summaryrefslogtreecommitdiff
path: root/lemon/lemon/lp_base.h
diff options
context:
space:
mode:
Diffstat (limited to 'lemon/lemon/lp_base.h')
-rw-r--r--lemon/lemon/lp_base.h2102
1 files changed, 2102 insertions, 0 deletions
diff --git a/lemon/lemon/lp_base.h b/lemon/lemon/lp_base.h
new file mode 100644
index 0000000..8a7f726
--- /dev/null
+++ b/lemon/lemon/lp_base.h
@@ -0,0 +1,2102 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2011
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_LP_BASE_H
+#define LEMON_LP_BASE_H
+
+#include<iostream>
+#include<vector>
+#include<map>
+#include<limits>
+#include<lemon/math.h>
+
+#include<lemon/error.h>
+#include<lemon/assert.h>
+
+#include<lemon/core.h>
+#include<lemon/bits/solver_bits.h>
+
+///\file
+///\brief The interface of the LP solver interface.
+///\ingroup lp_group
+namespace lemon {
+
+ ///Common base class for LP and MIP solvers
+
+ ///Usually this class is not used directly, please use one of the concrete
+ ///implementations of the solver interface.
+ ///\ingroup lp_group
+ class LpBase {
+
+ protected:
+
+ _solver_bits::VarIndex rows;
+ _solver_bits::VarIndex cols;
+
+ public:
+
+ ///Possible outcomes of an LP solving procedure
+ enum SolveExitStatus {
+ /// = 0. It means that the problem has been successfully solved: either
+ ///an optimal solution has been found or infeasibility/unboundedness
+ ///has been proved.
+ SOLVED = 0,
+ /// = 1. Any other case (including the case when some user specified
+ ///limit has been exceeded).
+ UNSOLVED = 1
+ };
+
+ ///Direction of the optimization
+ enum Sense {
+ /// Minimization
+ MIN,
+ /// Maximization
+ MAX
+ };
+
+ ///Enum for \c messageLevel() parameter
+ enum MessageLevel {
+ /// No output (default value).
+ MESSAGE_NOTHING,
+ /// Error messages only.
+ MESSAGE_ERROR,
+ /// Warnings.
+ MESSAGE_WARNING,
+ /// Normal output.
+ MESSAGE_NORMAL,
+ /// Verbose output.
+ MESSAGE_VERBOSE
+ };
+
+
+ ///The floating point type used by the solver
+ typedef double Value;
+ ///The infinity constant
+ static const Value INF;
+ ///The not a number constant
+ static const Value NaN;
+
+ friend class Col;
+ friend class ColIt;
+ friend class Row;
+ friend class RowIt;
+
+ ///Refer to a column of the LP.
+
+ ///This type is used to refer to a column of the LP.
+ ///
+ ///Its value remains valid and correct even after the addition or erase of
+ ///other columns.
+ ///
+ ///\note This class is similar to other Item types in LEMON, like
+ ///Node and Arc types in digraph.
+ class Col {
+ friend class LpBase;
+ protected:
+ int _id;
+ explicit Col(int id) : _id(id) {}
+ public:
+ typedef Value ExprValue;
+ typedef True LpCol;
+ /// Default constructor
+
+ /// \warning The default constructor sets the Col to an
+ /// undefined value.
+ Col() {}
+ /// Invalid constructor \& conversion.
+
+ /// This constructor initializes the Col to be invalid.
+ /// \sa Invalid for more details.
+ Col(const Invalid&) : _id(-1) {}
+ /// Equality operator
+
+ /// Two \ref Col "Col"s are equal if and only if they point to
+ /// the same LP column or both are invalid.
+ bool operator==(Col c) const {return _id == c._id;}
+ /// Inequality operator
+
+ /// \sa operator==(Col c)
+ ///
+ bool operator!=(Col c) const {return _id != c._id;}
+ /// Artificial ordering operator.
+
+ /// To allow the use of this object in std::map or similar
+ /// associative container we require this.
+ ///
+ /// \note This operator only have to define some strict ordering of
+ /// the items; this order has nothing to do with the iteration
+ /// ordering of the items.
+ bool operator<(Col c) const {return _id < c._id;}
+ };
+
+ ///Iterator for iterate over the columns of an LP problem
+
+ /// Its usage is quite simple, for example, you can count the number
+ /// of columns in an LP \c lp:
+ ///\code
+ /// int count=0;
+ /// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count;
+ ///\endcode
+ class ColIt : public Col {
+ const LpBase *_solver;
+ public:
+ /// Default constructor
+
+ /// \warning The default constructor sets the iterator
+ /// to an undefined value.
+ ColIt() {}
+ /// Sets the iterator to the first Col
+
+ /// Sets the iterator to the first Col.
+ ///
+ ColIt(const LpBase &solver) : _solver(&solver)
+ {
+ _solver->cols.firstItem(_id);
+ }
+ /// Invalid constructor \& conversion
+
+ /// Initialize the iterator to be invalid.
+ /// \sa Invalid for more details.
+ ColIt(const Invalid&) : Col(INVALID) {}
+ /// Next column
+
+ /// Assign the iterator to the next column.
+ ///
+ ColIt &operator++()
+ {
+ _solver->cols.nextItem(_id);
+ return *this;
+ }
+ };
+
+ /// \brief Returns the ID of the column.
+ static int id(const Col& col) { return col._id; }
+ /// \brief Returns the column with the given ID.
+ ///
+ /// \pre The argument should be a valid column ID in the LP problem.
+ static Col colFromId(int id) { return Col(id); }
+
+ ///Refer to a row of the LP.
+
+ ///This type is used to refer to a row of the LP.
+ ///
+ ///Its value remains valid and correct even after the addition or erase of
+ ///other rows.
+ ///
+ ///\note This class is similar to other Item types in LEMON, like
+ ///Node and Arc types in digraph.
+ class Row {
+ friend class LpBase;
+ protected:
+ int _id;
+ explicit Row(int id) : _id(id) {}
+ public:
+ typedef Value ExprValue;
+ typedef True LpRow;
+ /// Default constructor
+
+ /// \warning The default constructor sets the Row to an
+ /// undefined value.
+ Row() {}
+ /// Invalid constructor \& conversion.
+
+ /// This constructor initializes the Row to be invalid.
+ /// \sa Invalid for more details.
+ Row(const Invalid&) : _id(-1) {}
+ /// Equality operator
+
+ /// Two \ref Row "Row"s are equal if and only if they point to
+ /// the same LP row or both are invalid.
+ bool operator==(Row r) const {return _id == r._id;}
+ /// Inequality operator
+
+ /// \sa operator==(Row r)
+ ///
+ bool operator!=(Row r) const {return _id != r._id;}
+ /// Artificial ordering operator.
+
+ /// To allow the use of this object in std::map or similar
+ /// associative container we require this.
+ ///
+ /// \note This operator only have to define some strict ordering of
+ /// the items; this order has nothing to do with the iteration
+ /// ordering of the items.
+ bool operator<(Row r) const {return _id < r._id;}
+ };
+
+ ///Iterator for iterate over the rows of an LP problem
+
+ /// Its usage is quite simple, for example, you can count the number
+ /// of rows in an LP \c lp:
+ ///\code
+ /// int count=0;
+ /// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count;
+ ///\endcode
+ class RowIt : public Row {
+ const LpBase *_solver;
+ public:
+ /// Default constructor
+
+ /// \warning The default constructor sets the iterator
+ /// to an undefined value.
+ RowIt() {}
+ /// Sets the iterator to the first Row
+
+ /// Sets the iterator to the first Row.
+ ///
+ RowIt(const LpBase &solver) : _solver(&solver)
+ {
+ _solver->rows.firstItem(_id);
+ }
+ /// Invalid constructor \& conversion
+
+ /// Initialize the iterator to be invalid.
+ /// \sa Invalid for more details.
+ RowIt(const Invalid&) : Row(INVALID) {}
+ /// Next row
+
+ /// Assign the iterator to the next row.
+ ///
+ RowIt &operator++()
+ {
+ _solver->rows.nextItem(_id);
+ return *this;
+ }
+ };
+
+ /// \brief Returns the ID of the row.
+ static int id(const Row& row) { return row._id; }
+ /// \brief Returns the row with the given ID.
