diff options
author | Zancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au> | 2012-09-24 09:58:17 +1000 |
---|---|---|
committer | Zancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au> | 2012-09-24 09:58:17 +1000 |
commit | 222e2a7620e6520ffaf4fc4e69d79c18da31542e (patch) | |
tree | 7bfbc05bfa3b41c8f9d2e56d53a0bc3e310df239 /clang/lib/CodeGen/CodeGenFunction.h | |
parent | 3d206f03985b50beacae843d880bccdc91a9f424 (diff) |
Add the clang library to the repo (with some of my changes, too).
Diffstat (limited to 'clang/lib/CodeGen/CodeGenFunction.h')
-rw-r--r-- | clang/lib/CodeGen/CodeGenFunction.h | 2702 |
1 files changed, 2702 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CodeGenFunction.h b/clang/lib/CodeGen/CodeGenFunction.h new file mode 100644 index 0000000..83f1e2d --- /dev/null +++ b/clang/lib/CodeGen/CodeGenFunction.h @@ -0,0 +1,2702 @@ +//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This is the internal per-function state used for llvm translation. +// +//===----------------------------------------------------------------------===// + +#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H +#define CLANG_CODEGEN_CODEGENFUNCTION_H + +#include "clang/AST/Type.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/ExprObjC.h" +#include "clang/AST/CharUnits.h" +#include "clang/Frontend/CodeGenOptions.h" +#include "clang/Basic/ABI.h" +#include "clang/Basic/TargetInfo.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/Support/Debug.h" +#include "CodeGenModule.h" +#include "CGBuilder.h" +#include "CGDebugInfo.h" +#include "CGValue.h" + +namespace llvm { + class BasicBlock; + class LLVMContext; + class MDNode; + class Module; + class SwitchInst; + class Twine; + class Value; + class CallSite; +} + +namespace clang { + class ASTContext; + class BlockDecl; + class CXXDestructorDecl; + class CXXForRangeStmt; + class CXXTryStmt; + class Decl; + class LabelDecl; + class EnumConstantDecl; + class FunctionDecl; + class FunctionProtoType; + class LabelStmt; + class ObjCContainerDecl; + class ObjCInterfaceDecl; + class ObjCIvarDecl; + class ObjCMethodDecl; + class ObjCImplementationDecl; + class ObjCPropertyImplDecl; + class TargetInfo; + class TargetCodeGenInfo; + class VarDecl; + class ObjCForCollectionStmt; + class ObjCAtTryStmt; + class ObjCAtThrowStmt; + class ObjCAtSynchronizedStmt; + class ObjCAutoreleasePoolStmt; + +namespace CodeGen { + class CodeGenTypes; + class CGFunctionInfo; + class CGRecordLayout; + class CGBlockInfo; + class CGCXXABI; + class BlockFlags; + class BlockFieldFlags; + +/// A branch fixup. These are required when emitting a goto to a +/// label which hasn't been emitted yet. The goto is optimistically +/// emitted as a branch to the basic block for the label, and (if it +/// occurs in a scope with non-trivial cleanups) a fixup is added to +/// the innermost cleanup. When a (normal) cleanup is popped, any +/// unresolved fixups in that scope are threaded through the cleanup. +struct BranchFixup { + /// The block containing the terminator which needs to be modified + /// into a switch if this fixup is resolved into the current scope. + /// If null, LatestBranch points directly to the destination. + llvm::BasicBlock *OptimisticBranchBlock; + + /// The ultimate destination of the branch. + /// + /// This can be set to null to indicate that this fixup was + /// successfully resolved. + llvm::BasicBlock *Destination; + + /// The destination index value. + unsigned DestinationIndex; + + /// The initial branch of the fixup. + llvm::BranchInst *InitialBranch; +}; + +template <class T> struct InvariantValue { + typedef T type; + typedef T saved_type; + static bool needsSaving(type value) { return false; } + static saved_type save(CodeGenFunction &CGF, type value) { return value; } + static type restore(CodeGenFunction &CGF, saved_type value) { return value; } +}; + +/// A metaprogramming class for ensuring that a value will dominate an +/// arbitrary position in a function. +template <class T> struct DominatingValue : InvariantValue<T> {}; + +template <class T, bool mightBeInstruction = + llvm::is_base_of<llvm::Value, T>::value && + !llvm::is_base_of<llvm::Constant, T>::value && + !llvm::is_base_of<llvm::BasicBlock, T>::value> +struct DominatingPointer; +template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; +// template <class T> struct DominatingPointer<T,true> at end of file + +template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; + +enum CleanupKind { + EHCleanup = 0x1, + NormalCleanup = 0x2, + NormalAndEHCleanup = EHCleanup | NormalCleanup, + + InactiveCleanup = 0x4, + InactiveEHCleanup = EHCleanup | InactiveCleanup, + InactiveNormalCleanup = NormalCleanup | InactiveCleanup, + InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup +}; + +/// A stack of scopes which respond to exceptions, including cleanups +/// and catch blocks. +class EHScopeStack { +public: + /// A saved depth on the scope stack. This is necessary because + /// pushing scopes onto the stack invalidates iterators. + class stable_iterator { + friend class EHScopeStack; + + /// Offset from StartOfData to EndOfBuffer. + ptrdiff_t Size; + + stable_iterator(ptrdiff_t Size) : Size(Size) {} + + public: + static stable_iterator invalid() { return stable_iterator(-1); } + stable_iterator() : Size(-1) {} + + bool isValid() const { return Size >= 0; } + + /// Returns true if this scope encloses I. + /// Returns false if I is invalid. + /// This scope must be valid. + bool encloses(stable_iterator I) const { return Size <= I.Size; } + + /// Returns true if this scope strictly encloses I: that is, + /// if it encloses I and is not I. + /// Returns false is I is invalid. + /// This scope must be valid. + bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } + + friend bool operator==(stable_iterator A, stable_iterator B) { + return A.Size == B.Size; + } + friend bool operator!=(stable_iterator A, stable_iterator B) { + return A.Size != B.Size; + } + }; + + /// Information for lazily generating a cleanup. Subclasses must be + /// POD-like: cleanups will not be destructed, and they will be + /// allocated on the cleanup stack and freely copied and moved + /// around. + /// + /// Cleanup implementations should generally be declared in an + /// anonymous namespace. + class Cleanup { + // Anchor the construction vtable. + virtual void anchor(); + public: + /// Generation flags. + class Flags { + enum { + F_IsForEH = 0x1, + F_IsNormalCleanupKind = 0x2, + F_IsEHCleanupKind = 0x4 + }; + unsigned flags; + + public: + Flags() : flags(0) {} + + /// isForEH - true if the current emission is for an EH cleanup. + bool isForEHCleanup() const { return flags & F_IsForEH; } + bool isForNormalCleanup() const { return !isForEHCleanup(); } + void setIsForEHCleanup() { flags |= F_IsForEH; } + + bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } + void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } + + /// isEHCleanupKind - true if the cleanup was pushed as an EH + /// cleanup. + bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } + void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } + }; + + // Provide a virtual destructor to suppress a very common warning + // that unfortunately cannot be suppressed without this. Cleanups + // should not rely on this destructor ever being called. + virtual ~Cleanup() {} + + /// Emit the cleanup. For normal cleanups, this is run in the + /// same EH context as when the cleanup was pushed, i.e. the + /// immediately-enclosing context of the cleanup scope. For + /// EH cleanups, this is run in a terminate context. + /// + // \param IsForEHCleanup true if this is for an EH cleanup, false + /// if for a normal cleanup. + virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; + }; + + /// ConditionalCleanupN stores the saved form of its N parameters, + /// then restores them and performs the cleanup. + template <class T, class A0> + class ConditionalCleanup1 : public Cleanup { + typedef typename DominatingValue<A0>::saved_type A0_saved; + A0_saved a0_saved; + + void Emit(CodeGenFunction &CGF, Flags flags) { + A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); + T(a0).Emit(CGF, flags); + } + + public: + ConditionalCleanup1(A0_saved a0) + : a0_saved(a0) {} + }; + + template <class T, class A0, class A1> + class ConditionalCleanup2 : public Cleanup { + typedef typename DominatingValue<A0>::saved_type A0_saved; + typedef typename DominatingValue<A1>::saved_type A1_saved; + A0_saved a0_saved; + A1_saved a1_saved; + + void Emit(CodeGenFunction &CGF, Flags flags) { + A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); + A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); + T(a0, a1).Emit(CGF, flags); + } + + public: + ConditionalCleanup2(A0_saved a0, A1_saved a1) + : a0_saved(a0), a1_saved(a1) {} + }; + + template <class T, class A0, class A1, class A2> + class ConditionalCleanup3 : public Cleanup { + typedef typename DominatingValue<A0>::saved_type A0_saved; + typedef typename DominatingValue<A1>::saved_type A1_saved; + typedef typename DominatingValue<A2>::saved_type A2_saved; + A0_saved a0_saved; + A1_saved a1_saved; + A2_saved a2_saved; + + void Emit(CodeGenFunction &CGF, Flags flags) { + A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); + A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); + A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); + T(a0, a1, a2).Emit(CGF, flags); + } + + public: + ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) + : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} + }; + + template <class T, class A0, class A1, class A2, class A3> + class ConditionalCleanup4 : public Cleanup { + typedef typename DominatingValue<A0>::saved_type A0_saved; + typedef typename DominatingValue<A1>::saved_type A1_saved; + typedef typename DominatingValue<A2>::saved_type A2_saved; + typedef typename DominatingValue<A3>::saved_type A3_saved; + A0_saved a0_saved; + A1_saved a1_saved; + A2_saved a2_saved; + A3_saved a3_saved; + + void Emit(CodeGenFunction &CGF, Flags flags) { + A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); + A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); + A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); + A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); + T(a0, a1, a2, a3).Emit(CGF, flags); + } + + public: + ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) + : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} + }; + +private: + // The implementation for this class is in CGException.h and + // CGException.cpp; the definition is here because it's used as a + // member of CodeGenFunction. + + /// The start of the scope-stack buffer, i.e. the allocated pointer + /// for the buffer. All of these pointers are either simultaneously + /// null or simultaneously valid. + char *StartOfBuffer; + + /// The end of the buffer. + char *EndOfBuffer; + + /// The first valid entry in the buffer. + char *StartOfData; + + /// The innermost normal cleanup on the stack. + stable_iterator InnermostNormalCleanup; + + /// The innermost EH scope on the stack. + stable_iterator InnermostEHScope; + + /// The current set of branch fixups. A branch fixup is a jump to + /// an as-yet unemitted label, i.e. a label for which we don't yet + /// know the EH stack depth. Whenever we pop a cleanup, we have + /// to thread all the current branch fixups through it. + /// + /// Fixups are recorded as the Use of the respective branch or + /// switch statement. The use points to the final destination. + /// When popping out of a cleanup, these uses are threaded through + /// the cleanup and adjusted to point to the new cleanup. + /// + /// Note that branches are allowed to jump into protected scopes + /// in certain situations; e.g. the following code is legal: + /// struct A { ~A(); }; // trivial ctor, non-trivial dtor + /// goto foo; + /// A a; + /// foo: + /// bar(); + SmallVector<BranchFixup, 8> BranchFixups; + + char *allocate(size_t Size); + + void *pushCleanup(CleanupKind K, size_t DataSize); + +public: + EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), + InnermostNormalCleanup(stable_end()), + InnermostEHScope(stable_end()) {} + ~EHScopeStack() { delete[] StartOfBuffer; } + + // Variadic templates would make this not terrible. + + /// Push a lazily-created cleanup on the stack. + template <class T> + void pushCleanup(CleanupKind Kind) { + void *Buffer = pushCleanup(Kind, sizeof(T)); + Cleanup *Obj = new(Buffer) T(); + (void) Obj; + } + + /// Push a lazily-created