summaryrefslogtreecommitdiff
path: root/clang/www/compatibility.html
diff options
context:
space:
mode:
Diffstat (limited to 'clang/www/compatibility.html')
-rw-r--r--clang/www/compatibility.html869
1 files changed, 869 insertions, 0 deletions
diff --git a/clang/www/compatibility.html b/clang/www/compatibility.html
new file mode 100644
index 0000000..725c52f
--- /dev/null
+++ b/clang/www/compatibility.html
@@ -0,0 +1,869 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+ "http://www.w3.org/TR/html4/strict.dtd">
+<html>
+<head>
+ <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
+ <title>Language Compatibility</title>
+ <link type="text/css" rel="stylesheet" href="menu.css">
+ <link type="text/css" rel="stylesheet" href="content.css">
+ <style type="text/css">
+</style>
+</head>
+<body>
+
+<!--#include virtual="menu.html.incl"-->
+
+<div id="content">
+
+<!-- ======================================================================= -->
+<h1>Language Compatibility</h1>
+<!-- ======================================================================= -->
+
+<p>Clang strives to both conform to current language standards (C99,
+ C++98) and also to implement many widely-used extensions available
+ in other compilers, so that most correct code will "just work" when
+ compiler with Clang. However, Clang is more strict than other
+ popular compilers, and may reject incorrect code that other
+ compilers allow. This page documents common compatibility and
+ portability issues with Clang to help you understand and fix the
+ problem in your code when Clang emits an error message.</p>
+
+<ul>
+ <li><a href="#c">C compatibility</a>
+ <ul>
+ <li><a href="#inline">C99 inline functions</a></li>
+ <li><a href="#vector_builtins">"missing" vector __builtin functions</a></li>
+ <li><a href="#lvalue-cast">Lvalue casts</a></li>
+ <li><a href="#blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</a></li>
+ <li><a href="#block-variable-initialization">Non-initialization of <tt>__block</tt> variables</a></li>
+ <li><a href="#inline-asm">Inline assembly</a></li>
+ </ul>
+ </li>
+ <li><a href="#objective-c">Objective-C compatibility</a>
+ <ul>
+ <li><a href="#super-cast">Cast of super</a></li>
+ <li><a href="#sizeof-interface">Size of interfaces</a></li>
+ <li><a href="#objc_objs-cast">Internal Objective-C types</a></li>
+ <li><a href="#c_variables-class">C variables in @class or @protocol</a></li>
+ </ul>
+ </li>
+ <li><a href="#cxx">C++ compatibility</a>
+ <ul>
+ <li><a href="#vla">Variable-length arrays</a></li>
+ <li><a href="#dep_lookup">Unqualified lookup in templates</a></li>
+ <li><a href="#dep_lookup_bases">Unqualified lookup into dependent bases of class templates</a></li>
+ <li><a href="#undep_incomplete">Incomplete types in templates</a></li>
+ <li><a href="#bad_templates">Templates with no valid instantiations</a></li>
+ <li><a href="#default_init_const">Default initialization of const
+ variable of a class type requires user-defined default
+ constructor</a></li>
+ <li><a href="#param_name_lookup">Parameter name lookup</a></li>
+ </ul>
+ </li>
+ <li><a href="#cxx11">C++11 compatibility</a>
+ <ul>
+ <li><a href="#deleted-special-func">Deleted special member
+ functions</a></li>
+ </ul>
+ </li>
+ <li><a href="#objective-cxx">Objective-C++ compatibility</a>
+ <ul>
+ <li><a href="#implicit-downcasts">Implicit downcasts</a></li>
+ </ul>
+ <ul>
+ <li><a href="#class-as-property-name">Using <code>class</code> as a property name</a></li>
+ </ul>
+ </li>
+</ul>
+
+<!-- ======================================================================= -->