+ ///
+ /// \pre The argument should be a valid row ID in the LP problem.
+ static Row rowFromId(int id) { return Row(id); }
+
+ public:
+
+ ///Linear expression of variables and a constant component
+
+ ///This data structure stores a linear expression of the variables
+ ///(\ref Col "Col"s) and also has a constant component.
+ ///
+ ///There are several ways to access and modify the contents of this
+ ///container.
+ ///\code
+ ///e[v]=5;
+ ///e[v]+=12;
+ ///e.erase(v);
+ ///\endcode
+ ///or you can also iterate through its elements.
+ ///\code
+ ///double s=0;
+ ///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i)
+ /// s+=*i * primal(i);
+ ///\endcode
+ ///(This code computes the primal value of the expression).
+ ///- Numbers (<tt>double</tt>'s)
+ ///and variables (\ref Col "Col"s) directly convert to an
+ ///\ref Expr and the usual linear operations are defined, so
+ ///\code
+ ///v+w
+ ///2*v-3.12*(v-w/2)+2
+ ///v*2.1+(3*v+(v*12+w+6)*3)/2
+ ///\endcode
+ ///are valid expressions.
+ ///The usual assignment operations are also defined.
+ ///\code
+ ///e=v+w;
+ ///e+=2*v-3.12*(v-w/2)+2;
+ ///e*=3.4;
+ ///e/=5;
+ ///\endcode
+ ///- The constant member can be set and read by dereference
+ /// operator (unary *)
+ ///
+ ///\code
+ ///*e=12;
+ ///double c=*e;
+ ///\endcode
+ ///
+ ///\sa Constr
+ class Expr {
+ friend class LpBase;
+ public:
+ /// The key type of the expression
+ typedef LpBase::Col Key;
+ /// The value type of the expression
+ typedef LpBase::Value Value;
+
+ protected:
+ Value const_comp;
+ std::map<int, Value> comps;
+
+ public:
+ typedef True SolverExpr;
+ /// Default constructor
+
+ /// Construct an empty expression, the coefficients and
+ /// the constant component are initialized to zero.
+ Expr() : const_comp(0) {}
+ /// Construct an expression from a column
+
+ /// Construct an expression, which has a term with \c c variable
+ /// and 1.0 coefficient.
+ Expr(const Col &c) : const_comp(0) {
+ typedef std::map<int, Value>::value_type pair_type;
+ comps.insert(pair_type(id(c), 1));
+ }
+ /// Construct an expression from a constant
+
+ /// Construct an expression, which's constant component is \c v.
+ ///
+ Expr(const Value &v) : const_comp(v) {}
+ /// Returns the coefficient of the column
+ Value operator[](const Col& c) const {
+ std::map<int, Value>::const_iterator it=comps.find(id(c));
+ if (it != comps.end()) {
+ return it->second;
+ } else {
+ return 0;
+ }
+ }
+ /// Returns the coefficient of the column
+ Value& operator[](const Col& c) {
+ return comps[id(c)];
+ }
+ /// Sets the coefficient of the column
+ void set(const Col &c, const Value &v) {
+ if (v != 0.0) {
+ typedef std::map<int, Value>::value_type pair_type;
+ comps.insert(pair_type(id(c), v));
+ } else {
+ comps.erase(id(c));
+ }
+ }
+ /// Returns the constant component of the expression
+ Value& operator*() { return const_comp; }
+ /// Returns the constant component of the expression
+ const Value& operator*() const { return const_comp; }
+ /// \brief Removes the coefficients which's absolute value does
+ /// not exceed \c epsilon. It also sets to zero the constant
+ /// component, if it does not exceed epsilon in absolute value.
+ void simplify(Value epsilon = 0.0) {
+ std::map<int, Value>::iterator it=comps.begin();
+ while (it != comps.end()) {
+ std::map<int, Value>::iterator jt=it;
+ ++jt;
+ if (std::fabs((*it).second) <= epsilon) comps.erase(it);
+ it=jt;
+ }
+ if (std::fabs(const_comp) <= epsilon) const_comp = 0;
+ }
+
+ void simplify(Value epsilon = 0.0) const {
+ const_cast<Expr*>(this)->simplify(epsilon);
+ }
+
+ ///Sets all coefficients and the constant component to 0.
+ void clear() {
+ comps.clear();
+ const_comp=0;
+ }
+
+ ///Compound assignment
+ Expr &operator+=(const Expr &e) {
+ for (std::map<int, Value>::const_iterator it=e.comps.begin();
+ it!=e.comps.end(); ++it)
+ comps[it->first]+=it->second;
+ const_comp+=e.const_comp;
+ return *this;
+ }
+ ///Compound assignment
+ Expr &operator-=(const Expr &e) {
+ for (std::map<int, Value>::const_iterator it=e.comps.begin();
+ it!=e.comps.end(); ++it)
+ comps[it->first]-=it->second;
+ const_comp-=e.const_comp;
+ return *this;
+ }
+ ///Multiply with a constant
+ Expr &operator*=(const Value &v) {
+ for (std::map<int, Value>::iterator it=comps.begin();
+ it!=comps.end(); ++it)
+ it->second*=v;
+ const_comp*=v;
+ return *this;
+ }
+ ///Division with a constant
+ Expr &operator/=(const Value &c) {
+ for (std::map<int, Value>::iterator it=comps.begin();
+ it!=comps.end(); ++it)
+ it->second/=c;
+ const_comp/=c;
+ return *this;
+ }
+
+ ///Iterator over the expression
+
+ ///The iterator iterates over the terms of the expression.
+ ///
+ ///\code
+ ///double s=0;
+ ///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i)
+ /// s+= *i * primal(i);
+ ///\endcode
+ class CoeffIt {
+ private:
+
+ std::map<int, Value>::iterator _it, _end;
+
+ public:
+
+ /// Sets the iterator to the first term
+
+ /// Sets the iterator to the first term of the expression.
+ ///
+ CoeffIt(Expr& e)
+ : _it(e.comps.begin()), _end(e.comps.end()){}
+
+ /// Convert the iterator to the column of the term
+ operator Col() const {
+ return colFromId(_it->first);
+ }
+
+ /// Returns the coefficient of the term
+ Value& operator*() { return _it->second; }
+
+ /// Returns the coefficient of the term
+ const Value& operator*() const { return _it->second; }
+ /// Next term
+
+ /// Assign the iterator to the next term.
+ ///
+ CoeffIt& operator++() { ++_it; return *this; }
+
+ /// Equality operator
+ bool operator==(Invalid) const { return _it == _end; }
+ /// Inequality operator
+ bool operator!=(Invalid) const { return _it != _end; }
+ };
+
+ /// Const iterator over the expression
+
+ ///The iterator iterates over the terms of the expression.
+ ///
+ ///\code
+ ///double s=0;
+ ///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i)
+ /// s+=*i * primal(i);
+ ///\endcode
+ class ConstCoeffIt {
+ private:
+
+ std::map<int, Value>::const_iterator _it, _end;
+
+ public:
+
+ /// Sets the iterator to the first term
+
+ /// Sets the iterator to the first term of the expression.
+ ///
+ ConstCoeffIt(const Expr& e)
+ : _it(e.comps.begin()), _end(e.comps.end()){}
+
+ /// Convert the iterator to the column of the term
+ operator Col() const {
+ return colFromId(_it->first);
+ }
+
+ /// Returns the coefficient of the term
+ const Value& operator*() const { return _it->second; }
+
+ /// Next term
+
+ /// Assign the iterator to the next term.
+ ///
+ ConstCoeffIt& operator++() { ++_it; return *this; }
+
+ /// Equality operator
+ bool operator==(Invalid) const { return _it == _end; }
+ /// Inequality operator
+ bool operator!=(Invalid) const { return _it != _end; }
+ };
+
+ };
+
+ ///Linear constraint
+
+ ///This data stucture represents a linear constraint in the LP.
+ ///Basically it is a linear expression with a lower or an upper bound
+ ///(or both). These parts of the constraint can be obtained by the member
+ ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
+ ///respectively.
+ ///There are two ways to construct a constraint.
+ ///- You can set the linear expression and the bounds directly
+ /// by the functions above.
