summaryrefslogtreecommitdiff
path: root/clang/lib/CodeGen/CGExprConstant.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/CodeGen/CGExprConstant.cpp')
-rw-r--r--clang/lib/CodeGen/CGExprConstant.cpp1496
1 files changed, 1496 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGExprConstant.cpp b/clang/lib/CodeGen/CGExprConstant.cpp
new file mode 100644
index 0000000..bc9f9ef
--- /dev/null
+++ b/clang/lib/CodeGen/CGExprConstant.cpp
@@ -0,0 +1,1496 @@
+//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Constant Expr nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "CGCXXABI.h"
+#include "CGObjCRuntime.h"
+#include "CGRecordLayout.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/Builtins.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Target/TargetData.h"
+using namespace clang;
+using namespace CodeGen;
+
+//===----------------------------------------------------------------------===//
+// ConstStructBuilder
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ConstStructBuilder {
+ CodeGenModule &CGM;
+ CodeGenFunction *CGF;
+
+ bool Packed;
+ CharUnits NextFieldOffsetInChars;
+ CharUnits LLVMStructAlignment;
+ SmallVector<llvm::Constant *, 32> Elements;
+public:
+ static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
+ InitListExpr *ILE);
+ static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF,
+ const APValue &Value, QualType ValTy);
+
+private:
+ ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF)
+ : CGM(CGM), CGF(CGF), Packed(false),
+ NextFieldOffsetInChars(CharUnits::Zero()),
+ LLVMStructAlignment(CharUnits::One()) { }
+
+ void AppendVTablePointer(BaseSubobject Base, llvm::Constant *VTable,
+ const CXXRecordDecl *VTableClass);
+
+ void AppendField(const FieldDecl *Field, uint64_t FieldOffset,
+ llvm::Constant *InitExpr);
+
+ void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst);
+
+ void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
+ llvm::ConstantInt *InitExpr);
+
+ void AppendPadding(CharUnits PadSize);
+
+ void AppendTailPadding(CharUnits RecordSize);
+
+ void ConvertStructToPacked();
+
+ bool Build(InitListExpr *ILE);
+ void Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
+ llvm::Constant *VTable, const CXXRecordDecl *VTableClass,
+ CharUnits BaseOffset);
+ llvm::Constant *Finalize(QualType Ty);
+
+ CharUnits getAlignment(const llvm::Constant *C) const {
+ if (Packed) return CharUnits::One();
+ return CharUnits::fromQuantity(
+ CGM.getTargetData().getABITypeAlignment(C->getType()));
+ }
+
+ CharUnits getSizeInChars(const llvm::Constant *C) const {
+ return CharUnits::fromQuantity(
+ CGM.getTargetData().getTypeAllocSize(C->getType()));
+ }
+};
+
+void ConstStructBuilder::AppendVTablePointer(BaseSubobject Base,
+ llvm::Constant *VTable,
+ const CXXRecordDecl *VTableClass) {
+ // Find the appropriate vtable within the vtable group.
+ uint64_t AddressPoint =
+ CGM.getVTableContext().getVTableLayout(VTableClass).getAddressPoint(Base);
+ llvm::Value *Indices[] = {
+ llvm::ConstantInt::get(CGM.Int64Ty, 0),
+ llvm::ConstantInt::get(CGM.Int64Ty, AddressPoint)
+ };
+ llvm::Constant *VTableAddressPoint =
+ llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Indices);
+
+ // Add the vtable at the start of the object.
+ AppendBytes(Base.getBaseOffset(), VTableAddressPoint);
+}
+
+void ConstStructBuilder::
+AppendField(const FieldDecl *Field, uint64_t FieldOffset,
+ llvm::Constant *InitCst) {
+ const ASTContext &Context = CGM.getContext();
+
+ CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
+
+ AppendBytes(FieldOffsetInChars, InitCst);
+}
+
+void ConstStructBuilder::
+AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) {
+
+ assert(NextFieldOffsetInChars <= FieldOffsetInChars
+ && "Field offset mismatch!");
+
+ CharUnits FieldAlignment = getAlignment(InitCst);
+
+ // Round up the field offset to the alignment of the field type.
+ CharUnits AlignedNextFieldOffsetInChars =
+ NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment);
+
+ if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) {
+ assert(!Packed && "Alignment is wrong even with a packed struct!");
+
+ // Convert the struct to a packed struct.
+ ConvertStructToPacked();
+
+ AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
+ }
+
+ if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) {
+ // We need to append padding.
+ AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars);
+
+ assert(NextFieldOffsetInChars == FieldOffsetInChars &&
+ "Did not add enough padding!");
+
+ AlignedNextFieldOffsetInChars = NextFieldOffsetInChars;
+ }
+
+ // Add the field.
+ Elements.push_back(InitCst);
+ NextFieldOffsetInChars = AlignedNextFieldOffsetInChars +
+ getSizeInChars(InitCst);
+
+ if (Packed)
+ assert(LLVMStructAlignment == CharUnits::One() &&
+ "Packed struct not byte-aligned!");
+ else
+ LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment);
+}
+
+void ConstStructBuilder::AppendBitField(const FieldDecl *Field,
+ uint64_t FieldOffset,
+ llvm::ConstantInt *CI) {
+ const ASTContext &Context = CGM.getContext();
+ const uint64_t CharWidth = Context.getCharWidth();
+ uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
+ if (FieldOffset > NextFieldOffsetInBits) {
+ // We need to add padding.
+ CharUnits PadSize = Context.toCharUnitsFromBits(
+ llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits,
+ Context.getTargetInfo().getCharAlign()));
+
+ AppendPadding(PadSize);
+ }
+
+ uint64_t FieldSize = Field->getBitWidthValue(Context);
+
+ llvm::APInt FieldValue = CI->getValue();
+
+ // Promote the size of FieldValue if necessary
+ // FIXME: This should never occur, but currently it can because initializer
+ // constants are cast to bool, and because clang is not enforcing bitfield
+ // width limits.
+ if (FieldSize > FieldValue.getBitWidth())
+ FieldValue = FieldValue.zext(FieldSize);
+
+ // Truncate the size of FieldValue to the bit field size.
