summaryrefslogtreecommitdiff
path: root/lemon/test/connectivity_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'lemon/test/connectivity_test.cc')
-rw-r--r--lemon/test/connectivity_test.cc297
1 files changed, 297 insertions, 0 deletions
diff --git a/lemon/test/connectivity_test.cc b/lemon/test/connectivity_test.cc
new file mode 100644
index 0000000..96c47c5
--- /dev/null
+++ b/lemon/test/connectivity_test.cc
@@ -0,0 +1,297 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2010
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#include <lemon/connectivity.h>
+#include <lemon/list_graph.h>
+#include <lemon/adaptors.h>
+
+#include "test_tools.h"
+
+using namespace lemon;
+
+
+int main()
+{
+ typedef ListDigraph Digraph;
+ typedef Undirector<Digraph> Graph;
+
+ {
+ Digraph d;
+ Digraph::NodeMap<int> order(d);
+ Graph g(d);
+
+ check(stronglyConnected(d), "The empty digraph is strongly connected");
+ check(countStronglyConnectedComponents(d) == 0,
+ "The empty digraph has 0 strongly connected component");
+ check(connected(g), "The empty graph is connected");
+ check(countConnectedComponents(g) == 0,
+ "The empty graph has 0 connected component");
+
+ check(biNodeConnected(g), "The empty graph is bi-node-connected");
+ check(countBiNodeConnectedComponents(g) == 0,
+ "The empty graph has 0 bi-node-connected component");
+ check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
+ check(countBiEdgeConnectedComponents(g) == 0,
+ "The empty graph has 0 bi-edge-connected component");
+
+ check(dag(d), "The empty digraph is DAG.");
+ check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
+ check(loopFree(d), "The empty digraph is loop-free.");
+ check(parallelFree(d), "The empty digraph is parallel-free.");
+ check(simpleGraph(d), "The empty digraph is simple.");
+
+ check(acyclic(g), "The empty graph is acyclic.");
+ check(tree(g), "The empty graph is tree.");
+ check(bipartite(g), "The empty graph is bipartite.");
+ check(loopFree(g), "The empty graph is loop-free.");
+ check(parallelFree(g), "The empty graph is parallel-free.");
+ check(simpleGraph(g), "The empty graph is simple.");
+ }
+
+ {
+ Digraph d;
+ Digraph::NodeMap<int> order(d);
+ Graph g(d);
+ Digraph::Node n = d.addNode();
+
+ check(stronglyConnected(d), "This digraph is strongly connected");
+ check(countStronglyConnectedComponents(d) == 1,
+ "This digraph has 1 strongly connected component");
+ check(connected(g), "This graph is connected");
+ check(countConnectedComponents(g) == 1,
+ "This graph has 1 connected component");
+
+ check(biNodeConnected(g), "This graph is bi-node-connected");
+ check(countBiNodeConnectedComponents(g) == 0,
+ "This graph has 0 bi-node-connected component");
+ check(biEdgeConnected(g), "This graph is bi-edge-connected");
+ check(countBiEdgeConnectedComponents(g) == 1,
+ "This graph has 1 bi-edge-connected component");
+
+ check(dag(d), "This digraph is DAG.");
+ check(checkedTopologicalSort(d, order), "This digraph is DAG.");
+ check(loopFree(d), "This digraph is loop-free.");
+ check(parallelFree(d), "This digraph is parallel-free.");
+ check(simpleGraph(d), "This digraph is simple.");
+
+ check(acyclic(g), "This graph is acyclic.");
+ check(tree(g), "This graph is tree.");
+ check(bipartite(g), "This graph is bipartite.");
+ check(loopFree(g), "This graph is loop-free.");