+ ///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt>
+ /// are defined between expressions, or even between constraints whenever
+ /// it makes sense. Therefore if \c e and \c f are linear expressions and
+ /// \c s and \c t are numbers, then the followings are valid expressions
+ /// and thus they can be used directly e.g. in \ref addRow() whenever
+ /// it makes sense.
+ ///\code
+ /// e<=s
+ /// e<=f
+ /// e==f
+ /// s<=e<=t
+ /// e>=t
+ ///\endcode
+ ///\warning The validity of a constraint is checked only at run
+ ///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will
+ ///compile, but will fail an assertion.
+ class Constr
+ {
+ public:
+ typedef LpBase::Expr Expr;
+ typedef Expr::Key Key;
+ typedef Expr::Value Value;
+
+ protected:
+ Expr _expr;
+ Value _lb,_ub;
+ public:
+ ///\e
+ Constr() : _expr(), _lb(NaN), _ub(NaN) {}
+ ///\e
+ Constr(Value lb, const Expr &e, Value ub) :
+ _expr(e), _lb(lb), _ub(ub) {}
+ Constr(const Expr &e) :
+ _expr(e), _lb(NaN), _ub(NaN) {}
+ ///\e
+ void clear()
+ {
+ _expr.clear();
+ _lb=_ub=NaN;
+ }
+
+ ///Reference to the linear expression
+ Expr &expr() { return _expr; }
+ ///Cont reference to the linear expression
+ const Expr &expr() const { return _expr; }
+ ///Reference to the lower bound.
+
+ ///\return
+ ///- \ref INF "INF": the constraint is lower unbounded.
+ ///- \ref NaN "NaN": lower bound has not been set.
+ ///- finite number: the lower bound
+ Value &lowerBound() { return _lb; }
+ ///The const version of \ref lowerBound()
+ const Value &lowerBound() const { return _lb; }
+ ///Reference to the upper bound.
+
+ ///\return
+ ///- \ref INF "INF": the constraint is upper unbounded.
+ ///- \ref NaN "NaN": upper bound has not been set.
+ ///- finite number: the upper bound
+ Value &upperBound() { return _ub; }
+ ///The const version of \ref upperBound()
+ const Value &upperBound() const { return _ub; }
+ ///Is the constraint lower bounded?
+ bool lowerBounded() const {
+ return _lb != -INF && !isNaN(_lb);
+ }
+ ///Is the constraint upper bounded?
+ bool upperBounded() const {
+ return _ub != INF && !isNaN(_ub);
+ }
+
+ };
+
+ ///Linear expression of rows
+
+ ///This data structure represents a column of the matrix,
+ ///thas is it strores a linear expression of the dual variables
+ ///(\ref Row "Row"s).
+ ///
+ ///There are several ways to access and modify the contents of this
+ ///container.
+ ///\code
+ ///e[v]=5;
+ ///e[v]+=12;
+ ///e.erase(v);
+ ///\endcode
+ ///or you can also iterate through its elements.
+ ///\code
+ ///double s=0;
+ ///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i)
+ /// s+=*i;
+ ///\endcode
+ ///(This code computes the sum of all coefficients).
+ ///- Numbers (<tt>double</tt>'s)
+ ///and variables (\ref Row "Row"s) directly convert to an
+ ///\ref DualExpr and the usual linear operations are defined, so
+ ///\code
+ ///v+w
+ ///2*v-3.12*(v-w/2)
+ ///v*2.1+(3*v+(v*12+w)*3)/2
+ ///\endcode
+ ///are valid \ref DualExpr dual expressions.
+ ///The usual assignment operations are also defined.
+ ///\code
+ ///e=v+w;
+ ///e+=2*v-3.12*(v-w/2);
+ ///e*=3.4;
+ ///e/=5;
+ ///\endcode
+ ///
+ ///\sa Expr
+ class DualExpr {
+ friend class LpBase;
+ public:
+ /// The key type of the expression
+ typedef LpBase::Row Key;
+ /// The value type of the expression
+ typedef LpBase::Value Value;
+
+ protected:
+ std::map<int, Value> comps;
+
+ public:
+ typedef True SolverExpr;
+ /// Default constructor
+
+ /// Construct an empty expression, the coefficients are
+ /// initialized to zero.
+ DualExpr() {}
+ /// Construct an expression from a row
+
+ /// Construct an expression, which has a term with \c r dual
+ /// variable and 1.0 coefficient.
+ DualExpr(const Row &r) {
+ typedef std::map<int, Value>::value_type pair_type;
+ comps.insert(pair_type(id(r), 1));
+ }
+ /// Returns the coefficient of the row
+ Value operator[](const Row& r) const {
+ std::map<int, Value>::const_iterator it = comps.find(id(r));
+ if (it != comps.end()) {
+ return it->second;
+ } else {
+ return 0;
+ }
+ }
+ /// Returns the coefficient of the row
+ Value& operator[](const Row& r) {
+ return comps[id(r)];
+ }
+ /// Sets the coefficient of the row
+ void set(const Row &r, const Value &v) {
+ if (v != 0.0) {
+ typedef std::map<int, Value>::value_type pair_type;
+ comps.insert(pair_type(id(r), v));
+ } else {
+ comps.erase(id(r));
+ }
+ }
+ /// \brief Removes the coefficients which's absolute value does
+ /// not exceed \c epsilon.
+ void simplify(Value epsilon = 0.0) {
+ std::map<int, Value>::iterator it=comps.begin();
+ while (it != comps.end()) {
+ std::map<int, Value>::iterator jt=it;
+ ++jt;
+ if (std::fabs((*it).second) <= epsilon) comps.erase(it);
+ it=jt;
+ }
+ }
+
+ void simplify(Value epsilon = 0.0) const {
+ const_cast<DualExpr*>(this)->simplify(epsilon);
+ }
+
+ ///Sets all coefficients to 0.
+ void clear() {
+ comps.clear();
+ }
+ ///Compound assignment
+ DualExpr &operator+=(const DualExpr &e) {
+ for (std::map<int, Value>::const_iterator it=e.comps.begin();
+ it!=e.comps.end(); ++it)
+ comps[it->first]+=it->second;
+ return *this;
+ }
+ ///Compound assignment
+ DualExpr &operator-=(const DualExpr &e) {
+ for (std::map<int, Value>::const_iterator it=e.comps.begin();
+ it!=e.comps.end(); ++it)
+ comps[it->first]-=it->second;
+ return *this;
+ }
+ ///Multiply with a constant
+ DualExpr &operator*=(const Value &v) {
+ for (std::map<int, Value>::iterator it=comps.begin();
+ it!=comps.end(); ++it)
+ it->second*=v;
+ return *this;
+ }
+ ///Division with a constant
+ DualExpr &operator/=(const Value &v) {
+ for (std::map<int, Value>::iterator it=comps.begin();
+ it!=comps.end(); ++it)
+ it->second/=v;
+ return *this;
+ }
+
+ ///Iterator over the expression
+
+ ///The iterator iterates over the terms of the expression.
+ ///
+ ///\code
+ ///double s=0;
+ ///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i)
+ /// s+= *i * dual(i);
+ ///\endcode
+ class CoeffIt {
+ private:
+
+ std::map<int, Value>::iterator _it, _end;
+
+ public:
+
+ /// Sets the iterator to the first term
+
+ /// Sets the iterator to the first term of the expression.
+ ///
+ CoeffIt(DualExpr& e)
+ : _it(e.comps.begin()), _end(e.comps.end()){}
+
+ /// Convert the iterator to the row of the term
+ operator Row() const {
+ return rowFromId(_it->first);
+ }
+
+ /// Returns the coefficient of the term
+ Value& operator*() { return _it->second; }
+
+ /// Returns the coefficient of the term
+ const Value& operator*() const { return _it->second; }
+
+ /// Next term
+
+ /// Assign the iterator to the next term.
+ ///
+ CoeffIt& operator++() { ++_it; return *this; }
+
+ /// Equality operator
+ bool operator==(Invalid) const { return _it == _end; }
+ /// Inequality operator
+ bool operator!=(Invalid) const { return _it != _end; }
+ };
+
+ ///Iterator over the expression
+
+ ///The iterator iterates over the terms of the expression.