+<h2 id="c">C compatibility</h2>
+<!-- ======================================================================= -->
+
+<!-- ======================================================================= -->
+<h3 id="inline">C99 inline functions</h3>
+<!-- ======================================================================= -->
+<p>By default, Clang builds C code according to the C99 standard,
+which provides different semantics for the <code>inline</code> keyword
+than GCC's default behavior. For example, consider the following
+code:</p>
+<pre>
+inline int add(int i, int j) { return i + j; }
+
+int main() {
+ int i = add(4, 5);
+ return i;
+}
+</pre>
+
+<p>In C99, <code>inline</code> means that a function's definition is
+provided only for inlining, and that there is another definition
+(without <code>inline</code>) somewhere else in the program. That
+means that this program is incomplete, because if <code>add</code>
+isn't inlined (for example, when compiling without optimization), then
+<code>main</code> will have an unresolved reference to that other
+definition. Therefore we'll get a (correct) link-time error like this:</p>
+
+<pre>
+Undefined symbols:
+ "_add", referenced from:
+ _main in cc-y1jXIr.o
+</pre>
+
+<p>By contrast, GCC's default behavior follows the GNU89 dialect,
+which is the C89 standard plus a lot of extensions. C89 doesn't have
+an <code>inline</code> keyword, but GCC recognizes it as an extension
+and just treats it as a hint to the optimizer.</p>
+
+<p>There are several ways to fix this problem:</p>
+
+<ul>
+ <li>Change <code>add</code> to a <code>static inline</code>
+ function. This is usually the right solution if only one
+ translation unit needs to use the function. <code>static
+ inline</code> functions are always resolved within the translation
+ unit, so you won't have to add a non-<code>inline</code> definition
+ of the function elsewhere in your program.</li>
+
+ <li>Remove the <code>inline</code> keyword from this definition of
+ <code>add</code>. The <code>inline</code> keyword is not required
+ for a function to be inlined, nor does it guarantee that it will be.
+ Some compilers ignore it completely. Clang treats it as a mild
+ suggestion from the programmer.</li>
+
+ <li>Provide an external (non-<code>inline</code>) definition
+ of <code>add</code> somewhere else in your program. The two
+ definitions must be equivalent!</li>
+
+ <li>Compile with the GNU89 dialect by adding
+ <code>-std=gnu89</code> to the set of Clang options. This option is
+ only recommended if the program source cannot be changed or if the
+ program also relies on additional C89-specific behavior that cannot
+ be changed.</li>
+</ul>
+
+<p>All of this only applies to C code; the meaning of <code>inline</code>
+in C++ is very different from its meaning in either GNU89 or C99.</p>
+
+<!-- ======================================================================= -->
+<h3 id="vector_builtins">"missing" vector __builtin functions</h3>
+<!-- ======================================================================= -->
+
+<p>The Intel and AMD manuals document a number "<tt>&lt;*mmintrin.h&gt;</tt>"
+header files, which define a standardized API for accessing vector operations
+on X86 CPUs. These functions have names like <tt>_mm_xor_ps</tt> and
+<tt>_mm256_addsub_pd</tt>. Compilers have leeway to implement these functions
+however they want. Since Clang supports an excellent set of <a
+href="../docs/LanguageExtensions.html#vectors">native vector operations</a>,
+the Clang headers implement these interfaces in terms of the native vector
+operations.
