sizeof(ANTLR3_INT_TRIE));
if (trie->root == NULL)
{
ANTLR3_FREE(trie);
return (pANTLR3_INT_TRIE) ANTLR3_FUNC_PTR(ANTLR3_ERR_NOMEM);
}
trie->add = intTrieAdd;
trie->del = intTrieDel;
trie->free = intTrieFree;
trie->get = intTrieGet;
/* Now we seed the root node with the index being the
* highest left most bit we want to test, which limits the
* keys in the trie. This is the trie 'depth'. The limit for
* this implementation is 63 (bits 0..63).
*/
trie->root->bitNum = depth;
/* And as we have nothing in here yet, we set both child pointers
* of the root node to point back to itself.
*/
trie->root->leftN = trie->root;
trie->root->rightN = trie->root;
trie->count = 0;
/* Finally, note that the key for this root node is 0 because
* we use calloc() to initialise it.
*/
return trie;
}
/** Search the int Trie and return a pointer to the first bucket indexed
* by the key if it is contained in the trie, otherwise NULL.
*/
static pANTLR3_TRIE_ENTRY
intTrieGet (pANTLR3_INT_TRIE trie, ANTLR3_INTKEY key)
{
pANTLR3_INT_TRIE_NODE thisNode;
pANTLR3_INT_TRIE_NODE nextNode;
if (trie->count == 0)
{
return NULL; /* Nothing in this trie yet */
}
/* Starting at the root node in the trie, compare the bit index
* of the current node with its next child node (starts left from root).
* When the bit index of the child node is greater than the bit index of the current node
* then by definition (as the bit index decreases as we descent the trie)
* we have reached a 'backward' pointer. A backward pointer means we
* have reached the only node that can be reached by the bits given us so far
* and it must either be the key we are looking for, or if not then it
* means the entry was not in the trie, and we return NULL. A backward pointer
* points back in to the tree structure rather than down (deeper) within the
* tree branches.
*/
thisNode = trie->root; /* Start at the root node */
nextNode = thisNode->leftN; /* Examine the left node from the root */
/* While we are descending the tree nodes...
*/
while (thisNode->bitNum > nextNode->bitNum)
{
/* Next node now becomes the new 'current' node
*/
thisNode = nextNode;
/* We now test the bit indicated by the bitmap in the next node
* in the key we are searching for. The new next node is the
* right node if that bit is set and the left node it is not.
*/
if (key & bitMask[nextNode->bitNum])
{
nextNode = nextNode->rightN; /* 1 is right */
}
else
{
nextNode = nextNode->leftN; /* 0 is left */
}
}
/* Here we have reached a node where the bitMap index is lower than
* its parent. This means it is pointing backward in the tree and
* must therefore be a terminal node, being the only point than can
* be reached with the bits seen so far. It is either the actual key
* we wanted, or if that key is not in the trie it is another key
* that is currently the only one that can be reached by those bits.
* That situation would obviously change if the key was to be added
* to the trie.
*
* Hence it only remains to test whether this is actually the key or not.
*/
if (nextNode->key == key)
{
/* This was the key, so return the entry pointer
*/
return nextNode->buckets;
}
else
{
return NULL; /* That key is not in the trie (note that we set the pointer to -1 if no payload) */
}
}
static ANTLR3_BOOLEAN
intTrieDel (pANTLR3_INT_TRIE trie, ANTLR3_INTKEY key)
{
pANTLR3_INT_TRIE_NODE p;
p=trie->root;
key = key;
return ANTLR3_FALSE;
}
/** Add an entry into the INT trie.
* Basically we descend the trie as we do when searching it, which will
* locate the only node in the trie that can be reached by the bit pattern of the
* key. If the key is actually at that node, then if the trie accepts duplicates
* we add the supplied data in a new chained bucket to that data node. If it does
* not accept duplicates then we merely return FALSE in case the caller wants to know
* whether the key was already in the trie.
* If the node we locate is not the key we are looking to add, then we insert a new node
* into the trie with a bit index of the leftmost differing bit and the left or right
* node pointing to itself or the data node we are inserting 'before'.
