summaryrefslogtreecommitdiff
path: root/clang/lib/CodeGen/CodeGenFunction.h
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/CodeGen/CodeGenFunction.h')
-rw-r--r--clang/lib/CodeGen/CodeGenFunction.h2702
1 files changed, 2702 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CodeGenFunction.h b/clang/lib/CodeGen/CodeGenFunction.h
new file mode 100644
index 0000000..83f1e2d
--- /dev/null
+++ b/clang/lib/CodeGen/CodeGenFunction.h
@@ -0,0 +1,2702 @@
+//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the internal per-function state used for llvm translation.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
+#define CLANG_CODEGEN_CODEGENFUNCTION_H
+
+#include "clang/AST/Type.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "clang/Basic/ABI.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/Debug.h"
+#include "CodeGenModule.h"
+#include "CGBuilder.h"
+#include "CGDebugInfo.h"
+#include "CGValue.h"
+
+namespace llvm {
+ class BasicBlock;
+ class LLVMContext;
+ class MDNode;
+ class Module;
+ class SwitchInst;
+ class Twine;
+ class Value;
+ class CallSite;
+}
+
+namespace clang {
+ class ASTContext;
+ class BlockDecl;
+ class CXXDestructorDecl;
+ class CXXForRangeStmt;
+ class CXXTryStmt;
+ class Decl;
+ class LabelDecl;
+ class EnumConstantDecl;
+ class FunctionDecl;
+ class FunctionProtoType;
+ class LabelStmt;
+ class ObjCContainerDecl;
+ class ObjCInterfaceDecl;
+ class ObjCIvarDecl;
+ class ObjCMethodDecl;
+ class ObjCImplementationDecl;
+ class ObjCPropertyImplDecl;
+ class TargetInfo;
+ class TargetCodeGenInfo;
+ class VarDecl;
+ class ObjCForCollectionStmt;
+ class ObjCAtTryStmt;
+ class ObjCAtThrowStmt;
+ class ObjCAtSynchronizedStmt;
+ class ObjCAutoreleasePoolStmt;
+
+namespace CodeGen {
+ class CodeGenTypes;
+ class CGFunctionInfo;
+ class CGRecordLayout;
+ class CGBlockInfo;
+ class CGCXXABI;
+ class BlockFlags;
+ class BlockFieldFlags;
+
+/// A branch fixup. These are required when emitting a goto to a
+/// label which hasn't been emitted yet. The goto is optimistically
+/// emitted as a branch to the basic block for the label, and (if it
+/// occurs in a scope with non-trivial cleanups) a fixup is added to
+/// the innermost cleanup. When a (normal) cleanup is popped, any
+/// unresolved fixups in that scope are threaded through the cleanup.
+struct BranchFixup {
+ /// The block containing the terminator which needs to be modified
+ /// into a switch if this fixup is resolved into the current scope.
+ /// If null, LatestBranch points directly to the destination.
+ llvm::BasicBlock *OptimisticBranchBlock;
+
+ /// The ultimate destination of the branch.
+ ///
+ /// This can be set to null to indicate that this fixup was
+ /// successfully resolved.
+ llvm::BasicBlock *Destination;
+
+ /// The destination index value.
+ unsigned DestinationIndex;
+
+ /// The initial branch of the fixup.
+ llvm::BranchInst *InitialBranch;
+};
+
+template <class T> struct InvariantValue {
+ typedef T type;
+ typedef T saved_type;
+ static bool needsSaving(type value) { return false; }
+ static saved_type save(CodeGenFunction &CGF, type value) { return value; }
+ static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
+};
+
+/// A metaprogramming class for ensuring that a value will dominate an
+/// arbitrary position in a function.
+template <class T> struct DominatingValue : InvariantValue<T> {};
+
+template <class T, bool mightBeInstruction =
+ llvm::is_base_of<llvm::Value, T>::value &&
+ !llvm::is_base_of<llvm::Constant, T>::value &&
+ !llvm::is_base_of<llvm::BasicBlock, T>::value>
+struct DominatingPointer;
+template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
+// template <class T> struct DominatingPointer<T,true> at end of file
+
+template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
+
+enum CleanupKind {
+ EHCleanup = 0x1,
+ NormalCleanup = 0x2,
+ NormalAndEHCleanup = EHCleanup | NormalCleanup,
+
+ InactiveCleanup = 0x4,
+ InactiveEHCleanup = EHCleanup | InactiveCleanup,
+ InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
+ InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
+};
+
+/// A stack of scopes which respond to exceptions, including cleanups
+/// and catch blocks.
+class EHScopeStack {
+public:
+ /// A saved depth on the scope stack. This is necessary because
+ /// pushing scopes onto the stack invalidates iterators.
+ class stable_iterator {
+ friend class EHScopeStack;
+
+ /// Offset from StartOfData to EndOfBuffer.
+ ptrdiff_t Size;
+
+ stable_iterator(ptrdiff_t Size) : Size(Size) {}
+
+ public:
+ static stable_iterator invalid() { return stable_iterator(-1); }
+ stable_iterator() : Size(-1) {}
+
+ bool isValid() const { return Size >= 0; }
+
+ /// Returns true if this scope encloses I.
+ /// Returns false if I is invalid.
+ /// This scope must be valid.
+ bool encloses(stable_iterator I) const { return Size <= I.Size; }
+
+ /// Returns true if this scope strictly encloses I: that is,
+ /// if it encloses I and is not I.
+ /// Returns false is I is invalid.
+ /// This scope must be valid.
+ bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
+
+ friend bool operator==(stable_iterator A, stable_iterator B) {
+ return A.Size == B.Size;
+ }
+ friend bool operator!=(stable_iterator A, stable_iterator B) {
+ return A.Size != B.Size;
+ }
+ };
+
+ /// Information for lazily generating a cleanup. Subclasses must be
+ /// POD-like: cleanups will not be destructed, and they will be
+ /// allocated on the cleanup stack and freely copied and moved
+ /// around.
+ ///
+ /// Cleanup implementations should generally be declared in an
+ /// anonymous namespace.
+ class Cleanup {
+ // Anchor the construction vtable.
+ virtual void anchor();
+ public:
+ /// Generation flags.
+ class Flags {
+ enum {
+ F_IsForEH = 0x1,
+ F_IsNormalCleanupKind = 0x2,
+ F_IsEHCleanupKind = 0x4
+ };
+ unsigned flags;
+
+ public:
+ Flags() : flags(0) {}
+
+ /// isForEH - true if the current emission is for an EH cleanup.
+ bool isForEHCleanup() const { return flags & F_IsForEH; }
+ bool isForNormalCleanup() const { return !isForEHCleanup(); }
+ void setIsForEHCleanup() { flags |= F_IsForEH; }
+
+ bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
+ void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
+
+ /// isEHCleanupKind - true if the cleanup was pushed as an EH
+ /// cleanup.
+ bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
+ void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
+ };
+
+ // Provide a virtual destructor to suppress a very common warning
+ // that unfortunately cannot be suppressed without this. Cleanups
+ // should not rely on this destructor ever being called.
+ virtual ~Cleanup() {}
+
+ /// Emit the cleanup. For normal cleanups, this is run in the
+ /// same EH context as when the cleanup was pushed, i.e. the
+ /// immediately-enclosing context of the cleanup scope. For
+ /// EH cleanups, this is run in a terminate context.
+ ///
+ // \param IsForEHCleanup true if this is for an EH cleanup, false
+ /// if for a normal cleanup.
+ virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
+ };
+
+ /// ConditionalCleanupN stores the saved form of its N parameters,
+ /// then restores them and performs the cleanup.
+ template <class T, class A0>
+ class ConditionalCleanup1 : public Cleanup {
+ typedef typename DominatingValue<A0>::saved_type A0_saved;
+ A0_saved a0_saved;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
+ T(a0).Emit(CGF, flags);
+ }
+
+ public:
+ ConditionalCleanup1(A0_saved a0)
+ : a0_saved(a0) {}
+ };
+
+ template <class T, class A0, class A1>
+ class ConditionalCleanup2 : public Cleanup {
+ typedef typename DominatingValue<A0>::saved_type A0_saved;
+ typedef typename DominatingValue<A1>::saved_type A1_saved;
+ A0_saved a0_saved;
+ A1_saved a1_saved;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
+ A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
+ T(a0, a1).Emit(CGF, flags);
+ }
+
+ public:
+ ConditionalCleanup2(A0_saved a0, A1_saved a1)
+ : a0_saved(a0), a1_saved(a1) {}
+ };
+
+ template <class T, class A0, class A1, class A2>
+ class ConditionalCleanup3 : public Cleanup {
+ typedef typename DominatingValue<A0>::saved_type A0_saved;
+ typedef typename DominatingValue<A1>::saved_type A1_saved;
+ typedef typename DominatingValue<A2>::saved_type A2_saved;
+ A0_saved a0_saved;
+ A1_saved a1_saved;
+ A2_saved a2_saved;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
+ A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
+ A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
+ T(a0, a1, a2).Emit(CGF, flags);
+ }
+
+ public:
+ ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
+ : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
+ };
+
+ template <class T, class A0, class A1, class A2, class A3>
+ class ConditionalCleanup4 : public Cleanup {
+ typedef typename DominatingValue<A0>::saved_type A0_saved;
+ typedef typename DominatingValue<A1>::saved_type A1_saved;
+ typedef typename DominatingValue<A2>::saved_type A2_saved;
+ typedef typename DominatingValue<A3>::saved_type A3_saved;
+ A0_saved a0_saved;
+ A1_saved a1_saved;
+ A2_saved a2_saved;
+ A3_saved a3_saved;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
+ A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
+ A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
+ A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
+ T(a0, a1, a2, a3).Emit(CGF, flags);
+ }
+
+ public:
+ ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
+ : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
+ };
+
+private:
+ // The implementation for this class is in CGException.h and
+ // CGException.cpp; the definition is here because it's used as a
+ // member of CodeGenFunction.
+
+ /// The start of the scope-stack buffer, i.e. the allocated pointer
+ /// for the buffer. All of these pointers are either simultaneously
+ /// null or simultaneously valid.
+ char *StartOfBuffer;
+
+ /// The end of the buffer.
+ char *EndOfBuffer;
+
+ /// The first valid entry in the buffer.
+ char *StartOfData;
+
+ /// The innermost normal cleanup on the stack.
+ stable_iterator InnermostNormalCleanup;
+
+ /// The innermost EH scope on the stack.
+ stable_iterator InnermostEHScope;
+
+ /// The current set of branch fixups. A branch fixup is a jump to
+ /// an as-yet unemitted label, i.e. a label for which we don't yet
+ /// know the EH stack depth. Whenever we pop a cleanup, we have
+ /// to thread all the current branch fixups through it.
+ ///
+ /// Fixups are recorded as the Use of the respective branch or
+ /// switch statement. The use points to the final destination.
+ /// When popping out of a cleanup, these uses are threaded through
+ /// the cleanup and adjusted to point to the new cleanup.