+ ///
+ ///\code
+ ///double s=0;
+ ///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i)
+ /// s+= *i * dual(i);
+ ///\endcode
+ class ConstCoeffIt {
+ private:
+
+ std::map<int, Value>::const_iterator _it, _end;
+
+ public:
+
+ /// Sets the iterator to the first term
+
+ /// Sets the iterator to the first term of the expression.
+ ///
+ ConstCoeffIt(const DualExpr& e)
+ : _it(e.comps.begin()), _end(e.comps.end()){}
+
+ /// Convert the iterator to the row of the term
+ operator Row() const {
+ return rowFromId(_it->first);
+ }
+
+ /// Returns the coefficient of the term
+ const Value& operator*() const { return _it->second; }
+
+ /// Next term
+
+ /// Assign the iterator to the next term.
+ ///
+ ConstCoeffIt& operator++() { ++_it; return *this; }
+
+ /// Equality operator
+ bool operator==(Invalid) const { return _it == _end; }
+ /// Inequality operator
+ bool operator!=(Invalid) const { return _it != _end; }
+ };
+ };
+
+
+ protected:
+
+ class InsertIterator {
+ private:
+
+ std::map<int, Value>& _host;
+ const _solver_bits::VarIndex& _index;
+
+ public:
+
+ typedef std::output_iterator_tag iterator_category;
+ typedef void difference_type;
+ typedef void value_type;
+ typedef void reference;
+ typedef void pointer;
+
+ InsertIterator(std::map<int, Value>& host,
+ const _solver_bits::VarIndex& index)
+ : _host(host), _index(index) {}
+
+ InsertIterator& operator=(const std::pair<int, Value>& value) {
+ typedef std::map<int, Value>::value_type pair_type;
+ _host.insert(pair_type(_index[value.first], value.second));
+ return *this;
+ }
+
+ InsertIterator& operator*() { return *this; }
+ InsertIterator& operator++() { return *this; }
+ InsertIterator operator++(int) { return *this; }
+
+ };
+
+ class ExprIterator {
+ private:
+ std::map<int, Value>::const_iterator _host_it;
+ const _solver_bits::VarIndex& _index;
+ public:
+
+ typedef std::bidirectional_iterator_tag iterator_category;
+ typedef std::ptrdiff_t difference_type;
+ typedef const std::pair<int, Value> value_type;
+ typedef value_type reference;
+
+ class pointer {
+ public:
+ pointer(value_type& _value) : value(_value) {}
+ value_type* operator->() { return &value; }
+ private:
+ value_type value;
+ };
+
+ ExprIterator(const std::map<int, Value>::const_iterator& host_it,
+ const _solver_bits::VarIndex& index)
+ : _host_it(host_it), _index(index) {}
+
+ reference operator*() {
+ return std::make_pair(_index(_host_it->first), _host_it->second);
+ }
+
+ pointer operator->() {
+ return pointer(operator*());
+ }
+
+ ExprIterator& operator++() { ++_host_it; return *this; }
+ ExprIterator operator++(int) {
+ ExprIterator tmp(*this); ++_host_it; return tmp;
+ }
+
+ ExprIterator& operator--() { --_host_it; return *this; }
+ ExprIterator operator--(int) {
+ ExprIterator tmp(*this); --_host_it; return tmp;
+ }
+
+ bool operator==(const ExprIterator& it) const {
+ return _host_it == it._host_it;
+ }
+
+ bool operator!=(const ExprIterator& it) const {
+ return _host_it != it._host_it;
+ }
+
+ };
+
+ protected:
+
+ //Abstract virtual functions
+
+ virtual int _addColId(int col) { return cols.addIndex(col); }
+ virtual int _addRowId(int row) { return rows.addIndex(row); }
+
+ virtual void _eraseColId(int col) { cols.eraseIndex(col); }
+ virtual void _eraseRowId(int row) { rows.eraseIndex(row); }
+
+ virtual int _addCol() = 0;
+ virtual int _addRow() = 0;
+
+ virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
+ int row = _addRow();
+ _setRowCoeffs(row, b, e);
+ _setRowLowerBound(row, l);
+ _setRowUpperBound(row, u);
+ return row;
+ }
+
+ virtual void _eraseCol(int col) = 0;
+ virtual void _eraseRow(int row) = 0;
+
+ virtual void _getColName(int col, std::string& name) const = 0;
+ virtual void _setColName(int col, const std::string& name) = 0;
+ virtual int _colByName(const std::string& name) const = 0;
+
+ virtual void _getRowName(int row, std::string& name) const = 0;
+ virtual void _setRowName(int row, const std::string& name) = 0;
+ virtual int _rowByName(const std::string& name) const = 0;
+
+ virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0;
+ virtual void _getRowCoeffs(int i, InsertIterator b) const = 0;
+
+ virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0;
+ virtual void _getColCoeffs(int i, InsertIterator b) const = 0;
+
+ virtual void _setCoeff(int row, int col, Value value) = 0;
+ virtual Value _getCoeff(int row, int col) const = 0;
+
+ virtual void _setColLowerBound(int i, Value value) = 0;
+ virtual Value _getColLowerBound(int i) const = 0;
+
+ virtual void _setColUpperBound(int i, Value value) = 0;
+ virtual Value _getColUpperBound(int i) const = 0;
+
+ virtual void _setRowLowerBound(int i, Value value) = 0;
+ virtual Value _getRowLowerBound(int i) const = 0;
+
+ virtual void _setRowUpperBound(int i, Value value) = 0;
+ virtual Value _getRowUpperBound(int i) const = 0;
+
+ virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0;
+ virtual void _getObjCoeffs(InsertIterator b) const = 0;
+
+ virtual void _setObjCoeff(int i, Value obj_coef) = 0;
+ virtual Value _getObjCoeff(int i) const = 0;
+
+ virtual void _setSense(Sense) = 0;
+ virtual Sense _getSense() const = 0;
+
+ virtual void _clear() = 0;
+
+ virtual const char* _solverName() const = 0;
+
+ virtual void _messageLevel(MessageLevel level) = 0;
+
+ //Own protected stuff
+
+ //Constant component of the objective function
+ Value obj_const_comp;
+
+ LpBase() : rows(), cols(), obj_const_comp(0) {}
+
+ public:
+
+ /// Virtual destructor
+ virtual ~LpBase() {}
+
+ ///Gives back the name of the solver.
+ const char* solverName() const {return _solverName();}
+
+ ///\name Build Up and Modify the LP
+
+ ///@{
+
+ ///Add a new empty column (i.e a new variable) to the LP
+ Col addCol() { Col c; c._id = _addColId(_addCol()); return c;}
+
+ ///\brief Adds several new columns (i.e variables) at once
+ ///
+ ///This magic function takes a container as its argument and fills
+ ///its elements with new columns (i.e. variables)
+ ///\param t can be
+ ///- a standard STL compatible iterable container with
+ ///\ref Col as its \c values_type like
+ ///\code
+ ///std::vector<LpBase::Col>
+ ///std::list<LpBase::Col>
+ ///\endcode
+ ///- a standard STL compatible iterable container with
+ ///\ref Col as its \c mapped_type like
+ ///\code
+ ///std::map<AnyType,LpBase::Col>
+ ///\endcode
+ ///- an iterable lemon \ref concepts::WriteMap "write map" like
+ ///\code
+ ///ListGraph::NodeMap<LpBase::Col>
+ ///ListGraph::ArcMap<LpBase::Col>
+ ///\endcode
+ ///\return The number of the created column.
+#ifdef DOXYGEN
+ template<class T>
+ int addColSet(T &t) { return 0;}
+#else
+ template<class T>
+ typename enable_if<typename T::value_type::LpCol,int>::type
+ addColSet(T &t,dummy<0> = 0) {
+ int s=0;
+ for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
+ return s;
+ }
+ template<class T>
+ typename enable_if<typename T::value_type::second_type::LpCol,
+ int>::type
+ addColSet(T &t,dummy<1> = 1) {
+ int s=0;
+ for(typename T::iterator i=t.begin();i!=t.end();++i) {
+ i->second=addCol();
+ s++;
+ }
+ return s;
+ }
+ template<class T>
+ typename enable_if<typename T::MapIt::Value::LpCol,
+ int>::type
+ addColSet(T &t,dummy<2> = 2) {
+ int s=0;
+ for(typename T::MapIt i(t); i!=INVALID; ++i)
+ {
+ i.set(addCol());
+ s++;
+ }
+ return s;
+ }
+#endif
+
+ ///Set a column (i.e a dual constraint) of the LP
+
+ ///\param c is the column to be modified
+ ///\param e is a dual linear expression (see \ref DualExpr)
+ ///a better one.