cleanup on the stack. + template <class T, class A0> + void pushCleanup(CleanupKind Kind, A0 a0) { + void *Buffer = pushCleanup(Kind, sizeof(T)); + Cleanup *Obj = new(Buffer) T(a0); + (void) Obj; + } + + /// Push a lazily-created cleanup on the stack. + template <class T, class A0, class A1> + void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { + void *Buffer = pushCleanup(Kind, sizeof(T)); + Cleanup *Obj = new(Buffer) T(a0, a1); + (void) Obj; + } + + /// Push a lazily-created cleanup on the stack. + template <class T, class A0, class A1, class A2> + void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { + void *Buffer = pushCleanup(Kind, sizeof(T)); + Cleanup *Obj = new(Buffer) T(a0, a1, a2); + (void) Obj; + } + + /// Push a lazily-created cleanup on the stack. + template <class T, class A0, class A1, class A2, class A3> + void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { + void *Buffer = pushCleanup(Kind, sizeof(T)); + Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); + (void) Obj; + } + + /// Push a lazily-created cleanup on the stack. + template <class T, class A0, class A1, class A2, class A3, class A4> + void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { + void *Buffer = pushCleanup(Kind, sizeof(T)); + Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); + (void) Obj; + } + + // Feel free to add more variants of the following: + + /// Push a cleanup with non-constant storage requirements on the + /// stack. The cleanup type must provide an additional static method: + /// static size_t getExtraSize(size_t); + /// The argument to this method will be the value N, which will also + /// be passed as the first argument to the constructor. + /// + /// The data stored in the extra storage must obey the same + /// restrictions as normal cleanup member data. + /// + /// The pointer returned from this method is valid until the cleanup + /// stack is modified. + template <class T, class A0, class A1, class A2> + T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { + void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); + return new (Buffer) T(N, a0, a1, a2); + } + + /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. + void popCleanup(); + + /// Push a set of catch handlers on the stack. The catch is + /// uninitialized and will need to have the given number of handlers + /// set on it. + class EHCatchScope *pushCatch(unsigned NumHandlers); + + /// Pops a catch scope off the stack. This is private to CGException.cpp. + void popCatch(); + + /// Push an exceptions filter on the stack. + class EHFilterScope *pushFilter(unsigned NumFilters); + + /// Pops an exceptions filter off the stack. + void popFilter(); + + /// Push a terminate handler on the stack. + void pushTerminate(); + + /// Pops a terminate handler off the stack. + void popTerminate(); + + /// Determines whether the exception-scopes stack is empty. + bool empty() const { return StartOfData == EndOfBuffer; } + + bool requiresLandingPad() const { + return InnermostEHScope != stable_end(); + } + + /// Determines whether there are any normal cleanups on the stack. + bool hasNormalCleanups() const { + return InnermostNormalCleanup != stable_end(); + } + + /// Returns the innermost normal cleanup on the stack, or + /// stable_end() if there are no normal cleanups. + stable_iterator getInnermostNormalCleanup() const { + return InnermostNormalCleanup; + } + stable_iterator getInnermostActiveNormalCleanup() const; + + stable_iterator getInnermostEHScope() const { + return InnermostEHScope; + } + + stable_iterator getInnermostActiveEHScope() const; + + /// An unstable reference to a scope-stack depth. Invalidated by + /// pushes but not pops. + class iterator; + + /// Returns an iterator pointing to the innermost EH scope. + iterator begin() const; + + /// Returns an iterator pointing to the outermost EH scope. + iterator end() const; + + /// Create a stable reference to the top of the EH stack. The + /// returned reference is valid until that scope is popped off the + /// stack. + stable_iterator stable_begin() const { + return stable_iterator(EndOfBuffer - StartOfData); + } + + /// Create a stable reference to the bottom of the EH stack. + static stable_iterator stable_end() { + return stable_iterator(0); + } + + /// Translates an iterator into a stable_iterator. + stable_iterator stabilize(iterator it) const; + + /// Turn a stable reference to a scope depth into a unstable pointer + /// to the EH stack. + iterator find(stable_iterator save) const; + + /// Removes the cleanup pointed to by the given stable_iterator. + void removeCleanup(stable_iterator save); + + /// Add a branch fixup to the current cleanup scope. + BranchFixup &addBranchFixup() { + assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); + BranchFixups.push_back(BranchFixup()); + return BranchFixups.back(); + } + + unsigned getNumBranchFixups() const { return BranchFixups.size(); } + BranchFixup &getBranchFixup(unsigned I) { + assert(I < getNumBranchFixups()); + return BranchFixups[I]; + } + + /// Pops lazily-removed fixups from the end of the list. This + /// should only be called by procedures which have just popped a + /// cleanup or resolved one or more fixups. + void popNullFixups(); + + /// Clears the branch-fixups list. This should only be called by + /// ResolveAllBranchFixups. + void clearFixups() { BranchFixups.clear(); } +}; + +/// CodeGenFunction - This class organizes the per-function state that is used +/// while generating LLVM code. +class CodeGenFunction : public CodeGenTypeCache { + CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT + void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT + + friend class CGCXXABI; +public: + /// A jump destination is an abstract label, branching to which may + /// require a jump out through normal cleanups. + struct JumpDest { + JumpDest() : Block(0), ScopeDepth(), Index(0) {} + JumpDest(llvm::BasicBlock *Block, + EHScopeStack::stable_iterator Depth, + unsigned Index) + : Block(Block), ScopeDepth(Depth), Index(Index) {} + + bool isValid() const { return Block != 0; } + llvm::BasicBlock *getBlock() const { return Block; } + EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } + unsigned getDestIndex() const { return Index; } + + private: + llvm::BasicBlock *Block; + EHScopeStack::stable_iterator ScopeDepth; + unsigned Index; + }; + + CodeGenModule &CGM; // Per-module state. + const TargetInfo &Target; + + typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; + CGBuilderTy Builder; + + /// CurFuncDecl - Holds the Decl for the current function or ObjC method. + /// This excludes BlockDecls. + const Decl *CurFuncDecl; + /// CurCodeDecl - This is the inner-most code context, which includes blocks. + const Decl *CurCodeDecl; + const CGFunctionInfo *CurFnInfo; + QualType FnRetTy; + llvm::Function *CurFn; + + /// CurGD - The GlobalDecl for the current function being compiled. + GlobalDecl CurGD; + + /// PrologueCleanupDepth - The cleanup depth enclosing all the + /// cleanups associated with the parameters. + EHScopeStack::stable_iterator PrologueCleanupDepth; + + /// ReturnBlock - Unified return block. + JumpDest ReturnBlock; + + /// ReturnValue - The temporary alloca to hold the return value. This is null + /// iff the function has no return value. + llvm::Value *ReturnValue; + + /// AllocaInsertPoint - This is an instruction in the entry block before which + /// we prefer to insert allocas. + llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; + + bool CatchUndefined; + + /// In ARC, whether we should autorelease the return value. + bool AutoreleaseResult; + + const CodeGen::CGBlockInfo *BlockInfo; + llvm::Value *BlockPointer; + + llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; + FieldDecl *LambdaThisCaptureField; + + /// \brief A mapping from NRVO variables to the flags used to indicate + /// when the NRVO has been applied to this variable. + llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; + + EHScopeStack EHStack; + + /// i32s containing the indexes of the cleanup destinations. + llvm::AllocaInst *NormalCleanupDest; + + unsigned NextCleanupDestIndex; + + /// FirstBlockInfo - The head of a singly-linked-list of block layouts. + CGBlockInfo *FirstBlockInfo; + + /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. + llvm::BasicBlock *EHResumeBlock; + + /// The exception slot. All landing pads write the current exception pointer + /// into this alloca. + llvm::Value *ExceptionSlot; + + /// The selector slot. Under the MandatoryCleanup model, all landing pads + /// write the current selector value into this alloca. + llvm::AllocaInst *EHSelectorSlot; + + /// Emits a landing pad for the current EH stack. + llvm::BasicBlock *EmitLandingPad(); + + llvm::BasicBlock *getInvokeDestImpl(); + + template <class T> + typename DominatingValue<T>::saved_type saveValueInCond(T value) { + return DominatingValue<T>::save(*this, value); + } + +public: + /// ObjCEHValueStack - Stack of Objective-C exception values, used for + /// rethrows. + SmallVector<llvm::Value*, 8> ObjCEHValueStack; + + /// A class controlling the emission of a finally block. + class FinallyInfo { + /// Where the catchall's edge through the cleanup should go. + JumpDest RethrowDest; + + /// A function to call to enter the catch. + llvm::Constant *BeginCatchFn; + + /// An i1 variable indicating whether or not the @finally is + /// running for an exception. + llvm::AllocaInst *ForEHVar; + + /// An i8* variable into which the exception pointer to rethrow + /// has been saved. + llvm::AllocaInst *SavedExnVar; + + public: + void enter(CodeGenFunction &CGF, const Stmt *Finally, + llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, + llvm::Constant *rethrowFn); + void exit(CodeGenFunction &CGF); + }; + + /// pushFullExprCleanup - Push a cleanup to be run at the end of the + /// current full-expression. Safe against the possibility that + /// we're currently inside a conditionally-evaluated expression. + template <class T, class A0> + void pushFullExprCleanup(CleanupKind kind, A0 a0) { + // If we're not in a conditional branch, or if none of the + // arguments requires saving, then use the unconditional cleanup. + if (!isInConditionalBranch()) + return EHStack.pushCleanup<T>(kind, a0); + + typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); + + typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; + EHStack.pushCleanup<CleanupType>(kind, a0_saved); + initFullExprCleanup(); + } + + /// pushFullExprCleanup - Push a cleanup to be run at the end of the + /// current full-expression. Safe against the possibility that + /// we're currently inside a conditionally-evaluated expression. + template <class T, class A0, class A1> + void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { + // If we're not in a conditional branch, or if none of the + // arguments requires saving, then use the unconditional cleanup. + if (!isInConditionalBranch()) + return EHStack.pushCleanup<T>(kind, a0, a1); + + typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); + typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); + + typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; + EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); + initFullExprCleanup(); + } + + /// pushFullExprCleanup - Push a cleanup to be run at the end of the + /// current full-expression. Safe against the possibility that + /// we're currently inside a conditionally-evaluated expression. + template <class T, class A0, class A1, class A2> + void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { + // If we're not in a conditional branch, or if none of the + // arguments requires saving, then use the unconditional cleanup. + if (!isInConditionalBranch()) { + return EHStack.pushCleanup<T>(kind, a0, a1, a2); + } + + typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); + typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); + typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); + + typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; + EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); + initFullExprCleanup(); + } + + /// pushFullExprCleanup - Push a cleanup to be run at the end of the + /// current full-expression. Safe against the possibility that + /// we're currently inside a conditionally-evaluated expression. + template <class T, class A0, class A1, class A2, class A3> + void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { + // If we're not in a conditional branch, or