summaryrefslogtreecommitdiff
path: root/clang/lib/CodeGen/CGExprCXX.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/CodeGen/CGExprCXX.cpp')
-rw-r--r--clang/lib/CodeGen/CGExprCXX.cpp1833
1 files changed, 1833 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGExprCXX.cpp b/clang/lib/CodeGen/CGExprCXX.cpp
new file mode 100644
index 0000000..c69c883
--- /dev/null
+++ b/clang/lib/CodeGen/CGExprCXX.cpp
@@ -0,0 +1,1833 @@
+//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with code generation of C++ expressions
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Frontend/CodeGenOptions.h"
+#include "CodeGenFunction.h"
+#include "CGCUDARuntime.h"
+#include "CGCXXABI.h"
+#include "CGObjCRuntime.h"
+#include "CGDebugInfo.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Support/CallSite.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
+ llvm::Value *Callee,
+ ReturnValueSlot ReturnValue,
+ llvm::Value *This,
+ llvm::Value *VTT,
+ CallExpr::const_arg_iterator ArgBeg,
+ CallExpr::const_arg_iterator ArgEnd) {
+ assert(MD->isInstance() &&
+ "Trying to emit a member call expr on a static method!");
+
+ CallArgList Args;
+
+ // Push the this ptr.
+ Args.add(RValue::get(This), MD->getThisType(getContext()));
+
+ // If there is a VTT parameter, emit it.
+ if (VTT) {
+ QualType T = getContext().getPointerType(getContext().VoidPtrTy);
+ Args.add(RValue::get(VTT), T);
+ }
+
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
+
+ // And the rest of the call args.
+ EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
+
+ return EmitCall(CGM.getTypes().arrangeFunctionCall(FPT->getResultType(), Args,
+ FPT->getExtInfo(),
+ required),
+ Callee, ReturnValue, Args, MD);
+}
+
+static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
+ const Expr *E = Base;
+
+ while (true) {
+ E = E->IgnoreParens();
+ if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
+ if (CE->getCastKind() == CK_DerivedToBase ||
+ CE->getCastKind() == CK_UncheckedDerivedToBase ||
+ CE->getCastKind() == CK_NoOp) {
+ E = CE->getSubExpr();
+ continue;
+ }
+ }
+
+ break;
+ }
+
+ QualType DerivedType = E->getType();
+ if (const PointerType *PTy = DerivedType->getAs<PointerType>())
+ DerivedType = PTy->getPointeeType();
+
+ return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
+}
+
+// FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
+// quite what we want.
+static const Expr *skipNoOpCastsAndParens(const Expr *E) {
+ while (true) {
+ if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
+ E = PE->getSubExpr();
+ continue;
+ }
+
+ if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
+ if (CE->getCastKind() == CK_NoOp) {
+ E = CE->getSubExpr();
+ continue;
+ }
+ }
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
+ if (UO->getOpcode() == UO_Extension) {
+ E = UO->getSubExpr();
+ continue;
+ }
+ }
+ return E;
+ }
+}
+
+/// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
+/// expr can be devirtualized.
+static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
+ const Expr *Base,
+ const CXXMethodDecl *MD) {
+
+ // When building with -fapple-kext, all calls must go through the vtable since
+ // the kernel linker can do runtime patching of vtables.
+ if (Context.getLangOpts().AppleKext)
+ return false;
+
+ // If the most derived class is marked final, we know that no subclass can
+ // override this member function and so we can devirtualize it. For example:
+ //
+ // struct A { virtual void f(); }
+ // struct B final : A { };
+ //
+ // void f(B *b) {
+ // b->f();
+ // }
+ //
+ const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
+ if (MostDerivedClassDecl->hasAttr<FinalAttr>())
+ return true;
+
+ // If the member function is marked 'final', we know that it can't be
+ // overridden and can therefore devirtualize it.