+</p>
+
+<p>In contrast, GCC implements these functions mostly as a 1-to-1 mapping to
+builtin function calls, like <tt>__builtin_ia32_paddw128</tt>. These builtin
+functions are an internal implementation detail of GCC, and are not portable to
+the Intel compiler, the Microsoft compiler, or Clang. If you get build errors
+mentioning these, the fix is simple: switch to the *mmintrin.h functions.</p>
+
+<p>The same issue occurs for NEON and Altivec for the ARM and PowerPC
+architectures respectively. For these, make sure to use the &lt;arm_neon.h&gt;
+and &lt;altivec.h&gt; headers.</p>
+
+<p>For x86 architectures this <a href="builtins.py">script</a> should help with
+the manual migration process. It will rewrite your source files in place to
+use the APIs instead of builtin function calls. Just call it like this:</p>
+
+<pre>
+ builtins.py *.c *.h
+</pre>
+
+<p>and it will rewrite all of the .c and .h files in the current directory to
+use the API calls instead of calls like <tt>__builtin_ia32_paddw128</tt>.</p>
+
+<!-- ======================================================================= -->
+<h3 id="lvalue-cast">Lvalue casts</h3>
+<!-- ======================================================================= -->
+
+<p>Old versions of GCC permit casting the left-hand side of an assignment to a
+different type. Clang produces an error on similar code, e.g.,</p>
+
+<pre>
+lvalue.c:2:3: error: assignment to cast is illegal, lvalue casts are not
+ supported
+ (int*)addr = val;
+ ^~~~~~~~~~ ~
+</pre>
+
+<p>To fix this problem, move the cast to the right-hand side. In this
+example, one could use:</p>
+
+<pre>
+ addr = (float *)val;
+</pre>
+
+<!-- ======================================================================= -->
+<h3 id="blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</h3>
+<!-- ======================================================================= -->
+
+<p>Clang disallows jumps into the scope of a <tt>__block</tt>
+variable. Variables marked with <tt>__block</tt> require special
+runtime initialization. A jump into the scope of a <tt>__block</tt>
+variable bypasses this initialization, leaving the variable's metadata
+in an invalid state. Consider the following code fragment:</p>
+
+<pre>
+int fetch_object_state(struct MyObject *c) {
+ if (!c->active) goto error;
+
+ __block int result;
+ run_specially_somehow(^{ result = c->state; });
+ return result;
+
+ error:
+ fprintf(stderr, "error while fetching object state");
+ return -1;
+}
+</pre>
+
+<p>GCC accepts this code, but it produces code that will usually crash
+when <code>result</code> goes out of scope if the jump is taken. (It's
+possible for this bug to go undetected because it often won't crash if
+the stack is fresh, i.e. still zeroed.) Therefore, Clang rejects this
+code with a hard error:</p>
+
+<pre>
+t.c:3:5: error: goto into protected scope
+ goto error;
+ ^
+t.c:5:15: note: jump bypasses setup of __block variable
+ __block int result;
+ ^
+</pre>
+
+<p>The fix is to rewrite the code to not require jumping into a
+<tt>__block</tt> variable's scope, e.g. by limiting that scope:</p>
+
+<pre>
+ {
+ __block int result;
+ run_specially_somehow(^{ result = c->state; });
+ return result;
+ }
+</pre>
+
+<!-- ======================================================================= -->
+<h3 id="block-variable-initialization">Non-initialization of <tt>__block</tt>
+variables</h3>
+<!-- ======================================================================= -->
+
+<p>In the following example code, the <tt>x</tt> variable is used before it is
+defined:</p>
+<pre>
+int f0() {
+ __block int x;
+ return ^(){ return x; }();
+}
+</pre>
+
+<p>By an accident of implementation, GCC and llvm-gcc unintentionally always
+zero initialized <tt>__block</tt> variables. However, any program which depends
+on this behavior is relying on unspecified compiler behavior. Programs must
+explicitly initialize all local block variables before they are used, as with
+other local variables.</p>
+
+<p>Clang does not zero initialize local block variables, and programs which rely
+on such behavior will most likely break when built with Clang.</p>
+
+
+<!-- ======================================================================= -->
+<h3 id="inline-asm">Inline assembly</h3>
+<!-- ======================================================================= -->
+
+<p>In general, Clang is highly compatible with the GCC inline assembly
+extensions, allowing the same set of constraints, modifiers and operands as GCC
+inline assembly.</p>
+
+<p>On targets that use the integrated assembler (such as most X86 targets),
+inline assembly is run through the integrated assembler instead of your system
+assembler (which is most commonly "gas", the GNU assembler). The LLVM
+integrated assembler is extremely compatible with GAS, but there are a couple of
+minor places where it is more picky, particularly due to outright GAS bugs.</p>
+
+<p>One specific example is that the assembler rejects ambiguous X86 instructions
+that don't have suffixes. For example:</p>
+
+<pre>
+ asm("add %al, (%rax)");
+ asm("addw $4, (%rax)");
+ asm("add $4, (%rax)");
+</pre>
+
+<p>Both clang and GAS accept the first instruction: because the first
+instruction uses the 8-bit <tt>%al</tt> register as an operand, it is clear that
+it is an 8-bit add. The second instruction is accepted by both because the "w"
+suffix indicates that it is a 16-bit add. The last instruction is accepted by
+GAS even though there is nothing that specifies the size of the instruction (and
+the assembler randomly picks a 32-bit add). Because it is ambiguous, Clang
+rejects the instruction with this error message:
+</p>
+
+<pre>
+&lt;inline asm&gt;:3:1: error: ambiguous instructions require an explicit suffix (could be 'addb', 'addw', 'addl', or 'addq')
+add $4, (%rax)
+^
+1 error generated.