+ if (FieldSize < FieldValue.getBitWidth())
+ FieldValue = FieldValue.trunc(FieldSize);
+
+ NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars);
+ if (FieldOffset < NextFieldOffsetInBits) {
+ // Either part of the field or the entire field can go into the previous
+ // byte.
+ assert(!Elements.empty() && "Elements can't be empty!");
+
+ unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset;
+
+ bool FitsCompletelyInPreviousByte =
+ BitsInPreviousByte >= FieldValue.getBitWidth();
+
+ llvm::APInt Tmp = FieldValue;
+
+ if (!FitsCompletelyInPreviousByte) {
+ unsigned NewFieldWidth = FieldSize - BitsInPreviousByte;
+
+ if (CGM.getTargetData().isBigEndian()) {
+ Tmp = Tmp.lshr(NewFieldWidth);
+ Tmp = Tmp.trunc(BitsInPreviousByte);
+
+ // We want the remaining high bits.
+ FieldValue = FieldValue.trunc(NewFieldWidth);
+ } else {
+ Tmp = Tmp.trunc(BitsInPreviousByte);
+
+ // We want the remaining low bits.
+ FieldValue = FieldValue.lshr(BitsInPreviousByte);
+ FieldValue = FieldValue.trunc(NewFieldWidth);
+ }
+ }
+
+ Tmp = Tmp.zext(CharWidth);
+ if (CGM.getTargetData().isBigEndian()) {
+ if (FitsCompletelyInPreviousByte)
+ Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth());
+ } else {
+ Tmp = Tmp.shl(CharWidth - BitsInPreviousByte);
+ }
+
+ // 'or' in the bits that go into the previous byte.
+ llvm::Value *LastElt = Elements.back();
+ if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt))
+ Tmp |= Val->getValue();
+ else {
+ assert(isa<llvm::UndefValue>(LastElt));
+ // If there is an undef field that we're adding to, it can either be a
+ // scalar undef (in which case, we just replace it with our field) or it
+ // is an array. If it is an array, we have to pull one byte off the
+ // array so that the other undef bytes stay around.
+ if (!isa<llvm::IntegerType>(LastElt->getType())) {
+ // The undef padding will be a multibyte array, create a new smaller
+ // padding and then an hole for our i8 to get plopped into.
+ assert(isa<llvm::ArrayType>(LastElt->getType()) &&
+ "Expected array padding of undefs");
+ llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType());
+ assert(AT->getElementType()->isIntegerTy(CharWidth) &&
+ AT->getNumElements() != 0 &&
+ "Expected non-empty array padding of undefs");
+
+ // Remove the padding array.
+ NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements());
+ Elements.pop_back();
+
+ // Add the padding back in two chunks.
+ AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1));
+ AppendPadding(CharUnits::One());
+ assert(isa<llvm::UndefValue>(Elements.back()) &&
+ Elements.back()->getType()->isIntegerTy(CharWidth) &&
+ "Padding addition didn't work right");
+ }
+ }
+
+ Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp);
+
+ if (FitsCompletelyInPreviousByte)
+ return;
+ }
+
+ while (FieldValue.getBitWidth() > CharWidth) {
+ llvm::APInt Tmp;
+
+ if (CGM.getTargetData().isBigEndian()) {
+ // We want the high bits.
+ Tmp =
+ FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth);
+ } else {
+ // We want the low bits.
+ Tmp = FieldValue.trunc(CharWidth);
+
+ FieldValue = FieldValue.lshr(CharWidth);
+ }
+
+ Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp));
+ ++NextFieldOffsetInChars;
+
+ FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth);
+ }
+
+ assert(FieldValue.getBitWidth() > 0 &&
+ "Should have at least one bit left!");
+ assert(FieldValue.getBitWidth() <= CharWidth &&
+ "Should not have more than a byte left!");
+
+ if (FieldValue.getBitWidth() < CharWidth) {
+ if (CGM.getTargetData().isBigEndian()) {
+ unsigned BitWidth = FieldValue.getBitWidth();
+
+ FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth);
+ } else
+ FieldValue = FieldValue.zext(CharWidth);
+ }
+
+ // Append the last element.
+ Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(),
+ FieldValue));
+ ++NextFieldOffsetInChars;
+}
+
+void ConstStructBuilder::AppendPadding(CharUnits PadSize) {
+ if (PadSize.isZero())
+ return;
+
+ llvm::Type *Ty = CGM.Int8Ty;
+ if (PadSize > CharUnits::One())
+ Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
+
+ llvm::Constant *C = llvm::UndefValue::get(Ty);
+ Elements.push_back(C);
+ assert(getAlignment(C) == CharUnits::One() &&
+ "Padding must have 1 byte alignment!");
+
+ NextFieldOffsetInChars += getSizeInChars(C);
+}
+
+void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) {
+ assert(NextFieldOffsetInChars <= RecordSize &&
+ "Size mismatch!");
+
+ AppendPadding(RecordSize - NextFieldOffsetInChars);
+}
+
+void ConstStructBuilder::ConvertStructToPacked() {
+ SmallVector<llvm::Constant *, 16> PackedElements;
+ CharUnits ElementOffsetInChars = CharUnits::Zero();
+
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ llvm::Constant *C = Elements[i];
+
+ CharUnits ElementAlign = CharUnits::fromQuantity(
+ CGM.getTargetData().getABITypeAlignment(C->getType()));
+ CharUnits AlignedElementOffsetInChars =
+ ElementOffsetInChars.RoundUpToAlignment(ElementAlign);
+
+ if (AlignedElementOffsetInChars > ElementOffsetInChars) {
+ // We need some padding.