+ ///
+ /// Note that branches are allowed to jump into protected scopes
+ /// in certain situations; e.g. the following code is legal:
+ /// struct A { ~A(); }; // trivial ctor, non-trivial dtor
+ /// goto foo;
+ /// A a;
+ /// foo:
+ /// bar();
+ SmallVector<BranchFixup, 8> BranchFixups;
+
+ char *allocate(size_t Size);
+
+ void *pushCleanup(CleanupKind K, size_t DataSize);
+
+public:
+ EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
+ InnermostNormalCleanup(stable_end()),
+ InnermostEHScope(stable_end()) {}
+ ~EHScopeStack() { delete[] StartOfBuffer; }
+
+ // Variadic templates would make this not terrible.
+
+ /// Push a lazily-created cleanup on the stack.
+ template <class T>
+ void pushCleanup(CleanupKind Kind) {
+ void *Buffer = pushCleanup(Kind, sizeof(T));
+ Cleanup *Obj = new(Buffer) T();
+ (void) Obj;
+ }
+
+ /// Push a lazily-created cleanup on the stack.
+ template <class T, class A0>
+ void pushCleanup(CleanupKind Kind, A0 a0) {
+ void *Buffer = pushCleanup(Kind, sizeof(T));
+ Cleanup *Obj = new(Buffer) T(a0);
+ (void) Obj;
+ }
+
+ /// Push a lazily-created cleanup on the stack.
+ template <class T, class A0, class A1>
+ void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
+ void *Buffer = pushCleanup(Kind, sizeof(T));
+ Cleanup *Obj = new(Buffer) T(a0, a1);
+ (void) Obj;
+ }
+
+ /// Push a lazily-created cleanup on the stack.
+ template <class T, class A0, class A1, class A2>
+ void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
+ void *Buffer = pushCleanup(Kind, sizeof(T));
+ Cleanup *Obj = new(Buffer) T(a0, a1, a2);
+ (void) Obj;
+ }
+
+ /// Push a lazily-created cleanup on the stack.
+ template <class T, class A0, class A1, class A2, class A3>
+ void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
+ void *Buffer = pushCleanup(Kind, sizeof(T));
+ Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
+ (void) Obj;
+ }
+
+ /// Push a lazily-created cleanup on the stack.
+ template <class T, class A0, class A1, class A2, class A3, class A4>
+ void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
+ void *Buffer = pushCleanup(Kind, sizeof(T));
+ Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
+ (void) Obj;
+ }
+
+ // Feel free to add more variants of the following:
+
+ /// Push a cleanup with non-constant storage requirements on the
+ /// stack. The cleanup type must provide an additional static method:
+ /// static size_t getExtraSize(size_t);
+ /// The argument to this method will be the value N, which will also
+ /// be passed as the first argument to the constructor.
+ ///
+ /// The data stored in the extra storage must obey the same
+ /// restrictions as normal cleanup member data.
+ ///
+ /// The pointer returned from this method is valid until the cleanup
+ /// stack is modified.
+ template <class T, class A0, class A1, class A2>
+ T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
+ void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
+ return new (Buffer) T(N, a0, a1, a2);
+ }
+
+ /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp.
+ void popCleanup();
+
+ /// Push a set of catch handlers on the stack. The catch is
+ /// uninitialized and will need to have the given number of handlers
+ /// set on it.
+ class EHCatchScope *pushCatch(unsigned NumHandlers);
+
+ /// Pops a catch scope off the stack. This is private to CGException.cpp.
+ void popCatch();
+
+ /// Push an exceptions filter on the stack.
+ class EHFilterScope *pushFilter(unsigned NumFilters);
+
+ /// Pops an exceptions filter off the stack.
+ void popFilter();
+
+ /// Push a terminate handler on the stack.
+ void pushTerminate();
+
+ /// Pops a terminate handler off the stack.
+ void popTerminate();
+
+ /// Determines whether the exception-scopes stack is empty.
+ bool empty() const { return StartOfData == EndOfBuffer; }
+
+ bool requiresLandingPad() const {
+ return InnermostEHScope != stable_end();
+ }
+
+ /// Determines whether there are any normal cleanups on the stack.
+ bool hasNormalCleanups() const {
+ return InnermostNormalCleanup != stable_end();
+ }
+
+ /// Returns the innermost normal cleanup on the stack, or
+ /// stable_end() if there are no normal cleanups.
+ stable_iterator getInnermostNormalCleanup() const {
+ return InnermostNormalCleanup;
+ }
+ stable_iterator getInnermostActiveNormalCleanup() const;
+
+ stable_iterator getInnermostEHScope() const {
+ return InnermostEHScope;
+ }
+
+ stable_iterator getInnermostActiveEHScope() const;
+
+ /// An unstable reference to a scope-stack depth. Invalidated by
+ /// pushes but not pops.
+ class iterator;
+
+ /// Returns an iterator pointing to the innermost EH scope.
+ iterator begin() const;
+
+ /// Returns an iterator pointing to the outermost EH scope.
+ iterator end() const;
+
+ /// Create a stable reference to the top of the EH stack. The
+ /// returned reference is valid until that scope is popped off the
+ /// stack.
+ stable_iterator stable_begin() const {
+ return stable_iterator(EndOfBuffer - StartOfData);
+ }
+
+ /// Create a stable reference to the bottom of the EH stack.
+ static stable_iterator stable_end() {
+ return stable_iterator(0);
+ }
+
+ /// Translates an iterator into a stable_iterator.
+ stable_iterator stabilize(iterator it) const;
+
+ /// Turn a stable reference to a scope depth into a unstable pointer
+ /// to the EH stack.
+ iterator find(stable_iterator save) const;
+
+ /// Removes the cleanup pointed to by the given stable_iterator.
+ void removeCleanup(stable_iterator save);
+
+ /// Add a branch fixup to the current cleanup scope.
+ BranchFixup &addBranchFixup() {
+ assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
+ BranchFixups.push_back(BranchFixup());
+ return BranchFixups.back();
+ }
+
+ unsigned getNumBranchFixups() const { return BranchFixups.size(); }
+ BranchFixup &getBranchFixup(unsigned I) {
+ assert(I < getNumBranchFixups());
+ return BranchFixups[I];
+ }
+
+ /// Pops lazily-removed fixups from the end of the list. This
+ /// should only be called by procedures which have just popped a
+ /// cleanup or resolved one or more fixups.
+ void popNullFixups();
+
+ /// Clears the branch-fixups list. This should only be called by
+ /// ResolveAllBranchFixups.
+ void clearFixups() { BranchFixups.clear(); }
+};
+
+/// CodeGenFunction - This class organizes the per-function state that is used
+/// while generating LLVM code.
+class CodeGenFunction : public CodeGenTypeCache {
+ CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
+ void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT
+
+ friend class CGCXXABI;
+public:
+ /// A jump destination is an abstract label, branching to which may
+ /// require a jump out through normal cleanups.
+ struct JumpDest {
+ JumpDest() : Block(0), ScopeDepth(), Index(0) {}
+ JumpDest(llvm::BasicBlock *Block,
+ EHScopeStack::stable_iterator Depth,
+ unsigned Index)
+ : Block(Block), ScopeDepth(Depth), Index(Index) {}
+
+ bool isValid() const { return Block != 0; }
+ llvm::BasicBlock *getBlock() const { return Block; }
+ EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
+ unsigned getDestIndex() const { return Index; }
+
+ private:
+ llvm::BasicBlock *Block;
+ EHScopeStack::stable_iterator ScopeDepth;
+ unsigned Index;
+ };
+
+ CodeGenModule &CGM; // Per-module state.
+ const TargetInfo &Target;
+
+ typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
+ CGBuilderTy Builder;
+
+ /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
+ /// This excludes BlockDecls.
+ const Decl *CurFuncDecl;
+ /// CurCodeDecl - This is the inner-most code context, which includes blocks.
+ const Decl *CurCodeDecl;
+ const CGFunctionInfo *CurFnInfo;
+ QualType FnRetTy;
+ llvm::Function *CurFn;
+
+ /// CurGD - The GlobalDecl for the current function being compiled.
+ GlobalDecl CurGD;
+
+ /// PrologueCleanupDepth - The cleanup depth enclosing all the
+ /// cleanups associated with the parameters.
+ EHScopeStack::stable_iterator PrologueCleanupDepth;
+
+ /// ReturnBlock - Unified return block.
+ JumpDest ReturnBlock;
+
+ /// ReturnValue - The temporary alloca to hold the return value. This is null
+ /// iff the function has no return value.
+ llvm::Value *ReturnValue;
+
+ /// AllocaInsertPoint - This is an instruction in the entry block before which
+ /// we prefer to insert allocas.
+ llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
+
+ bool CatchUndefined;
+
+ /// In ARC, whether we should autorelease the return value.
+ bool AutoreleaseResult;
+
+ const CodeGen::CGBlockInfo *BlockInfo;
+ llvm::Value *BlockPointer;
+
+ llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
+ FieldDecl *LambdaThisCaptureField;
+
+ /// \brief A mapping from NRVO variables to the flags used to indicate
+ /// when the NRVO has been applied to this variable.
+ llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
+
+ EHScopeStack EHStack;
+
+ /// i32s containing the indexes of the cleanup destinations.
+ llvm::AllocaInst *NormalCleanupDest;
+
+ unsigned NextCleanupDestIndex;
+
+ /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
+ CGBlockInfo *FirstBlockInfo;
+
+ /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
+ llvm::BasicBlock *EHResumeBlock;
+
+ /// The exception slot. All landing pads write the current exception pointer
+ /// into this alloca.
+ llvm::Value *ExceptionSlot;
+
+ /// The selector slot. Under the MandatoryCleanup model, all landing pads
+ /// write the current selector value into this alloca.
+ llvm::AllocaInst *EHSelectorSlot;
+
+ /// Emits a landing pad for the current EH stack.
+ llvm::BasicBlock *EmitLandingPad();
+
+ llvm::BasicBlock *getInvokeDestImpl();
+
+ template <class T>
+ typename DominatingValue<T>::saved_type saveValueInCond(T value) {
+ return DominatingValue<T>::save(*this, value);
+ }
+
+public:
+ /// ObjCEHValueStack - Stack of Objective-C exception values, used for
+ /// rethrows.
+ SmallVector<llvm::Value*, 8> ObjCEHValueStack;
+
+ /// A class controlling the emission of a finally block.
+ class FinallyInfo {
+ /// Where the catchall's edge through the cleanup should go.
+ JumpDest RethrowDest;
+
+ /// A function to call to enter the catch.
+ llvm::Constant *BeginCatchFn;
+
+ /// An i1 variable indicating whether or not the @finally is
+ /// running for an exception.
+ llvm::AllocaInst *ForEHVar;
+
+ /// An i8* variable into which the exception pointer to rethrow
+ /// has been saved.
+ llvm::AllocaInst *SavedExnVar;
+
+ public:
+ void enter(CodeGenFunction &CGF, const Stmt *Finally,
+ llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
+ llvm::Constant *rethrowFn);
+ void exit(CodeGenFunction &CGF);
+ };
+
+ /// pushFullExprCleanup - Push a cleanup to be run at the end of the
+ /// current full-expression. Safe against the possibility that
+ /// we're currently inside a conditionally-evaluated expression.