if none of the + // arguments requires saving, then use the unconditional cleanup. + if (!isInConditionalBranch()) { + return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); + } + + typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); + typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); + typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); + typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); + + typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; + EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, + a2_saved, a3_saved); + initFullExprCleanup(); + } + + /// Set up the last cleaup that was pushed as a conditional + /// full-expression cleanup. + void initFullExprCleanup(); + + /// PushDestructorCleanup - Push a cleanup to call the + /// complete-object destructor of an object of the given type at the + /// given address. Does nothing if T is not a C++ class type with a + /// non-trivial destructor. + void PushDestructorCleanup(QualType T, llvm::Value *Addr); + + /// PushDestructorCleanup - Push a cleanup to call the + /// complete-object variant of the given destructor on the object at + /// the given address. + void PushDestructorCleanup(const CXXDestructorDecl *Dtor, + llvm::Value *Addr); + + /// PopCleanupBlock - Will pop the cleanup entry on the stack and + /// process all branch fixups. + void PopCleanupBlock(bool FallThroughIsBranchThrough = false); + + /// DeactivateCleanupBlock - Deactivates the given cleanup block. + /// The block cannot be reactivated. Pops it if it's the top of the + /// stack. + /// + /// \param DominatingIP - An instruction which is known to + /// dominate the current IP (if set) and which lies along + /// all paths of execution between the current IP and the + /// the point at which the cleanup comes into scope. + void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, + llvm::Instruction *DominatingIP); + + /// ActivateCleanupBlock - Activates an initially-inactive cleanup. + /// Cannot be used to resurrect a deactivated cleanup. + /// + /// \param DominatingIP - An instruction which is known to + /// dominate the current IP (if set) and which lies along + /// all paths of execution between the current IP and the + /// the point at which the cleanup comes into scope. + void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, + llvm::Instruction *DominatingIP); + + /// \brief Enters a new scope for capturing cleanups, all of which + /// will be executed once the scope is exited. + class RunCleanupsScope { + EHScopeStack::stable_iterator CleanupStackDepth; + bool OldDidCallStackSave; + bool PerformCleanup; + + RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT + RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT + + protected: + CodeGenFunction& CGF; + + public: + /// \brief Enter a new cleanup scope. + explicit RunCleanupsScope(CodeGenFunction &CGF) + : PerformCleanup(true), CGF(CGF) + { + CleanupStackDepth = CGF.EHStack.stable_begin(); + OldDidCallStackSave = CGF.DidCallStackSave; + CGF.DidCallStackSave = false; + } + + /// \brief Exit this cleanup scope, emitting any accumulated + /// cleanups. + ~RunCleanupsScope() { + if (PerformCleanup) { + CGF.DidCallStackSave = OldDidCallStackSave; + CGF.PopCleanupBlocks(CleanupStackDepth); + } + } + + /// \brief Determine whether this scope requires any cleanups. + bool requiresCleanups() const { + return CGF.EHStack.stable_begin() != CleanupStackDepth; + } + + /// \brief Force the emission of cleanups now, instead of waiting + /// until this object is destroyed. + void ForceCleanup() { + assert(PerformCleanup && "Already forced cleanup"); + CGF.DidCallStackSave = OldDidCallStackSave; + CGF.PopCleanupBlocks(CleanupStackDepth); + PerformCleanup = false; + } + }; + + class LexicalScope: protected RunCleanupsScope { + SourceRange Range; + bool PopDebugStack; + + LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE + LexicalScope &operator=(const LexicalScope &); + + public: + /// \brief Enter a new cleanup scope. + explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) + : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { + if (CGDebugInfo *DI = CGF.getDebugInfo()) + DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); + } + + /// \brief Exit this cleanup scope, emitting any accumulated + /// cleanups. + ~LexicalScope() { + if (PopDebugStack) { + CGDebugInfo *DI = CGF.getDebugInfo(); + if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); + } + } + + /// \brief Force the emission of cleanups now, instead of waiting + /// until this object is destroyed. + void ForceCleanup() { + RunCleanupsScope::ForceCleanup(); + if (CGDebugInfo *DI = CGF.getDebugInfo()) { + DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); + PopDebugStack = false; + } + } + }; + + + /// PopCleanupBlocks - Takes the old cleanup stack size and emits + /// the cleanup blocks that have been added. + void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); + + void ResolveBranchFixups(llvm::BasicBlock *Target); + + /// The given basic block lies in the current EH scope, but may be a + /// target of a potentially scope-crossing jump; get a stable handle + /// to which we can perform this jump later. + JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { + return JumpDest(Target, + EHStack.getInnermostNormalCleanup(), + NextCleanupDestIndex++); + } + + /// The given basic block lies in the current EH scope, but may be a + /// target of a potentially scope-crossing jump; get a stable handle + /// to which we can perform this jump later. + JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { + return getJumpDestInCurrentScope(createBasicBlock(Name)); + } + + /// EmitBranchThroughCleanup - Emit a branch from the current insert + /// block through the normal cleanup handling code (if any) and then + /// on to \arg Dest. + void EmitBranchThroughCleanup(JumpDest Dest); + + /// isObviouslyBranchWithoutCleanups - Return true if a branch to the + /// specified destination obviously has no cleanups to run. 'false' is always + /// a conservatively correct answer for this method. + bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; + + /// popCatchScope - Pops the catch scope at the top of the EHScope + /// stack, emitting any required code (other than the catch handlers + /// themselves). + void popCatchScope(); + + llvm::BasicBlock *getEHResumeBlock(); + llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); + + /// An object to manage conditionally-evaluated expressions. + class ConditionalEvaluation { + llvm::BasicBlock *StartBB; + + public: + ConditionalEvaluation(CodeGenFunction &CGF) + : StartBB(CGF.Builder.GetInsertBlock()) {} + + void begin(CodeGenFunction &CGF) { + assert(CGF.OutermostConditional != this); + if (!CGF.OutermostConditional) + CGF.OutermostConditional = this; + } + + void end(CodeGenFunction &CGF) { + assert(CGF.OutermostConditional != 0); + if (CGF.OutermostConditional == this) + CGF.OutermostConditional = 0; + } + + /// Returns a block which will be executed prior to each + /// evaluation of the conditional code. + llvm::BasicBlock *getStartingBlock() const { + return StartBB; + } + }; + + /// isInConditionalBranch - Return true if we're currently emitting + /// one branch or the other of a conditional expression. + bool isInConditionalBranch() const { return OutermostConditional != 0; } + + void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { + assert(isInConditionalBranch()); + llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); + new llvm::StoreInst(value, addr, &block->back()); + } + + /// An RAII object to record that we're evaluating a statement + /// expression. + class StmtExprEvaluation { + CodeGenFunction &CGF; + + /// We have to save the outermost conditional: cleanups in a + /// statement expression aren't conditional just because the + /// StmtExpr is. + ConditionalEvaluation *SavedOutermostConditional; + + public: + StmtExprEvaluation(CodeGenFunction &CGF) + : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { + CGF.OutermostConditional = 0; + } + + ~StmtExprEvaluation() { + CGF.OutermostConditional = SavedOutermostConditional; + CGF.EnsureInsertPoint(); + } + }; + + /// An object which temporarily prevents a value from being + /// destroyed by aggressive peephole optimizations that assume that + /// all uses of a value have been realized in the IR. + class PeepholeProtection { + llvm::Instruction *Inst; + friend class CodeGenFunction; + + public: + PeepholeProtection() : Inst(0) {} + }; + + /// A non-RAII class containing all the information about a bound + /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for + /// this which makes individual mappings very simple; using this + /// class directly is useful when you have a variable number of + /// opaque values or don't want the RAII functionality for some + /// reason. + class OpaqueValueMappingData { + const OpaqueValueExpr *OpaqueValue; + bool BoundLValue; + CodeGenFunction::PeepholeProtection Protection; + + OpaqueValueMappingData(const OpaqueValueExpr *ov, + bool boundLValue) + : OpaqueValue(ov), BoundLValue(boundLValue) {} + public: + OpaqueValueMappingData() : OpaqueValue(0) {} + + static bool shouldBindAsLValue(const Expr *expr) { + // gl-values should be bound as l-values for obvious reasons. + // Records should be bound as l-values because IR generation + // always keeps them in memory. Expressions of function type + // act exactly like l-values but are formally required to be + // r-values in C. + return expr->isGLValue() || + expr->getType()->isRecordType() || + expr->getType()->isFunctionType(); + } + + static OpaqueValueMappingData bind(CodeGenFunction &CGF, + const OpaqueValueExpr *ov, + const Expr *e) { + if (shouldBindAsLValue(ov)) + return bind(CGF, ov, CGF.EmitLValue(e)); + return bind(CGF, ov, CGF.EmitAnyExpr(e)); + } + + static OpaqueValueMappingData bind(CodeGenFunction &CGF, + const OpaqueValueExpr *ov, + const LValue &lv) { + assert(shouldBindAsLValue(ov)); + CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); + return OpaqueValueMappingData(ov, true); + } + + static OpaqueValueMappingData bind(CodeGenFunction &CGF, + const OpaqueValueExpr *ov, + const RValue &rv) { + assert(!shouldBindAsLValue(ov)); + CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); + + OpaqueValueMappingData data(ov, false); + + // Work around an extremely aggressive peephole optimization in + // EmitScalarConversion which assumes that all other uses of a + // value are extant. + data.Protection = CGF.protectFromPeepholes(rv); + + return data; + } + + bool isValid() const { return OpaqueValue != 0; } + void clear() { OpaqueValue = 0; } + + void unbind(CodeGenFunction &CGF) { + assert(OpaqueValue && "no data to unbind!"); + + if (BoundLValue) { + CGF.OpaqueLValues.erase(OpaqueValue); + } else { + CGF.OpaqueRValues.erase(OpaqueValue); + CGF.unprotectFromPeepholes(Protection); + } + } + }; + + /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. + class OpaqueValueMapping { + CodeGenFunction &CGF; + OpaqueValueMappingData Data; + + public: + static bool shouldBindAsLValue(const Expr *expr) { + return OpaqueValueMappingData::shouldBindAsLValue(expr); + } + + /// Build the opaque value mapping for the given conditional + /// operator if it's the GNU ?: extension. This is a common + /// enough pattern that the convenience operator is really + /// helpful. + /// + OpaqueValueMapping(CodeGenFunction &CGF, + const AbstractConditionalOperator *op) : CGF(CGF) { + if (isa<ConditionalOperator>(op)) + // Leave Data empty. + return; + + const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); + Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), + e->getCommon()); + } + + OpaqueValueMapping(CodeGenFunction &CGF, + const OpaqueValueExpr *opaqueValue, + LValue lvalue) + : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { + } + + OpaqueValueMapping(CodeGenFunction &CGF, + const OpaqueValueExpr *opaqueValue, + RValue rvalue) + : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { + } + + void pop() { + Data.unbind(CGF); + Data.clear(); + } + + ~OpaqueValueMapping() { + if (Data.isValid()) Data.unbind(CGF); + } + }; + + /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field + /// number that holds the value. + unsigned getByRefValueLLVMField(const ValueDecl *VD) const; + + /// BuildBlockByrefAddress - Computes address location of the + /// variable which is declared as __block. + llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, + const VarDecl *V); +private: + CGDebugInfo *DebugInfo; + bool DisableDebugInfo; + + /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid + /// calling llvm.stacksave for multiple VLAs in the same scope. + bool DidCallStackSave; + + /// IndirectBranch - The first time an indirect goto is seen we create a block + /// with an indirect branch. Every time we see the address of a label taken, + /// we add the label to the indirect goto. Every subsequent indirect goto is + /// codegen'd as a jump to the IndirectBranch's basic block. + llvm::IndirectBrInst *IndirectBranch; + + /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C + /// decls. + typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; + DeclMapTy LocalDeclMap; + + /// LabelMap - This keeps track of the LLVM basic block for each C label. + llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; + + // BreakContinueStack - This keeps track of where break and continue + // statements should jump to. + struct BreakContinue { + BreakContinue(JumpDest Break, JumpDest Continue) + : BreakBlock(Break), ContinueBlock(Continue) {} + + JumpDest BreakBlock; + JumpDest ContinueBlock; + }; + SmallVector<BreakContinue, 8> BreakContinueStack; + + /// SwitchInsn - This is nearest current switch instruction. It is null if + /// current context is not in a switch. + llvm::SwitchInst *SwitchInsn; + + /// CaseRangeBlock - This block holds if condition check for last case + /// statement range in current switch instruction. + llvm::BasicBlock *CaseRangeBlock; + + /// OpaqueLValues - Keeps track of the current set of opaque value + /// expressions. + llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; + llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; + + // VLASizeMap - This keeps track of the associated size for each VLA type. + // We track this by the size expression rather than the type itself because + // in certain situations, like a const qualifier applied to an VLA typedef, + // multiple VLA types can share the same size expression. + // FIXME: Maybe this could be a stack of maps that is pushed/popped as we + // enter/leave scopes. + llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; + + /// A block containing a single 'unreachable' instruction. Created + /// lazily by getUnreachableBlock(). + llvm::BasicBlock *UnreachableBlock; + + /// CXXThisDecl - When generating code for a C++ member function, + /// this will hold the implicit 'this' declaration. + ImplicitParamDecl *CXXABIThisDecl; + llvm::Value *CXXABIThisValue; + llvm::Value *CXXThisValue; + + /// CXXVTTDecl - When generating code for a base object constructor or + /// base object destructor with virtual bases, this will hold the implicit + /// VTT parameter. + ImplicitParamDecl *CXXVTTDecl; + llvm::Value *CXXVTTValue; + + /// OutermostConditional - Points to the outermost active + /// conditional control. This is used so that we know if a + /// temporary should be destroyed conditionally. + ConditionalEvaluation *OutermostConditional; + + + /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM + /// type as well as the field number that contains the actual data. + llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, + unsigned> > ByRefValueInfo; + + llvm::BasicBlock *TerminateLandingPad; + llvm::BasicBlock *TerminateHandler; + llvm::BasicBlock *TrapBB; + +public: + CodeGenFunction(CodeGenModule &cgm); + ~CodeGenFunction(); + + CodeGenTypes &getTypes() const { return CGM.getTypes(); } + ASTContext &getContext() const { return CGM.getContext(); } + CGDebugInfo *getDebugInfo() { + if (DisableDebugInfo) + return NULL; + return DebugInfo; + } + void disableDebugInfo() { DisableDebugInfo = true; } + void enableDebugInfo() { DisableDebugInfo = false; } + + bool shouldUseFusedARCCalls() { + return CGM.getCodeGenOpts().OptimizationLevel == 0; + } + + const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } + + /// Returns a pointer to the function's exception object and selector slot, + /// which is assigned in every landing pad. + llvm::Value *getExceptionSlot(); + llvm::Value *getEHSelectorSlot(); + + /// Returns the contents of the function's exception object and selector + /// slots. + llvm::Value *getExceptionFromSlot(); + llvm::Value *getSelectorFromSlot(); + + llvm::Value *getNormalCleanupDestSlot(); + + llvm::BasicBlock *getUnreachableBlock() { + if (!UnreachableBlock) { + UnreachableBlock = createBasicBlock("unreachable"); + new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); + } + return UnreachableBlock; + } + + llvm::BasicBlock *getInvokeDest() { + if (!EHStack.requiresLandingPad()) return 0; + return getInvokeDestImpl(); + } + + llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } + + //===--------------------------------------------------------------------===// + // Cleanups + //===--------------------------------------------------------------------===// + + typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); + + void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, + llvm::Value *arrayEndPointer, + QualType elementType, + Destroyer *destroyer); + void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, + llvm::Value *arrayEnd, + QualType elementType, + Destroyer *destroyer); + + void pushDestroy(QualType::DestructionKind dtorKind, + llvm::Value *addr, QualType type); + void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, + Destroyer *destroyer, bool useEHCleanupForArray); + void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, + bool useEHCleanupForArray); + llvm::Function *generateDestroyHelper(llvm::Constant *addr, + QualType type, + Destroyer *destroyer, + bool useEHCleanupForArray); + void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, + QualType type, Destroyer *destroyer, + bool checkZeroLength, bool useEHCleanup); + + Destroyer *getDestroyer(QualType::DestructionKind destructionKind); + + /// Determines whether an EH cleanup is required to destroy a type + /// with the given destruction kind. + bool needsEHCleanup(QualType::DestructionKind kind) { + switch (kind) { + case QualType::DK_none: + return false; + case QualType::DK_cxx_destructor: + case QualType::DK_objc_weak_lifetime: + return getLangOpts().Exceptions; + case QualType::DK_objc_strong_lifetime: + return getLangOpts().Exceptions && + CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; + } + llvm_unreachable("bad destruction kind"); + } + + CleanupKind getCleanupKind(QualType::DestructionKind kind) { + return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); + } + + //===--------------------------------------------------------------------===// + // Objective-C + //===--------------------------------------------------------------------===// + + void GenerateObjCMethod(const ObjCMethodDecl *OMD); + + void StartObjCMethod(const ObjCMethodDecl *MD, + const ObjCContainerDecl *CD, + SourceLocation StartLoc); + + /// GenerateObjCGetter - Synthesize an Objective-C property getter function. + void GenerateObjCGetter(ObjCImplementationDecl *IMP, + const ObjCPropertyImplDecl *PID); + void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, + const ObjCPropertyImplDecl *propImpl, + llvm::Constant *AtomicHelperFn); + + void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, + ObjCMethodDecl *MD, bool ctor); + + /// GenerateObjCSetter - Synthesize an Objective-C property setter function + /// for the given property. + void GenerateObjCSetter(ObjCImplementationDecl *IMP, + const ObjCPropertyImplDecl *PID); + void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, + const ObjCPropertyImplDecl *propImpl, + llvm::Constant *AtomicHelperFn); + bool IndirectObjCSetterArg(const CGFunctionInfo &FI); + bool IvarTypeWithAggrGCObjects(QualType Ty); + + //===--------------------------------------------------------------------===// + // Block Bits + //===--------------------------------------------------------------------===// + + llvm::Value *EmitBlockLiteral(const BlockExpr *); + llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); + static void destroyBlockInfos(CGBlockInfo *info); + llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, + const CGBlockInfo &Info, + llvm::StructType *, + llvm::Constant *BlockVarLayout); + + llvm::Function *GenerateBlockFunction(GlobalDecl GD, + const CGBlockInfo &Info, + const Decl *OuterFuncDecl, + const DeclMapTy &ldm, + bool IsLambdaConversionToBlock); + + llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); + llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); + llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( + const ObjCPropertyImplDecl *PID); + llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( + const ObjCPropertyImplDecl *PID); + llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); + + void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); + + class AutoVarEmission; + + void emitByrefStructureInit(const AutoVarEmission &emission); + void enterByrefCleanup(const AutoVarEmission &emission); + + llvm::Value *LoadBlockStruct() { + assert(BlockPointer && "no block pointer set!"); + return BlockPointer; + } + + void AllocateBlockCXXThisPointer(const CXXThisExpr *E); + void AllocateBlockDecl(const DeclRefExpr *E); + llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); + llvm::Type *BuildByRefType(const VarDecl *var); + + void GenerateCode(GlobalDecl GD, llvm::Function *Fn, + const CGFunctionInfo &FnInfo); + void StartFunction(GlobalDecl GD, QualType RetTy, + llvm::Function *Fn, + const CGFunctionInfo &FnInfo, + const FunctionArgList &Args, + SourceLocation StartLoc); + + void EmitConstructorBody(FunctionArgList &Args); + void EmitDestructorBody(FunctionArgList &Args); + void EmitFunctionBody(FunctionArgList &Args); + + void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, + CallArgList &CallArgs); + void EmitLambdaToBlockPointerBody(FunctionArgList &Args); + void EmitLambdaBlockInvokeBody(); + void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); + void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); + + /// EmitReturnBlock - Emit the unified return block, trying to avoid its + /// emission when possible. + void EmitReturnBlock(); + + /// FinishFunction - Complete IR generation of the current function. It is + /// legal to call this function even if there is no current insertion point. + void FinishFunction(SourceLocation EndLoc=SourceLocation()); + + /// GenerateThunk - Generate a thunk for the given method. + void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, + GlobalDecl GD, const ThunkInfo &Thunk); + + void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, + GlobalDecl GD, const ThunkInfo &Thunk); + + void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, + FunctionArgList &Args); + + void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, + ArrayRef<VarDecl *> ArrayIndexes); + + /// InitializeVTablePointer - Initialize the vtable pointer of the given + /// subobject. + /// + void InitializeVTablePointer(BaseSubobject Base, + const CXXRecordDecl *NearestVBase, + CharUnits OffsetFromNearestVBase, + llvm::Constant *VTable, + const CXXRecordDecl *VTableClass); + + typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; + void InitializeVTablePointers(BaseSubobject Base, + const CXXRecordDecl *NearestVBase, + CharUnits OffsetFromNearestVBase, + bool BaseIsNonVirtualPrimaryBase, + llvm::Constant *VTable, + const CXXRecordDecl *VTableClass, + VisitedVirtualBasesSetTy& VBases); + + void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); + + /// GetVTablePtr - Return the Value of the vtable pointer member pointed + /// to by This. + llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); + + /// EnterDtorCleanups - Enter the cleanups necessary to complete the + /// given phase of destruction for a destructor. The end result + /// should call destructors on members and base classes in reverse + /// order of their construction. + void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); + + /// ShouldInstrumentFunction - Return true if the current function should be + /// instrumented with __cyg_profile_func_* calls + bool ShouldInstrumentFunction(); + + /// EmitFunctionInstrumentation - Emit LLVM code to call the specified + /// instrumentation function with the current function and the call site, if + /// function instrumentation is enabled. + void EmitFunctionInstrumentation(const char *Fn); + + /// EmitMCountInstrumentation - Emit call to .mcount. + void EmitMCountInstrumentation(); + + /// EmitFunctionProlog - Emit the target specific