+ CharUnits NumChars =
+ AlignedElementOffsetInChars - ElementOffsetInChars;
+
+ llvm::Type *Ty = CGM.Int8Ty;
+ if (NumChars > CharUnits::One())
+ Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity());
+
+ llvm::Constant *Padding = llvm::UndefValue::get(Ty);
+ PackedElements.push_back(Padding);
+ ElementOffsetInChars += getSizeInChars(Padding);
+ }
+
+ PackedElements.push_back(C);
+ ElementOffsetInChars += getSizeInChars(C);
+ }
+
+ assert(ElementOffsetInChars == NextFieldOffsetInChars &&
+ "Packing the struct changed its size!");
+
+ Elements.swap(PackedElements);
+ LLVMStructAlignment = CharUnits::One();
+ Packed = true;
+}
+
+bool ConstStructBuilder::Build(InitListExpr *ILE) {
+ if (ILE->initializesStdInitializerList()) {
+ //CGM.ErrorUnsupported(ILE, "global std::initializer_list");
+ return false;
+ }
+
+ RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
+ const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
+
+ unsigned FieldNo = 0;
+ unsigned ElementNo = 0;
+ const FieldDecl *LastFD = 0;
+ bool IsMsStruct = RD->hasAttr<MsStructAttr>();
+
+ for (RecordDecl::field_iterator Field = RD->field_begin(),
+ FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
+ if (IsMsStruct) {
+ // Zero-length bitfields following non-bitfield members are
+ // ignored:
+ if (CGM.getContext().ZeroBitfieldFollowsNonBitfield((*Field), LastFD)) {
+ --FieldNo;
+ continue;
+ }
+ LastFD = (*Field);
+ }
+
+ // If this is a union, skip all the fields that aren't being initialized.
+ if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
+ continue;
+
+ // Don't emit anonymous bitfields, they just affect layout.
+ if (Field->isUnnamedBitfield()) {
+ LastFD = (*Field);
+ continue;
+ }
+
+ // Get the initializer. A struct can include fields without initializers,
+ // we just use explicit null values for them.
+ llvm::Constant *EltInit;
+ if (ElementNo < ILE->getNumInits())
+ EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++),
+ Field->getType(), CGF);
+ else
+ EltInit = CGM.EmitNullConstant(Field->getType());
+
+ if (!EltInit)
+ return false;
+
+ if (!Field->isBitField()) {
+ // Handle non-bitfield members.
+ AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit);
+ } else {
+ // Otherwise we have a bitfield.
+ AppendBitField(*Field, Layout.getFieldOffset(FieldNo),
+ cast<llvm::ConstantInt>(EltInit));
+ }
+ }
+
+ return true;
+}
+
+namespace {
+struct BaseInfo {
+ BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
+ : Decl(Decl), Offset(Offset), Index(Index) {
+ }
+
+ const CXXRecordDecl *Decl;
+ CharUnits Offset;
+ unsigned Index;
+
+ bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
+};
+}
+
+void ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
+ bool IsPrimaryBase, llvm::Constant *VTable,
+ const CXXRecordDecl *VTableClass,
+ CharUnits Offset) {
+ const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
+
+ if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
+ // Add a vtable pointer, if we need one and it hasn't already been added.
+ if (CD->isDynamicClass() && !IsPrimaryBase)
+ AppendVTablePointer(BaseSubobject(CD, Offset), VTable, VTableClass);
+
+ // Accumulate and sort bases, in order to visit them in address order, which
+ // may not be the same as declaration order.
+ llvm::SmallVector<BaseInfo, 8> Bases;
+ Bases.reserve(CD->getNumBases());
+ unsigned BaseNo = 0;
+ for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
+ BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
+ assert(!Base->isVirtual() && "should not have virtual bases here");
+ const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
+ CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
+ Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
+ }
+ std::stable_sort(Bases.begin(), Bases.end());
+
+ for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
+ BaseInfo &Base = Bases[I];
+
+ bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
+ Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
+ VTable, VTableClass, Offset + Base.Offset);
+ }
+ }
+
+ unsigned FieldNo = 0;
+ const FieldDecl *LastFD = 0;
+ bool IsMsStruct = RD->hasAttr<MsStructAttr>();
+ uint64_t OffsetBits = CGM.getContext().toBits(Offset);
+
+ for (RecordDecl::field_iterator Field = RD->field_begin(),
+ FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
+ if (IsMsStruct) {
+ // Zero-length bitfields following non-bitfield members are
+ // ignored:
+ if (CGM.getContext().ZeroBitfieldFollowsNonBitfield((*Field), LastFD)) {
+ --FieldNo;
+ continue;
+ }
+ LastFD = (*Field);
+ }
+
+ // If this is a union, skip all the fields that aren't being initialized.
+ if (RD->isUnion() && Val.getUnionField() != *Field)
+ continue;
+
+ // Don't emit anonymous bitfields, they just affect layout.
+ if (Field->isUnnamedBitfield()) {
+ LastFD = (*Field);
+ continue;
+ }
+
+ // Emit the value of the initializer.
+ const APValue &FieldValue =
+ RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
+ llvm::Constant *EltInit =
+ CGM.EmitConstantValueForMemory(FieldValue, Field->getType(), CGF);
+ assert(EltInit && "EmitConstantValue can't fail");
+
+ if (!Field->isBitField()) {
+ // Handle non-bitfield members.
+ AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit);
+ } else {
+ // Otherwise we have a bitfield.
+ AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
+ cast<llvm::ConstantInt>(EltInit));
+ }
+ }
+}
+
+llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) {
+ RecordDecl *RD = Ty->getAs<RecordType>()->getDecl();
+ const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
+
+ CharUnits LayoutSizeInChars = Layout.getSize();
+
+ if (NextFieldOffsetInChars > LayoutSizeInChars) {
+ // If the struct is bigger than the size of the record type,
+ // we must have a flexible array member at the end.
+ assert(RD->hasFlexibleArrayMember() &&
+ "Must have flexible array member if struct is bigger than type!");
+
+ // No tail padding is necessary.
+ } else {
+ // Append tail padding if necessary.
+ AppendTailPadding(LayoutSizeInChars);
+
+ CharUnits LLVMSizeInChars =
+ NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment);
+
+ // Check if we need to convert the struct to a packed struct.
+ if (NextFieldOffsetInChars <= LayoutSizeInChars &&
+ LLVMSizeInChars > LayoutSizeInChars) {
+ assert(!Packed && "Size mismatch!");
+
+ ConvertStructToPacked();
+ assert(NextFieldOffsetInChars <= LayoutSizeInChars &&
+ "Converting to packed did not help!");
+ }
+
+ assert(LayoutSizeInChars == NextFieldOffsetInChars &&
+ "Tail padding mismatch!");
+ }
+
+ // Pick the type to use. If the type is layout identical to the ConvertType
+ // type then use it, otherwise use whatever the builder produced for us.