+</pre>
+
+<p>To fix this compatibility issue, add an explicit suffix to the instruction:
+this makes your code more clear and is compatible with both GCC and Clang.</p>
+
+<!-- ======================================================================= -->
+<h2 id="objective-c">Objective-C compatibility</h2>
+<!-- ======================================================================= -->
+
+<!-- ======================================================================= -->
+<h3 id="super-cast">Cast of super</h3>
+<!-- ======================================================================= -->
+
+<p>GCC treats the <code>super</code> identifier as an expression that
+can, among other things, be cast to a different type. Clang treats
+<code>super</code> as a context-sensitive keyword, and will reject a
+type-cast of <code>super</code>:</p>
+
+<pre>
+super.m:11:12: error: cannot cast 'super' (it isn't an expression)
+ [(Super*)super add:4];
+ ~~~~~~~~^
+</pre>
+
+<p>To fix this problem, remove the type cast, e.g.</p>
+<pre>
+ [super add:4];
+</pre>
+
+<!-- ======================================================================= -->
+<h3 id="sizeof-interface">Size of interfaces</h3>
+<!-- ======================================================================= -->
+
+<p>When using the "non-fragile" Objective-C ABI in use, the size of an
+Objective-C class may change over time as instance variables are added
+(or removed). For this reason, Clang rejects the application of the
+<code>sizeof</code> operator to an Objective-C class when using this
+ABI:</p>
+
+<pre>
+sizeof.m:4:14: error: invalid application of 'sizeof' to interface 'NSArray' in
+ non-fragile ABI
+ int size = sizeof(NSArray);
+ ^ ~~~~~~~~~
+</pre>
+
+<p>Code that relies on the size of an Objective-C class is likely to
+be broken anyway, since that size is not actually constant. To address
+this problem, use the Objective-C runtime API function
+<code>class_getInstanceSize()</code>:</p>
+
+<pre>
+ class_getInstanceSize([NSArray class])
+</pre>
+
+<!-- ======================================================================= -->
+<h3 id="objc_objs-cast">Internal Objective-C types</h3>
+<!-- ======================================================================= -->
+
+<p>GCC allows using pointers to internal Objective-C objects, <tt>struct objc_object*</tt>,
+<tt>struct objc_selector*</tt>, and <tt>struct objc_class*</tt> in place of the types
+<tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> respectively. Clang treats the
+internal Objective-C structures as implementation detail and won't do implicit conversions:
+
+<pre>
+t.mm:11:2: error: no matching function for call to 'f'
+ f((struct objc_object *)p);
+ ^
+t.mm:5:6: note: candidate function not viable: no known conversion from 'struct objc_object *' to 'id' for 1st argument
+void f(id x);
+ ^
+</pre>
+
+<p>Code should use types <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt>
+instead of the internal types.</p>
+
+<!-- ======================================================================= -->
+<h3 id="c_variables-class">C variables in @interface or @protocol</h3>
+<!-- ======================================================================= -->
+
+<p>GCC allows the declaration of C variables in
+an <code>@interface</code> or <code>@protocol</code>
+declaration. Clang does not allow variable declarations to appear
+within these declarations unless they are marked <code>extern</code>.</p>
+
+<p>Variables may still be declared in an @implementation.</p>
+
+<pre>
+@interface XX
+int a; // not allowed in clang
+int b = 1; // not allowed in clang
+extern int c; // allowed
+@end
+
+</pre>
+
+<!-- ======================================================================= -->
+<h2 id="cxx">C++ compatibility</h2>
+<!-- ======================================================================= -->
+
+<!-- ======================================================================= -->