LLVM code to load the + /// arguments for the given function. This is also responsible for naming the + /// LLVM function arguments. + void EmitFunctionProlog(const CGFunctionInfo &FI, + llvm::Function *Fn, + const FunctionArgList &Args); + + /// EmitFunctionEpilog - Emit the target specific LLVM code to return the + /// given temporary. + void EmitFunctionEpilog(const CGFunctionInfo &FI); + + /// EmitStartEHSpec - Emit the start of the exception spec. + void EmitStartEHSpec(const Decl *D); + + /// EmitEndEHSpec - Emit the end of the exception spec. + void EmitEndEHSpec(const Decl *D); + + /// getTerminateLandingPad - Return a landing pad that just calls terminate. + llvm::BasicBlock *getTerminateLandingPad(); + + /// getTerminateHandler - Return a handler (not a landing pad, just + /// a catch handler) that just calls terminate. This is used when + /// a terminate scope encloses a try. + llvm::BasicBlock *getTerminateHandler(); + + llvm::Type *ConvertTypeForMem(QualType T); + llvm::Type *ConvertType(QualType T); + llvm::Type *ConvertType(const TypeDecl *T) { + return ConvertType(getContext().getTypeDeclType(T)); + } + + /// LoadObjCSelf - Load the value of self. This function is only valid while + /// generating code for an Objective-C method. + llvm::Value *LoadObjCSelf(); + + /// TypeOfSelfObject - Return type of object that this self represents. + QualType TypeOfSelfObject(); + + /// hasAggregateLLVMType - Return true if the specified AST type will map into + /// an aggregate LLVM type or is void. + static bool hasAggregateLLVMType(QualType T); + + /// createBasicBlock - Create an LLVM basic block. + llvm::BasicBlock *createBasicBlock(StringRef name = "", + llvm::Function *parent = 0, + llvm::BasicBlock *before = 0) { +#ifdef NDEBUG + return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); +#else + return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); +#endif + } + + /// getBasicBlockForLabel - Return the LLVM basicblock that the specified + /// label maps to. + JumpDest getJumpDestForLabel(const LabelDecl *S); + + /// SimplifyForwardingBlocks - If the given basic block is only a branch to + /// another basic block, simplify it. This assumes that no other code could + /// potentially reference the basic block. + void SimplifyForwardingBlocks(llvm::BasicBlock *BB); + + /// EmitBlock - Emit the given block \arg BB and set it as the insert point, + /// adding a fall-through branch from the current insert block if + /// necessary. It is legal to call this function even if there is no current + /// insertion point. + /// + /// IsFinished - If true, indicates that the caller has finished emitting + /// branches to the given block and does not expect to emit code into it. This + /// means the block can be ignored if it is unreachable. + void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); + + /// EmitBlockAfterUses - Emit the given block somewhere hopefully + /// near its uses, and leave the insertion point in it. + void EmitBlockAfterUses(llvm::BasicBlock *BB); + + /// EmitBranch - Emit a branch to the specified basic block from the current + /// insert block, taking care to avoid creation of branches from dummy + /// blocks. It is legal to call this function even if there is no current + /// insertion point. + /// + /// This function clears the current insertion point. The caller should follow + /// calls to this function with calls to Emit*Block prior to generation new + /// code. + void EmitBranch(llvm::BasicBlock *Block); + + /// HaveInsertPoint - True if an insertion point is defined. If not, this + /// indicates that the current code being emitted is unreachable. + bool HaveInsertPoint() const { + return Builder.GetInsertBlock() != 0; + } + + /// EnsureInsertPoint - Ensure that an insertion point is defined so that + /// emitted IR has a place to go. Note that by definition, if this function + /// creates a block then that block is unreachable; callers may do better to + /// detect when no insertion point is defined and simply skip IR generation. + void EnsureInsertPoint() { + if (!HaveInsertPoint()) + EmitBlock(createBasicBlock()); + } + + /// ErrorUnsupported - Print out an error that codegen doesn't support the + /// specified stmt yet. + void ErrorUnsupported(const Stmt *S, const char *Type, + bool OmitOnError=false); + + //===--------------------------------------------------------------------===// + // Helpers + //===--------------------------------------------------------------------===// + + LValue MakeAddrLValue(llvm::Value *V, QualType T, + CharUnits Alignment = CharUnits()) { + return LValue::MakeAddr(V, T, Alignment, getContext(), + CGM.getTBAAInfo(T)); + } + LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { + CharUnits Alignment; + if (!T->isIncompleteType()) + Alignment = getContext().getTypeAlignInChars(T); + return LValue::MakeAddr(V, T, Alignment, getContext(), + CGM.getTBAAInfo(T)); + } + + /// CreateTempAlloca - This creates a alloca and inserts it into the entry + /// block. The caller is responsible for setting an appropriate alignment on + /// the alloca. + llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, + const Twine &Name = "tmp"); + + /// InitTempAlloca - Provide an initial value for the given alloca. + void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); + + /// CreateIRTemp - Create a temporary IR object of the given type, with + /// appropriate alignment. This routine should only be used when an temporary + /// value needs to be stored into an alloca (for example, to avoid explicit + /// PHI construction), but the type is the IR type, not the type appropriate + /// for storing in memory. + llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); + + /// CreateMemTemp - Create a temporary memory object of the given type, with + /// appropriate alignment. + llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); + + /// CreateAggTemp - Create a temporary memory object for the given + /// aggregate type. + AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { + CharUnits Alignment = getContext().getTypeAlignInChars(T); + return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, + T.getQualifiers(), + AggValueSlot::IsNotDestructed, + AggValueSlot::DoesNotNeedGCBarriers, + AggValueSlot::IsNotAliased); + } + + /// Emit a cast to void* in the appropriate address space. + llvm::Value *EmitCastToVoidPtr(llvm::Value *value); + + /// EvaluateExprAsBool - Perform the usual unary conversions on the specified + /// expression and compare the result against zero, returning an Int1Ty value. + llvm::Value *EvaluateExprAsBool(const Expr *E); + + /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. + void EmitIgnoredExpr(const Expr *E); + + /// EmitAnyExpr - Emit code to compute the specified expression which can have + /// any type. The result is returned as an RValue struct. If this is an + /// aggregate expression, the aggloc/agglocvolatile arguments indicate where + /// the result should be returned. + /// + /// \param IgnoreResult - True if the resulting value isn't used. + RValue EmitAnyExpr(const Expr *E, + AggValueSlot AggSlot = AggValueSlot::ignored(), + bool IgnoreResult = false); + + // EmitVAListRef - Emit a "reference" to a va_list; this is either the address + // or the value of the expression, depending on how va_list is defined. + llvm::Value *EmitVAListRef(const Expr *E); + + /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will + /// always be accessible even if no aggregate location is provided. + RValue EmitAnyExprToTemp(const Expr *E); + + /// EmitAnyExprToMem - Emits the code necessary to evaluate an + /// arbitrary expression into the given memory location. + void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, + Qualifiers Quals, bool IsInitializer); + + /// EmitExprAsInit - Emits the code necessary to initialize a + /// location in memory with the given initializer. + void EmitExprAsInit(const Expr *init, const ValueDecl *D, + LValue lvalue, bool capturedByInit); + + /// EmitAggregateCopy - Emit an aggrate copy. + /// + /// \param isVolatile - True iff either the source or the destination is + /// volatile. + void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, + QualType EltTy, bool isVolatile=false, + unsigned Alignment = 0); + + /// StartBlock - Start new block named N. If insert block is a dummy block + /// then reuse it. + void StartBlock(const char *N); + + /// GetAddrOfStaticLocalVar - Return the address of a static local variable. + llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { + return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); + } + + /// GetAddrOfLocalVar - Return the address of a local variable. + llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { + llvm::Value *Res = LocalDeclMap[VD]; + assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); + return Res; + } + + /// getOpaqueLValueMapping - Given an opaque value expression (which + /// must be mapped to an l-value), return its mapping. + const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { + assert(OpaqueValueMapping::shouldBindAsLValue(e)); + + llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator + it = OpaqueLValues.find(e); + assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); + return it->second; + } + + /// getOpaqueRValueMapping - Given an opaque value expression (which + /// must be mapped to an r-value), return its mapping. + const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { + assert(!OpaqueValueMapping::shouldBindAsLValue(e)); + + llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator + it = OpaqueRValues.find(e); + assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); + return it->second; + } + + /// getAccessedFieldNo - Given an encoded value and a result number, return + /// the input field number being accessed. + static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); + + llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); + llvm::BasicBlock *GetIndirectGotoBlock(); + + /// EmitNullInitialization - Generate code to set a value of the given type to + /// null, If the type contains data member pointers, they will be initialized + /// to -1 in accordance with the Itanium C++ ABI. + void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); + + // EmitVAArg - Generate code to get an argument from the passed in pointer + // and update it accordingly. The return value is a pointer to the argument. + // FIXME: We should be able to get rid of this method and use the va_arg + // instruction in LLVM instead once it works well enough. + llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); + + /// emitArrayLength - Compute the length of an array, even if it's a + /// VLA, and drill down to the base element type. + llvm::Value *emitArrayLength(const ArrayType *arrayType, + QualType &baseType, + llvm::Value *&addr); + + /// EmitVLASize - Capture all the sizes for the VLA expressions in + /// the given variably-modified type and store them in the VLASizeMap. + /// + /// This function can be called with a null (unreachable) insert point. + void EmitVariablyModifiedType(QualType Ty); + + /// getVLASize - Returns an LLVM value that corresponds to the size, + /// in non-variably-sized elements, of a variable length array type, + /// plus that largest non-variably-sized element type. Assumes that + /// the type has already been emitted with EmitVariablyModifiedType. + std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); + std::pair<llvm::Value*,QualType> getVLASize(QualType vla); + + /// LoadCXXThis - Load the value of 'this'. This function is only valid while + /// generating code for an C++ member function. + llvm::Value *LoadCXXThis() { + assert(CXXThisValue && "no 'this' value for this function"); + return CXXThisValue; + } + + /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have + /// virtual bases. + llvm::Value *LoadCXXVTT() { + assert(CXXVTTValue && "no VTT value for this function"); + return CXXVTTValue; + } + + /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a + /// complete class to the given direct base. + llvm::Value * + GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, + const CXXRecordDecl *Derived, + const CXXRecordDecl *Base, + bool BaseIsVirtual); + + /// GetAddressOfBaseClass - This function will add the necessary delta to the + /// load of 'this' and returns address of the base class. + llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, + const CXXRecordDecl *Derived, + CastExpr::path_const_iterator