+ template <class T, class A0>
+ void pushFullExprCleanup(CleanupKind kind, A0 a0) {
+ // If we're not in a conditional branch, or if none of the
+ // arguments requires saving, then use the unconditional cleanup.
+ if (!isInConditionalBranch())
+ return EHStack.pushCleanup<T>(kind, a0);
+
+ typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
+
+ typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
+ EHStack.pushCleanup<CleanupType>(kind, a0_saved);
+ initFullExprCleanup();
+ }
+
+ /// pushFullExprCleanup - Push a cleanup to be run at the end of the
+ /// current full-expression. Safe against the possibility that
+ /// we're currently inside a conditionally-evaluated expression.
+ template <class T, class A0, class A1>
+ void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
+ // If we're not in a conditional branch, or if none of the
+ // arguments requires saving, then use the unconditional cleanup.
+ if (!isInConditionalBranch())
+ return EHStack.pushCleanup<T>(kind, a0, a1);
+
+ typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
+ typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
+
+ typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
+ EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
+ initFullExprCleanup();
+ }
+
+ /// pushFullExprCleanup - Push a cleanup to be run at the end of the
+ /// current full-expression. Safe against the possibility that
+ /// we're currently inside a conditionally-evaluated expression.
+ template <class T, class A0, class A1, class A2>
+ void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
+ // If we're not in a conditional branch, or if none of the
+ // arguments requires saving, then use the unconditional cleanup.
+ if (!isInConditionalBranch()) {
+ return EHStack.pushCleanup<T>(kind, a0, a1, a2);
+ }
+
+ typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
+ typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
+ typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
+
+ typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
+ EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
+ initFullExprCleanup();
+ }
+
+ /// pushFullExprCleanup - Push a cleanup to be run at the end of the
+ /// current full-expression. Safe against the possibility that
+ /// we're currently inside a conditionally-evaluated expression.
+ template <class T, class A0, class A1, class A2, class A3>
+ void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
+ // If we're not in a conditional branch, or if none of the
+ // arguments requires saving, then use the unconditional cleanup.
+ if (!isInConditionalBranch()) {
+ return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
+ }
+
+ typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
+ typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
+ typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
+ typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
+
+ typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
+ EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
+ a2_saved, a3_saved);
+ initFullExprCleanup();
+ }
+
+ /// Set up the last cleaup that was pushed as a conditional
+ /// full-expression cleanup.
+ void initFullExprCleanup();
+
+ /// PushDestructorCleanup - Push a cleanup to call the
+ /// complete-object destructor of an object of the given type at the
+ /// given address. Does nothing if T is not a C++ class type with a
+ /// non-trivial destructor.
+ void PushDestructorCleanup(QualType T, llvm::Value *Addr);
+
+ /// PushDestructorCleanup - Push a cleanup to call the
+ /// complete-object variant of the given destructor on the object at
+ /// the given address.
+ void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
+ llvm::Value *Addr);
+
+ /// PopCleanupBlock - Will pop the cleanup entry on the stack and
+ /// process all branch fixups.
+ void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
+
+ /// DeactivateCleanupBlock - Deactivates the given cleanup block.
+ /// The block cannot be reactivated. Pops it if it's the top of the
+ /// stack.
+ ///
+ /// \param DominatingIP - An instruction which is known to
+ /// dominate the current IP (if set) and which lies along
+ /// all paths of execution between the current IP and the
+ /// the point at which the cleanup comes into scope.
+ void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
+ llvm::Instruction *DominatingIP);
+
+ /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
+ /// Cannot be used to resurrect a deactivated cleanup.
+ ///
+ /// \param DominatingIP - An instruction which is known to
+ /// dominate the current IP (if set) and which lies along
+ /// all paths of execution between the current IP and the
+ /// the point at which the cleanup comes into scope.
+ void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
+ llvm::Instruction *DominatingIP);
+
+ /// \brief Enters a new scope for capturing cleanups, all of which
+ /// will be executed once the scope is exited.
+ class RunCleanupsScope {
+ EHScopeStack::stable_iterator CleanupStackDepth;
+ bool OldDidCallStackSave;
+ bool PerformCleanup;
+
+ RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
+ RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
+
+ protected:
+ CodeGenFunction& CGF;
+
+ public:
+ /// \brief Enter a new cleanup scope.
+ explicit RunCleanupsScope(CodeGenFunction &CGF)
+ : PerformCleanup(true), CGF(CGF)
+ {
+ CleanupStackDepth = CGF.EHStack.stable_begin();
+ OldDidCallStackSave = CGF.DidCallStackSave;
+ CGF.DidCallStackSave = false;
+ }
+
+ /// \brief Exit this cleanup scope, emitting any accumulated
+ /// cleanups.
+ ~RunCleanupsScope() {
+ if (PerformCleanup) {
+ CGF.DidCallStackSave = OldDidCallStackSave;
+ CGF.PopCleanupBlocks(CleanupStackDepth);
+ }
+ }
+
+ /// \brief Determine whether this scope requires any cleanups.
+ bool requiresCleanups() const {
+ return CGF.EHStack.stable_begin() != CleanupStackDepth;
+ }
+
+ /// \brief Force the emission of cleanups now, instead of waiting
+ /// until this object is destroyed.
+ void ForceCleanup() {
+ assert(PerformCleanup && "Already forced cleanup");
+ CGF.DidCallStackSave = OldDidCallStackSave;
+ CGF.PopCleanupBlocks(CleanupStackDepth);
+ PerformCleanup = false;
+ }
+ };
+
+ class LexicalScope: protected RunCleanupsScope {
+ SourceRange Range;
+ bool PopDebugStack;
+
+ LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
+ LexicalScope &operator=(const LexicalScope &);
+
+ public:
+ /// \brief Enter a new cleanup scope.
+ explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
+ : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
+ if (CGDebugInfo *DI = CGF.getDebugInfo())
+ DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
+ }
+
+ /// \brief Exit this cleanup scope, emitting any accumulated
+ /// cleanups.
+ ~LexicalScope() {
+ if (PopDebugStack) {
+ CGDebugInfo *DI = CGF.getDebugInfo();
+ if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
+ }
+ }
+
+ /// \brief Force the emission of cleanups now, instead of waiting
+ /// until this object is destroyed.
+ void ForceCleanup() {
+ RunCleanupsScope::ForceCleanup();
+ if (CGDebugInfo *DI = CGF.getDebugInfo()) {
+ DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
+ PopDebugStack = false;
+ }
+ }
+ };
+
+
+ /// PopCleanupBlocks - Takes the old cleanup stack size and emits
+ /// the cleanup blocks that have been added.
+ void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
+
+ void ResolveBranchFixups(llvm::BasicBlock *Target);
+
+ /// The given basic block lies in the current EH scope, but may be a
+ /// target of a potentially scope-crossing jump; get a stable handle
+ /// to which we can perform this jump later.
+ JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
+ return JumpDest(Target,
+ EHStack.getInnermostNormalCleanup(),
+ NextCleanupDestIndex++);
+ }
+
+ /// The given basic block lies in the current EH scope, but may be a
+ /// target of a potentially scope-crossing jump; get a stable handle
+ /// to which we can perform this jump later.
+ JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
+ return getJumpDestInCurrentScope(createBasicBlock(Name));
+ }
+
+ /// EmitBranchThroughCleanup - Emit a branch from the current insert
+ /// block through the normal cleanup handling code (if any) and then
+ /// on to \arg Dest.
+ void EmitBranchThroughCleanup(JumpDest Dest);
+
+ /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
+ /// specified destination obviously has no cleanups to run. 'false' is always
+ /// a conservatively correct answer for this method.
+ bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
+
+ /// popCatchScope - Pops the catch scope at the top of the EHScope
+ /// stack, emitting any required code (other than the catch handlers
+ /// themselves).
+ void popCatchScope();
+
+ llvm::BasicBlock *getEHResumeBlock();
+ llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
+
+ /// An object to manage conditionally-evaluated expressions.
+ class ConditionalEvaluation {
+ llvm::BasicBlock *StartBB;
+
+ public:
+ ConditionalEvaluation(CodeGenFunction &CGF)
+ : StartBB(CGF.Builder.GetInsertBlock()) {}
+
+ void begin(CodeGenFunction &CGF) {
+ assert(CGF.OutermostConditional != this);
+ if (!CGF.OutermostConditional)
+ CGF.OutermostConditional = this;
+ }
+
+ void end(CodeGenFunction &CGF) {
+ assert(CGF.OutermostConditional != 0);
+ if (CGF.OutermostConditional == this)
+ CGF.OutermostConditional = 0;
+ }
+
+ /// Returns a block which will be executed prior to each
+ /// evaluation of the conditional code.
+ llvm::BasicBlock *getStartingBlock() const {
+ return StartBB;
+ }
+ };
+
+ /// isInConditionalBranch - Return true if we're currently emitting
+ /// one branch or the other of a conditional expression.
+ bool isInConditionalBranch() const { return OutermostConditional != 0; }
+
+ void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
+ assert(isInConditionalBranch());
+ llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
+ new llvm::StoreInst(value, addr, &block->back());
+ }
+
+ /// An RAII object to record that we're evaluating a statement
+ /// expression.
+ class StmtExprEvaluation {
+ CodeGenFunction &CGF;
+
+ /// We have to save the outermost conditional: cleanups in a
+ /// statement expression aren't conditional just because the
+ /// StmtExpr is.
+ ConditionalEvaluation *SavedOutermostConditional;
+
+ public:
+ StmtExprEvaluation(CodeGenFunction &CGF)
+ : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
+ CGF.OutermostConditional = 0;
+ }
+
+ ~StmtExprEvaluation() {
+ CGF.OutermostConditional = SavedOutermostConditional;
+ CGF.EnsureInsertPoint();
+ }
+ };
+
+ /// An object which temporarily prevents a value from being
+ /// destroyed by aggressive peephole optimizations that assume that
+ /// all uses of a value have been realized in the IR.
+ class PeepholeProtection {
+ llvm::Instruction *Inst;
+ friend class CodeGenFunction;
+
+ public:
+ PeepholeProtection() : Inst(0) {}
+ };
+
+ /// A non-RAII class containing all the information about a bound
+ /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
+ /// this which makes individual mappings very simple; using this
+ /// class directly is useful when you have a variable number of
+ /// opaque values or don't want the RAII functionality for some
+ /// reason.
+ class OpaqueValueMappingData {
+ const OpaqueValueExpr *OpaqueValue;
+ bool BoundLValue;
+ CodeGenFunction::PeepholeProtection Protection;
+
+ OpaqueValueMappingData(const OpaqueValueExpr *ov,
+ bool boundLValue)
+ : OpaqueValue(ov), BoundLValue(boundLValue) {}
+ public:
+ OpaqueValueMappingData() : OpaqueValue(0) {}
+
+ static bool shouldBindAsLValue(const Expr *expr) {
+ // gl-values should be bound as l-values for obvious reasons.
+ // Records should be bound as l-values because IR generation
+ // always keeps them in memory. Expressions of function type
+ // act exactly like l-values but are formally required to be
+ // r-values in C.