+ llvm::StructType *STy =
+ llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(),
+ Elements, Packed);
+ llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty);
+ if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) {
+ if (ValSTy->isLayoutIdentical(STy))
+ STy = ValSTy;
+ }
+
+ llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements);
+
+ assert(NextFieldOffsetInChars.RoundUpToAlignment(getAlignment(Result)) ==
+ getSizeInChars(Result) && "Size mismatch!");
+
+ return Result;
+}
+
+llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
+ CodeGenFunction *CGF,
+ InitListExpr *ILE) {
+ ConstStructBuilder Builder(CGM, CGF);
+
+ if (!Builder.Build(ILE))
+ return 0;
+
+ return Builder.Finalize(ILE->getType());
+}
+
+llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM,
+ CodeGenFunction *CGF,
+ const APValue &Val,
+ QualType ValTy) {
+ ConstStructBuilder Builder(CGM, CGF);
+
+ const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
+ const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
+ llvm::Constant *VTable = 0;
+ if (CD && CD->isDynamicClass())
+ VTable = CGM.getVTables().GetAddrOfVTable(CD);
+
+ Builder.Build(Val, RD, false, VTable, CD, CharUnits::Zero());
+
+ return Builder.Finalize(ValTy);
+}
+
+
+//===----------------------------------------------------------------------===//
+// ConstExprEmitter
+//===----------------------------------------------------------------------===//
+
+/// This class only needs to handle two cases:
+/// 1) Literals (this is used by APValue emission to emit literals).
+/// 2) Arrays, structs and unions (outside C++11 mode, we don't currently
+/// constant fold these types).
+class ConstExprEmitter :
+ public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
+ CodeGenModule &CGM;
+ CodeGenFunction *CGF;
+ llvm::LLVMContext &VMContext;
+public:
+ ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf)
+ : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) {
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ llvm::Constant *VisitStmt(Stmt *S) {
+ return 0;
+ }
+
+ llvm::Constant *VisitParenExpr(ParenExpr *PE) {
+ return Visit(PE->getSubExpr());
+ }
+
+ llvm::Constant *
+ VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
+ return Visit(PE->getReplacement());
+ }
+
+ llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
+ return Visit(GE->getResultExpr());
+ }
+
+ llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ return Visit(E->getInitializer());
+ }
+
+ llvm::Constant *VisitCastExpr(CastExpr* E) {
+ Expr *subExpr = E->getSubExpr();
+ llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF);
+ if (!C) return 0;
+
+ llvm::Type *destType = ConvertType(E->getType());
+
+ switch (E->getCastKind()) {
+ case CK_ToUnion: {
+ // GCC cast to union extension
+ assert(E->getType()->isUnionType() &&
+ "Destination type is not union type!");
+
+ // Build a struct with the union sub-element as the first member,
+ // and padded to the appropriate size
+ SmallVector<llvm::Constant*, 2> Elts;
+ SmallVector<llvm::Type*, 2> Types;
+ Elts.push_back(C);
+ Types.push_back(C->getType());
+ unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType());
+ unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(destType);
+
+ assert(CurSize <= TotalSize && "Union size mismatch!");
+ if (unsigned NumPadBytes = TotalSize - CurSize) {
+ llvm::Type *Ty = CGM.Int8Ty;
+ if (NumPadBytes > 1)
+ Ty = llvm::ArrayType::get(Ty, NumPadBytes);
+
+ Elts.push_back(llvm::UndefValue::get(Ty));
+ Types.push_back(Ty);
+ }
+
+ llvm::StructType* STy =
+ llvm::StructType::get(C->getType()->getContext(), Types, false);
+ return llvm::ConstantStruct::get(STy, Elts);
+ }
+
+ case CK_LValueToRValue:
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ case CK_NoOp:
+ return C;
+
+ case CK_Dependent: llvm_unreachable("saw dependent cast!");
+
+ case CK_ReinterpretMemberPointer:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
+
+ // These will never be supported.
+ case CK_ObjCObjectLValueCast:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ return 0;
+
+ // These don't need to be handled here because Evaluate knows how to
+ // evaluate them in the cases where they can be folded.
+ case CK_BitCast:
+ case CK_ToVoid:
+ case CK_Dynamic:
+ case CK_LValueBitCast:
+ case CK_NullToMemberPointer:
+ case CK_UserDefinedConversion:
+ case CK_ConstructorConversion:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_BaseToDerived:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_MemberPointerToBoolean:
+ case CK_VectorSplat:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_NullToPointer:
+ case CK_IntegralCast:
+ case CK_IntegralToPointer:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ return 0;
+ }
+ llvm_unreachable("Invalid CastKind");
+ }
+
+ llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
+ return Visit(DAE->getExpr());
+ }
+
+ llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) {
+ return Visit(E->GetTemporaryExpr());
+ }
+
+ llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) {
+ if (ILE->isStringLiteralInit())
+ return Visit(ILE->getInit(0));
+
+ llvm::ArrayType *AType =
+ cast<llvm::ArrayType>(ConvertType(ILE->getType()));
+ llvm::Type *ElemTy = AType->getElementType();
+ unsigned NumInitElements = ILE->getNumInits();
+ unsigned NumElements = AType->getNumElements();
+
+ // Initialising an array requires us to automatically
+ // initialise any elements that have not been initialised explicitly
+ unsigned NumInitableElts = std::min(NumInitElements, NumElements);
+
+ // Copy initializer elements.
+ std::vector<llvm::Constant*> Elts;
+ Elts.reserve(NumInitableElts + NumElements);
+
+ bool RewriteType = false;
+ for (unsigned i = 0; i < NumInitableElts; ++i) {
+ Expr *Init = ILE->getInit(i);
+ llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF);
+ if (!C)
+ return 0;
+ RewriteType |= (C->getType() != ElemTy);
+ Elts.push_back(C);
+ }
+
+ // Initialize remaining array elements.