+<h3 id="vla">Variable-length arrays</h3>
+<!-- ======================================================================= -->
+
+<p>GCC and C99 allow an array's size to be determined at run
+time. This extension is not permitted in standard C++. However, Clang
+supports such variable length arrays in very limited circumstances for
+compatibility with GNU C and C99 programs:</p>
+
+<ul>
+ <li>The element type of a variable length array must be a POD
+ ("plain old data") type, which means that it cannot have any
+ user-declared constructors or destructors, any base classes, or any
+ members of non-POD type. All C types are POD types.</li>
+
+ <li>Variable length arrays cannot be used as the type of a non-type
+template parameter.</li> </ul>
+
+<p>If your code uses variable length arrays in a manner that Clang doesn't support, there are several ways to fix your code:
+
+<ol>
+<li>replace the variable length array with a fixed-size array if you can
+ determine a reasonable upper bound at compile time; sometimes this is as
+ simple as changing <tt>int size = ...;</tt> to <tt>const int size
+ = ...;</tt> (if the initializer is a compile-time constant);</li>
+<li>use <tt>std::vector</tt> or some other suitable container type;
+ or</li>
+<li>allocate the array on the heap instead using <tt>new Type[]</tt> -
+ just remember to <tt>delete[]</tt> it.</li>
+</ol>
+
+<!-- ======================================================================= -->
+<h3 id="dep_lookup">Unqualified lookup in templates</h3>
+<!-- ======================================================================= -->
+
+<p>Some versions of GCC accept the following invalid code:
+
+<pre>
+template &lt;typename T&gt; T Squared(T x) {
+ return Multiply(x, x);
+}
+
+int Multiply(int x, int y) {
+ return x * y;
+}
+
+int main() {
+ Squared(5);
+}
+</pre>
+
+<p>Clang complains:
+
+<pre> <b>my_file.cpp:2:10: <span class="error">error:</span> call to function 'Multiply' that is neither visible in the template definition nor found by argument-dependent lookup</b>
+ return Multiply(x, x);
+ <span class="caret"> ^</span>
+ <b>my_file.cpp:10:3: <span class="note">note:</span> in instantiation of function template specialization 'Squared&lt;int&gt;' requested here</b>
+ Squared(5);
+ <span class="caret"> ^</span>
+ <b>my_file.cpp:5:5: <span class="note">note:</span> 'Multiply' should be declared prior to the call site</b>
+ int Multiply(int x, int y) {
+ <span class="caret"> ^</span>
+</pre>
+
+<p>The C++ standard says that unqualified names like <q>Multiply</q>
+are looked up in two ways.
+
+<p>First, the compiler does <i>unqualified lookup</i> in the scope
+where the name was written. For a template, this means the lookup is
+done at the point where the template is defined, not where it's
+instantiated. Since <tt>Multiply</tt> hasn't been declared yet at
+this point, unqualified lookup won't find it.
+
+<p>Second, if the name is called like a function, then the compiler
+also does <i>argument-dependent lookup</i> (ADL). (Sometimes
+unqualified lookup can suppress ADL; see [basic.lookup.argdep]p3 for
+more information.) In ADL, the compiler looks at the types of all the
+arguments to the call. When it finds a class type, it looks up the
+name in that class's namespace; the result is all the declarations it
+finds in those namespaces, plus the declarations from unqualified
+lookup. However, the compiler doesn't do ADL until it knows all the
+argument types.
+
+<p>In our example, <tt>Multiply</tt> is called with dependent
+arguments, so ADL isn't done until the template is instantiated. At
+that point, the arguments both have type <tt>int</tt>, which doesn't
+contain any class types, and so ADL doesn't look in any namespaces.
+Since neither form of lookup found the declaration
+of <tt>Multiply</tt>, the code doesn't compile.
+
+<p>Here's another example, this time using overloaded operators,
+which obey very similar rules.