+ if (MD->hasAttr<FinalAttr>())
+ return true;
+
+ // Similarly, if the class itself is marked 'final' it can't be overridden
+ // and we can therefore devirtualize the member function call.
+ if (MD->getParent()->hasAttr<FinalAttr>())
+ return true;
+
+ Base = skipNoOpCastsAndParens(Base);
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
+ // This is a record decl. We know the type and can devirtualize it.
+ return VD->getType()->isRecordType();
+ }
+
+ return false;
+ }
+
+ // We can always devirtualize calls on temporary object expressions.
+ if (isa<CXXConstructExpr>(Base))
+ return true;
+
+ // And calls on bound temporaries.
+ if (isa<CXXBindTemporaryExpr>(Base))
+ return true;
+
+ // Check if this is a call expr that returns a record type.
+ if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
+ return CE->getCallReturnType()->isRecordType();
+
+ // We can't devirtualize the call.
+ return false;
+}
+
+// Note: This function also emit constructor calls to support a MSVC
+// extensions allowing explicit constructor function call.
+RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
+ ReturnValueSlot ReturnValue) {
+ const Expr *callee = CE->getCallee()->IgnoreParens();
+
+ if (isa<BinaryOperator>(callee))
+ return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
+
+ const MemberExpr *ME = cast<MemberExpr>(callee);
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
+
+ CGDebugInfo *DI = getDebugInfo();
+ if (DI && CGM.getCodeGenOpts().LimitDebugInfo
+ && !isa<CallExpr>(ME->getBase())) {
+ QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
+ if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
+ DI->getOrCreateRecordType(PTy->getPointeeType(),
+ MD->getParent()->getLocation());
+ }
+ }
+
+ if (MD->isStatic()) {
+ // The method is static, emit it as we would a regular call.
+ llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
+ return EmitCall(getContext().getPointerType(MD->getType()), Callee,
+ ReturnValue, CE->arg_begin(), CE->arg_end());
+ }
+
+ // Compute the object pointer.
+ llvm::Value *This;
+ if (ME->isArrow())
+ This = EmitScalarExpr(ME->getBase());
+ else
+ This = EmitLValue(ME->getBase()).getAddress();
+
+ if (MD->isTrivial()) {
+ if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
+ if (isa<CXXConstructorDecl>(MD) &&
+ cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
+ return RValue::get(0);
+
+ if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
+ // We don't like to generate the trivial copy/move assignment operator
+ // when it isn't necessary; just produce the proper effect here.
+ llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
+ EmitAggregateCopy(This, RHS, CE->getType());
+ return RValue::get(This);
+ }
+
+ if (isa<CXXConstructorDecl>(MD) &&
+ cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
+ // Trivial move and copy ctor are the same.
+ llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
+ EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
+ CE->arg_begin(), CE->arg_end());
+ return RValue::get(This);
+ }
+ llvm_unreachable("unknown trivial member function");
+ }
+
+ // Compute the function type we're calling.
+ const CGFunctionInfo *FInfo = 0;
+ if (isa<CXXDestructorDecl>(MD))
+ FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD),
+ Dtor_Complete);
+ else if (isa<CXXConstructorDecl>(MD))
+ FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(
+ cast<CXXConstructorDecl>(MD),
+ Ctor_Complete);
+ else
+ FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD);
+
+ llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo);
+
+ // C++ [class.virtual]p12:
+ // Explicit qualification with the scope operator (5.1) suppresses the
+ // virtual call mechanism.
+ //
+ // We also don't emit a virtual call if the base expression has a record type
+ // because then we know what the type is.