PathBegin, + CastExpr::path_const_iterator PathEnd, + bool NullCheckValue); + + llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, + const CXXRecordDecl *Derived, + CastExpr::path_const_iterator PathBegin, + CastExpr::path_const_iterator PathEnd, + bool NullCheckValue); + + llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, + const CXXRecordDecl *ClassDecl, + const CXXRecordDecl *BaseClassDecl); + + void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, + CXXCtorType CtorType, + const FunctionArgList &Args); + // It's important not to confuse this and the previous function. Delegating + // constructors are the C++0x feature. The constructor delegate optimization + // is used to reduce duplication in the base and complete consturctors where + // they are substantially the same. + void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, + const FunctionArgList &Args); + void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, + bool ForVirtualBase, llvm::Value *This, + CallExpr::const_arg_iterator ArgBeg, + CallExpr::const_arg_iterator ArgEnd); + + void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, + llvm::Value *This, llvm::Value *Src, + CallExpr::const_arg_iterator ArgBeg, + CallExpr::const_arg_iterator ArgEnd); + + void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, + const ConstantArrayType *ArrayTy, + llvm::Value *ArrayPtr, + CallExpr::const_arg_iterator ArgBeg, + CallExpr::const_arg_iterator ArgEnd, + bool ZeroInitialization = false); + + void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, + llvm::Value *NumElements, + llvm::Value *ArrayPtr, + CallExpr::const_arg_iterator ArgBeg, + CallExpr::const_arg_iterator ArgEnd, + bool ZeroInitialization = false); + + static Destroyer destroyCXXObject; + + void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, + bool ForVirtualBase, llvm::Value *This); + + void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, + llvm::Value *NewPtr, llvm::Value *NumElements); + + void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, + llvm::Value *Ptr); + + llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); + void EmitCXXDeleteExpr(const CXXDeleteExpr *E); + + void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, + QualType DeleteTy); + + llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); + llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); + + void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); + void EmitStdInitializerListCleanup(llvm::Value *loc, + const InitListExpr *init); + + void EmitCheck(llvm::Value *, unsigned Size); + + llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, + bool isInc, bool isPre); + ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, + bool isInc, bool isPre); + //===--------------------------------------------------------------------===// + // Declaration Emission + //===--------------------------------------------------------------------===// + + /// EmitDecl - Emit a declaration. + /// + /// This function can be called with a null (unreachable) insert point. + void EmitDecl(const Decl &D); + + /// EmitVarDecl - Emit a local variable declaration. + /// + /// This function can be called with a null (unreachable) insert point. + void EmitVarDecl(const VarDecl &D); + + void EmitScalarInit(const Expr *init, const ValueDecl *D, + LValue lvalue, bool capturedByInit); + void EmitScalarInit(llvm::Value *init, LValue lvalue); + + typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, + llvm::Value *Address); + + /// EmitAutoVarDecl - Emit an auto variable declaration. + /// + /// This function can be called with a null (unreachable) insert point. + void EmitAutoVarDecl(const VarDecl &D); + + class AutoVarEmission { + friend class CodeGenFunction; + + const VarDecl *Variable; + + /// The alignment of the variable. + CharUnits Alignment; + + /// The address of the alloca. Null if the variable was emitted + /// as a global constant. + llvm::Value *Address; + + llvm::Value *NRVOFlag; + + /// True if the variable is a __block variable. + bool IsByRef; + + /// True if the variable is of aggregate type and has a constant + /// initializer. + bool IsConstantAggregate; + + struct Invalid {}; + AutoVarEmission(Invalid) : Variable(0) {} + + AutoVarEmission(const VarDecl &variable) + : Variable(&variable), Address(0), NRVOFlag(0), + IsByRef(false), IsConstantAggregate(false) {} + + bool wasEmittedAsGlobal() const { return Address == 0; } + + public: + static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } + + /// Returns the address of the object within this declaration. + /// Note that this does not chase the forwarding pointer for + /// __block decls. + llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { + if (!IsByRef) return Address; + + return CGF.Builder.CreateStructGEP(Address, + CGF.getByRefValueLLVMField(Variable), + Variable->getNameAsString()); + } + }; + AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); + void EmitAutoVarInit(const AutoVarEmission &emission); + void EmitAutoVarCleanups(const AutoVarEmission &emission); + void emitAutoVarTypeCleanup(const AutoVarEmission &emission, + QualType::DestructionKind dtorKind); + + void EmitStaticVarDecl(const VarDecl &D, + llvm::GlobalValue::LinkageTypes Linkage); + + /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. + void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); + + /// protectFromPeepholes - Protect a value that we're intending to + /// store to the side, but which will probably be used later, from + /// aggressive peepholing optimizations that might delete it. + /// + /// Pass the result to unprotectFromPeepholes to declare that + /// protection is no longer required. + /// + /// There's no particular reason why this shouldn't apply to + /// l-values, it's just that no existing peepholes work on pointers. + PeepholeProtection protectFromPeepholes(RValue rvalue); + void unprotectFromPeepholes(PeepholeProtection protection); + + //===--------------------------------------------------------------------===// + // Statement Emission + //===--------------------------------------------------------------------===// + + /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. + void EmitStopPoint(const Stmt *S); + + /// EmitStmt - Emit the code for the statement \arg S. It is legal to call + /// this function even if there is no current insertion point. + /// + /// This function may clear the current insertion point; callers should use + /// EnsureInsertPoint if they wish to subsequently generate code without first + /// calling EmitBlock, EmitBranch, or EmitStmt. + void EmitStmt(const Stmt *S); + + /// EmitSimpleStmt - Try to emit a "simple" statement which does not + /// necessarily require an insertion point or debug information; typically + /// because the statement amounts to a jump or a container of other + /// statements. + /// + /// \return True if the statement was handled. + bool EmitSimpleStmt(const Stmt *S); + + RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, + AggValueSlot AVS = AggValueSlot::ignored()); + + /// EmitLabel - Emit the block for the given label. It is legal to call this + /// function even if there is no current insertion point. + void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. + + void EmitLabelStmt(const LabelStmt &S); + void EmitAttributedStmt(const AttributedStmt &S); + void EmitGotoStmt(const GotoStmt &S); + void EmitIndirectGotoStmt(const IndirectGotoStmt &S); + void EmitIfStmt(const IfStmt &S); + void EmitWhileStmt(const WhileStmt &S); + void EmitDoStmt(const DoStmt &S); + void EmitForStmt(const ForStmt &S); + void EmitReturnStmt(const ReturnStmt &S); + void EmitDeclStmt(const DeclStmt &S); + void EmitBreakStmt(const BreakStmt &S); + void EmitContinueStmt(const ContinueStmt &S); + void EmitSwitchStmt(const SwitchStmt &S); + void EmitDefaultStmt(const DefaultStmt &S); + void EmitCaseStmt(const CaseStmt &S); + void EmitCaseStmtRange(const CaseStmt &S); + void EmitAsmStmt(const AsmStmt &S); + + void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); + void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); + void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); + void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); + void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); + + llvm::Constant *getUnwindResumeFn(); + llvm::Constant *getUnwindResumeOrRethrowFn(); + void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); + void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); + + void EmitCXXTryStmt(const CXXTryStmt &S); + void EmitCXXForRangeStmt(const CXXForRangeStmt &S); + + //===--------------------------------------------------------------------===// + // LValue Expression Emission + //===--------------------------------------------------------------------===// + + /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. + RValue GetUndefRValue(QualType Ty); + + /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E + /// and issue an ErrorUnsupported style diagnostic (using the + /// provided Name). + RValue EmitUnsupportedRValue(const Expr *E, + const char *Name); + + /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue + /// an ErrorUnsupported style diagnostic (using the provided Name). + LValue EmitUnsupportedLValue(const Expr *E, + const char *Name); + + /// EmitLValue - Emit code to compute a designator that specifies the location + /// of the expression. + /// + /// This can return one of two things: a simple address or a bitfield + /// reference. In either case, the LLVM Value* in the LValue structure is + /// guaranteed to be an LLVM pointer type. + /// + /// If this returns a bitfield reference, nothing about the pointee type of + /// the LLVM value is known: For example, it may not be a pointer to an + /// integer. + /// + /// If this returns a normal address, and if the lvalue's C type is fixed + /// size, this method guarantees that the returned pointer type will point to + /// an LLVM type of the same size of the lvalue's type. If the lvalue has a + /// variable length type, this is not possible. + /// + LValue EmitLValue(const Expr *E); + + /// EmitCheckedLValue - Same as EmitLValue but additionally we generate + /// checking code to guard against undefined behavior. This is only + /// suitable when we know that the address will be used to access the + /// object. + LValue EmitCheckedLValue(const Expr *E); + + /// EmitToMemory - Change a scalar value from its value + /// representation to its in-memory representation. + llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); + + /// EmitFromMemory - Change a scalar value from its memory + /// representation to its value representation. + llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); + + /// EmitLoadOfScalar - Load a scalar value from an address, taking + /// care to appropriately convert from the memory representation to + /// the LLVM value representation. + llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, + unsigned Alignment, QualType Ty, + llvm::MDNode *TBAAInfo = 0); + + /// EmitLoadOfScalar - Load a scalar value from an address, taking + /// care to appropriately convert from the memory representation to + /// the LLVM value representation. The l-value must be a simple + /// l-value. + llvm::Value *EmitLoadOfScalar(LValue lvalue); + + /// EmitStoreOfScalar - Store a scalar value to an address, taking + /// care to appropriately convert from the memory representation to + /// the LLVM value representation. + void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, + bool Volatile, unsigned Alignment, QualType Ty, + llvm::MDNode *TBAAInfo = 0, bool isInit=false); + + /// EmitStoreOfScalar - Store a scalar value to an address, taking + /// care to appropriately convert from the memory representation to + /// the LLVM value representation. The l-value must be a simple + /// l-value. The isInit flag indicates whether this is an initialization. + /// If so, atomic qualifiers are ignored and the store is always non-atomic. + void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); + + /// EmitLoadOfLValue - Given an expression that represents a value lvalue, + /// this method emits the address of the lvalue, then loads the result as an + /// rvalue, returning the rvalue. + RValue EmitLoadOfLValue(LValue V); + RValue EmitLoadOfExtVectorElementLValue(LValue V); + RValue EmitLoadOfBitfieldLValue(LValue LV); + + /// EmitStoreThroughLValue - Store the specified rvalue into the