+ return expr->isGLValue() ||
+ expr->getType()->isRecordType() ||
+ expr->getType()->isFunctionType();
+ }
+
+ static OpaqueValueMappingData bind(CodeGenFunction &CGF,
+ const OpaqueValueExpr *ov,
+ const Expr *e) {
+ if (shouldBindAsLValue(ov))
+ return bind(CGF, ov, CGF.EmitLValue(e));
+ return bind(CGF, ov, CGF.EmitAnyExpr(e));
+ }
+
+ static OpaqueValueMappingData bind(CodeGenFunction &CGF,
+ const OpaqueValueExpr *ov,
+ const LValue &lv) {
+ assert(shouldBindAsLValue(ov));
+ CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
+ return OpaqueValueMappingData(ov, true);
+ }
+
+ static OpaqueValueMappingData bind(CodeGenFunction &CGF,
+ const OpaqueValueExpr *ov,
+ const RValue &rv) {
+ assert(!shouldBindAsLValue(ov));
+ CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
+
+ OpaqueValueMappingData data(ov, false);
+
+ // Work around an extremely aggressive peephole optimization in
+ // EmitScalarConversion which assumes that all other uses of a
+ // value are extant.
+ data.Protection = CGF.protectFromPeepholes(rv);
+
+ return data;
+ }
+
+ bool isValid() const { return OpaqueValue != 0; }
+ void clear() { OpaqueValue = 0; }
+
+ void unbind(CodeGenFunction &CGF) {
+ assert(OpaqueValue && "no data to unbind!");
+
+ if (BoundLValue) {
+ CGF.OpaqueLValues.erase(OpaqueValue);
+ } else {
+ CGF.OpaqueRValues.erase(OpaqueValue);
+ CGF.unprotectFromPeepholes(Protection);
+ }
+ }
+ };
+
+ /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
+ class OpaqueValueMapping {
+ CodeGenFunction &CGF;
+ OpaqueValueMappingData Data;
+
+ public:
+ static bool shouldBindAsLValue(const Expr *expr) {
+ return OpaqueValueMappingData::shouldBindAsLValue(expr);
+ }
+
+ /// Build the opaque value mapping for the given conditional
+ /// operator if it's the GNU ?: extension. This is a common
+ /// enough pattern that the convenience operator is really
+ /// helpful.
+ ///
+ OpaqueValueMapping(CodeGenFunction &CGF,
+ const AbstractConditionalOperator *op) : CGF(CGF) {
+ if (isa<ConditionalOperator>(op))
+ // Leave Data empty.
+ return;
+
+ const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
+ Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
+ e->getCommon());
+ }
+
+ OpaqueValueMapping(CodeGenFunction &CGF,
+ const OpaqueValueExpr *opaqueValue,
+ LValue lvalue)
+ : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
+ }
+
+ OpaqueValueMapping(CodeGenFunction &CGF,
+ const OpaqueValueExpr *opaqueValue,
+ RValue rvalue)
+ : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
+ }
+
+ void pop() {
+ Data.unbind(CGF);
+ Data.clear();
+ }
+
+ ~OpaqueValueMapping() {
+ if (Data.isValid()) Data.unbind(CGF);
+ }
+ };
+
+ /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
+ /// number that holds the value.
+ unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
+
+ /// BuildBlockByrefAddress - Computes address location of the
+ /// variable which is declared as __block.
+ llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
+ const VarDecl *V);
+private:
+ CGDebugInfo *DebugInfo;
+ bool DisableDebugInfo;
+
+ /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
+ /// calling llvm.stacksave for multiple VLAs in the same scope.
+ bool DidCallStackSave;
+
+ /// IndirectBranch - The first time an indirect goto is seen we create a block
+ /// with an indirect branch. Every time we see the address of a label taken,
+ /// we add the label to the indirect goto. Every subsequent indirect goto is
+ /// codegen'd as a jump to the IndirectBranch's basic block.
+ llvm::IndirectBrInst *IndirectBranch;
+
+ /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
+ /// decls.
+ typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
+ DeclMapTy LocalDeclMap;
+
+ /// LabelMap - This keeps track of the LLVM basic block for each C label.
+ llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
+
+ // BreakContinueStack - This keeps track of where break and continue
+ // statements should jump to.
+ struct BreakContinue {
+ BreakContinue(JumpDest Break, JumpDest Continue)
+ : BreakBlock(Break), ContinueBlock(Continue) {}
+
+ JumpDest BreakBlock;
+ JumpDest ContinueBlock;
+ };
+ SmallVector<BreakContinue, 8> BreakContinueStack;
+
+ /// SwitchInsn - This is nearest current switch instruction. It is null if
+ /// current context is not in a switch.
+ llvm::SwitchInst *SwitchInsn;
+
+ /// CaseRangeBlock - This block holds if condition check for last case
+ /// statement range in current switch instruction.
+ llvm::BasicBlock *CaseRangeBlock;
+
+ /// OpaqueLValues - Keeps track of the current set of opaque value
+ /// expressions.
+ llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
+ llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
+
+ // VLASizeMap - This keeps track of the associated size for each VLA type.
+ // We track this by the size expression rather than the type itself because
+ // in certain situations, like a const qualifier applied to an VLA typedef,
+ // multiple VLA types can share the same size expression.
+ // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
+ // enter/leave scopes.
+ llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
+
+ /// A block containing a single 'unreachable' instruction. Created
+ /// lazily by getUnreachableBlock().
+ llvm::BasicBlock *UnreachableBlock;
+
+ /// CXXThisDecl - When generating code for a C++ member function,
+ /// this will hold the implicit 'this' declaration.
+ ImplicitParamDecl *CXXABIThisDecl;
+ llvm::Value *CXXABIThisValue;
+ llvm::Value *CXXThisValue;
+
+ /// CXXVTTDecl - When generating code for a base object constructor or
+ /// base object destructor with virtual bases, this will hold the implicit
+ /// VTT parameter.
+ ImplicitParamDecl *CXXVTTDecl;
+ llvm::Value *CXXVTTValue;
+
+ /// OutermostConditional - Points to the outermost active
+ /// conditional control. This is used so that we know if a
+ /// temporary should be destroyed conditionally.
+ ConditionalEvaluation *OutermostConditional;
+
+
+ /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
+ /// type as well as the field number that contains the actual data.
+ llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
+ unsigned> > ByRefValueInfo;
+
+ llvm::BasicBlock *TerminateLandingPad;
+ llvm::BasicBlock *TerminateHandler;
+ llvm::BasicBlock *TrapBB;
+
+public:
+ CodeGenFunction(CodeGenModule &cgm);
+ ~CodeGenFunction();
+
+ CodeGenTypes &getTypes() const { return CGM.getTypes(); }
+ ASTContext &getContext() const { return CGM.getContext(); }
+ CGDebugInfo *getDebugInfo() {
+ if (DisableDebugInfo)
+ return NULL;
+ return DebugInfo;
+ }
+ void disableDebugInfo() { DisableDebugInfo = true; }
+ void enableDebugInfo() { DisableDebugInfo = false; }
+
+ bool shouldUseFusedARCCalls() {
+ return CGM.getCodeGenOpts().OptimizationLevel == 0;
+ }
+
+ const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
+
+ /// Returns a pointer to the function's exception object and selector slot,
+ /// which is assigned in every landing pad.
+ llvm::Value *getExceptionSlot();
+ llvm::Value *getEHSelectorSlot();
+
+ /// Returns the contents of the function's exception object and selector
+ /// slots.
+ llvm::Value *getExceptionFromSlot();
+ llvm::Value *getSelectorFromSlot();
+
+ llvm::Value *getNormalCleanupDestSlot();
+
+ llvm::BasicBlock *getUnreachableBlock() {
+ if (!UnreachableBlock) {
+ UnreachableBlock = createBasicBlock("unreachable");
+ new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
+ }
+ return UnreachableBlock;
+ }
+
+ llvm::BasicBlock *getInvokeDest() {
+ if (!EHStack.requiresLandingPad()) return 0;
+ return getInvokeDestImpl();
+ }
+
+ llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
+
+ //===--------------------------------------------------------------------===//
+ // Cleanups
+ //===--------------------------------------------------------------------===//
+
+ typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
+
+ void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
+ llvm::Value *arrayEndPointer,
+ QualType elementType,
+ Destroyer *destroyer);
+ void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
+ llvm::Value *arrayEnd,
+ QualType elementType,
+ Destroyer *destroyer);
+
+ void pushDestroy(QualType::DestructionKind dtorKind,
+ llvm::Value *addr, QualType type);
+ void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
+ Destroyer *destroyer, bool useEHCleanupForArray);
+ void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
+ bool useEHCleanupForArray);
+ llvm::Function *generateDestroyHelper(llvm::Constant *addr,
+ QualType type,
+ Destroyer *destroyer,
+ bool useEHCleanupForArray);
+ void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
+ QualType type, Destroyer *destroyer,
+ bool checkZeroLength, bool useEHCleanup);
+
+ Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
+
+ /// Determines whether an EH cleanup is required to destroy a type
+ /// with the given destruction kind.
+ bool needsEHCleanup(QualType::DestructionKind kind) {
+ switch (kind) {
+ case QualType::DK_none:
+ return false;
+ case QualType::DK_cxx_destructor:
+ case QualType::DK_objc_weak_lifetime:
+ return getLangOpts().Exceptions;
+ case QualType::DK_objc_strong_lifetime:
+ return getLangOpts().Exceptions &&
+ CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
+ }
+ llvm_unreachable("bad destruction kind");
+ }
+
+ CleanupKind getCleanupKind(QualType::DestructionKind kind) {
+ return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Objective-C
+ //===--------------------------------------------------------------------===//
+
+ void GenerateObjCMethod(const ObjCMethodDecl *OMD);
+
+ void StartObjCMethod(const ObjCMethodDecl *MD,
+ const ObjCContainerDecl *CD,
+ SourceLocation StartLoc);
+
+ /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
+ void GenerateObjCGetter(ObjCImplementationDecl *IMP,
+ const ObjCPropertyImplDecl *PID);
+ void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
+ const ObjCPropertyImplDecl *propImpl,
+ llvm::Constant *AtomicHelperFn);
+
+ void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
+ ObjCMethodDecl *MD, bool ctor);
+
+ /// GenerateObjCSetter - Synthesize an Objective-C property setter function
+ /// for the given property.