+ void col(Col c, const DualExpr &e) {
+ e.simplify();
+ _setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), rows),
+ ExprIterator(e.comps.end(), rows));
+ }
+
+ ///Get a column (i.e a dual constraint) of the LP
+
+ ///\param c is the column to get
+ ///\return the dual expression associated to the column
+ DualExpr col(Col c) const {
+ DualExpr e;
+ _getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows));
+ return e;
+ }
+
+ ///Add a new column to the LP
+
+ ///\param e is a dual linear expression (see \ref DualExpr)
+ ///\param o is the corresponding component of the objective
+ ///function. It is 0 by default.
+ ///\return The created column.
+ Col addCol(const DualExpr &e, Value o = 0) {
+ Col c=addCol();
+ col(c,e);
+ objCoeff(c,o);
+ return c;
+ }
+
+ ///Add a new empty row (i.e a new constraint) to the LP
+
+ ///This function adds a new empty row (i.e a new constraint) to the LP.
+ ///\return The created row
+ Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;}
+
+ ///\brief Add several new rows (i.e constraints) at once
+ ///
+ ///This magic function takes a container as its argument and fills
+ ///its elements with new row (i.e. variables)
+ ///\param t can be
+ ///- a standard STL compatible iterable container with
+ ///\ref Row as its \c values_type like
+ ///\code
+ ///std::vector<LpBase::Row>
+ ///std::list<LpBase::Row>
+ ///\endcode
+ ///- a standard STL compatible iterable container with
+ ///\ref Row as its \c mapped_type like
+ ///\code
+ ///std::map<AnyType,LpBase::Row>
+ ///\endcode
+ ///- an iterable lemon \ref concepts::WriteMap "write map" like
+ ///\code
+ ///ListGraph::NodeMap<LpBase::Row>
+ ///ListGraph::ArcMap<LpBase::Row>
+ ///\endcode
+ ///\return The number of rows created.
+#ifdef DOXYGEN
+ template<class T>
+ int addRowSet(T &t) { return 0;}
+#else
+ template<class T>
+ typename enable_if<typename T::value_type::LpRow,int>::type
+ addRowSet(T &t, dummy<0> = 0) {
+ int s=0;
+ for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
+ return s;
+ }
+ template<class T>
+ typename enable_if<typename T::value_type::second_type::LpRow, int>::type
+ addRowSet(T &t, dummy<1> = 1) {
+ int s=0;
+ for(typename T::iterator i=t.begin();i!=t.end();++i) {
+ i->second=addRow();
+ s++;
+ }
+ return s;
+ }
+ template<class T>
+ typename enable_if<typename T::MapIt::Value::LpRow, int>::type
+ addRowSet(T &t, dummy<2> = 2) {
+ int s=0;
+ for(typename T::MapIt i(t); i!=INVALID; ++i)
+ {
+ i.set(addRow());
+ s++;
+ }
+ return s;
+ }
+#endif
+
+ ///Set a row (i.e a constraint) of the LP
+
+ ///\param r is the row to be modified
+ ///\param l is lower bound (-\ref INF means no bound)
+ ///\param e is a linear expression (see \ref Expr)
+ ///\param u is the upper bound (\ref INF means no bound)
+ void row(Row r, Value l, const Expr &e, Value u) {
+ e.simplify();
+ _setRowCoeffs(rows(id(r)), ExprIterator(e.comps.begin(), cols),
+ ExprIterator(e.comps.end(), cols));
+ _setRowLowerBound(rows(id(r)),l - *e);
+ _setRowUpperBound(rows(id(r)),u - *e);
+ }
+
+ ///Set a row (i.e a constraint) of the LP
+
+ ///\param r is the row to be modified
+ ///\param c is a linear expression (see \ref Constr)
+ void row(Row r, const Constr &c) {
+ row(r, c.lowerBounded()?c.lowerBound():-INF,
+ c.expr(), c.upperBounded()?c.upperBound():INF);
+ }
+
+
+ ///Get a row (i.e a constraint) of the LP
+
+ ///\param r is the row to get
+ ///\return the expression associated to the row
+ Expr row(Row r) const {
+ Expr e;
+ _getRowCoeffs(rows(id(r)), InsertIterator(e.comps, cols));
+ return e;
+ }
+
+ ///Add a new row (i.e a new constraint) to the LP
+
+ ///\param l is the lower bound (-\ref INF means no bound)
+ ///\param e is a linear expression (see \ref Expr)
+ ///\param u is the upper bound (\ref INF means no bound)
+ ///\return The created row.
+ Row addRow(Value l,const Expr &e, Value u) {
+ Row r;
+ e.simplify();
+ r._id = _addRowId(_addRow(l - *e, ExprIterator(e.comps.begin(), cols),
+ ExprIterator(e.comps.end(), cols), u - *e));
+ return r;
+ }
+
+ ///Add a new row (i.e a new constraint) to the LP
+
+ ///\param c is a linear expression (see \ref Constr)
+ ///\return The created row.
+ Row addRow(const Constr &c) {
+ Row r;
+ c.expr().simplify();
+ r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound()-*c.expr():-INF,
+ ExprIterator(c.expr().comps.begin(), cols),
+ ExprIterator(c.expr().comps.end(), cols),
+ c.upperBounded()?c.upperBound()-*c.expr():INF));
+ return r;
+ }
+ ///Erase a column (i.e a variable) from the LP
+
+ ///\param c is the column to be deleted
+ void erase(Col c) {
+ _eraseCol(cols(id(c)));
+ _eraseColId(cols(id(c)));
+ }
+ ///Erase a row (i.e a constraint) from the LP
+
+ ///\param r is the row to be deleted
+ void erase(Row r) {
+ _eraseRow(rows(id(r)));
+ _eraseRowId(rows(id(r)));
+ }
+
+ /// Get the name of a column
+
+ ///\param c is the coresponding column
+ ///\return The name of the colunm
+ std::string colName(Col c) const {
+ std::string name;
+ _getColName(cols(id(c)), name);
+ return name;
+ }
+
+ /// Set the name of a column
+
+ ///\param c is the coresponding column
+ ///\param name The name to be given
+ void colName(Col c, const std::string& name) {
+ _setColName(cols(id(c)), name);
+ }
+
+ /// Get the column by its name
+
+ ///\param name The name of the column
+ ///\return the proper column or \c INVALID
+ Col colByName(const std::string& name) const {
+ int k = _colByName(name);
+ return k != -1 ? Col(cols[k]) : Col(INVALID);
+ }
+
+ /// Get the name of a row
+
+ ///\param r is the coresponding row
+ ///\return The name of the row
+ std::string rowName(Row r) const {
+ std::string name;
+ _getRowName(rows(id(r)), name);
+ return name;
+ }
+
+ /// Set the name of a row
+
+ ///\param r is the coresponding row
+ ///\param name The name to be given
+ void rowName(Row r, const std::string& name) {
+ _setRowName(rows(id(r)), name);
+ }
+
+ /// Get the row by its name
+
+ ///\param name The name of the row
+ ///\return the proper row or \c INVALID
+ Row rowByName(const std::string& name) const {
+ int k = _rowByName(name);
+ return k != -1 ? Row(rows[k]) : Row(INVALID);
+ }
+
+ /// Set an element of the coefficient matrix of the LP
+
+ ///\param r is the row of the element to be modified
+ ///\param c is the column of the element to be modified
+ ///\param val is the new value of the coefficient
+ void coeff(Row r, Col c, Value val) {
+ _setCoeff(rows(id(r)),cols(id(c)), val);
+ }
+
+ /// Get an element of the coefficient matrix of the LP
+
+ ///\param r is the row of the element
+ ///\param c is the column of the element
+ ///\return the corresponding coefficient
+ Value coeff(Row r, Col c) const {
+ return _getCoeff(rows(id(r)),cols(id(c)));
+ }
+
+ /// Set the lower bound of a column (i.e a variable)
+
+ /// The lower bound of a variable (column) has to be given by an
+ /// extended number of type Value, i.e. a finite number of type
+ /// Value or -\ref INF.