*/
static ANTLR3_BOOLEAN
intTrieAdd (pANTLR3_INT_TRIE trie, ANTLR3_INTKEY key, ANTLR3_UINT32 type, ANTLR3_INTKEY intVal, void * data, void (ANTLR3_CDECL *freeptr)(void *))
{
pANTLR3_INT_TRIE_NODE thisNode;
pANTLR3_INT_TRIE_NODE nextNode;
pANTLR3_INT_TRIE_NODE entNode;
ANTLR3_UINT32 depth;
pANTLR3_TRIE_ENTRY newEnt;
pANTLR3_TRIE_ENTRY nextEnt;
ANTLR3_INTKEY xorKey;
/* Cache the bit depth of this trie, which is always the highest index,
* which is in the root node
*/
depth = trie->root->bitNum;
thisNode = trie->root; /* Start with the root node */
nextNode = trie->root->leftN; /* And assume we start to the left */
/* Now find the only node that can be currently reached by the bits in the
* key we are being asked to insert.
*/
while (thisNode->bitNum > nextNode->bitNum)
{
/* Still descending the structure, next node becomes current.
*/
thisNode = nextNode;
if (key & bitMask[nextNode->bitNum])
{
/* Bit at the required index was 1, so travers the right node from here
*/
nextNode = nextNode->rightN;
}
else
{
/* Bit at the required index was 0, so we traverse to the left
*/
nextNode = nextNode->leftN;
}
}
/* Here we have located the only node that can be reached by the
* bits in the requested key. It could in fact be that key or the node
* we need to use to insert the new key.
*/
if (nextNode->key == key)
{
/* We have located an exact match, but we will only append to the bucket chain
* if this trie accepts duplicate keys.
*/
if (trie->allowDups ==ANTLR3_TRUE)
{
/* Yes, we are accepting duplicates
*/
newEnt = (pANTLR3_TRIE_ENTRY)ANTLR3_CALLOC(1, sizeof(ANTLR3_TRIE_ENTRY));
if (newEnt == NULL)
{
/* Out of memory, all we can do is return the fact that the insert failed.
*/
return ANTLR3_FALSE;
}
/* Otherwise insert this in the chain
*/
newEnt->type = type;
newEnt->freeptr = freeptr;
if (type == ANTLR3_HASH_TYPE_STR)
{
newEnt->data.ptr = data;
}
else
{
newEnt->data.intVal = intVal;
}
/* We want to be able to traverse the stored elements in the order that they were
* added as duplicate keys. We might need to revise this opinion if we end up having many duplicate keys
* as perhaps reverse order is just as good, so long as it is ordered.
*/
nextEnt = nextNode->buckets;
while (nextEnt->next != NULL)
{
nextEnt = nextEnt->next;
}
nextEnt->next = newEnt;
trie->count++;
return ANTLR3_TRUE;
}
else
{
/* We found the key is already there and we are not allowed duplicates in this
* trie.
*/
return ANTLR3_FALSE;
}
}
/* Here we have discovered the only node that can be reached by the bits in the key
* but we have found that this node is not the key we need to insert. We must find the
* the leftmost bit by which the current key for that node and the new key we are going
* to insert, differ. While this nested series of ifs may look a bit strange, experimentation
* showed that it allows a machine code path that works well with predicated execution
*/
xorKey = (key ^ nextNode->key); /* Gives 1 bits only where they differ then we find the left most 1 bit*/
/* Most common case is a 32 bit key really
*/
#ifdef ANTLR3_USE_64BIT
if (xorKey & 0xFFFFFFFF00000000)
{
if (xorKey & 0xFFFF000000000000)
{
if (xorKey & 0xFF00000000000000)
{
depth = 56 + bitIndex[((xorKey & 0xFF00000000000000)>>56)];
}
else
{
depth = 48 + bitIndex[((xorKey & 0x00FF000000000000)>>48)];
}
}
else
{
if (xorKey & 0x0000FF0000000000)
{
depth = 40 + bitIndex[((xorKey & 0x0000FF0000000000)>>40)];
}
else
{
depth = 32 + bitIndex[((xorKey & 0x000000FF00000000)>>32)];
}
}
}
else
#endif
{
if (xorKey & 0x00000000FFFF0000)
{
if (xorKey & 0x00000000FF000000)
{
depth = 24 + bitIndex[((xorKey & 0x00000000FF000000)>>24)];
}
else
{
depth = 16 + bitIndex[((xorKey & 0x0000000000FF0000)>>16)];
}
}
else
{
if (xorKey & 0x000000000000FF00)
{
depth = 8 + bitIndex[((xorKey & 0x0000000000000FF00)>>8)];
}
else
{
depth = bitIndex[xorKey & 0x00000000000000FF];
}
}
}
/* We have located the leftmost differing bit, indicated by the depth variable. So, we know what
* bit index we are to insert the new entry at. There are two cases, being where the two keys
* differ at a bit position that is not currently part of the bit testing, where they differ on a bit
* that is currently being skipped in the indexed comparisons, and where they differ on a bit
* that is merely lower down in the current bit search. If the bit index went bit 4, bit 2 and they differ
* at bit 3, then we have the "skipped" bit case. But if that chain was Bit 4, Bit 2 and they differ at bit 1
* then we have the easy bit <pun>.