+ void GenerateObjCSetter(ObjCImplementationDecl *IMP,
+ const ObjCPropertyImplDecl *PID);
+ void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
+ const ObjCPropertyImplDecl *propImpl,
+ llvm::Constant *AtomicHelperFn);
+ bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
+ bool IvarTypeWithAggrGCObjects(QualType Ty);
+
+ //===--------------------------------------------------------------------===//
+ // Block Bits
+ //===--------------------------------------------------------------------===//
+
+ llvm::Value *EmitBlockLiteral(const BlockExpr *);
+ llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
+ static void destroyBlockInfos(CGBlockInfo *info);
+ llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
+ const CGBlockInfo &Info,
+ llvm::StructType *,
+ llvm::Constant *BlockVarLayout);
+
+ llvm::Function *GenerateBlockFunction(GlobalDecl GD,
+ const CGBlockInfo &Info,
+ const Decl *OuterFuncDecl,
+ const DeclMapTy &ldm,
+ bool IsLambdaConversionToBlock);
+
+ llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
+ llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
+ llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
+ const ObjCPropertyImplDecl *PID);
+ llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
+ const ObjCPropertyImplDecl *PID);
+ llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
+
+ void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
+
+ class AutoVarEmission;
+
+ void emitByrefStructureInit(const AutoVarEmission &emission);
+ void enterByrefCleanup(const AutoVarEmission &emission);
+
+ llvm::Value *LoadBlockStruct() {
+ assert(BlockPointer && "no block pointer set!");
+ return BlockPointer;
+ }
+
+ void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
+ void AllocateBlockDecl(const DeclRefExpr *E);
+ llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
+ llvm::Type *BuildByRefType(const VarDecl *var);
+
+ void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo);
+ void StartFunction(GlobalDecl GD, QualType RetTy,
+ llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo,
+ const FunctionArgList &Args,
+ SourceLocation StartLoc);
+
+ void EmitConstructorBody(FunctionArgList &Args);
+ void EmitDestructorBody(FunctionArgList &Args);
+ void EmitFunctionBody(FunctionArgList &Args);
+
+ void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
+ CallArgList &CallArgs);
+ void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
+ void EmitLambdaBlockInvokeBody();
+ void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
+ void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
+
+ /// EmitReturnBlock - Emit the unified return block, trying to avoid its
+ /// emission when possible.
+ void EmitReturnBlock();
+
+ /// FinishFunction - Complete IR generation of the current function. It is
+ /// legal to call this function even if there is no current insertion point.
+ void FinishFunction(SourceLocation EndLoc=SourceLocation());
+
+ /// GenerateThunk - Generate a thunk for the given method.
+ void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
+ GlobalDecl GD, const ThunkInfo &Thunk);
+
+ void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
+ GlobalDecl GD, const ThunkInfo &Thunk);
+
+ void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
+ FunctionArgList &Args);
+
+ void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
+ ArrayRef<VarDecl *> ArrayIndexes);
+
+ /// InitializeVTablePointer - Initialize the vtable pointer of the given
+ /// subobject.
+ ///
+ void InitializeVTablePointer(BaseSubobject Base,
+ const CXXRecordDecl *NearestVBase,
+ CharUnits OffsetFromNearestVBase,
+ llvm::Constant *VTable,
+ const CXXRecordDecl *VTableClass);
+
+ typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
+ void InitializeVTablePointers(BaseSubobject Base,
+ const CXXRecordDecl *NearestVBase,
+ CharUnits OffsetFromNearestVBase,
+ bool BaseIsNonVirtualPrimaryBase,
+ llvm::Constant *VTable,
+ const CXXRecordDecl *VTableClass,
+ VisitedVirtualBasesSetTy& VBases);
+
+ void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
+
+ /// GetVTablePtr - Return the Value of the vtable pointer member pointed
+ /// to by This.
+ llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
+
+ /// EnterDtorCleanups - Enter the cleanups necessary to complete the
+ /// given phase of destruction for a destructor. The end result
+ /// should call destructors on members and base classes in reverse
+ /// order of their construction.
+ void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
+
+ /// ShouldInstrumentFunction - Return true if the current function should be
+ /// instrumented with __cyg_profile_func_* calls
+ bool ShouldInstrumentFunction();
+
+ /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
+ /// instrumentation function with the current function and the call site, if
+ /// function instrumentation is enabled.
+ void EmitFunctionInstrumentation(const char *Fn);
+
+ /// EmitMCountInstrumentation - Emit call to .mcount.
+ void EmitMCountInstrumentation();
+
+ /// EmitFunctionProlog - Emit the target specific LLVM code to load the
+ /// arguments for the given function. This is also responsible for naming the
+ /// LLVM function arguments.
+ void EmitFunctionProlog(const CGFunctionInfo &FI,
+ llvm::Function *Fn,
+ const FunctionArgList &Args);
+
+ /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
+ /// given temporary.
+ void EmitFunctionEpilog(const CGFunctionInfo &FI);
+
+ /// EmitStartEHSpec - Emit the start of the exception spec.
+ void EmitStartEHSpec(const Decl *D);
+
+ /// EmitEndEHSpec - Emit the end of the exception spec.
+ void EmitEndEHSpec(const Decl *D);
+
+ /// getTerminateLandingPad - Return a landing pad that just calls terminate.
+ llvm::BasicBlock *getTerminateLandingPad();
+
+ /// getTerminateHandler - Return a handler (not a landing pad, just
+ /// a catch handler) that just calls terminate. This is used when
+ /// a terminate scope encloses a try.
+ llvm::BasicBlock *getTerminateHandler();
+
+ llvm::Type *ConvertTypeForMem(QualType T);
+ llvm::Type *ConvertType(QualType T);
+ llvm::Type *ConvertType(const TypeDecl *T) {
+ return ConvertType(getContext().getTypeDeclType(T));
+ }
+
+ /// LoadObjCSelf - Load the value of self. This function is only valid while
+ /// generating code for an Objective-C method.
+ llvm::Value *LoadObjCSelf();
+
+ /// TypeOfSelfObject - Return type of object that this self represents.
+ QualType TypeOfSelfObject();
+
+ /// hasAggregateLLVMType - Return true if the specified AST type will map into
+ /// an aggregate LLVM type or is void.
+ static bool hasAggregateLLVMType(QualType T);
+
+ /// createBasicBlock - Create an LLVM basic block.
+ llvm::BasicBlock *createBasicBlock(StringRef name = "",
+ llvm::Function *parent = 0,
+ llvm::BasicBlock *before = 0) {
+#ifdef NDEBUG
+ return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
+#else
+ return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
+#endif
+ }
+
+ /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
+ /// label maps to.
+ JumpDest getJumpDestForLabel(const LabelDecl *S);
+
+ /// SimplifyForwardingBlocks - If the given basic block is only a branch to
+ /// another basic block, simplify it. This assumes that no other code could
+ /// potentially reference the basic block.
+ void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
+
+ /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
+ /// adding a fall-through branch from the current insert block if
+ /// necessary. It is legal to call this function even if there is no current
+ /// insertion point.
+ ///
+ /// IsFinished - If true, indicates that the caller has finished emitting
+ /// branches to the given block and does not expect to emit code into it. This
+ /// means the block can be ignored if it is unreachable.
+ void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
+
+ /// EmitBlockAfterUses - Emit the given block somewhere hopefully
+ /// near its uses, and leave the insertion point in it.
+ void EmitBlockAfterUses(llvm::BasicBlock *BB);
+
+ /// EmitBranch - Emit a branch to the specified basic block from the current
+ /// insert block, taking care to avoid creation of branches from dummy
+ /// blocks. It is legal to call this function even if there is no current
+ /// insertion point.
+ ///
+ /// This function clears the current insertion point. The caller should follow
+ /// calls to this function with calls to Emit*Block prior to generation new
+ /// code.
+ void EmitBranch(llvm::BasicBlock *Block);
+
+ /// HaveInsertPoint - True if an insertion point is defined. If not, this
+ /// indicates that the current code being emitted is unreachable.
+ bool HaveInsertPoint() const {
+ return Builder.GetInsertBlock() != 0;
+ }
+
+ /// EnsureInsertPoint - Ensure that an insertion point is defined so that
+ /// emitted IR has a place to go. Note that by definition, if this function
+ /// creates a block then that block is unreachable; callers may do better to
+ /// detect when no insertion point is defined and simply skip IR generation.
+ void EnsureInsertPoint() {
+ if (!HaveInsertPoint())
+ EmitBlock(createBasicBlock());
+ }
+
+ /// ErrorUnsupported - Print out an error that codegen doesn't support the
+ /// specified stmt yet.
+ void ErrorUnsupported(const Stmt *S, const char *Type,
+ bool OmitOnError=false);
+
+ //===--------------------------------------------------------------------===//
+ // Helpers
+ //===--------------------------------------------------------------------===//
+
+ LValue MakeAddrLValue(llvm::Value *V, QualType T,
+ CharUnits Alignment = CharUnits()) {
+ return LValue::MakeAddr(V, T, Alignment, getContext(),
+ CGM.getTBAAInfo(T));
+ }
+ LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
+ CharUnits Alignment;
+ if (!T->isIncompleteType())
+ Alignment = getContext().getTypeAlignInChars(T);
+ return LValue::MakeAddr(V, T, Alignment, getContext(),
+ CGM.getTBAAInfo(T));
+ }
+
+ /// CreateTempAlloca - This creates a alloca and inserts it into the entry
+ /// block. The caller is responsible for setting an appropriate alignment on
+ /// the alloca.
+ llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
+ const Twine &Name = "tmp");
+
+ /// InitTempAlloca - Provide an initial value for the given alloca.
+ void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
+
+ /// CreateIRTemp - Create a temporary IR object of the given type, with
+ /// appropriate alignment. This routine should only be used when an temporary
+ /// value needs to be stored into an alloca (for example, to avoid explicit
+ /// PHI construction), but the type is the IR type, not the type appropriate
+ /// for storing in memory.
+ llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
+
+ /// CreateMemTemp - Create a temporary memory object of the given type, with
+ /// appropriate alignment.
+ llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
+
+ /// CreateAggTemp - Create a temporary memory object for the given
+ /// aggregate type.
+ AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
+ CharUnits Alignment = getContext().getTypeAlignInChars(T);
+ return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
+ T.getQualifiers(),
+ AggValueSlot::IsNotDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased);
+ }
+
+ /// Emit a cast to void* in the appropriate address space.
+ llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
+
+ /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
+ /// expression and compare the result against zero, returning an Int1Ty value.
+ llvm::Value *EvaluateExprAsBool(const Expr *E);
+
+ /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
+ void EmitIgnoredExpr(const Expr *E);
+
+ /// EmitAnyExpr - Emit code to compute the specified expression which can have
+ /// any type. The result is returned as an RValue struct. If this is an
+ /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
+ /// the result should be returned.
+ ///
+ /// \param IgnoreResult - True if the resulting value isn't used.
+ RValue EmitAnyExpr(const Expr *E,
+ AggValueSlot AggSlot = AggValueSlot::ignored(),
+ bool IgnoreResult = false);
+
+ // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
+ // or the value of the expression, depending on how va_list is defined.
+ llvm::Value *EmitVAListRef(const Expr *E);
+
+ /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
+ /// always be accessible even if no aggregate location is provided.
+ RValue EmitAnyExprToTemp(const Expr *E);
+
+ /// EmitAnyExprToMem - Emits the code necessary to evaluate an
+ /// arbitrary expression into the given memory location.
+ void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
+ Qualifiers Quals, bool IsInitializer);
+
+ /// EmitExprAsInit - Emits the code necessary to initialize a
+ /// location in memory with the given initializer.
+ void EmitExprAsInit(const Expr *init, const ValueDecl *D,
+ LValue lvalue, bool capturedByInit);
+
+ /// EmitAggregateCopy - Emit an aggrate copy.
+ ///
+ /// \param isVolatile - True iff either the source or the destination is
+ /// volatile.