+ check(parallelFree(g), "This graph is parallel-free.");
+ check(simpleGraph(g), "This graph is simple.");
+ }
+
+ {
+ Digraph d;
+ Digraph::NodeMap<int> order(d);
+ Graph g(d);
+
+ Digraph::Node n1 = d.addNode();
+ Digraph::Node n2 = d.addNode();
+ Digraph::Node n3 = d.addNode();
+ Digraph::Node n4 = d.addNode();
+ Digraph::Node n5 = d.addNode();
+ Digraph::Node n6 = d.addNode();
+
+ d.addArc(n1, n3);
+ d.addArc(n3, n2);
+ d.addArc(n2, n1);
+ d.addArc(n4, n2);
+ d.addArc(n4, n3);
+ d.addArc(n5, n6);
+ d.addArc(n6, n5);
+
+ check(!stronglyConnected(d), "This digraph is not strongly connected");
+ check(countStronglyConnectedComponents(d) == 3,
+ "This digraph has 3 strongly connected components");
+ check(!connected(g), "This graph is not connected");
+ check(countConnectedComponents(g) == 2,
+ "This graph has 2 connected components");
+
+ check(!dag(d), "This digraph is not DAG.");
+ check(!checkedTopologicalSort(d, order), "This digraph is not DAG.");
+ check(loopFree(d), "This digraph is loop-free.");
+ check(parallelFree(d), "This digraph is parallel-free.");
+ check(simpleGraph(d), "This digraph is simple.");
+
+ check(!acyclic(g), "This graph is not acyclic.");
+ check(!tree(g), "This graph is not tree.");
+ check(!bipartite(g), "This graph is not bipartite.");
+ check(loopFree(g), "This graph is loop-free.");
+ check(!parallelFree(g), "This graph is not parallel-free.");
+ check(!simpleGraph(g), "This graph is not simple.");
+
+ d.addArc(n3, n3);
+
+ check(!loopFree(d), "This digraph is not loop-free.");
+ check(!loopFree(g), "This graph is not loop-free.");
+ check(!simpleGraph(d), "This digraph is not simple.");
+
+ d.addArc(n3, n2);
+
+ check(!parallelFree(d), "This digraph is not parallel-free.");
+ }
+
+ {
+ Digraph d;
+ Digraph::ArcMap<bool> cutarcs(d, false);
+ Graph g(d);
+
+ Digraph::Node n1 = d.addNode();
+ Digraph::Node n2 = d.addNode();
+ Digraph::Node n3 = d.addNode();
+ Digraph::Node n4 = d.addNode();
+ Digraph::Node n5 = d.addNode();
+ Digraph::Node n6 = d.addNode();
+ Digraph::Node n7 = d.addNode();
+ Digraph::Node n8 = d.addNode();
+
+ d.addArc(n1, n2);
+ d.addArc(n5, n1);
+ d.addArc(n2, n8);
+ d.addArc(n8, n5);
+ d.addArc(n6, n4);
+ d.addArc(n4, n6);
+ d.addArc(n2, n5);
+ d.addArc(n1, n8);
+ d.addArc(n6, n7);
+ d.addArc(n7, n6);
+
+ check(!stronglyConnected(d), "This digraph is not strongly connected");
+ check(countStronglyConnectedComponents(d) == 3,
+ "This digraph has 3 strongly connected components");
+ Digraph::NodeMap<int> scomp1(d);
+ check(stronglyConnectedComponents(d, scomp1) == 3,
+ "This digraph has 3 strongly connected components");
+ check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] &&
+ scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()");
+ check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] &&
+ scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()");
+ check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7],
+ "Wrong stronglyConnectedComponents()");
+ Digraph::ArcMap<bool> scut1(d, false);
+ check(stronglyConnectedCutArcs(d, scut1) == 0,
+ "This digraph has 0 strongly connected cut arc.");
+ for (Digraph::ArcIt a(d); a != INVALID; ++a) {
+ check(!scut1[a], "Wrong stronglyConnectedCutArcs()");
+ }
+
+ check(!connected(g), "This graph is not connected");