*
* So, set up to descend the tree again, but this time looking for the insert point
* according to whether we skip the bit that differs or not.
*/
thisNode = trie->root;
entNode = trie->root->leftN;
/* Note the slight difference in the checks here to cover both cases
*/
while (thisNode->bitNum > entNode->bitNum && entNode->bitNum > depth)
{
/* Still descending the structure, next node becomes current.
*/
thisNode = entNode;
if (key & bitMask[entNode->bitNum])
{
/* Bit at the required index was 1, so traverse the right node from here
*/
entNode = entNode->rightN;
}
else
{
/* Bit at the required index was 0, so we traverse to the left
*/
entNode = entNode->leftN;
}
}
/* We have located the correct insert point for this new key, so we need
* to allocate our entry and insert it etc.
*/
nextNode = (pANTLR3_INT_TRIE_NODE)ANTLR3_CALLOC(1, sizeof(ANTLR3_INT_TRIE_NODE));
if (nextNode == NULL)
{
/* All that work and no memory - bummer.
*/
return ANTLR3_FALSE;
}
/* Build a new entry block for the new node
*/
newEnt = (pANTLR3_TRIE_ENTRY)ANTLR3_CALLOC(1, sizeof(ANTLR3_TRIE_ENTRY));
if (newEnt == NULL)
{
/* Out of memory, all we can do is return the fact that the insert failed.
*/
return ANTLR3_FALSE;
}
/* Otherwise enter this in our new node
*/
newEnt->type = type;
newEnt->freeptr = freeptr;
if (type == ANTLR3_HASH_TYPE_STR)
{
newEnt->data.ptr = data;
}
else
{
newEnt->data.intVal = intVal;
}
/* Install it
*/
nextNode->buckets = newEnt;
nextNode->key = key;
nextNode->bitNum = depth;
/* Work out the right and left pointers for this new node, which involve
* terminating with the current found node either right or left according
* to whether the current index bit is 1 or 0
*/
if (key & bitMask[depth])
{
nextNode->leftN = entNode; /* Terminates at previous position */
nextNode->rightN = nextNode; /* Terminates with itself */
}
else
{
nextNode->rightN = entNode; /* Terminates at previous position */
nextNode->leftN = nextNode; /* Terminates with itself */
}
/* Finally, we need to change the pointers at the node we located
* for inserting. If the key bit at its index is set then the right
* pointer for that node becomes the newly created node, otherwise the left
* pointer does.
*/
if (key & bitMask[thisNode->bitNum] )
{
thisNode->rightN = nextNode;
}
else
{
thisNode->leftN = nextNode;
}
/* Et voila
*/
trie->count++;
return ANTLR3_TRUE;
}
/** Release memory allocated to this tree.
* Basic algorithm is that we do a depth first left descent and free
* up any nodes that are not backward pointers.
*/
static void
freeIntNode(pANTLR3_INT_TRIE_NODE node)
{
pANTLR3_TRIE_ENTRY thisEntry;
pANTLR3_TRIE_ENTRY nextEntry;
/* If this node has a left pointer that is not a back pointer
* then recursively call to free this
*/
if (node->bitNum > node->leftN->bitNum)
{
/* We have a left node that needs descending, so do it.
*/
freeIntNode(node->leftN);
}
/* The left nodes from here should now be dealt with, so
* we need to descend any right nodes that are not back pointers
*/
if (node->bitNum > node->rightN->bitNum)
{
/* There are some right nodes to descend and deal with.
*/
freeIntNode(node->rightN);
}
/* Now all the children are dealt with, we can destroy
* this node too
*/
thisEntry = node->buckets;
while (thisEntry != NULL)
{
nextEntry = thisEntry->next;
/* Do we need to call a custom free pointer for this string entry?