+
+<pre>#include &lt;iostream&gt;
+
+template&lt;typename T&gt;
+void Dump(const T&amp; value) {
+ std::cout &lt;&lt; value &lt;&lt; "\n";
+}
+
+namespace ns {
+ struct Data {};
+}
+
+std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
+ return out &lt;&lt; "Some data";
+}
+
+void Use() {
+ Dump(ns::Data());
+}</pre>
+
+<p>Again, Clang complains:</p>
+
+<pre> <b>my_file2.cpp:5:13: <span class="error">error:</span> call to function 'operator&lt;&lt;' that is neither visible in the template definition nor found by argument-dependent lookup</b>
+ std::cout &lt;&lt; value &lt;&lt; "\n";
+ <span class="caret"> ^</span>
+ <b>my_file2.cpp:17:3: <span class="error">note:</span> in instantiation of function template specialization 'Dump&lt;ns::Data&gt;' requested here</b>
+ Dump(ns::Data());
+ <span class="caret"> ^</span>
+ <b>my_file2.cpp:12:15: <span class="error">note:</span> 'operator&lt;&lt;' should be declared prior to the call site or in namespace 'ns'</b>
+ std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
+ <span class="caret"> ^</span>
+</pre>
+
+<p>Just like before, unqualified lookup didn't find any declarations
+with the name <tt>operator&lt;&lt;</tt>. Unlike before, the argument
+types both contain class types: one of them is an instance of the
+class template type <tt>std::basic_ostream</tt>, and the other is the
+type <tt>ns::Data</tt> that we declared above. Therefore, ADL will
+look in the namespaces <tt>std</tt> and <tt>ns</tt> for
+an <tt>operator&lt;&lt;</tt>. Since one of the argument types was
+still dependent during the template definition, ADL isn't done until
+the template is instantiated during <tt>Use</tt>, which means that
+the <tt>operator&lt;&lt;</tt> we want it to find has already been
+declared. Unfortunately, it was declared in the global namespace, not
+in either of the namespaces that ADL will look in!
+
+<p>There are two ways to fix this problem:</p>
+<ol><li>Make sure the function you want to call is declared before the
+template that might call it. This is the only option if none of its
+argument types contain classes. You can do this either by moving the
+template definition, or by moving the function definition, or by
+adding a forward declaration of the function before the template.</li>
+<li>Move the function into the same namespace as one of its arguments
+so that ADL applies.</li></ol>
+
+<p>For more information about argument-dependent lookup, see
+[basic.lookup.argdep]. For more information about the ordering of
+lookup in templates, see [temp.dep.candidate].
+
+<!-- ======================================================================= -->
+<h3 id="dep_lookup_bases">Unqualified lookup into dependent bases of class templates</h3>
+<!-- ======================================================================= -->
+
+Some versions of GCC accept the following invalid code:
+
+<pre>
+template &lt;typename T&gt; struct Base {
+ void DoThis(T x) {}
+ static void DoThat(T x) {}
+};
+
+template &lt;typename T&gt; struct Derived : public Base&lt;T&gt; {
+ void Work(T x) {
+ DoThis(x); // Invalid!
+ DoThat(x); // Invalid!
+ }
+};
+</pre>
+
+Clang correctly rejects it with the following errors
+(when <tt>Derived</tt> is eventually instantiated):
+
+<pre>
+my_file.cpp:8:5: error: use of undeclared identifier 'DoThis'
+ DoThis(x);
+ ^
+ this-&gt;
+my_file.cpp:2:8: note: must qualify identifier to find this declaration in dependent base class
+ void DoThis(T x) {}
+ ^
+my_file.cpp:9:5: error: use of undeclared identifier 'DoThat'
+ DoThat(x);
+ ^
+ this-&gt;
+my_file.cpp:3:15: note: must qualify identifier to find this declaration in dependent base class
+ static void DoThat(T x) {}
+</pre>
+
+Like we said <a href="#dep_lookup">above</a>, unqualified names like
+<tt>DoThis</tt> and <tt>DoThat</tt> are looked up when the template
+<tt>Derived</tt> is defined, not when it's instantiated. When we look
+up a name used in a class, we usually look into the base classes.
+However, we can't look into the base class <tt>Base&lt;T&gt;</tt>
+because its type depends on the template argument <tt>T</tt>, so the
+standard says we should just ignore it. See [temp.dep]p3 for details.