+ void colLowerBound(Col c, Value value) {
+ _setColLowerBound(cols(id(c)),value);
+ }
+
+ /// Get the lower bound of a column (i.e a variable)
+
+ /// This function returns the lower bound for column (variable) \c c
+ /// (this might be -\ref INF as well).
+ ///\return The lower bound for column \c c
+ Value colLowerBound(Col c) const {
+ return _getColLowerBound(cols(id(c)));
+ }
+
+ ///\brief Set the lower bound of several columns
+ ///(i.e variables) at once
+ ///
+ ///This magic function takes a container as its argument
+ ///and applies the function on all of its elements.
+ ///The lower bound of a variable (column) has to be given by an
+ ///extended number of type Value, i.e. a finite number of type
+ ///Value or -\ref INF.
+#ifdef DOXYGEN
+ template<class T>
+ void colLowerBound(T &t, Value value) { return 0;}
+#else
+ template<class T>
+ typename enable_if<typename T::value_type::LpCol,void>::type
+ colLowerBound(T &t, Value value,dummy<0> = 0) {
+ for(typename T::iterator i=t.begin();i!=t.end();++i) {
+ colLowerBound(*i, value);
+ }
+ }
+ template<class T>
+ typename enable_if<typename T::value_type::second_type::LpCol,
+ void>::type
+ colLowerBound(T &t, Value value,dummy<1> = 1) {
+ for(typename T::iterator i=t.begin();i!=t.end();++i) {
+ colLowerBound(i->second, value);
+ }
+ }
+ template<class T>
+ typename enable_if<typename T::MapIt::Value::LpCol,
+ void>::type
+ colLowerBound(T &t, Value value,dummy<2> = 2) {
+ for(typename T::MapIt i(t); i!=INVALID; ++i){
+ colLowerBound(*i, value);
+ }
+ }
+#endif
+
+ /// Set the upper bound of a column (i.e a variable)
+
+ /// The upper bound of a variable (column) has to be given by an
+ /// extended number of type Value, i.e. a finite number of type
+ /// Value or \ref INF.
+ void colUpperBound(Col c, Value value) {
+ _setColUpperBound(cols(id(c)),value);
+ };
+
+ /// Get the upper bound of a column (i.e a variable)
+
+ /// This function returns the upper bound for column (variable) \c c
+ /// (this might be \ref INF as well).
+ /// \return The upper bound for column \c c
+ Value colUpperBound(Col c) const {
+ return _getColUpperBound(cols(id(c)));
+ }
+
+ ///\brief Set the upper bound of several columns
+ ///(i.e variables) at once
+ ///
+ ///This magic function takes a container as its argument
+ ///and applies the function on all of its elements.
+ ///The upper bound of a variable (column) has to be given by an
+ ///extended number of type Value, i.e. a finite number of type
+ ///Value or \ref INF.
+#ifdef DOXYGEN
+ template<class T>
+ void colUpperBound(T &t, Value value) { return 0;}
+#else
+ template<class T1>
+ typename enable_if<typename T1::value_type::LpCol,void>::type
+ colUpperBound(T1 &t, Value value,dummy<0> = 0) {
+ for(typename T1::iterator i=t.begin();i!=t.end();++i) {
+ colUpperBound(*i, value);
+ }
+ }
+ template<class T1>
+ typename enable_if<typename T1::value_type::second_type::LpCol,
+ void>::type
+ colUpperBound(T1 &t, Value value,dummy<1> = 1) {
+ for(typename T1::iterator i=t.begin();i!=t.end();++i) {
+ colUpperBound(i->second, value);
+ }
+ }
+ template<class T1>
+ typename enable_if<typename T1::MapIt::Value::LpCol,
+ void>::type
+ colUpperBound(T1 &t, Value value,dummy<2> = 2) {
+ for(typename T1::MapIt i(t); i!=INVALID; ++i){
+ colUpperBound(*i, value);
+ }
+ }
+#endif
+
+ /// Set the lower and the upper bounds of a column (i.e a variable)
+
+ /// The lower and the upper bounds of
+ /// a variable (column) have to be given by an
+ /// extended number of type Value, i.e. a finite number of type
+ /// Value, -\ref INF or \ref INF.
+ void colBounds(Col c, Value lower, Value upper) {
+ _setColLowerBound(cols(id(c)),lower);
+ _setColUpperBound(cols(id(c)),upper);
+ }
+
+ ///\brief Set the lower and the upper bound of several columns
+ ///(i.e variables) at once
+ ///
+ ///This magic function takes a container as its argument
+ ///and applies the function on all of its elements.
+ /// The lower and the upper bounds of
+ /// a variable (column) have to be given by an
+ /// extended number of type Value, i.e. a finite number of type
+ /// Value, -\ref INF or \ref INF.
+#ifdef DOXYGEN
+ template<class T>
+ void colBounds(T &t, Value lower, Value upper) { return 0;}
+#else
+ template<class T2>
+ typename enable_if<typename T2::value_type::LpCol,void>::type
+ colBounds(T2 &t, Value lower, Value upper,dummy<0> = 0) {
+ for(typename T2::iterator i=t.begin();i!=t.end();++i) {
+ colBounds(*i, lower, upper);
+ }
+ }
+ template<class T2>
+ typename enable_if<typename T2::value_type::second_type::LpCol, void>::type
+ colBounds(T2 &t, Value lower, Value upper,dummy<1> = 1) {
+ for(typename T2::iterator i=t.begin();i!=t.end();++i) {
+ colBounds(i->second, lower, upper);
+ }
+ }
+ template<class T2>
+ typename enable_if<typename T2::MapIt::Value::LpCol, void>::type
+ colBounds(T2 &t, Value lower, Value upper,dummy<2> = 2) {
+ for(typename T2::MapIt i(t); i!=INVALID; ++i){
+ colBounds(*i, lower, upper);
+ }
+ }
+#endif
+
+ /// Set the lower bound of a row (i.e a constraint)
+
+ /// The lower bound of a constraint (row) has to be given by an
+ /// extended number of type Value, i.e. a finite number of type
+ /// Value or -\ref INF.
+ void rowLowerBound(Row r, Value value) {
+ _setRowLowerBound(rows(id(r)),value);
+ }
+
+ /// Get the lower bound of a row (i.e a constraint)
+
+ /// This function returns the lower bound for row (constraint) \c c
+ /// (this might be -\ref INF as well).
+ ///\return The lower bound for row \c r
+ Value rowLowerBound(Row r) const {
+ return _getRowLowerBound(rows(id(r)));
+ }
+
+ /// Set the upper bound of a row (i.e a constraint)
+
+ /// The upper bound of a constraint (row) has to be given by an
+ /// extended number of type Value, i.e. a finite number of type
+ /// Value or -\ref INF.
+ void rowUpperBound(Row r, Value value) {
+ _setRowUpperBound(rows(id(r)),value);
+ }
+
+ /// Get the upper bound of a row (i.e a constraint)
+
+ /// This function returns the upper bound for row (constraint) \c c
+ /// (this might be -\ref INF as well).
+ ///\return The upper bound for row \c r
+ Value rowUpperBound(Row r) const {
+ return _getRowUpperBound(rows(id(r)));
+ }
+
+ ///Set an element of the objective function
+ void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); };
+
+ ///Get an element of the objective function
+ Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); };
+
+ ///Set the objective function
+
+ ///\param e is a linear expression of type \ref Expr.
+ ///
+ void obj(const Expr& e) {
+ _setObjCoeffs(ExprIterator(e.comps.begin(), cols),
+ ExprIterator(e.comps.end(), cols));
+ obj_const_comp = *e;
+ }
+
+ ///Get the objective function
+
+ ///\return the objective function as a linear expression of type
+ ///Expr.