specified + /// lvalue, where both are guaranteed to the have the same type, and that type + /// is 'Ty'. + void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); + void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); + + /// EmitStoreThroughLValue - Store Src into Dst with same constraints as + /// EmitStoreThroughLValue. + /// + /// \param Result [out] - If non-null, this will be set to a Value* for the + /// bit-field contents after the store, appropriate for use as the result of + /// an assignment to the bit-field. + void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, + llvm::Value **Result=0); + + /// Emit an l-value for an assignment (simple or compound) of complex type. + LValue EmitComplexAssignmentLValue(const BinaryOperator *E); + LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); + + // Note: only available for agg return types + LValue EmitBinaryOperatorLValue(const BinaryOperator *E); + LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); + // Note: only available for agg return types + LValue EmitCallExprLValue(const CallExpr *E); + // Note: only available for agg return types + LValue EmitVAArgExprLValue(const VAArgExpr *E); + LValue EmitDeclRefLValue(const DeclRefExpr *E); + LValue EmitStringLiteralLValue(const StringLiteral *E); + LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); + LValue EmitPredefinedLValue(const PredefinedExpr *E); + LValue EmitUnaryOpLValue(const UnaryOperator *E); + LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); + LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); + LValue EmitMemberExpr(const MemberExpr *E); + LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); + LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); + LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); + LValue EmitCastLValue(const CastExpr *E); + LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); + LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); + LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); + + RValue EmitRValueForField(LValue LV, const FieldDecl *FD); + + class ConstantEmission { + llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; + ConstantEmission(llvm::Constant *C, bool isReference) + : ValueAndIsReference(C, isReference) {} + public: + ConstantEmission() {} + static ConstantEmission forReference(llvm::Constant *C) { + return ConstantEmission(C, true); + } + static ConstantEmission forValue(llvm::Constant *C) { + return ConstantEmission(C, false); + } + + operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } + + bool isReference() const { return ValueAndIsReference.getInt(); } + LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { + assert(isReference()); + return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), + refExpr->getType()); + } + + llvm::Constant *getValue() const { + assert(!isReference()); + return ValueAndIsReference.getPointer(); + } + }; + + ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); + + RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, + AggValueSlot slot = AggValueSlot::ignored()); + LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); + + llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, + const ObjCIvarDecl *Ivar); + LValue EmitLValueForAnonRecordField(llvm::Value* Base, + const IndirectFieldDecl* Field, + unsigned CVRQualifiers); + LValue EmitLValueForField(LValue Base, const FieldDecl* Field); + + /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that + /// if the Field is a reference, this will return the address of the reference + /// and not the address of the value stored in the reference. + LValue EmitLValueForFieldInitialization(LValue Base, + const FieldDecl* Field); + + LValue EmitLValueForIvar(QualType ObjectTy, + llvm::Value* Base, const ObjCIvarDecl *Ivar, + unsigned CVRQualifiers); + + LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field, + unsigned CVRQualifiers); + + LValue EmitCXXConstructLValue(const CXXConstructExpr *E); + LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); + LValue EmitLambdaLValue(const LambdaExpr *E); + LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); + + LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); + LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); + LValue EmitStmtExprLValue(const StmtExpr *E); + LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); + LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); + void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); + + //===--------------------------------------------------------------------===// + // Scalar Expression Emission + //===--------------------------------------------------------------------===// + + /// EmitCall - Generate a call of the given function, expecting the given + /// result type, and using the given argument list which specifies both the + /// LLVM arguments and the types they were derived from. + /// + /// \param TargetDecl - If given, the decl of the function in a direct call; + /// used to set attributes on the call (noreturn, etc.). + RValue EmitCall(const CGFunctionInfo &FnInfo, + llvm::Value *Callee, + ReturnValueSlot ReturnValue, + const CallArgList &Args, + const Decl *TargetDecl = 0, + llvm::Instruction **callOrInvoke = 0); + + RValue EmitCall(QualType FnType, llvm::Value *Callee, + ReturnValueSlot ReturnValue, + CallExpr::const_arg_iterator ArgBeg, + CallExpr::const_arg_iterator ArgEnd, + const Decl *TargetDecl = 0); + RValue EmitCallExpr(const CallExpr *E, + ReturnValueSlot ReturnValue = ReturnValueSlot()); + + llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, + ArrayRef<llvm::Value *> Args, + const Twine &Name = ""); + llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, + const Twine &Name = ""); + + llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, + llvm::Type *Ty); + llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, + llvm::Value *This, llvm::Type *Ty); + llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, + NestedNameSpecifier *Qual, + llvm::Type *Ty); + + llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, + CXXDtorType Type, + const CXXRecordDecl *RD); + + RValue EmitCXXMemberCall(const CXXMethodDecl *MD, + llvm::Value *Callee, + ReturnValueSlot ReturnValue, + llvm::Value *This, + llvm::Value *VTT, + CallExpr::const_arg_iterator ArgBeg, + CallExpr::const_arg_iterator ArgEnd); + RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, + ReturnValueSlot ReturnValue); + RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, + ReturnValueSlot ReturnValue); + + llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, + const CXXMethodDecl *MD, + llvm::Value *This); + RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, + const CXXMethodDecl *MD, + ReturnValueSlot ReturnValue); + + RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, + ReturnValueSlot ReturnValue); + + + RValue EmitBuiltinExpr(const FunctionDecl *FD, + unsigned BuiltinID, const CallExpr *E); + + RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); + + /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call + /// is unhandled by the current target. + llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); + + llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); + llvm::Value *EmitNeonCall(llvm::Function *F, + SmallVectorImpl<llvm::Value*> &O, + const char *name, + unsigned shift = 0, bool rightshift = false); + llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); + llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, + bool negateForRightShift); + + llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); + llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); + llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); + llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); + + llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); + llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); + llvm::Value *EmitObjCNumericLiteral(const ObjCNumericLiteral *E); + llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); + llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); + llvm::Value *EmitObjCCollectionLiteral(const Expr *E, + const ObjCMethodDecl *MethodWithObjects); + llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); + RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, + ReturnValueSlot Return = ReturnValueSlot()); + + /// Retrieves the default cleanup kind for an ARC cleanup. + /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. + CleanupKind getARCCleanupKind() { + return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions + ? NormalAndEHCleanup : NormalCleanup; + } + + // ARC primitives. + void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); + void EmitARCDestroyWeak(llvm::Value *addr); + llvm::Value *EmitARCLoadWeak(llvm::Value *addr); + llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); + llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, + bool ignored); + void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); + void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); + llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); + llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); + llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, + bool ignored); + llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, + bool ignored); + llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); + llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); + llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); + void EmitARCRelease(llvm::Value *value, bool precise); + llvm::Value *EmitARCAutorelease(llvm::Value *value); + llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); + llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); + llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); + + std::pair<LValue,llvm::Value*> + EmitARCStoreAutoreleasing(const BinaryOperator *e); + std::pair<LValue,llvm::Value*> + EmitARCStoreStrong(const BinaryOperator *e, bool ignored); + + llvm::Value *EmitObjCThrowOperand(const Expr *expr); + + llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); + llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); + llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); + + llvm::Value *EmitARCExtendBlockObject(const Expr *expr); + llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); + llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); + + static Destroyer destroyARCStrongImprecise; + static Destroyer destroyARCStrongPrecise; + static Destroyer destroyARCWeak; + + void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); + llvm::Value *EmitObjCAutoreleasePoolPush(); + llvm::Value *EmitObjCMRRAutoreleasePoolPush(); + void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); + void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); + + /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in + /// expression. Will emit a temporary variable if E is not an LValue. + RValue EmitReferenceBindingToExpr(const Expr* E, + const NamedDecl *InitializedDecl); + + //===--------------------------------------------------------------------===// + // Expression Emission + //===--------------------------------------------------------------------===// + + // Expressions are broken into three classes: scalar, complex, aggregate. + + /// EmitScalarExpr - Emit the computation of the specified expression of LLVM + /// scalar type, returning the result. + llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); + + /// EmitScalarConversion - Emit a conversion from the specified type to the + /// specified destination type, both of which are LLVM scalar types. + llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, + QualType DstTy); + + /// EmitComplexToScalarConversion - Emit a conversion from the specified + /// complex type to the specified destination type, where the destination type + /// is an LLVM scalar type. + llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, + QualType DstTy); + + + /// EmitAggExpr - Emit the computation of the specified expression + /// of aggregate type. The result is computed into the given slot, + /// which may be null to indicate that the value is not needed. + void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false); + + /// EmitAggExprToLValue - Emit the computation of the specified expression of + /// aggregate type into a temporary LValue. + LValue EmitAggExprToLValue(const Expr *E); + + /// EmitGCMemmoveCollectable - Emit special API for structs with