+
+<p>The fix, as Clang tells you, is to tell the compiler that we want a
+class member by prefixing the calls with <tt>this-&gt;</tt>:
+
+<pre>
+ void Work(T x) {
+ <b>this-&gt;</b>DoThis(x);
+ <b>this-&gt;</b>DoThat(x);
+ }
+</pre>
+
+Alternatively, you can tell the compiler exactly where to look:
+
+<pre>
+ void Work(T x) {
+ <b>Base&lt;T&gt;</b>::DoThis(x);
+ <b>Base&lt;T&gt;</b>::DoThat(x);
+ }
+</pre>
+
+This works whether the methods are static or not, but be careful:
+if <tt>DoThis</tt> is virtual, calling it this way will bypass virtual
+dispatch!
+
+<!-- ======================================================================= -->
+<h3 id="undep_incomplete">Incomplete types in templates</h3>
+<!-- ======================================================================= -->
+
+The following code is invalid, but compilers are allowed to accept it:
+
+<pre>
+ class IOOptions;
+ template &lt;class T&gt; bool read(T &amp;value) {
+ IOOptions opts;
+ return read(opts, value);
+ }
+
+ class IOOptions { bool ForceReads; };
+ bool read(const IOOptions &amp;opts, int &amp;x);
+ template bool read&lt;&gt;(int &amp;);
+</pre>
+
+The standard says that types which don't depend on template parameters
+must be complete when a template is defined if they affect the
+program's behavior. However, the standard also says that compilers
+are free to not enforce this rule. Most compilers enforce it to some
+extent; for example, it would be an error in GCC to
+write <tt>opts.ForceReads</tt> in the code above. In Clang, we feel
+that enforcing the rule consistently lets us provide a better
+experience, but unfortunately it also means we reject some code that
+other compilers accept.
+
+<p>We've explained the rule here in very imprecise terms; see
+[temp.res]p8 for details.
+
+<!-- ======================================================================= -->
+<h3 id="bad_templates">Templates with no valid instantiations</h3>
+<!-- ======================================================================= -->
+
+The following code contains a typo: the programmer
+meant <tt>init()</tt> but wrote <tt>innit()</tt> instead.
+
+<pre>
+ template &lt;class T&gt; class Processor {
+ ...
+ void init();
+ ...
+ };
+ ...
+ template &lt;class T&gt; void process() {
+ Processor&lt;T&gt; processor;
+ processor.innit(); // <-- should be 'init()'
+ ...
+ }
+</pre>
+
+Unfortunately, we can't flag this mistake as soon as we see it: inside
+a template, we're not allowed to make assumptions about "dependent
+types" like <tt>Processor&lt;T&gt;</tt>. Suppose that later on in
+this file the programmer adds an explicit specialization
+of <tt>Processor</tt>, like so:
+
+<pre>
+ template &lt;&gt; class Processor&lt;char*&gt; {
+ void innit();
+ };
+</pre>
+
+Now the program will work &mdash; as long as the programmer only ever
+instantiates <tt>process()</tt> with <tt>T = char*</tt>! This is why
+it's hard, and sometimes impossible, to diagnose mistakes in a
+template definition before it's instantiated.
+
+<p>The standard says that a template with no valid instantiations is
+ill-formed. Clang tries to do as much checking as possible at
+definition-time instead of instantiation-time: not only does this
+produce clearer diagnostics, but it also substantially improves
+compile times when using pre-compiled headers. The downside to this
+philosophy is that Clang sometimes fails to process files because they
+contain broken templates that are no longer used. The solution is
+simple: since the code is unused, just remove it.
+
+<!-- ======================================================================= -->
+<h3 id="default_init_const">Default initialization of const variable of a class type requires user-defined default constructor</h3>
+<!-- ======================================================================= -->
+
+If a <tt>class</tt> or <tt>struct</tt> has no user-defined default
+constructor, C++ doesn't allow you to default construct a <tt>const</tt>
+instance of it like this ([dcl.init], p9):
+
+<pre>
+class Foo {
+ public:
+ // The compiler-supplied default constructor works fine, so we
+ // don't bother with defining one.
+ ...
+};
+
+void Bar() {
+ const Foo foo; // Error!
+ ...
+}
+</pre>
+
+To fix this, you can define a default constructor for the class:
+
+<pre>
+class Foo {
+ public:
+ Foo() {}
+ ...
+};
+
+void Bar() {
+ const Foo foo; // Now the compiler is happy.