+ void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
+ QualType EltTy, bool isVolatile=false,
+ unsigned Alignment = 0);
+
+ /// StartBlock - Start new block named N. If insert block is a dummy block
+ /// then reuse it.
+ void StartBlock(const char *N);
+
+ /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
+ llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
+ return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
+ }
+
+ /// GetAddrOfLocalVar - Return the address of a local variable.
+ llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
+ llvm::Value *Res = LocalDeclMap[VD];
+ assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
+ return Res;
+ }
+
+ /// getOpaqueLValueMapping - Given an opaque value expression (which
+ /// must be mapped to an l-value), return its mapping.
+ const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
+ assert(OpaqueValueMapping::shouldBindAsLValue(e));
+
+ llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
+ it = OpaqueLValues.find(e);
+ assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
+ return it->second;
+ }
+
+ /// getOpaqueRValueMapping - Given an opaque value expression (which
+ /// must be mapped to an r-value), return its mapping.
+ const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
+ assert(!OpaqueValueMapping::shouldBindAsLValue(e));
+
+ llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
+ it = OpaqueRValues.find(e);
+ assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
+ return it->second;
+ }
+
+ /// getAccessedFieldNo - Given an encoded value and a result number, return
+ /// the input field number being accessed.
+ static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
+
+ llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
+ llvm::BasicBlock *GetIndirectGotoBlock();
+
+ /// EmitNullInitialization - Generate code to set a value of the given type to
+ /// null, If the type contains data member pointers, they will be initialized
+ /// to -1 in accordance with the Itanium C++ ABI.
+ void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
+
+ // EmitVAArg - Generate code to get an argument from the passed in pointer
+ // and update it accordingly. The return value is a pointer to the argument.
+ // FIXME: We should be able to get rid of this method and use the va_arg
+ // instruction in LLVM instead once it works well enough.
+ llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
+
+ /// emitArrayLength - Compute the length of an array, even if it's a
+ /// VLA, and drill down to the base element type.
+ llvm::Value *emitArrayLength(const ArrayType *arrayType,
+ QualType &baseType,
+ llvm::Value *&addr);
+
+ /// EmitVLASize - Capture all the sizes for the VLA expressions in
+ /// the given variably-modified type and store them in the VLASizeMap.
+ ///
+ /// This function can be called with a null (unreachable) insert point.
+ void EmitVariablyModifiedType(QualType Ty);
+
+ /// getVLASize - Returns an LLVM value that corresponds to the size,
+ /// in non-variably-sized elements, of a variable length array type,
+ /// plus that largest non-variably-sized element type. Assumes that
+ /// the type has already been emitted with EmitVariablyModifiedType.
+ std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
+ std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
+
+ /// LoadCXXThis - Load the value of 'this'. This function is only valid while
+ /// generating code for an C++ member function.
+ llvm::Value *LoadCXXThis() {
+ assert(CXXThisValue && "no 'this' value for this function");
+ return CXXThisValue;
+ }
+
+ /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
+ /// virtual bases.
+ llvm::Value *LoadCXXVTT() {
+ assert(CXXVTTValue && "no VTT value for this function");
+ return CXXVTTValue;
+ }
+
+ /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
+ /// complete class to the given direct base.
+ llvm::Value *
+ GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
+ const CXXRecordDecl *Derived,
+ const CXXRecordDecl *Base,
+ bool BaseIsVirtual);
+
+ /// GetAddressOfBaseClass - This function will add the necessary delta to the
+ /// load of 'this' and returns address of the base class.
+ llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
+ const CXXRecordDecl *Derived,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd,
+ bool NullCheckValue);
+
+ llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
+ const CXXRecordDecl *Derived,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd,
+ bool NullCheckValue);
+
+ llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
+ const CXXRecordDecl *ClassDecl,
+ const CXXRecordDecl *BaseClassDecl);
+
+ void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
+ CXXCtorType CtorType,
+ const FunctionArgList &Args);
+ // It's important not to confuse this and the previous function. Delegating
+ // constructors are the C++0x feature. The constructor delegate optimization
+ // is used to reduce duplication in the base and complete consturctors where
+ // they are substantially the same.
+ void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
+ const FunctionArgList &Args);
+ void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
+ bool ForVirtualBase, llvm::Value *This,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd);
+
+ void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
+ llvm::Value *This, llvm::Value *Src,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd);
+
+ void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
+ const ConstantArrayType *ArrayTy,
+ llvm::Value *ArrayPtr,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd,
+ bool ZeroInitialization = false);
+
+ void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
+ llvm::Value *NumElements,
+ llvm::Value *ArrayPtr,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd,
+ bool ZeroInitialization = false);
+
+ static Destroyer destroyCXXObject;
+
+ void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
+ bool ForVirtualBase, llvm::Value *This);
+
+ void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
+ llvm::Value *NewPtr, llvm::Value *NumElements);
+
+ void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
+ llvm::Value *Ptr);
+
+ llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
+ void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
+
+ void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
+ QualType DeleteTy);
+
+ llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
+ llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
+
+ void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
+ void EmitStdInitializerListCleanup(llvm::Value *loc,
+ const InitListExpr *init);
+
+ void EmitCheck(llvm::Value *, unsigned Size);
+
+ llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre);
+ ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre);
+ //===--------------------------------------------------------------------===//
+ // Declaration Emission
+ //===--------------------------------------------------------------------===//
+
+ /// EmitDecl - Emit a declaration.
+ ///
+ /// This function can be called with a null (unreachable) insert point.
+ void EmitDecl(const Decl &D);
+
+ /// EmitVarDecl - Emit a local variable declaration.
+ ///
+ /// This function can be called with a null (unreachable) insert point.
+ void EmitVarDecl(const VarDecl &D);
+
+ void EmitScalarInit(const Expr *init, const ValueDecl *D,
+ LValue lvalue, bool capturedByInit);
+ void EmitScalarInit(llvm::Value *init, LValue lvalue);
+
+ typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
+ llvm::Value *Address);
+
+ /// EmitAutoVarDecl - Emit an auto variable declaration.
+ ///
+ /// This function can be called with a null (unreachable) insert point.
+ void EmitAutoVarDecl(const VarDecl &D);
+
+ class AutoVarEmission {
+ friend class CodeGenFunction;
+
+ const VarDecl *Variable;
+
+ /// The alignment of the variable.
+ CharUnits Alignment;
+
+ /// The address of the alloca. Null if the variable was emitted
+ /// as a global constant.
+ llvm::Value *Address;
+
+ llvm::Value *NRVOFlag;
+
+ /// True if the variable is a __block variable.
+ bool IsByRef;
+
+ /// True if the variable is of aggregate type and has a constant
+ /// initializer.
+ bool IsConstantAggregate;
+
+ struct Invalid {};
+ AutoVarEmission(Invalid) : Variable(0) {}
+
+ AutoVarEmission(const VarDecl &variable)
+ : Variable(&variable), Address(0), NRVOFlag(0),
+ IsByRef(false), IsConstantAggregate(false) {}
+
+ bool wasEmittedAsGlobal() const { return Address == 0; }
+
+ public:
+ static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
+
+ /// Returns the address of the object within this declaration.
+ /// Note that this does not chase the forwarding pointer for
+ /// __block decls.
+ llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
+ if (!IsByRef) return Address;
+
+ return CGF.Builder.CreateStructGEP(Address,
+ CGF.getByRefValueLLVMField(Variable),
+ Variable->getNameAsString());
+ }
+ };
+ AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
+ void EmitAutoVarInit(const AutoVarEmission &emission);
+ void EmitAutoVarCleanups(const AutoVarEmission &emission);
+ void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
+ QualType::DestructionKind dtorKind);
+
+ void EmitStaticVarDecl(const VarDecl &D,
+ llvm::GlobalValue::LinkageTypes Linkage);
+
+ /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
+ void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
+
+ /// protectFromPeepholes - Protect a value that we're intending to
+ /// store to the side, but which will probably be used later, from
+ /// aggressive peepholing optimizations that might delete it.
+ ///
+ /// Pass the result to unprotectFromPeepholes to declare that
+ /// protection is no longer required.
+ ///
+ /// There's no particular reason why this shouldn't apply to
+ /// l-values, it's just that no existing peepholes work on pointers.
+ PeepholeProtection protectFromPeepholes(RValue rvalue);
+ void unprotectFromPeepholes(PeepholeProtection protection);
+
+ //===--------------------------------------------------------------------===//
+ // Statement Emission
+ //===--------------------------------------------------------------------===//
+
+ /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
+ void EmitStopPoint(const Stmt *S);
+
+ /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
+ /// this function even if there is no current insertion point.
+ ///
+ /// This function may clear the current insertion point; callers should use
+ /// EnsureInsertPoint if they wish to subsequently generate code without first
+ /// calling EmitBlock, EmitBranch, or EmitStmt.
+ void EmitStmt(const Stmt *S);
+
+ /// EmitSimpleStmt - Try to emit a "simple" statement which does not
+ /// necessarily require an insertion point or debug information; typically
+ /// because the statement amounts to a jump or a container of other
+ /// statements.
+ ///
+ /// \return True if the statement was handled.
+ bool EmitSimpleStmt(const Stmt *S);
+
+ RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
+ AggValueSlot AVS = AggValueSlot::ignored());
+
+ /// EmitLabel - Emit the block for the given label. It is legal to call this
+ /// function even if there is no current insertion point.
+ void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
+
+ void EmitLabelStmt(const LabelStmt &S);
+ void EmitAttributedStmt(const AttributedStmt &S);
+ void EmitGotoStmt(const GotoStmt &S);
+ void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
+ void EmitIfStmt(const IfStmt &S);
+ void EmitWhileStmt(const WhileStmt &S);
+ void EmitDoStmt(const DoStmt &S);
+ void EmitForStmt(const ForStmt &S);
+ void EmitReturnStmt(const ReturnStmt &S);
+ void EmitDeclStmt(const DeclStmt &S);
+ void EmitBreakStmt(const BreakStmt &S);
+ void EmitContinueStmt(const ContinueStmt &S);
+ void EmitSwitchStmt(const SwitchStmt &S);
+ void EmitDefaultStmt(const DefaultStmt &S);
+ void EmitCaseStmt(const CaseStmt &S);
+ void EmitCaseStmtRange(const CaseStmt &S);
+ void EmitAsmStmt(const AsmStmt &S);
+
+ void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
+ void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
+ void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
+ void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
+ void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
+
+ llvm::Constant *getUnwindResumeFn();
+ llvm::Constant *getUnwindResumeOrRethrowFn();
+ void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
+ void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
+
+ void EmitCXXTryStmt(const CXXTryStmt &S);
+ void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
+
+ //===--------------------------------------------------------------------===//
+ // LValue Expression Emission
+ //===--------------------------------------------------------------------===//
+
+ /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
+ RValue GetUndefRValue(QualType Ty);
+
+ /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
+ /// and issue an ErrorUnsupported style diagnostic (using the
+ /// provided Name).
+ RValue EmitUnsupportedRValue(const Expr *E,
+ const char *Name);
+
+ /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
+ /// an ErrorUnsupported style diagnostic (using the provided Name).