object + /// pointers. + void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, + QualType Ty); + + /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, + /// make sure it survives garbage collection until this point. + void EmitExtendGCLifetime(llvm::Value *object); + + /// EmitComplexExpr - Emit the computation of the specified expression of + /// complex type, returning the result. + ComplexPairTy EmitComplexExpr(const Expr *E, + bool IgnoreReal = false, + bool IgnoreImag = false); + + /// EmitComplexExprIntoAddr - Emit the computation of the specified expression + /// of complex type, storing into the specified Value*. + void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, + bool DestIsVolatile); + + /// StoreComplexToAddr - Store a complex number into the specified address. + void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, + bool DestIsVolatile); + /// LoadComplexFromAddr - Load a complex number from the specified address. + ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); + + /// CreateStaticVarDecl - Create a zero-initialized LLVM global for + /// a static local variable. + llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, + const char *Separator, + llvm::GlobalValue::LinkageTypes Linkage); + + /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the + /// global variable that has already been created for it. If the initializer + /// has a different type than GV does, this may free GV and return a different + /// one. Otherwise it just returns GV. + llvm::GlobalVariable * + AddInitializerToStaticVarDecl(const VarDecl &D, + llvm::GlobalVariable *GV); + + + /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ + /// variable with global storage. + void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, + bool PerformInit); + + /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr + /// with the C++ runtime so that its destructor will be called at exit. + void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn, + llvm::Constant *DeclPtr); + + /// Emit code in this function to perform a guarded variable + /// initialization. Guarded initializations are used when it's not + /// possible to prove that an initialization will be done exactly + /// once, e.g. with a static local variable or a static data member + /// of a class template. + void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, + bool PerformInit); + + /// GenerateCXXGlobalInitFunc - Generates code for initializing global + /// variables. + void GenerateCXXGlobalInitFunc(llvm::Function *Fn, + llvm::Constant **Decls, + unsigned NumDecls); + + /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global + /// variables. + void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, + const std::vector<std::pair<llvm::WeakVH, + llvm::Constant*> > &DtorsAndObjects); + + void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, + const VarDecl *D, + llvm::GlobalVariable *Addr, + bool PerformInit); + + void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); + + void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, + const Expr *Exp); + + void enterFullExpression(const ExprWithCleanups *E) { + if (E->getNumObjects() == 0) return; + enterNonTrivialFullExpression(E); + } + void enterNonTrivialFullExpression(const ExprWithCleanups *E); + + void EmitCXXThrowExpr(const CXXThrowExpr *E); + + void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); + + RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); + + //===--------------------------------------------------------------------===// + // Annotations Emission + //===--------------------------------------------------------------------===// + + /// Emit an annotation call (intrinsic or builtin). + llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, + llvm::Value *AnnotatedVal, + llvm::StringRef AnnotationStr, + SourceLocation Location); + + /// Emit local annotations for the local variable V, declared by D. + void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); + + /// Emit field annotations for the given field & value. Returns the + /// annotation result. + llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); + + //===--------------------------------------------------------------------===// + // Internal Helpers + //===--------------------------------------------------------------------===// + + /// ContainsLabel - Return true if the statement contains a label in it. If + /// this statement is not executed normally, it not containing a label means + /// that we can just remove the code. + static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); + + /// containsBreak - Return true if the statement contains a break out of it. + /// If the statement (recursively) contains a switch or loop with a break + /// inside of it, this is fine. + static bool containsBreak(const Stmt *S); + + /// ConstantFoldsToSimpleInteger - If the specified expression does not fold + /// to a constant, or if it does but contains a label, return false. If it + /// constant folds return true and set the boolean result in Result. + bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); + + /// ConstantFoldsToSimpleInteger - If the specified expression does not fold + /// to a constant, or if it does but contains a label, return false. If it + /// constant folds return true and set the folded value. + bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); + + /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an + /// if statement) to the specified blocks. Based on the condition, this might + /// try to simplify the codegen of the conditional based on the branch. + void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, + llvm::BasicBlock *FalseBlock); + + /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll + /// generate a branch around the created basic block as necessary. + llvm::BasicBlock *getTrapBB(); + + /// EmitCallArg - Emit a single call argument. + void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); + + /// EmitDelegateCallArg - We are performing a delegate call; that + /// is, the current function is delegating to another one. Produce + /// a r-value suitable for passing the given parameter. + void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); + + /// SetFPAccuracy - Set the minimum required accuracy of the given floating + /// point operation, expressed as the maximum relative error in ulp. + void SetFPAccuracy(llvm::Value *Val, float Accuracy); + +private: + llvm::MDNode *getRangeForLoadFromType(QualType Ty); + void EmitReturnOfRValue(RValue RV, QualType Ty); + + /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty + /// from function arguments into \arg Dst. See ABIArgInfo::Expand. + /// + /// \param AI - The first function argument of the expansion. + /// \return The argument following the last expanded function + /// argument. + llvm::Function::arg_iterator + ExpandTypeFromArgs(QualType Ty, LValue Dst, + llvm::Function::arg_iterator AI); + + /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg + /// Ty, into individual arguments on the provided vector \arg Args. See + /// ABIArgInfo::Expand. + void ExpandTypeToArgs(QualType Ty, RValue Src, + SmallVector<llvm::Value*, 16> &Args, + llvm::FunctionType *IRFuncTy); + + llvm::Value* EmitAsmInput(const AsmStmt &S, + const TargetInfo::ConstraintInfo &Info, + const Expr *InputExpr, std::string &ConstraintStr); + + llvm::Value* EmitAsmInputLValue(const AsmStmt &S, + const TargetInfo::ConstraintInfo &Info, + LValue InputValue, QualType InputType, + std::string &ConstraintStr); + + /// EmitCallArgs - Emit call arguments for a function. + /// The CallArgTypeInfo parameter is used for iterating over the known + /// argument types of the function being called. + template<typename T> + void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, + CallExpr::const_arg_iterator ArgBeg, + CallExpr::const_arg_iterator ArgEnd) { + CallExpr::const_arg_iterator Arg = ArgBeg; + + // First, use the argument types that the type info knows about + if (CallArgTypeInfo) { + for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), + E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { + assert(Arg != ArgEnd && "Running over edge of argument list!"); + QualType ArgType = *I; +#ifndef NDEBUG + QualType ActualArgType = Arg->getType(); + if (ArgType->isPointerType() && ActualArgType->isPointerType()) { + QualType ActualBaseType = + ActualArgType->getAs<PointerType>()->getPointeeType(); + QualType ArgBaseType = + ArgType->getAs<PointerType>()->getPointeeType(); + if (ArgBaseType->isVariableArrayType()) { + if (const VariableArrayType *VAT = + getContext().getAsVariableArrayType(ActualBaseType)) { + if (!VAT->getSizeExpr()) + ActualArgType = ArgType; + } + } + } + assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). + getTypePtr() == + getContext().getCanonicalType(ActualArgType).getTypePtr() && + "type mismatch in call argument!"); +#endif + EmitCallArg(Args, *Arg, ArgType); + } + + // Either we've emitted all the call args, or we have a call to a + // variadic function. + assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && + "Extra arguments in non-variadic function!"); + + } + + // If we still have any arguments, emit them using the type of the argument. + for (; Arg != ArgEnd; ++Arg) + EmitCallArg(Args, *Arg, Arg->getType()); + } + + const TargetCodeGenInfo &getTargetHooks() const { + return CGM.getTargetCodeGenInfo(); + } + + void EmitDeclMetadata(); + + CodeGenModule::ByrefHelpers * + buildByrefHelpers(llvm::StructType &byrefType, + const AutoVarEmission &emission); + + void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); + + /// GetPointeeAlignment - Given an expression with a pointer type, find the + /// alignment of the type referenced by the pointer. Skip over implicit + /// casts. + unsigned GetPointeeAlignment(const Expr *Addr); + + /// GetPointeeAlignmentValue - Given an expression with a pointer type, find + /// the alignment of the type referenced by the pointer. Skip over implicit + /// casts. Return the alignment as an llvm::Value. + llvm::Value *GetPointeeAlignmentValue(const Expr *Addr); +}; + +/// Helper class with most of the code for saving a value for a +/// conditional expression cleanup. +struct DominatingLLVMValue { + typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; + + /// Answer whether the given value needs extra work to be saved. + static bool needsSaving(llvm::Value *value) { + // If it's not an instruction, we don't need to save. + if (!isa<llvm::Instruction>(value)) return false; + + // If it's an instruction in the entry block, we don't need to save. + llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); + return (block != &block->getParent()->getEntryBlock()); + } + + /// Try to save the given value. + static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { + if (!needsSaving(value)) return saved_type(value, false); + + // Otherwise we need an alloca. + llvm::Value *alloca = + CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); + CGF.Builder.CreateStore(value, alloca); + + return saved_type(alloca, true); + } + + static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { + if (!value.getInt()) return value.getPointer(); + return CGF.Builder.CreateLoad(value.getPointer()); + } +}; + +/// A partial specialization of DominatingValue for llvm::Values that +/// might be llvm::Instructions. +template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { + typedef T *type; + static type restore(CodeGenFunction &CGF, saved_type value) { + return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); + } +}; + +/// A specialization of DominatingValue for RValue. +template <> struct DominatingValue<RValue> { + typedef RValue type; + class saved_type { + enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, + AggregateAddress, ComplexAddress }; + + llvm::Value *Value; + Kind K; + saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} + + public: + static bool needsSaving(RValue value); + static saved_type save(CodeGenFunction &CGF, RValue value); + RValue restore(CodeGenFunction &CGF); + + // implementations in CGExprCXX.cpp + }; + + static bool needsSaving(type value) { + return saved_type::needsSaving(value); + } + static saved_type save(CodeGenFunction &CGF, type value) { + return saved_type::save(CGF, value); + } + static type restore(CodeGenFunction &CGF, saved_type value) { + return value.restore(CGF); + } +}; + +} // end namespace CodeGen +} // end namespace clang + +#endif |