+ bool UseVirtualCall;
+ UseVirtualCall = MD->isVirtual() && !ME->hasQualifier()
+ && !canDevirtualizeMemberFunctionCalls(getContext(),
+ ME->getBase(), MD);
+ llvm::Value *Callee;
+ if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
+ if (UseVirtualCall) {
+ Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
+ } else {
+ if (getContext().getLangOpts().AppleKext &&
+ MD->isVirtual() &&
+ ME->hasQualifier())
+ Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
+ else
+ Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
+ }
+ } else if (const CXXConstructorDecl *Ctor =
+ dyn_cast<CXXConstructorDecl>(MD)) {
+ Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
+ } else if (UseVirtualCall) {
+ Callee = BuildVirtualCall(MD, This, Ty);
+ } else {
+ if (getContext().getLangOpts().AppleKext &&
+ MD->isVirtual() &&
+ ME->hasQualifier())
+ Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
+ else
+ Callee = CGM.GetAddrOfFunction(MD, Ty);
+ }
+
+ return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
+ CE->arg_begin(), CE->arg_end());
+}
+
+RValue
+CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ const BinaryOperator *BO =
+ cast<BinaryOperator>(E->getCallee()->IgnoreParens());
+ const Expr *BaseExpr = BO->getLHS();
+ const Expr *MemFnExpr = BO->getRHS();
+
+ const MemberPointerType *MPT =
+ MemFnExpr->getType()->castAs<MemberPointerType>();
+
+ const FunctionProtoType *FPT =
+ MPT->getPointeeType()->castAs<FunctionProtoType>();
+ const CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
+
+ // Get the member function pointer.
+ llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
+
+ // Emit the 'this' pointer.
+ llvm::Value *This;
+
+ if (BO->getOpcode() == BO_PtrMemI)
+ This = EmitScalarExpr(BaseExpr);
+ else
+ This = EmitLValue(BaseExpr).getAddress();
+
+ // Ask the ABI to load the callee. Note that This is modified.
+ llvm::Value *Callee =
+ CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
+
+ CallArgList Args;
+
+ QualType ThisType =
+ getContext().getPointerType(getContext().getTagDeclType(RD));
+
+ // Push the this ptr.
+ Args.add(RValue::get(This), ThisType);
+
+ // And the rest of the call args
+ EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
+ return EmitCall(CGM.getTypes().arrangeFunctionCall(Args, FPT), Callee,
+ ReturnValue, Args);
+}
+
+RValue
+CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
+ const CXXMethodDecl *MD,
+ ReturnValueSlot ReturnValue) {
+ assert(MD->isInstance() &&
+ "Trying to emit a member call expr on a static method!");
+ LValue LV = EmitLValue(E->getArg(0));
+ llvm::Value *This = LV.getAddress();
+
+ if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
+ MD->isTrivial()) {
+ llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
+ QualType Ty = E->getType();
+ EmitAggregateCopy(This, Src, Ty);
+ return RValue::get(This);
+ }
+
+ llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
+ return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
+ E->arg_begin() + 1, E->arg_end());
+}
+
+RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
+}
+
+static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
+ llvm::Value *DestPtr,
+ const CXXRecordDecl *Base) {
+ if (Base->isEmpty())
+ return;
+
+ DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
+
+ const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
+ CharUnits Size = Layout.getNonVirtualSize();
+ CharUnits Align = Layout.getNonVirtualAlign();
+
+ llvm::Value *SizeVal = CGF.CGM.getSize(Size);
+
+ // If the type contains a pointer to data member we can't memset it to zero.
+ // Instead, create a null constant and copy it to the destination.
+ // TODO: there are other patterns besides zero that we can usefully memset,
+ // like -1, which happens to be the pattern used by member-pointers.
+ // TODO: isZeroInitializable can be over-conservative in the case where a
+ // virtual base contains a member pointer.
+ if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
+ llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
+
+ llvm::GlobalVariable *NullVariable =
+ new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
+ /*isConstant=*/true,
+ llvm::GlobalVariable::PrivateLinkage,
+ NullConstant, Twine());
+ NullVariable->setAlignment(Align.getQuantity());
+ llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
+
+ // Get and call the appropriate llvm.memcpy overload.
+ CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
+ return;
+ }
+
+ // Otherwise, just memset the whole thing to zero. This is legal
+ // because in LLVM, all default initializers (other than the ones we just
+ // handled above) are guaranteed to have a bit pattern of all zeros.
+ CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
+ Align.getQuantity());
+}
+
+void
+CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
+ AggValueSlot Dest) {
+ assert(!Dest.isIgnored() && "Must have a destination!");
+ const CXXConstructorDecl *CD = E->getConstructor();
+
+ // If we require zero initialization before (or instead of) calling the
+ // constructor, as can be the case with a non-user-provided default
+ // constructor, emit the zero initialization now, unless destination is
+ // already zeroed.
+ if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
+ switch (E->getConstructionKind()) {
+ case CXXConstructExpr::CK_Delegating:
+ assert(0 && "Delegating constructor should not need zeroing");
+ case CXXConstructExpr::CK_Complete:
+ EmitNullInitialization(Dest.getAddr(), E->getType());
+ break;
+ case CXXConstructExpr::CK_VirtualBase:
+ case CXXConstructExpr::CK_NonVirtualBase:
+ EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
+ break;
+ }
+ }
+
+ // If this is a call to a trivial default constructor, do nothing.
+ if (CD->isTrivial() && CD->isDefaultConstructor())
+ return;
+
+ // Elide the constructor if we're constructing from a temporary.
+ // The temporary check is required because Sema sets this on NRVO
+ // returns.
+ if (getContext().getLangOpts().ElideConstructors && E->isElidable()) {
+ assert(getContext().hasSameUnqualifiedType(E->getType(),
+ E->getArg(0)->getType()));
+ if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
+ EmitAggExpr(E->getArg(0), Dest);
+ return;
+ }
+ }
+
+ if (const ConstantArrayType *arrayType
+ = getContext().getAsConstantArrayType(E->getType())) {
+ EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
+ E->arg_begin(), E->arg_end());
+ } else {
+ CXXCtorType Type = Ctor_Complete;
+ bool ForVirtualBase = false;
+
+ switch (E->getConstructionKind()) {
+ case CXXConstructExpr::CK_Delegating:
+ // We should be emitting a constructor; GlobalDecl will assert this
+ Type = CurGD.getCtorType();
+ break;
+
+ case CXXConstructExpr::CK_Complete:
+ Type = Ctor_Complete;
+ break;
+
+ case CXXConstructExpr::CK_VirtualBase:
+ ForVirtualBase = true;
+ // fall-through
+
+ case CXXConstructExpr::CK_NonVirtualBase:
+ Type = Ctor_Base;
+ }
+
+ // Call the constructor.
+ EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
+ E->arg_begin(), E->arg_end());
+ }
+}
+
+void
+CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
+ llvm::Value *Src,
+ const Expr *Exp) {
+ if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
+ Exp = E->getSubExpr();
+ assert(isa<CXXConstructExpr>(Exp) &&
+ "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
+ const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
+ const CXXConstructorDecl *CD = E->getConstructor();
+ RunCleanupsScope Scope(*this);
+
+ // If we require zero initialization before (or instead of) calling the
+ // constructor, as can be the case with a non-user-provided default
+ // constructor, emit the zero initialization now.
+ // FIXME. Do I still need this for a copy ctor synthesis?
+ if (E->requiresZeroInitialization())
+ EmitNullInitialization(Dest, E->getType());
+
+ assert(!getContext().getAsConstantArrayType(E->getType())
+ && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
+ EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
+ E->arg_begin(), E->arg_end());
+}
+
+static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
+ const CXXNewExpr *E) {
+ if (!E->isArray())
+ return CharUnits::Zero();
+
+ // No cookie is required if the operator new[] being used is the
+ // reserved placement operator new[].