+ LValue EmitUnsupportedLValue(const Expr *E,
+ const char *Name);
+
+ /// EmitLValue - Emit code to compute a designator that specifies the location
+ /// of the expression.
+ ///
+ /// This can return one of two things: a simple address or a bitfield
+ /// reference. In either case, the LLVM Value* in the LValue structure is
+ /// guaranteed to be an LLVM pointer type.
+ ///
+ /// If this returns a bitfield reference, nothing about the pointee type of
+ /// the LLVM value is known: For example, it may not be a pointer to an
+ /// integer.
+ ///
+ /// If this returns a normal address, and if the lvalue's C type is fixed
+ /// size, this method guarantees that the returned pointer type will point to
+ /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
+ /// variable length type, this is not possible.
+ ///
+ LValue EmitLValue(const Expr *E);
+
+ /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
+ /// checking code to guard against undefined behavior. This is only
+ /// suitable when we know that the address will be used to access the
+ /// object.
+ LValue EmitCheckedLValue(const Expr *E);
+
+ /// EmitToMemory - Change a scalar value from its value
+ /// representation to its in-memory representation.
+ llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
+
+ /// EmitFromMemory - Change a scalar value from its memory
+ /// representation to its value representation.
+ llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
+
+ /// EmitLoadOfScalar - Load a scalar value from an address, taking
+ /// care to appropriately convert from the memory representation to
+ /// the LLVM value representation.
+ llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
+ unsigned Alignment, QualType Ty,
+ llvm::MDNode *TBAAInfo = 0);
+
+ /// EmitLoadOfScalar - Load a scalar value from an address, taking
+ /// care to appropriately convert from the memory representation to
+ /// the LLVM value representation. The l-value must be a simple
+ /// l-value.
+ llvm::Value *EmitLoadOfScalar(LValue lvalue);
+
+ /// EmitStoreOfScalar - Store a scalar value to an address, taking
+ /// care to appropriately convert from the memory representation to
+ /// the LLVM value representation.
+ void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
+ bool Volatile, unsigned Alignment, QualType Ty,
+ llvm::MDNode *TBAAInfo = 0, bool isInit=false);
+
+ /// EmitStoreOfScalar - Store a scalar value to an address, taking
+ /// care to appropriately convert from the memory representation to
+ /// the LLVM value representation. The l-value must be a simple
+ /// l-value. The isInit flag indicates whether this is an initialization.
+ /// If so, atomic qualifiers are ignored and the store is always non-atomic.
+ void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
+
+ /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
+ /// this method emits the address of the lvalue, then loads the result as an
+ /// rvalue, returning the rvalue.
+ RValue EmitLoadOfLValue(LValue V);
+ RValue EmitLoadOfExtVectorElementLValue(LValue V);
+ RValue EmitLoadOfBitfieldLValue(LValue LV);
+
+ /// EmitStoreThroughLValue - Store the specified rvalue into the specified
+ /// lvalue, where both are guaranteed to the have the same type, and that type
+ /// is 'Ty'.
+ void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
+ void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
+
+ /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
+ /// EmitStoreThroughLValue.
+ ///
+ /// \param Result [out] - If non-null, this will be set to a Value* for the
+ /// bit-field contents after the store, appropriate for use as the result of
+ /// an assignment to the bit-field.
+ void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
+ llvm::Value **Result=0);
+
+ /// Emit an l-value for an assignment (simple or compound) of complex type.
+ LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
+ LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
+
+ // Note: only available for agg return types
+ LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
+ LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
+ // Note: only available for agg return types
+ LValue EmitCallExprLValue(const CallExpr *E);
+ // Note: only available for agg return types
+ LValue EmitVAArgExprLValue(const VAArgExpr *E);
+ LValue EmitDeclRefLValue(const DeclRefExpr *E);
+ LValue EmitStringLiteralLValue(const StringLiteral *E);
+ LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
+ LValue EmitPredefinedLValue(const PredefinedExpr *E);
+ LValue EmitUnaryOpLValue(const UnaryOperator *E);
+ LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
+ LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
+ LValue EmitMemberExpr(const MemberExpr *E);
+ LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
+ LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
+ LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
+ LValue EmitCastLValue(const CastExpr *E);
+ LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
+ LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
+ LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
+
+ RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
+
+ class ConstantEmission {
+ llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
+ ConstantEmission(llvm::Constant *C, bool isReference)
+ : ValueAndIsReference(C, isReference) {}
+ public:
+ ConstantEmission() {}
+ static ConstantEmission forReference(llvm::Constant *C) {
+ return ConstantEmission(C, true);
+ }
+ static ConstantEmission forValue(llvm::Constant *C) {
+ return ConstantEmission(C, false);
+ }
+
+ operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
+
+ bool isReference() const { return ValueAndIsReference.getInt(); }
+ LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
+ assert(isReference());
+ return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
+ refExpr->getType());
+ }
+
+ llvm::Constant *getValue() const {
+ assert(!isReference());
+ return ValueAndIsReference.getPointer();
+ }
+ };
+
+ ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
+
+ RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
+ AggValueSlot slot = AggValueSlot::ignored());
+ LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
+
+ llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar);
+ LValue EmitLValueForAnonRecordField(llvm::Value* Base,
+ const IndirectFieldDecl* Field,
+ unsigned CVRQualifiers);
+ LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
+
+ /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
+ /// if the Field is a reference, this will return the address of the reference
+ /// and not the address of the value stored in the reference.
+ LValue EmitLValueForFieldInitialization(LValue Base,
+ const FieldDecl* Field);
+
+ LValue EmitLValueForIvar(QualType ObjectTy,
+ llvm::Value* Base, const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers);
+
+ LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
+ unsigned CVRQualifiers);
+
+ LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
+ LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
+ LValue EmitLambdaLValue(const LambdaExpr *E);
+ LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
+
+ LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
+ LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
+ LValue EmitStmtExprLValue(const StmtExpr *E);
+ LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
+ LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
+ void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
+
+ //===--------------------------------------------------------------------===//
+ // Scalar Expression Emission
+ //===--------------------------------------------------------------------===//
+
+ /// EmitCall - Generate a call of the given function, expecting the given
+ /// result type, and using the given argument list which specifies both the
+ /// LLVM arguments and the types they were derived from.
+ ///
+ /// \param TargetDecl - If given, the decl of the function in a direct call;
+ /// used to set attributes on the call (noreturn, etc.).
+ RValue EmitCall(const CGFunctionInfo &FnInfo,
+ llvm::Value *Callee,
+ ReturnValueSlot ReturnValue,
+ const CallArgList &Args,
+ const Decl *TargetDecl = 0,
+ llvm::Instruction **callOrInvoke = 0);
+
+ RValue EmitCall(QualType FnType, llvm::Value *Callee,
+ ReturnValueSlot ReturnValue,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd,
+ const Decl *TargetDecl = 0);
+ RValue EmitCallExpr(const CallExpr *E,
+ ReturnValueSlot ReturnValue = ReturnValueSlot());
+
+ llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
+ ArrayRef<llvm::Value *> Args,
+ const Twine &Name = "");
+ llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
+ const Twine &Name = "");
+
+ llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
+ llvm::Type *Ty);
+ llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
+ llvm::Value *This, llvm::Type *Ty);
+ llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
+ NestedNameSpecifier *Qual,
+ llvm::Type *Ty);
+
+ llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
+ CXXDtorType Type,
+ const CXXRecordDecl *RD);
+
+ RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
+ llvm::Value *Callee,
+ ReturnValueSlot ReturnValue,
+ llvm::Value *This,
+ llvm::Value *VTT,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd);
+ RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
+ ReturnValueSlot ReturnValue);
+ RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
+ ReturnValueSlot ReturnValue);
+
+ llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
+ const CXXMethodDecl *MD,
+ llvm::Value *This);
+ RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
+ const CXXMethodDecl *MD,
+ ReturnValueSlot ReturnValue);
+
+ RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
+ ReturnValueSlot ReturnValue);
+
+
+ RValue EmitBuiltinExpr(const FunctionDecl *FD,
+ unsigned BuiltinID, const CallExpr *E);
+
+ RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
+
+ /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
+ /// is unhandled by the current target.
+ llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
+
+ llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
+ llvm::Value *EmitNeonCall(llvm::Function *F,
+ SmallVectorImpl<llvm::Value*> &O,
+ const char *name,
+ unsigned shift = 0, bool rightshift = false);
+ llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
+ llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
+ bool negateForRightShift);
+
+ llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
+ llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
+ llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
+ llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
+
+ llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
+ llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
+ llvm::Value *EmitObjCNumericLiteral(const ObjCNumericLiteral *E);
+ llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
+ llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
+ llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
+ const ObjCMethodDecl *MethodWithObjects);
+ llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
+ RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
+ ReturnValueSlot Return = ReturnValueSlot());
+
+ /// Retrieves the default cleanup kind for an ARC cleanup.
+ /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
+ CleanupKind getARCCleanupKind() {
+ return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
+ ? NormalAndEHCleanup : NormalCleanup;
+ }
+
+ // ARC primitives.
+ void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
+ void EmitARCDestroyWeak(llvm::Value *addr);
+ llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
+ llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
+ llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
+ bool ignored);
+ void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
+ void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
+ llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
+ llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
+ llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
+ bool ignored);
+ llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
+ bool ignored);
+ llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
+ llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
+ llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
+ void EmitARCRelease(llvm::Value *value, bool precise);
+ llvm::Value *EmitARCAutorelease(llvm::Value *value);
+ llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
+ llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
+ llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
+
+ std::pair<LValue,llvm::Value*>
+ EmitARCStoreAutoreleasing(const BinaryOperator *e);
+ std::pair<LValue,llvm::Value*>
+ EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
+
+ llvm::Value *EmitObjCThrowOperand(const Expr *expr);
+
+ llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
+ llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
+ llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
+
+ llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
+ llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
+ llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
+
+ static Destroyer destroyARCStrongImprecise;
+ static Destroyer destroyARCStrongPrecise;
+ static Destroyer destroyARCWeak;
+
+ void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
+ llvm::Value *EmitObjCAutoreleasePoolPush();
+ llvm::Value *EmitObjCMRRAutoreleasePoolPush();
+ void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
+ void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
+
+ /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
+ /// expression. Will emit a temporary variable if E is not an LValue.
+ RValue EmitReferenceBindingToExpr(const Expr* E,
+ const NamedDecl *InitializedDecl);
+
+ //===--------------------------------------------------------------------===//
+ // Expression Emission
+ //===--------------------------------------------------------------------===//
+
+ // Expressions are broken into three classes: scalar, complex, aggregate.
+
+ /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
+ /// scalar type, returning the result.
+ llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
+
+ /// EmitScalarConversion - Emit a conversion from the specified type to the
+ /// specified destination type, both of which are LLVM scalar types.
+ llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
+ QualType DstTy);
+
+ /// EmitComplexToScalarConversion - Emit a conversion from the specified
+ /// complex type to the specified destination type, where the destination type
+ /// is an LLVM scalar type.
+ llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
+ QualType DstTy);
+
+
+ /// EmitAggExpr - Emit the computation of the specified expression
+ /// of aggregate type. The result is computed into the given slot,
+ /// which may be null to indicate that the value is not needed.
+ void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
+
+ /// EmitAggExprToLValue - Emit the computation of the specified expression of
+ /// aggregate type into a temporary LValue.
+ LValue EmitAggExprToLValue(const Expr *E);
+
+ /// EmitGCMemmoveCollectable - Emit special API for structs with object
+ /// pointers.
+ void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
+ QualType Ty);
+
+ /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
+ /// make sure it survives garbage collection until this point.
+ void EmitExtendGCLifetime(llvm::Value *object);
+
+ /// EmitComplexExpr - Emit the computation of the specified expression of
+ /// complex type, returning the result.
+ ComplexPairTy EmitComplexExpr(const Expr *E,
+ bool IgnoreReal = false,
+ bool IgnoreImag = false);
+
+ /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
+ /// of complex type, storing into the specified Value*.
+ void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
+ bool DestIsVolatile);
+
+ /// StoreComplexToAddr - Store a complex number into the specified address.
+ void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
+ bool DestIsVolatile);
+ /// LoadComplexFromAddr - Load a complex number from the specified address.
+ ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
+
+ /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
+ /// a static local variable.
+ llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
+ const char *Separator,
+ llvm::GlobalValue::LinkageTypes Linkage);
+
+ /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
+ /// global variable that has already been created for it. If the initializer
+ /// has a different type than GV does, this may free GV and return a different
+ /// one. Otherwise it just returns GV.
+ llvm::GlobalVariable *
+ AddInitializerToStaticVarDecl(const VarDecl &D,
+ llvm::GlobalVariable *GV);
+
+
+ /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
+ /// variable with global storage.
+ void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
+ bool PerformInit);
+
+ /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
+ /// with the C++ runtime so that its destructor will be called at exit.
+ void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
+ llvm::Constant *DeclPtr);
+
+ /// Emit code in this function to perform a guarded variable
+ /// initialization. Guarded initializations are used when it's not
+ /// possible to prove that an initialization will be done exactly
+ /// once, e.g. with a static local variable or a static data member
+ /// of a class template.
+ void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
+ bool PerformInit);
+
+ /// GenerateCXXGlobalInitFunc - Generates code for initializing global
+ /// variables.
+ void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
+ llvm::Constant **Decls,
+ unsigned NumDecls);
+
+ /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
+ /// variables.
+ void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
+ const std::vector<std::pair<llvm::WeakVH,
+ llvm::Constant*> > &DtorsAndObjects);
+
+ void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
+ const VarDecl *D,
+ llvm::GlobalVariable *Addr,
+ bool PerformInit);
+
+ void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
+
+ void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
+ const Expr *Exp);
+
+ void enterFullExpression(const ExprWithCleanups *E) {
+ if (E->getNumObjects() == 0) return;
+ enterNonTrivialFullExpression(E);
+ }
+ void enterNonTrivialFullExpression(const ExprWithCleanups *E);
+
+ void EmitCXXThrowExpr(const CXXThrowExpr *E);
+
+ void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
+
+ RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
+
+ //===--------------------------------------------------------------------===//
+ // Annotations Emission
+ //===--------------------------------------------------------------------===//
+
+ /// Emit an annotation call (intrinsic or builtin).
+ llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
+ llvm::Value *AnnotatedVal,
+ llvm::StringRef AnnotationStr,
+ SourceLocation Location);
+
+ /// Emit local annotations for the local variable V, declared by D.
+ void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
+
+ /// Emit field annotations for the given field & value. Returns the
+ /// annotation result.
+ llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
+
+ //===--------------------------------------------------------------------===//
+ // Internal Helpers
+ //===--------------------------------------------------------------------===//
+
+ /// ContainsLabel - Return true if the statement contains a label in it. If
+ /// this statement is not executed normally, it not containing a label means
+ /// that we can just remove the code.
+ static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
+
+ /// containsBreak - Return true if the statement contains a break out of it.
+ /// If the statement (recursively) contains a switch or loop with a break
+ /// inside of it, this is fine.
+ static bool containsBreak(const Stmt *S);
+
+ /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
+ /// to a constant, or if it does but contains a label, return false. If it
+ /// constant folds return true and set the boolean result in Result.
+ bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
+
+ /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
+ /// to a constant, or if it does but contains a label, return false. If it
+ /// constant folds return true and set the folded value.
+ bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
+
+ /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
+ /// if statement) to the specified blocks. Based on the condition, this might
+ /// try to simplify the codegen of the conditional based on the branch.
+ void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
+ llvm::BasicBlock *FalseBlock);
+
+ /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll
+ /// generate a branch around the created basic block as necessary.
+ llvm::BasicBlock *getTrapBB();
+
+ /// EmitCallArg - Emit a single call argument.
+ void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
+
+ /// EmitDelegateCallArg - We are performing a delegate call; that
+ /// is, the current function is delegating to another one. Produce
+ /// a r-value suitable for passing the given parameter.
+ void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
+
+ /// SetFPAccuracy - Set the minimum required accuracy of the given floating
+ /// point operation, expressed as the maximum relative error in ulp.
+ void SetFPAccuracy(llvm::Value *Val, float Accuracy);
+
+private:
+ llvm::MDNode *getRangeForLoadFromType(QualType Ty);
+ void EmitReturnOfRValue(RValue RV, QualType Ty);
+
+ /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
+ /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
+ ///
+ /// \param AI - The first function argument of the expansion.
+ /// \return The argument following the last expanded function
+ /// argument.
+ llvm::Function::arg_iterator
+ ExpandTypeFromArgs(QualType Ty, LValue Dst,
+ llvm::Function::arg_iterator AI);
+
+ /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
+ /// Ty, into individual arguments on the provided vector \arg Args. See
+ /// ABIArgInfo::Expand.
+ void ExpandTypeToArgs(QualType Ty, RValue Src,
+ SmallVector<llvm::Value*, 16> &Args,
+ llvm::FunctionType *IRFuncTy);
+
+ llvm::Value* EmitAsmInput(const AsmStmt &S,
+ const TargetInfo::ConstraintInfo &Info,
+ const Expr *InputExpr, std::string &ConstraintStr);
+
+ llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
+ const TargetInfo::ConstraintInfo &Info,
+ LValue InputValue, QualType InputType,
+ std::string &ConstraintStr);
+
+ /// EmitCallArgs - Emit call arguments for a function.
+ /// The CallArgTypeInfo parameter is used for iterating over the known
+ /// argument types of the function being called.
+ template<typename T>
+ void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd) {
+ CallExpr::const_arg_iterator Arg = ArgBeg;
+
+ // First, use the argument types that the type info knows about
+ if (CallArgTypeInfo) {
+ for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
+ E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
+ assert(Arg != ArgEnd && "Running over edge of argument list!");
+ QualType ArgType = *I;
+#ifndef NDEBUG
+ QualType ActualArgType = Arg->getType();
+ if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
+ QualType ActualBaseType =
+ ActualArgType->getAs<PointerType>()->getPointeeType();
+ QualType ArgBaseType =
+ ArgType->getAs<PointerType>()->getPointeeType();
+ if (ArgBaseType->isVariableArrayType()) {
+ if (const VariableArrayType *VAT =
+ getContext().getAsVariableArrayType(ActualBaseType)) {
+ if (!VAT->getSizeExpr())
+ ActualArgType = ArgType;
+ }
+ }
+ }
+ assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
+ getTypePtr() ==
+ getContext().getCanonicalType(ActualArgType).getTypePtr() &&
+ "type mismatch in call argument!");
+#endif
+ EmitCallArg(Args, *Arg, ArgType);
+ }
+
+ // Either we've emitted all the call args, or we have a call to a
+ // variadic function.
+ assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
+ "Extra arguments in non-variadic function!");
+
+ }
+
+ // If we still have any arguments, emit them using the type of the argument.
+ for (; Arg != ArgEnd; ++Arg)
+ EmitCallArg(Args, *Arg, Arg->getType());
+ }
+
+ const TargetCodeGenInfo &getTargetHooks() const {
+ return CGM.getTargetCodeGenInfo();
+ }
+
+ void EmitDeclMetadata();
+
+ CodeGenModule::ByrefHelpers *
+ buildByrefHelpers(llvm::StructType &byrefType,
+ const AutoVarEmission &emission);
+
+ void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
+
+ /// GetPointeeAlignment - Given an expression with a pointer type, find the
+ /// alignment of the type referenced by the pointer. Skip over implicit
+ /// casts.
+ unsigned GetPointeeAlignment(const Expr *Addr);
+
+ /// GetPointeeAlignmentValue - Given an expression with a pointer type, find
+ /// the alignment of the type referenced by the pointer. Skip over implicit
+ /// casts. Return the alignment as an llvm::Value.
+ llvm::Value *GetPointeeAlignmentValue(const Expr *Addr);
+};
+
+/// Helper class with most of the code for saving a value for a
+/// conditional expression cleanup.
+struct DominatingLLVMValue {
+ typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
+
+ /// Answer whether the given value needs extra work to be saved.
+ static bool needsSaving(llvm::Value *value) {
+ // If it's not an instruction, we don't need to save.
+ if (!isa<llvm::Instruction>(value)) return false;
+
+ // If it's an instruction in the entry block, we don't need to save.
+ llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
+ return (block != &block->getParent()->getEntryBlock());
+ }
+
+ /// Try to save the given value.
+ static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
+ if (!needsSaving(value)) return saved_type(value, false);
+
+ // Otherwise we need an alloca.
+ llvm::Value *alloca =
+ CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
+ CGF.Builder.CreateStore(value, alloca);
+
+ return saved_type(alloca, true);
+ }
+
+ static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
+ if (!value.getInt()) return value.getPointer();
+ return CGF.Builder.CreateLoad(value.getPointer());
+ }
+};
+
+/// A partial specialization of DominatingValue for llvm::Values that
+/// might be llvm::Instructions.
+template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
+ typedef T *type;
+ static type restore(CodeGenFunction &CGF, saved_type value) {
+ return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
+ }
+};
+
+/// A specialization of DominatingValue for RValue.
+template <> struct DominatingValue<RValue> {
+ typedef RValue type;
+ class saved_type {
+ enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
+ AggregateAddress, ComplexAddress };
+
+ llvm::Value *Value;
+ Kind K;
+ saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
+
+ public:
+ static bool needsSaving(RValue value);
+ static saved_type save(CodeGenFunction &CGF, RValue value);
+ RValue restore(CodeGenFunction &CGF);
+
+ // implementations in CGExprCXX.cpp
+ };
+
+ static bool needsSaving(type value) {
+ return saved_type::needsSaving(value);
+ }
+ static saved_type save(CodeGenFunction &CGF, type value) {
+ return saved_type::save(CGF, value);
+ }
+ static type restore(CodeGenFunction &CGF, saved_type value) {
+ return value.restore(CGF);
+ }
+};
+
+} // end namespace CodeGen
+} // end namespace clang
+
+#endif