*/
if (thisEntry->type == ANTLR3_HASH_TYPE_STR && thisEntry->freeptr != NULL)
{
thisEntry->freeptr(thisEntry->data.ptr);
}
/* Now free the data for this bucket entry
*/
ANTLR3_FREE(thisEntry);
thisEntry = nextEntry; /* See if there are any more to free */
}
/* The bucket entry is now gone, so we can free the memory for
* the entry itself.
*/
ANTLR3_FREE(node);
/* And that should be it for everything under this node and itself
*/
}
/** Called to free all nodes and the structure itself.
*/
static void
intTrieFree (pANTLR3_INT_TRIE trie)
{
/* Descend from the root and free all the nodes
*/
freeIntNode(trie->root);
/* the nodes are all gone now, so we need only free the memory
* for the structure itself
*/
ANTLR3_FREE(trie);
}
/**
* Allocate and initialize a new ANTLR3 topological sorter, which can be
* used to define edges that identify numerical node indexes that depend on other
* numerical node indexes, which can then be sorted topologically such that
* any node is sorted after all its dependent nodes.
*
* Use:
*
* /verbatim
pANTLR3_TOPO topo;
topo = antlr3NewTopo();
if (topo == NULL) { out of memory }
topo->addEdge(topo, 3, 0); // Node 3 depends on node 0
topo->addEdge(topo, 0, 1); // Node - depends on node 1
topo->sortVector(topo, myVector); // Sort the vector in place (node numbers are the vector entry numbers)
* /verbatim
*/
ANTLR3_API pANTLR3_TOPO
antlr3TopoNew()
{
pANTLR3_TOPO topo = (pANTLR3_TOPO)ANTLR3_MALLOC(sizeof(ANTLR3_TOPO));
if (topo == NULL)
{
return NULL;
}
// Initialize variables
//
topo->visited = NULL; // Don't know how big it is yet
topo->limit = 1; // No edges added yet
topo->edges = NULL; // No edges added yet
topo->sorted = NULL; // Nothing sorted at the start
topo->cycle = NULL; // No cycles at the start
topo->cycleMark = 0; // No cycles at the start
topo->hasCycle = ANTLR3_FALSE; // No cycle at the start
// API
//
topo->addEdge = addEdge;
topo->sortToArray = sortToArray;
topo->sortVector = sortVector;
topo->free = freeTopo;
return topo;
}
// Topological sorter
//
static void
addEdge (pANTLR3_TOPO topo, ANTLR3_UINT32 edge, ANTLR3_UINT32 dependency)
{
ANTLR3_UINT32 i;
ANTLR3_UINT32 maxEdge;
pANTLR3_BITSET edgeDeps;
if (edge>dependency)
{
maxEdge = edge;
}
else
{
maxEdge = dependency;
}
// We need to add an edge to says that the node indexed by 'edge' is
// dependent on the node indexed by 'dependency'
//
// First see if we have enough room in the edges array to add the edge?
//
if (topo->edges == NULL)
{
// We don't have any edges yet, so create an array to hold them
//
topo->edges = ANTLR3_CALLOC(sizeof(pANTLR3_BITSET) * (maxEdge + 1), 1);
if (topo->edges == NULL)
{
return;
}
// Set the limit to what we have now
//
topo->limit = maxEdge + 1;
}
else if (topo->limit <= maxEdge)
{
// WE have some edges but not enough
//
topo->edges = ANTLR3_REALLOC(topo->edges, sizeof(pANTLR3_BITSET) * (maxEdge + 1));
if (topo->edges == NULL)
{
return;
}
// Initialize the new bitmaps to ;indicate we have no edges defined yet
//
for (i = topo->limit; i <= maxEdge; i++)
{
*((topo->edges) + i) = NULL;
}
// Set the limit to what we have now
//
topo->limit = maxEdge + 1;
}
// If the edge was flagged as depending on itself, then we just
// do nothing as it means this routine was just called to add it
// in to the list of nodes.
//
if (edge == dependency)
{
return;
}
// Pick up the bit map for the requested edge
//
edgeDeps = *((topo->edges) + edge);
if (edgeDeps == NULL)
{
// No edges are defined yet for this node
//
edgeDeps = antlr3BitsetNew(0);
*((topo->edges) + edge) = edgeDeps;
if (edgeDeps == NULL )
{
return; // Out of memory
}
}
// Set the bit in the bitmap that corresponds to the requested
// dependency.