+ // FIXME: This doesn't handle member pointers correctly!
+ llvm::Constant *fillC;
+ if (Expr *filler = ILE->getArrayFiller())
+ fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF);
+ else
+ fillC = llvm::Constant::getNullValue(ElemTy);
+ if (!fillC)
+ return 0;
+ RewriteType |= (fillC->getType() != ElemTy);
+ Elts.resize(NumElements, fillC);
+
+ if (RewriteType) {
+ // FIXME: Try to avoid packing the array
+ std::vector<llvm::Type*> Types;
+ Types.reserve(NumInitableElts + NumElements);
+ for (unsigned i = 0, e = Elts.size(); i < e; ++i)
+ Types.push_back(Elts[i]->getType());
+ llvm::StructType *SType = llvm::StructType::get(AType->getContext(),
+ Types, true);
+ return llvm::ConstantStruct::get(SType, Elts);
+ }
+
+ return llvm::ConstantArray::get(AType, Elts);
+ }
+
+ llvm::Constant *EmitStructInitialization(InitListExpr *ILE) {
+ return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
+ }
+
+ llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) {
+ return ConstStructBuilder::BuildStruct(CGM, CGF, ILE);
+ }
+
+ llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) {
+ return CGM.EmitNullConstant(E->getType());
+ }
+
+ llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
+ if (ILE->getType()->isArrayType())
+ return EmitArrayInitialization(ILE);
+
+ if (ILE->getType()->isRecordType())
+ return EmitStructInitialization(ILE);
+
+ if (ILE->getType()->isUnionType())
+ return EmitUnionInitialization(ILE);
+
+ return 0;
+ }
+
+ llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) {
+ if (!E->getConstructor()->isTrivial())
+ return 0;
+
+ QualType Ty = E->getType();
+
+ // FIXME: We should not have to call getBaseElementType here.
+ const RecordType *RT =
+ CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>();
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+
+ // If the class doesn't have a trivial destructor, we can't emit it as a
+ // constant expr.
+ if (!RD->hasTrivialDestructor())
+ return 0;
+
+ // Only copy and default constructors can be trivial.
+
+
+ if (E->getNumArgs()) {
+ assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
+ assert(E->getConstructor()->isCopyOrMoveConstructor() &&
+ "trivial ctor has argument but isn't a copy/move ctor");
+
+ Expr *Arg = E->getArg(0);
+ assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
+ "argument to copy ctor is of wrong type");
+
+ return Visit(Arg);
+ }
+
+ return CGM.EmitNullConstant(Ty);
+ }
+
+ llvm::Constant *VisitStringLiteral(StringLiteral *E) {
+ return CGM.GetConstantArrayFromStringLiteral(E);
+ }
+
+ llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
+ // This must be an @encode initializing an array in a static initializer.
+ // Don't emit it as the address of the string, emit the string data itself
+ // as an inline array.
+ std::string Str;
+ CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
+ const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType());
+
+ // Resize the string to the right size, adding zeros at the end, or
+ // truncating as needed.
+ Str.resize(CAT->getSize().getZExtValue(), '\0');
+ return llvm::ConstantDataArray::getString(VMContext, Str, false);
+ }
+
+ llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) {
+ return Visit(E->getSubExpr());
+ }
+
+ // Utility methods
+ llvm::Type *ConvertType(QualType T) {
+ return CGM.getTypes().ConvertType(T);
+ }
+
+public:
+ llvm::Constant *EmitLValue(APValue::LValueBase LVBase) {
+ if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) {
+ if (Decl->hasAttr<WeakRefAttr>())
+ return CGM.GetWeakRefReference(Decl);
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
+ return CGM.GetAddrOfFunction(FD);
+ if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) {
+ // We can never refer to a variable with local storage.
+ if (!VD->hasLocalStorage()) {
+ if (VD->isFileVarDecl() || VD->hasExternalStorage())
+ return CGM.GetAddrOfGlobalVar(VD);
+ else if (VD->isLocalVarDecl()) {
+ assert(CGF && "Can't access static local vars without CGF");
+ return CGF->GetAddrOfStaticLocalVar(VD);
+ }
+ }
+ }
+ return 0;
+ }
+
+ Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>());
+ switch (E->getStmtClass()) {
+ default: break;
+ case Expr::CompoundLiteralExprClass: {
+ // Note that due to the nature of compound literals, this is guaranteed
+ // to be the only use of the variable, so we just generate it here.
+ CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
+ llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(),
+ CLE->getType(), CGF);
+ // FIXME: "Leaked" on failure.
+ if (C)
+ C = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
+ E->getType().isConstant(CGM.getContext()),
+ llvm::GlobalValue::InternalLinkage,
+ C, ".compoundliteral", 0, false,
+ CGM.getContext().getTargetAddressSpace(E->getType()));
+ return C;
+ }
+ case Expr::StringLiteralClass:
+ return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E));
+ case Expr::ObjCEncodeExprClass:
+ return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E));
+ case Expr::ObjCStringLiteralClass: {
+ ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E);
+ llvm::Constant *C =
+ CGM.getObjCRuntime().GenerateConstantString(SL->getString());
+ return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
+ }
+ case Expr::PredefinedExprClass: {
+ unsigned Type = cast<PredefinedExpr>(E)->getIdentType();
+ if (CGF) {
+ LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E));
+ return cast<llvm::Constant>(Res.getAddress());
+ } else if (Type == PredefinedExpr::PrettyFunction) {
+ return CGM.GetAddrOfConstantCString("top level", ".tmp");
+ }
+
+ return CGM.GetAddrOfConstantCString("", ".tmp");
+ }
+ case Expr::AddrLabelExprClass: {
+ assert(CGF && "Invalid address of label expression outside function.");
+ llvm::Constant *Ptr =
+ CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel());
+ return llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType()));
+ }
+ case Expr::CallExprClass: {
+ CallExpr* CE = cast<CallExpr>(E);
+ unsigned builtin = CE->isBuiltinCall();
+ if (builtin !=
+ Builtin::BI__builtin___CFStringMakeConstantString &&
+ builtin !=
+ Builtin::BI__builtin___NSStringMakeConstantString)
+ break;
+ const Expr *Arg = CE->getArg(0)->IgnoreParenCasts();
+ const StringLiteral *Literal = cast<StringLiteral>(Arg);
+ if (builtin ==
+ Builtin::BI__builtin___NSStringMakeConstantString) {
+ return CGM.getObjCRuntime().GenerateConstantString(Literal);
+ }
+ // FIXME: need to deal with UCN conversion issues.