+ check(countConnectedComponents(g) == 3,
+ "This graph has 3 connected components");
+ Graph::NodeMap<int> comp(g);
+ check(connectedComponents(g, comp) == 3,
+ "This graph has 3 connected components");
+ check(comp[n1] != comp[n3] && comp[n1] != comp[n4] &&
+ comp[n3] != comp[n4], "Wrong connectedComponents()");
+ check(comp[n1] == comp[n2] && comp[n1] == comp[n5] &&
+ comp[n1] == comp[n8], "Wrong connectedComponents()");
+ check(comp[n4] == comp[n6] && comp[n4] == comp[n7],
+ "Wrong connectedComponents()");
+
+ cutarcs[d.addArc(n3, n1)] = true;
+ cutarcs[d.addArc(n3, n5)] = true;
+ cutarcs[d.addArc(n3, n8)] = true;
+ cutarcs[d.addArc(n8, n6)] = true;
+ cutarcs[d.addArc(n8, n7)] = true;
+
+ check(!stronglyConnected(d), "This digraph is not strongly connected");
+ check(countStronglyConnectedComponents(d) == 3,
+ "This digraph has 3 strongly connected components");
+ Digraph::NodeMap<int> scomp2(d);
+ check(stronglyConnectedComponents(d, scomp2) == 3,
+ "This digraph has 3 strongly connected components");
+ check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()");
+ check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 &&
+ scomp2[n8] == 1, "Wrong stronglyConnectedComponents()");
+ check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2,
+ "Wrong stronglyConnectedComponents()");
+ Digraph::ArcMap<bool> scut2(d, false);
+ check(stronglyConnectedCutArcs(d, scut2) == 5,
+ "This digraph has 5 strongly connected cut arcs.");
+ for (Digraph::ArcIt a(d); a != INVALID; ++a) {
+ check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()");
+ }
+ }
+
+ {
+ // DAG example for topological sort from the book New Algorithms
+ // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
+ Digraph d;
+ Digraph::NodeMap<int> order(d);
+
+ Digraph::Node belt = d.addNode();
+ Digraph::Node trousers = d.addNode();
+ Digraph::Node necktie = d.addNode();
+ Digraph::Node coat = d.addNode();
+ Digraph::Node socks = d.addNode();
+ Digraph::Node shirt = d.addNode();
+ Digraph::Node shoe = d.addNode();
+ Digraph::Node watch = d.addNode();
+ Digraph::Node pants = d.addNode();
+
+ d.addArc(socks, shoe);
+ d.addArc(pants, shoe);
+ d.addArc(pants, trousers);
+ d.addArc(trousers, shoe);
+ d.addArc(trousers, belt);
+ d.addArc(belt, coat);
+ d.addArc(shirt, belt);
+ d.addArc(shirt, necktie);
+ d.addArc(necktie, coat);
+
+ check(dag(d), "This digraph is DAG.");
+ topologicalSort(d, order);
+ for (Digraph::ArcIt a(d); a != INVALID; ++a) {
+ check(order[d.source(a)] < order[d.target(a)],
+ "Wrong topologicalSort()");
+ }
+ }
+
+ {
+ ListGraph g;
+ ListGraph::NodeMap<bool> map(g);
+
+ ListGraph::Node n1 = g.addNode();
+ ListGraph::Node n2 = g.addNode();
+ ListGraph::Node n3 = g.addNode();
+ ListGraph::Node n4 = g.addNode();
+ ListGraph::Node n5 = g.addNode();
+ ListGraph::Node n6 = g.addNode();
+ ListGraph::Node n7 = g.addNode();
+
+ g.addEdge(n1, n3);
+ g.addEdge(n1, n4);
+ g.addEdge(n2, n5);
+ g.addEdge(n3, n6);
+ g.addEdge(n4, n6);
+ g.addEdge(n4, n7);
+ g.addEdge(n5, n7);
+
+ check(bipartite(g), "This graph is bipartite");
+ check(bipartitePartitions(g, map), "This graph is bipartite");
+
+ check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7],
+ "Wrong bipartitePartitions()");
+ check(map[n3] == map[n4] && map[n3] == map[n5],
+ "Wrong bipartitePartitions()");
+ }
+
+ return 0;
+}