+ ...
+}
+</pre>
+
+<!-- ======================================================================= -->
+<h3 id="param_name_lookup">Parameter name lookup</h3>
+<!-- ======================================================================= -->
+
+<p>Due to a bug in its implementation, GCC allows the redeclaration of function parameter names within a function prototype in C++ code, e.g.</p>
+<blockquote>
+<pre>
+void f(int a, int a);
+</pre>
+</blockquote>
+<p>Clang diagnoses this error (where the parameter name has been redeclared). To fix this problem, rename one of the parameters.</p>
+
+<!-- ======================================================================= -->
+<h2 id="cxx11">C++11 compatibility</h2>
+<!-- ======================================================================= -->
+
+<!-- ======================================================================= -->
+<h3 id="deleted-special-func">Deleted special member functions</h3>
+<!-- ======================================================================= -->
+
+<p>In C++11, the explicit declaration of a move constructor or a move
+assignment operator within a class deletes the implicit declaration
+of the copy constructor and copy assignment operator. This change came
+fairly late in the C++11 standardization process, so early
+implementations of C++11 (including Clang before 3.0, GCC before 4.7,
+and Visual Studio 2010) do not implement this rule, leading them to
+accept this ill-formed code:</p>
+
+<pre>
+struct X {
+ X(X&amp;&amp;); <i>// deletes implicit copy constructor:</i>
+ <i>// X(const X&amp;) = delete;</i>
+};
+
+void f(X x);
+void g(X x) {
+ f(x); <i>// error: X has a deleted copy constructor</i>
+}
+</pre>
+
+<p>This affects some early C++11 code, including Boost's popular <a
+href="http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm"><tt>shared_ptr</tt></a>
+up to version 1.47.0. The fix for Boost's <tt>shared_ptr</tt> is
+<a href="https://svn.boost.org/trac/boost/changeset/73202">available here</a>.</p>
+
+<!-- ======================================================================= -->
+<h2 id="objective-cxx">Objective-C++ compatibility</h2>
+<!-- ======================================================================= -->
+
+<!-- ======================================================================= -->
+<h3 id="implicit-downcasts">Implicit downcasts</h3>
+<!-- ======================================================================= -->
+
+<p>Due to a bug in its implementation, GCC allows implicit downcasts
+of Objective-C pointers (from a base class to a derived class) when
+calling functions. Such code is inherently unsafe, since the object
+might not actually be an instance of the derived class, and is
+rejected by Clang. For example, given this code:</p>
+
+<pre>
+@interface Base @end
+@interface Derived : Base @end
+
+void f(Derived *p);
+void g(Base *p) {
+ f(p);
+}
+</pre>
+
+<p>Clang produces the following error:</p>
+
+<pre>
+downcast.mm:6:3: error: no matching function for call to 'f'
+ f(p);
+ ^
+downcast.mm:4:6: note: candidate function not viable: cannot convert from
+ superclass 'Base *' to subclass 'Derived *' for 1st argument
+void f(Derived *p);
+ ^
+</pre>
+
+<p>If the downcast is actually correct (e.g., because the code has
+already checked that the object has the appropriate type), add an
+explicit cast:</p>
+
+<pre>
+ f((Derived *)base);
+</pre>
+
+<!-- ======================================================================= -->
+<h3 id="class-as-property-name">Using <code>class</code> as a property name</h3>
+<!-- ======================================================================= -->
+
+<p>In C and Objective-C, <code>class</code> is a normal identifier and
+can be used to name fields, ivars, methods, and so on. In
+C++, <code>class</code> is a keyword. For compatibility with existing
+code, Clang permits <code>class</code> to be used as part of a method
+selector in Objective-C++, but this does not extend to any other part
+of the language. In particular, it is impossible to use property dot
+syntax in Objective-C++ with the property name <code>class</code>, so
+the following code will fail to parse:</p>
+
+<pre>
+@interface I {
+int cls;
+}
++ (int)class;
+@end
+
+@implementation I
+- (int) Meth { return I.class; }
+@end
+</pre>
+
+<p>Use explicit message-send syntax instead, i.e. <code>[I class]</code>.</p>
+
+</div>
+</body>
+</html>