+ return CGM.GetAddrOfConstantCFString(Literal);
+ }
+ case Expr::BlockExprClass: {
+ std::string FunctionName;
+ if (CGF)
+ FunctionName = CGF->CurFn->getName();
+ else
+ FunctionName = "global";
+
+ return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str());
+ }
+ case Expr::CXXTypeidExprClass: {
+ CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E);
+ QualType T;
+ if (Typeid->isTypeOperand())
+ T = Typeid->getTypeOperand();
+ else
+ T = Typeid->getExprOperand()->getType();
+ return CGM.GetAddrOfRTTIDescriptor(T);
+ }
+ }
+
+ return 0;
+ }
+};
+
+} // end anonymous namespace.
+
+llvm::Constant *CodeGenModule::EmitConstantInit(const VarDecl &D,
+ CodeGenFunction *CGF) {
+ if (const APValue *Value = D.evaluateValue())
+ return EmitConstantValueForMemory(*Value, D.getType(), CGF);
+
+ // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
+ // reference is a constant expression, and the reference binds to a temporary,
+ // then constant initialization is performed. ConstExprEmitter will
+ // incorrectly emit a prvalue constant in this case, and the calling code
+ // interprets that as the (pointer) value of the reference, rather than the
+ // desired value of the referee.
+ if (D.getType()->isReferenceType())
+ return 0;
+
+ const Expr *E = D.getInit();
+ assert(E && "No initializer to emit");
+
+ llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
+ if (C && C->getType()->isIntegerTy(1)) {
+ llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
+ C = llvm::ConstantExpr::getZExt(C, BoolTy);
+ }
+ return C;
+}
+
+llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E,
+ QualType DestType,
+ CodeGenFunction *CGF) {
+ Expr::EvalResult Result;
+
+ bool Success = false;
+
+ if (DestType->isReferenceType())
+ Success = E->EvaluateAsLValue(Result, Context);
+ else
+ Success = E->EvaluateAsRValue(Result, Context);
+
+ llvm::Constant *C = 0;
+ if (Success && !Result.HasSideEffects)
+ C = EmitConstantValue(Result.Val, DestType, CGF);
+ else
+ C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E));
+
+ if (C && C->getType()->isIntegerTy(1)) {
+ llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType());
+ C = llvm::ConstantExpr::getZExt(C, BoolTy);
+ }
+ return C;
+}
+
+llvm::Constant *CodeGenModule::EmitConstantValue(const APValue &Value,
+ QualType DestType,
+ CodeGenFunction *CGF) {
+ switch (Value.getKind()) {
+ case APValue::Uninitialized:
+ llvm_unreachable("Constant expressions should be initialized.");
+ case APValue::LValue: {
+ llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType);
+ llvm::Constant *Offset =
+ llvm::ConstantInt::get(Int64Ty, Value.getLValueOffset().getQuantity());
+
+ llvm::Constant *C;
+ if (APValue::LValueBase LVBase = Value.getLValueBase()) {
+ // An array can be represented as an lvalue referring to the base.
+ if (isa<llvm::ArrayType>(DestTy)) {
+ assert(Offset->isNullValue() && "offset on array initializer");
+ return ConstExprEmitter(*this, CGF).Visit(
+ const_cast<Expr*>(LVBase.get<const Expr*>()));
+ }
+
+ C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase);
+
+ // Apply offset if necessary.
+ if (!Offset->isNullValue()) {
+ llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Int8PtrTy);
+ Casted = llvm::ConstantExpr::getGetElementPtr(Casted, Offset);
+ C = llvm::ConstantExpr::getBitCast(Casted, C->getType());
+ }
+
+ // Convert to the appropriate type; this could be an lvalue for
+ // an integer.
+ if (isa<llvm::PointerType>(DestTy))
+ return llvm::ConstantExpr::getBitCast(C, DestTy);
+
+ return llvm::ConstantExpr::getPtrToInt(C, DestTy);
+ } else {
+ C = Offset;
+
+ // Convert to the appropriate type; this could be an lvalue for
+ // an integer.
+ if (isa<llvm::PointerType>(DestTy))
+ return llvm::ConstantExpr::getIntToPtr(C, DestTy);
+
+ // If the types don't match this should only be a truncate.
+ if (C->getType() != DestTy)
+ return llvm::ConstantExpr::getTrunc(C, DestTy);
+
+ return C;
+ }
+ }
+ case APValue::Int:
+ return llvm::ConstantInt::get(VMContext, Value.getInt());
+ case APValue::ComplexInt: {
+ llvm::Constant *Complex[2];
+
+ Complex[0] = llvm::ConstantInt::get(VMContext,
+ Value.getComplexIntReal());
+ Complex[1] = llvm::ConstantInt::get(VMContext,
+ Value.getComplexIntImag());
+
+ // FIXME: the target may want to specify that this is packed.
+ llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
+ Complex[1]->getType(),
+ NULL);
+ return llvm::ConstantStruct::get(STy, Complex);
+ }
+ case APValue::Float: {
+ const llvm::APFloat &Init = Value.getFloat();
+ if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf)
+ return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt());
+ else
+ return llvm::ConstantFP::get(VMContext, Init);
+ }
+ case APValue::ComplexFloat: {
+ llvm::Constant *Complex[2];
+
+ Complex[0] = llvm::ConstantFP::get(VMContext,
+ Value.getComplexFloatReal());
+ Complex[1] = llvm::ConstantFP::get(VMContext,
+ Value.getComplexFloatImag());
+
+ // FIXME: the target may want to specify that this is packed.
+ llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(),
+ Complex[1]->getType(),
+ NULL);
+ return llvm::ConstantStruct::get(STy, Complex);
+ }
+ case APValue::Vector: {
+ SmallVector<llvm::Constant *, 4> Inits;
+ unsigned NumElts = Value.getVectorLength();
+
+ for (unsigned i = 0; i != NumElts; ++i) {
+ const APValue &Elt = Value.getVectorElt(i);
+ if (Elt.isInt())
+ Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt()));
+ else
+ Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat()));
+ }
+ return llvm::ConstantVector::get(Inits);
+ }
+ case APValue::AddrLabelDiff: {
+ const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
+ const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
+ llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF);
+ llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF);
+
+ // Compute difference
+ llvm::Type *ResultType = getTypes().ConvertType(DestType);
+ LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy);
+ RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy);
+ llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
+
+ // LLVM is a bit sensitive about the exact format of the
+ // address-of-label difference; make sure to truncate after
+ // the subtraction.
+ return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
+ }
+ case APValue::Struct:
+ case APValue::Union:
+ return ConstStructBuilder::BuildStruct(*this, CGF, Value, DestType);
+ case APValue::Array: {
+ const ArrayType *CAT = Context.getAsArrayType(DestType);
+ unsigned NumElements = Value.getArraySize();
+ unsigned NumInitElts = Value.getArrayInitializedElts();
+
+ std::vector<llvm::Constant*> Elts;
+ Elts.reserve(NumElements);
+
+ // Emit array filler, if there is one.
+ llvm::Constant *Filler = 0;
+ if (Value.hasArrayFiller())
+ Filler = EmitConstantValueForMemory(Value.getArrayFiller(),
+ CAT->getElementType(), CGF);
+
+ // Emit initializer elements.
+ llvm::Type *CommonElementType = 0;
+ for (unsigned I = 0; I < NumElements; ++I) {
+ llvm::Constant *C = Filler;
+ if (I < NumInitElts)
+ C = EmitConstantValueForMemory(Value.getArrayInitializedElt(I),
+ CAT->getElementType(), CGF);
+ if (I == 0)
+ CommonElementType = C->getType();
+ else if (C->getType() != CommonElementType)
+ CommonElementType = 0;
+ Elts.push_back(C);
+ }
+
+ if (!CommonElementType) {
+ // FIXME: Try to avoid packing the array
+ std::vector<llvm::Type*> Types;
+ Types.reserve(NumElements);
+ for (unsigned i = 0, e = Elts.size(); i < e; ++i)
+ Types.push_back(Elts[i]->getType());
+ llvm::StructType *SType = llvm::StructType::get(VMContext, Types, true);
+ return llvm::ConstantStruct::get(SType, Elts);
+ }
+
+ llvm::ArrayType *AType =
+ llvm::ArrayType::get(CommonElementType, NumElements);
+ return llvm::ConstantArray::get(AType, Elts);
+ }
+ case APValue::MemberPointer:
+ return getCXXABI().EmitMemberPointer(Value, DestType);
+ }
+ llvm_unreachable("Unknown APValue kind");
+}
+
+llvm::Constant *
+CodeGenModule::EmitConstantValueForMemory(const APValue &Value,
+ QualType DestType,
+ CodeGenFunction *CGF) {
+ llvm::Constant *C = EmitConstantValue(Value, DestType, CGF);
+ if (C->getType()->isIntegerTy(1)) {
+ llvm::Type *BoolTy = getTypes().ConvertTypeForMem(DestType);
+ C = llvm::ConstantExpr::getZExt(C, BoolTy);
+ }
+ return C;
+}
+
+llvm::Constant *
+CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
+ assert(E->isFileScope() && "not a file-scope compound literal expr");
+ return ConstExprEmitter(*this, 0).EmitLValue(E);
+}
+
+llvm::Constant *
+CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
+ // Member pointer constants always have a very particular form.
+ const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
+ const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
+
+ // A member function pointer.
+ if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
+ return getCXXABI().EmitMemberPointer(method);
+
+ // Otherwise, a member data pointer.
+ uint64_t fieldOffset = getContext().getFieldOffset(decl);
+ CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
+ return getCXXABI().EmitMemberDataPointer(type, chars);
+}
+
+static void
+FillInNullDataMemberPointers(CodeGenModule &CGM, QualType T,
+ SmallVectorImpl<llvm::Constant *> &Elements,
+ uint64_t StartOffset) {
+ assert(StartOffset % CGM.getContext().getCharWidth() == 0 &&
+ "StartOffset not byte aligned!");
+
+ if (CGM.getTypes().isZeroInitializable(T))
+ return;
+
+ if (const ConstantArrayType *CAT =
+ CGM.getContext().getAsConstantArrayType(T)) {
+ QualType ElementTy = CAT->getElementType();
+ uint64_t ElementSize = CGM.getContext().getTypeSize(ElementTy);
+
+ for (uint64_t I = 0, E = CAT->getSize().getZExtValue(); I != E; ++I) {
+ FillInNullDataMemberPointers(CGM, ElementTy, Elements,
+ StartOffset + I * ElementSize);
+ }
+ } else if (const RecordType *RT = T->getAs<RecordType>()) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
+
+ // Go through all bases and fill in any null pointer to data members.
+ for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
+ E = RD->bases_end(); I != E; ++I) {
+ if (I->isVirtual()) {
+ // Ignore virtual bases.
+ continue;
+ }
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ // Ignore empty bases.
+ if (BaseDecl->isEmpty())
+ continue;
+
+ // Ignore bases that don't have any pointer to data members.
+ if (CGM.getTypes().isZeroInitializable(BaseDecl))
+ continue;
+
+ uint64_t BaseOffset = Layout.getBaseClassOffsetInBits(BaseDecl);
+ FillInNullDataMemberPointers(CGM, I->getType(),
+ Elements, StartOffset + BaseOffset);
+ }
+
+ // Visit all fields.