//
edgeDeps->add(edgeDeps, dependency);
// And we are all set
//
return;
}
/**
* Given a starting node, descend its dependent nodes (ones that it has edges
* to) until we find one without edges. Having found a node without edges, we have
* discovered the bottom of a depth first search, which we can then ascend, adding
* the nodes in order from the bottom, which gives us the dependency order.
*/
static void
DFS(pANTLR3_TOPO topo, ANTLR3_UINT32 node)
{
pANTLR3_BITSET edges;
// Guard against a revisit and check for cycles
//
if (topo->hasCycle == ANTLR3_TRUE)
{
return; // We don't do anything else if we found a cycle
}
if (topo->visited->isMember(topo->visited, node))
{
// Check to see if we found a cycle. To do this we search the
// current cycle stack and see if we find this node already in the stack.
//
ANTLR3_UINT32 i;
for (i=0; i<topo->cycleMark; i++)
{
if (topo->cycle[i] == node)
{
// Stop! We found a cycle in the input, so rejig the cycle
// stack so that it only contains the cycle and set the cycle flag
// which will tell the caller what happened
//
ANTLR3_UINT32 l;
for (l = i; l < topo->cycleMark; l++)
{
topo->cycle[l - i] = topo->cycle[l]; // Move to zero base in the cycle list
}
// Recalculate the limit
//
topo->cycleMark -= i;
// Signal disaster
//
topo->hasCycle = ANTLR3_TRUE;
}
}
return;
}
// So far, no cycles have been found and we have not visited this node yet,
// so this node needs to go into the cycle stack before we continue
// then we will take it out of the stack once we have descended all its
// dependencies.
//
topo->cycle[topo->cycleMark++] = node;
// First flag that we have visited this node
//
topo->visited->add(topo->visited, node);
// Now, if this node has edges, then we want to ensure we visit
// them all before we drop through and add this node into the sorted
// list.
//
edges = *((topo->edges) + node);
if (edges != NULL)
{
// We have some edges, so visit each of the edge nodes
// that have not already been visited.
//
ANTLR3_UINT32 numBits; // How many bits are in the set
ANTLR3_UINT32 i;
ANTLR3_UINT32 range;
numBits = edges->numBits(edges);
range = edges->size(edges); // Number of set bits
// Stop if we exahust the bit list or have checked the
// number of edges that this node refers to (so we don't
// check bits at the end that cannot possibly be set).
//
for (i=0; i<= numBits && range > 0; i++)
{
if (edges->isMember(edges, i))
{
range--; // About to check another one
// Found an edge, make sure we visit and descend it
//
DFS(topo, i);
}
}
}
// At this point we will have visited all the dependencies
// of this node and they will be ordered (even if there are cycles)
// So we just add the node into the sorted list at the
// current index position.
//
topo->sorted[topo->limit++] = node;
// Remove this node from the cycle list if we have not detected a cycle
//
if (topo->hasCycle == ANTLR3_FALSE)
{
topo->cycleMark--;
}
return;
}
static pANTLR3_UINT32
sortToArray (pANTLR3_TOPO topo)
{
ANTLR3_UINT32 v;
ANTLR3_UINT32 oldLimit;
// Guard against being called with no edges defined
//
if (topo->edges == NULL)
{
return 0;
}
// First we need a vector to populate with enough
// entries to accomodate the sorted list and another to accomodate
// the maximum cycle we could detect which is all nodes such as 0->1->2->3->0
//
topo->sorted = ANTLR3_MALLOC(topo->limit * sizeof(ANTLR3_UINT32));
topo->cycle = ANTLR3_MALLOC(topo->limit * sizeof(ANTLR3_UINT32));
// Next we need an empty bitset to show whether we have visited a node
// or not. This is the bit that gives us linear time of course as we are essentially
// dropping through the nodes in depth first order and when we get to a node that
// has no edges, we pop back up the stack adding the nodes we traversed in reverse
// order.
//
topo->visited = antlr3BitsetNew(0);
// Now traverse the nodes as if we were just going left to right, but
// then descend each node unless it has already been visited.
//
oldLimit = topo->limit; // Number of nodes to traverse linearly
topo->limit = 0; // Next entry in the sorted table
for (v = 0; v < oldLimit; v++)
{
// If we did not already visit this node, then descend it until we
// get a node without edges or arrive at a node we have already visited.