+ Expr obj() const {
+ Expr e;
+ _getObjCoeffs(InsertIterator(e.comps, cols));
+ *e = obj_const_comp;
+ return e;
+ }
+
+
+ ///Set the direction of optimization
+ void sense(Sense sense) { _setSense(sense); }
+
+ ///Query the direction of the optimization
+ Sense sense() const {return _getSense(); }
+
+ ///Set the sense to maximization
+ void max() { _setSense(MAX); }
+
+ ///Set the sense to maximization
+ void min() { _setSense(MIN); }
+
+ ///Clears the problem
+ void clear() { _clear(); }
+
+ /// Sets the message level of the solver
+ void messageLevel(MessageLevel level) { _messageLevel(level); }
+
+ ///@}
+
+ };
+
+ /// Addition
+
+ ///\relates LpBase::Expr
+ ///
+ inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) {
+ LpBase::Expr tmp(a);
+ tmp+=b;
+ return tmp;
+ }
+ ///Substraction
+
+ ///\relates LpBase::Expr
+ ///
+ inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) {
+ LpBase::Expr tmp(a);
+ tmp-=b;
+ return tmp;
+ }
+ ///Multiply with constant
+
+ ///\relates LpBase::Expr
+ ///
+ inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) {
+ LpBase::Expr tmp(a);
+ tmp*=b;
+ return tmp;
+ }
+
+ ///Multiply with constant
+
+ ///\relates LpBase::Expr
+ ///
+ inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) {
+ LpBase::Expr tmp(b);
+ tmp*=a;
+ return tmp;
+ }
+ ///Divide with constant
+
+ ///\relates LpBase::Expr
+ ///
+ inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) {
+ LpBase::Expr tmp(a);
+ tmp/=b;
+ return tmp;
+ }
+
+ ///Create constraint
+
+ ///\relates LpBase::Constr
+ ///
+ inline LpBase::Constr operator<=(const LpBase::Expr &e,
+ const LpBase::Expr &f) {
+ return LpBase::Constr(0, f - e, LpBase::NaN);
+ }
+
+ ///Create constraint
+
+ ///\relates LpBase::Constr
+ ///
+ inline LpBase::Constr operator<=(const LpBase::Value &e,
+ const LpBase::Expr &f) {
+ return LpBase::Constr(e, f, LpBase::NaN);
+ }
+
+ ///Create constraint
+
+ ///\relates LpBase::Constr
+ ///
+ inline LpBase::Constr operator<=(const LpBase::Expr &e,
+ const LpBase::Value &f) {
+ return LpBase::Constr(LpBase::NaN, e, f);
+ }
+
+ ///Create constraint
+
+ ///\relates LpBase::Constr
+ ///
+ inline LpBase::Constr operator>=(const LpBase::Expr &e,
+ const LpBase::Expr &f) {
+ return LpBase::Constr(0, e - f, LpBase::NaN);
+ }
+
+
+ ///Create constraint
+
+ ///\relates LpBase::Constr
+ ///
+ inline LpBase::Constr operator>=(const LpBase::Value &e,
+ const LpBase::Expr &f) {
+ return LpBase::Constr(LpBase::NaN, f, e);
+ }
+
+
+ ///Create constraint
+
+ ///\relates LpBase::Constr
+ ///
+ inline LpBase::Constr operator>=(const LpBase::Expr &e,
+ const LpBase::Value &f) {
+ return LpBase::Constr(f, e, LpBase::NaN);
+ }
+
+ ///Create constraint
+
+ ///\relates LpBase::Constr
+ ///
+ inline LpBase::Constr operator==(const LpBase::Expr &e,
+ const LpBase::Value &f) {
+ return LpBase::Constr(f, e, f);
+ }
+
+ ///Create constraint
+
+ ///\relates LpBase::Constr
+ ///
+ inline LpBase::Constr operator==(const LpBase::Expr &e,
+ const LpBase::Expr &f) {
+ return LpBase::Constr(0, f - e, 0);
+ }
+
+ ///Create constraint
+
+ ///\relates LpBase::Constr
+ ///
+ inline LpBase::Constr operator<=(const LpBase::Value &n,
+ const LpBase::Constr &c) {
+ LpBase::Constr tmp(c);
+ LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint");
+ tmp.lowerBound()=n;
+ return tmp;
+ }
+ ///Create constraint
+
+ ///\relates LpBase::Constr
+ ///
+ inline LpBase::Constr operator<=(const LpBase::Constr &c,
+ const LpBase::Value &n)
+ {
+ LpBase::Constr tmp(c);
+ LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint");
+ tmp.upperBound()=n;
+ return tmp;
+ }
+
+ ///Create constraint
+
+ ///\relates LpBase::Constr
+ ///
+ inline LpBase::Constr operator>=(const LpBase::Value &n,
+ const LpBase::Constr &c) {
+ LpBase::Constr tmp(c);
+ LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint");
+ tmp.upperBound()=n;
+ return tmp;
+ }
+ ///Create constraint
+
+ ///\relates LpBase::Constr
+ ///
+ inline LpBase::Constr operator>=(const LpBase::Constr &c,
+ const LpBase::Value &n)
+ {
+ LpBase::Constr tmp(c);
+ LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint");
+ tmp.lowerBound()=n;
+ return tmp;
+ }
+
+ ///Addition
+
+ ///\relates LpBase::DualExpr
+ ///
+ inline LpBase::DualExpr operator+(const LpBase::DualExpr &a,
+ const LpBase::DualExpr &b) {
+ LpBase::DualExpr tmp(a);
+ tmp+=b;
+ return tmp;
+ }
+ ///Substraction
+
+ ///\relates LpBase::DualExpr
+ ///
+ inline LpBase::DualExpr operator-(const LpBase::DualExpr &a,
+ const LpBase::DualExpr &b) {
+ LpBase::DualExpr tmp(a);
+ tmp-=b;
+ return tmp;
+ }
+ ///Multiply with constant
+
+ ///\relates LpBase::DualExpr
+ ///
+ inline LpBase::DualExpr operator*(const LpBase::DualExpr &a,
+ const LpBase::Value &b) {
+ LpBase::DualExpr tmp(a);
+ tmp*=b;
+ return tmp;
+ }
+
+ ///Multiply with constant
+
+ ///\relates LpBase::DualExpr
+ ///
+ inline LpBase::DualExpr operator*(const LpBase::Value &a,
+ const LpBase::DualExpr &b) {
+ LpBase::DualExpr tmp(b);
+ tmp*=a;
+ return tmp;
+ }
+ ///Divide with constant
+
+ ///\relates LpBase::DualExpr
+ ///
+ inline LpBase::DualExpr operator/(const LpBase::DualExpr &a,
+ const LpBase::Value &b) {
+ LpBase::DualExpr tmp(a);
+ tmp/=b;
+ return tmp;
+ }
+
+ /// \ingroup lp_group
+ ///
+ /// \brief Common base class for LP solvers
+ ///
+ /// This class is an abstract base class for LP solvers. This class
+ /// provides a full interface for set and modify an LP problem,
+ /// solve it and retrieve the solution. You can use one of the
+ /// descendants as a concrete implementation, or the \c Lp
+ /// default LP solver. However, if you would like to handle LP
+ /// solvers as reference or pointer in a generic way, you can use
+ /// this class directly.
+ class LpSolver : virtual public LpBase {
+ public:
+
+ /// The problem types for primal and dual problems
+ enum ProblemType {
+ /// = 0. Feasible solution hasn't been found (but may exist).
+ UNDEFINED = 0,
+ /// = 1. The problem has no feasible solution.
+ INFEASIBLE = 1,
+ /// = 2. Feasible solution found.
+ FEASIBLE = 2,
+ /// = 3. Optimal solution exists and found.
+ OPTIMAL = 3,
+ /// = 4. The cost function is unbounded.