+ unsigned FieldNo = 0;
+ for (RecordDecl::field_iterator I = RD->field_begin(),
+ E = RD->field_end(); I != E; ++I, ++FieldNo) {
+ QualType FieldType = I->getType();
+
+ if (CGM.getTypes().isZeroInitializable(FieldType))
+ continue;
+
+ uint64_t FieldOffset = StartOffset + Layout.getFieldOffset(FieldNo);
+ FillInNullDataMemberPointers(CGM, FieldType, Elements, FieldOffset);
+ }
+ } else {
+ assert(T->isMemberPointerType() && "Should only see member pointers here!");
+ assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
+ "Should only see pointers to data members here!");
+
+ CharUnits StartIndex = CGM.getContext().toCharUnitsFromBits(StartOffset);
+ CharUnits EndIndex = StartIndex + CGM.getContext().getTypeSizeInChars(T);
+
+ // FIXME: hardcodes Itanium member pointer representation!
+ llvm::Constant *NegativeOne =
+ llvm::ConstantInt::get(CGM.Int8Ty, -1ULL, /*isSigned*/true);
+
+ // Fill in the null data member pointer.
+ for (CharUnits I = StartIndex; I != EndIndex; ++I)
+ Elements[I.getQuantity()] = NegativeOne;
+ }
+}
+
+static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
+ llvm::Type *baseType,
+ const CXXRecordDecl *base);
+
+static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
+ const CXXRecordDecl *record,
+ bool asCompleteObject) {
+ const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
+ llvm::StructType *structure =
+ (asCompleteObject ? layout.getLLVMType()
+ : layout.getBaseSubobjectLLVMType());
+
+ unsigned numElements = structure->getNumElements();
+ std::vector<llvm::Constant *> elements(numElements);
+
+ // Fill in all the bases.
+ for (CXXRecordDecl::base_class_const_iterator
+ I = record->bases_begin(), E = record->bases_end(); I != E; ++I) {
+ if (I->isVirtual()) {
+ // Ignore virtual bases; if we're laying out for a complete
+ // object, we'll lay these out later.
+ continue;
+ }
+
+ const CXXRecordDecl *base =
+ cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
+
+ // Ignore empty bases.
+ if (base->isEmpty())
+ continue;
+
+ unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
+ llvm::Type *baseType = structure->getElementType(fieldIndex);
+ elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
+ }
+
+ // Fill in all the fields.
+ for (RecordDecl::field_iterator I = record->field_begin(),
+ E = record->field_end(); I != E; ++I) {
+ const FieldDecl *field = *I;
+
+ // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
+ // will fill in later.)
+ if (!field->isBitField()) {
+ unsigned fieldIndex = layout.getLLVMFieldNo(field);
+ elements[fieldIndex] = CGM.EmitNullConstant(field->getType());
+ }
+
+ // For unions, stop after the first named field.
+ if (record->isUnion() && field->getDeclName())
+ break;
+ }
+
+ // Fill in the virtual bases, if we're working with the complete object.
+ if (asCompleteObject) {
+ for (CXXRecordDecl::base_class_const_iterator
+ I = record->vbases_begin(), E = record->vbases_end(); I != E; ++I) {
+ const CXXRecordDecl *base =
+ cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
+
+ // Ignore empty bases.
+ if (base->isEmpty())
+ continue;
+
+ unsigned fieldIndex = layout.getVirtualBaseIndex(base);
+
+ // We might have already laid this field out.
+ if (elements[fieldIndex]) continue;
+
+ llvm::Type *baseType = structure->getElementType(fieldIndex);
+ elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
+ }
+ }
+
+ // Now go through all other fields and zero them out.
+ for (unsigned i = 0; i != numElements; ++i) {
+ if (!elements[i])
+ elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
+ }
+
+ return llvm::ConstantStruct::get(structure, elements);
+}
+
+/// Emit the null constant for a base subobject.
+static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
+ llvm::Type *baseType,
+ const CXXRecordDecl *base) {
+ const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
+
+ // Just zero out bases that don't have any pointer to data members.
+ if (baseLayout.isZeroInitializableAsBase())
+ return llvm::Constant::getNullValue(baseType);
+
+ // If the base type is a struct, we can just use its null constant.
+ if (isa<llvm::StructType>(baseType)) {
+ return EmitNullConstant(CGM, base, /*complete*/ false);
+ }
+
+ // Otherwise, some bases are represented as arrays of i8 if the size
+ // of the base is smaller than its corresponding LLVM type. Figure
+ // out how many elements this base array has.
+ llvm::ArrayType *baseArrayType = cast<llvm::ArrayType>(baseType);
+ unsigned numBaseElements = baseArrayType->getNumElements();
+
+ // Fill in null data member pointers.
+ SmallVector<llvm::Constant *, 16> baseElements(numBaseElements);
+ FillInNullDataMemberPointers(CGM, CGM.getContext().getTypeDeclType(base),
+ baseElements, 0);
+
+ // Now go through all other elements and zero them out.
+ if (numBaseElements) {
+ llvm::Constant *i8_zero = llvm::Constant::getNullValue(CGM.Int8Ty);
+ for (unsigned i = 0; i != numBaseElements; ++i) {
+ if (!baseElements[i])
+ baseElements[i] = i8_zero;
+ }
+ }
+
+ return llvm::ConstantArray::get(baseArrayType, baseElements);
+}
+
+llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
+ if (getTypes().isZeroInitializable(T))
+ return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
+
+ if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
+ llvm::ArrayType *ATy =
+ cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
+
+ QualType ElementTy = CAT->getElementType();
+
+ llvm::Constant *Element = EmitNullConstant(ElementTy);
+ unsigned NumElements = CAT->getSize().getZExtValue();
+
+ if (Element->isNullValue())
+ return llvm::ConstantAggregateZero::get(ATy);
+
+ SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
+ return llvm::ConstantArray::get(ATy, Array);
+ }
+
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ return ::EmitNullConstant(*this, RD, /*complete object*/ true);
+ }
+
+ assert(T->isMemberPointerType() && "Should only see member pointers here!");
+ assert(!T->getAs<MemberPointerType>()->getPointeeType()->isFunctionType() &&
+ "Should only see pointers to data members here!");
+
+ // Itanium C++ ABI 2.3:
+ // A NULL pointer is represented as -1.
+ return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
+}
+
+llvm::Constant *
+CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
+ return ::EmitNullConstant(*this, Record, false);
+}