//
if (topo->visited->isMember(topo->visited, v) == ANTLR3_FALSE)
{
// We have not visited this one so descend it
//
DFS(topo, v);
}
// Break the loop if we detect a cycle as we have no need to go any
// further
//
if (topo->hasCycle == ANTLR3_TRUE)
{
break;
}
}
// Reset the limit to the number we recorded as if we hit a
// cycle, then limit will have stopped at the node where we
// discovered the cycle, but in order to free the edge bitmaps
// we need to know how many we may have allocated and traverse them all.
//
topo->limit = oldLimit;
// Having traversed all the nodes we were given, we
// are guaranteed to have ordered all the nodes or detected a
// cycle.
//
return topo->sorted;
}
static void
sortVector (pANTLR3_TOPO topo, pANTLR3_VECTOR v)
{
// To sort a vector, we first perform the
// sort to an array, then use the results to reorder the vector
// we are given. This is just a convenience routine that allows you to
// sort the children of a tree node into topological order before or
// during an AST walk. This can be useful for optimizations that require
// dag reorders and also when the input stream defines thigns that are
// interdependent and you want to walk the list of the generated trees
// for those things in topological order so you can ignore the interdependencies
// at that point.
//
ANTLR3_UINT32 i;
// Used as a lookup index to find the current location in the vector of
// the vector entry that was originally at position [0], [1], [2] etc
//
pANTLR3_UINT32 vIndex;
// Sort into an array, then we can use the array that is
// stored in the topo
//
if (topo->sortToArray(topo) == 0)
{
return; // There were no edges
}
if (topo->hasCycle == ANTLR3_TRUE)
{
return; // Do nothing if we detected a cycle
}
// Ensure that the vector we are sorting is at least as big as the
// the input sequence we were adsked to sort. It does not matter if it is
// bigger as thaat probably just means that nodes numbered higher than the
// limit had no dependencies and so can be left alone.
//
if (topo->limit > v->count)
{
// We can only sort the entries that we have dude! The caller is
// responsible for ensuring the vector is the correct one and is the
// correct size etc.
//
topo->limit = v->count;
}
// We need to know the locations of each of the entries
// in the vector as we don't want to duplicate them in a new vector. We
// just use an indirection table to get the vector entry for a particular sequence
// acording to where we moved it last. Then we can just swap vector entries until
// we are done :-)
//
vIndex = ANTLR3_MALLOC(topo->limit * sizeof(ANTLR3_UINT32));
// Start index, each vector entry is located where you think it is
//
for (i = 0; i < topo->limit; i++)
{
vIndex[i] = i;
}
// Now we traverse the sorted array and moved the entries of
// the vector around according to the sort order and the indirection
// table we just created. The index telsl us where in the vector the
// original element entry n is now located via vIndex[n].
//
for (i=0; i < topo->limit; i++)
{
ANTLR3_UINT32 ind;
// If the vector entry at i is already the one that it
// should be, then we skip moving it of course.
//
if (vIndex[topo->sorted[i]] == i)
{
continue;
}
// The vector entry at i, should be replaced with the
// vector entry indicated by topo->sorted[i]. The vector entry
// at topo->sorted[i] may have already been swapped out though, so we
// find where it is now and move it from there to i.
//
ind = vIndex[topo->sorted[i]];
v->swap(v, i, ind);
// Update our index. The element at i is now the one we wanted
// to be sorted here and the element we swapped out is now the
// element that was at i just before we swapped it. If you are lost now
// don't worry about it, we are just reindexing on the fly is all.
//
vIndex[topo->sorted[i]] = i;
vIndex[i] = ind;
}
// Having traversed all the entries, we have sorted the vector in place.
//
ANTLR3_FREE(vIndex);
return;
}
static void
freeTopo (pANTLR3_TOPO topo)
{
ANTLR3_UINT32 i;
// Free the result vector
//
if (topo->sorted != NULL)
{
ANTLR3_FREE(topo->sorted);
topo->sorted = NULL;
}
// Free the visited map
//
if (topo->visited != NULL)
{
topo->visited->free(topo->visited);
topo->visited = NULL;
}
// Free any edgemaps
//
if (topo->edges != NULL)
{
pANTLR3_BITSET edgeList;
for (i=0; i<topo->limit; i++)
{
edgeList = *((topo->edges) + i);
if (edgeList != NULL)
{
edgeList->free(edgeList);
}
}
ANTLR3_FREE(topo->edges);
}
topo->edges = NULL;
// Free any cycle map
//
if (topo->cycle != NULL)
{
ANTLR3_FREE(topo->cycle);
}
ANTLR3_FREE(topo);
}
|