+ UNBOUNDED = 4
+ };
+
+ ///The basis status of variables
+ enum VarStatus {
+ /// The variable is in the basis
+ BASIC,
+ /// The variable is free, but not basic
+ FREE,
+ /// The variable has active lower bound
+ LOWER,
+ /// The variable has active upper bound
+ UPPER,
+ /// The variable is non-basic and fixed
+ FIXED
+ };
+
+ protected:
+
+ virtual SolveExitStatus _solve() = 0;
+
+ virtual Value _getPrimal(int i) const = 0;
+ virtual Value _getDual(int i) const = 0;
+
+ virtual Value _getPrimalRay(int i) const = 0;
+ virtual Value _getDualRay(int i) const = 0;
+
+ virtual Value _getPrimalValue() const = 0;
+
+ virtual VarStatus _getColStatus(int i) const = 0;
+ virtual VarStatus _getRowStatus(int i) const = 0;
+
+ virtual ProblemType _getPrimalType() const = 0;
+ virtual ProblemType _getDualType() const = 0;
+
+ public:
+
+ ///Allocate a new LP problem instance
+ virtual LpSolver* newSolver() const = 0;
+ ///Make a copy of the LP problem
+ virtual LpSolver* cloneSolver() const = 0;
+
+ ///\name Solve the LP
+
+ ///@{
+
+ ///\e Solve the LP problem at hand
+ ///
+ ///\return The result of the optimization procedure. Possible
+ ///values and their meanings can be found in the documentation of
+ ///\ref SolveExitStatus.
+ SolveExitStatus solve() { return _solve(); }
+
+ ///@}
+
+ ///\name Obtain the Solution
+
+ ///@{
+
+ /// The type of the primal problem
+ ProblemType primalType() const {
+ return _getPrimalType();
+ }
+
+ /// The type of the dual problem
+ ProblemType dualType() const {
+ return _getDualType();
+ }
+
+ /// Return the primal value of the column
+
+ /// Return the primal value of the column.
+ /// \pre The problem is solved.
+ Value primal(Col c) const { return _getPrimal(cols(id(c))); }
+
+ /// Return the primal value of the expression
+
+ /// Return the primal value of the expression, i.e. the dot
+ /// product of the primal solution and the expression.
+ /// \pre The problem is solved.
+ Value primal(const Expr& e) const {
+ double res = *e;
+ for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
+ res += *c * primal(c);
+ }
+ return res;
+ }
+ /// Returns a component of the primal ray
+
+ /// The primal ray is solution of the modified primal problem,
+ /// where we change each finite bound to 0, and we looking for a
+ /// negative objective value in case of minimization, and positive
+ /// objective value for maximization. If there is such solution,
+ /// that proofs the unsolvability of the dual problem, and if a
+ /// feasible primal solution exists, then the unboundness of
+ /// primal problem.
+ ///
+ /// \pre The problem is solved and the dual problem is infeasible.
+ /// \note Some solvers does not provide primal ray calculation
+ /// functions.
+ Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); }
+
+ /// Return the dual value of the row
+
+ /// Return the dual value of the row.
+ /// \pre The problem is solved.
+ Value dual(Row r) const { return _getDual(rows(id(r))); }
+
+ /// Return the dual value of the dual expression
+
+ /// Return the dual value of the dual expression, i.e. the dot
+ /// product of the dual solution and the dual expression.
+ /// \pre The problem is solved.
+ Value dual(const DualExpr& e) const {
+ double res = 0.0;
+ for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) {
+ res += *r * dual(r);
+ }
+ return res;
+ }
+
+ /// Returns a component of the dual ray
+
+ /// The dual ray is solution of the modified primal problem, where
+ /// we change each finite bound to 0 (i.e. the objective function
+ /// coefficients in the primal problem), and we looking for a
+ /// ositive objective value. If there is such solution, that
+ /// proofs the unsolvability of the primal problem, and if a
+ /// feasible dual solution exists, then the unboundness of
+ /// dual problem.
+ ///
+ /// \pre The problem is solved and the primal problem is infeasible.
+ /// \note Some solvers does not provide dual ray calculation
+ /// functions.
+ Value dualRay(Row r) const { return _getDualRay(rows(id(r))); }
+
+ /// Return the basis status of the column
+
+ /// \see VarStatus
+ VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); }
+
+ /// Return the basis status of the row
+
+ /// \see VarStatus
+ VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); }
+
+ ///The value of the objective function
+
+ ///\return
+ ///- \ref INF or -\ref INF means either infeasibility or unboundedness
+ /// of the primal problem, depending on whether we minimize or maximize.
+ ///- \ref NaN if no primal solution is found.
+ ///- The (finite) objective value if an optimal solution is found.
+ Value primal() const { return _getPrimalValue()+obj_const_comp;}
+ ///@}
+
+ protected:
+
+ };
+
+
+ /// \ingroup lp_group
+ ///
+ /// \brief Common base class for MIP solvers
+ ///
+ /// This class is an abstract base class for MIP solvers. This class
+ /// provides a full interface for set and modify an MIP problem,
+ /// solve it and retrieve the solution. You can use one of the
+ /// descendants as a concrete implementation, or the \c Lp
+ /// default MIP solver. However, if you would like to handle MIP
+ /// solvers as reference or pointer in a generic way, you can use
+ /// this class directly.
+ class MipSolver : virtual public LpBase {
+ public:
+
+ /// The problem types for MIP problems
+ enum ProblemType {
+ /// = 0. Feasible solution hasn't been found (but may exist).
+ UNDEFINED = 0,
+ /// = 1. The problem has no feasible solution.
+ INFEASIBLE = 1,
+ /// = 2. Feasible solution found.
+ FEASIBLE = 2,
+ /// = 3. Optimal solution exists and found.
+ OPTIMAL = 3,
+ /// = 4. The cost function is unbounded.
+ ///The Mip or at least the relaxed problem is unbounded.
+ UNBOUNDED = 4
+ };
+
+ ///Allocate a new MIP problem instance
+ virtual MipSolver* newSolver() const = 0;
+ ///Make a copy of the MIP problem
+ virtual MipSolver* cloneSolver() const = 0;
+
+ ///\name Solve the MIP
+
+ ///@{
+
+ /// Solve the MIP problem at hand
+ ///
+ ///\return The result of the optimization procedure. Possible
+ ///values and their meanings can be found in the documentation of
+ ///\ref SolveExitStatus.
+ SolveExitStatus solve() { return _solve(); }
+
+ ///@}
+
+ ///\name Set Column Type
+ ///@{
+
+ ///Possible variable (column) types (e.g. real, integer, binary etc.)
+ enum ColTypes {
+ /// = 0. Continuous variable (default).
+ REAL = 0,
+ /// = 1. Integer variable.
+ INTEGER = 1
+ };
+
+ ///Sets the type of the given column to the given type
+
+ ///Sets the type of the given column to the given type.
+ ///
+ void colType(Col c, ColTypes col_type) {
+ _setColType(cols(id(c)),col_type);
+ }
+
+ ///Gives back the type of the column.
+
+ ///Gives back the type of the column.
+ ///
+ ColTypes colType(Col c) const {
+ return _getColType(cols(id(c)));
+ }
+ ///@}
+
+ ///\name Obtain the Solution
+
+ ///@{
+
+ /// The type of the MIP problem
+ ProblemType type() const {
+ return _getType();
+ }
+
+ /// Return the value of the row in the solution
+
+ /// Return the value of the row in the solution.
+ /// \pre The problem is solved.
+ Value sol(Col c) const { return _getSol(cols(id(c))); }
+
+ /// Return the value of the expression in the solution
+
+ /// Return the value of the expression in the solution, i.e. the
+ /// dot product of the solution and the expression.
+ /// \pre The problem is solved.
+ Value sol(const Expr& e) const {
+ double res = *e;
+ for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
+ res += *c * sol(c);
+ }
+ return res;
+ }
+ ///The value of the objective function
+
+ ///\return
+ ///- \ref INF or -\ref INF means either infeasibility or unboundedness
+ /// of the problem, depending on whether we minimize or maximize.
+ ///- \ref NaN if no primal solution is found.
+ ///- The (finite) objective value if an optimal solution is found.
+ Value solValue() const { return _getSolValue()+obj_const_comp;}
+ ///@}
+
+ protected:
+
+ virtual SolveExitStatus _solve() = 0;
+ virtual ColTypes _getColType(int col) const = 0;
+ virtual void _setColType(int col, ColTypes col_type) = 0;
+ virtual ProblemType _getType() const = 0;
+ virtual Value _getSol(int i) const = 0;
+ virtual Value _getSolValue() const = 0;
+
+ };
+
+
+
+} //namespace lemon
+
+#endif //LEMON_LP_BASE_H