+ if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
+ return CharUnits::Zero();
+
+ return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
+}
+
+static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
+ const CXXNewExpr *e,
+ unsigned minElements,
+ llvm::Value *&numElements,
+ llvm::Value *&sizeWithoutCookie) {
+ QualType type = e->getAllocatedType();
+
+ if (!e->isArray()) {
+ CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
+ sizeWithoutCookie
+ = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
+ return sizeWithoutCookie;
+ }
+
+ // The width of size_t.
+ unsigned sizeWidth = CGF.SizeTy->getBitWidth();
+
+ // Figure out the cookie size.
+ llvm::APInt cookieSize(sizeWidth,
+ CalculateCookiePadding(CGF, e).getQuantity());
+
+ // Emit the array size expression.
+ // We multiply the size of all dimensions for NumElements.
+ // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
+ numElements = CGF.EmitScalarExpr(e->getArraySize());
+ assert(isa<llvm::IntegerType>(numElements->getType()));
+
+ // The number of elements can be have an arbitrary integer type;
+ // essentially, we need to multiply it by a constant factor, add a
+ // cookie size, and verify that the result is representable as a
+ // size_t. That's just a gloss, though, and it's wrong in one
+ // important way: if the count is negative, it's an error even if
+ // the cookie size would bring the total size >= 0.
+ bool isSigned
+ = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
+ llvm::IntegerType *numElementsType
+ = cast<llvm::IntegerType>(numElements->getType());
+ unsigned numElementsWidth = numElementsType->getBitWidth();
+
+ // Compute the constant factor.
+ llvm::APInt arraySizeMultiplier(sizeWidth, 1);
+ while (const ConstantArrayType *CAT
+ = CGF.getContext().getAsConstantArrayType(type)) {
+ type = CAT->getElementType();
+ arraySizeMultiplier *= CAT->getSize();
+ }
+
+ CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
+ llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
+ typeSizeMultiplier *= arraySizeMultiplier;
+
+ // This will be a size_t.
+ llvm::Value *size;
+
+ // If someone is doing 'new int[42]' there is no need to do a dynamic check.
+ // Don't bloat the -O0 code.
+ if (llvm::ConstantInt *numElementsC =
+ dyn_cast<llvm::ConstantInt>(numElements)) {
+ const llvm::APInt &count = numElementsC->getValue();
+
+ bool hasAnyOverflow = false;
+
+ // If 'count' was a negative number, it's an overflow.
+ if (isSigned && count.isNegative())
+ hasAnyOverflow = true;
+
+ // We want to do all this arithmetic in size_t. If numElements is
+ // wider than that, check whether it's already too big, and if so,
+ // overflow.
+ else if (numElementsWidth > sizeWidth &&
+ numElementsWidth - sizeWidth > count.countLeadingZeros())
+ hasAnyOverflow = true;
+
+ // Okay, compute a count at the right width.
+ llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
+
+ // If there is a brace-initializer, we cannot allocate fewer elements than
+ // there are initializers. If we do, that's treated like an overflow.
+ if (adjustedCount.ult(minElements))
+ hasAnyOverflow = true;
+
+ // Scale numElements by that. This might overflow, but we don't
+ // care because it only overflows if allocationSize does, too, and
+ // if that overflows then we shouldn't use this.
+ numElements = llvm::ConstantInt::get(CGF.SizeTy,
+ adjustedCount * arraySizeMultiplier);
+
+ // Compute the size before cookie, and track whether it overflowed.
+ bool overflow;
+ llvm::APInt allocationSize
+ = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
+ hasAnyOverflow |= overflow;
+
+ // Add in the cookie, and check whether it's overflowed.
+ if (cookieSize != 0) {
+ // Save the current size without a cookie. This shouldn't be
+ // used if there was overflow.
+ sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
+
+ allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
+ hasAnyOverflow |= overflow;
+ }
+
+ // On overflow, produce a -1 so operator new will fail.
+ if (hasAnyOverflow) {
+ size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
+ } else {
+ size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
+ }
+
+ // Otherwise, we might need to use the overflow intrinsics.
+ } else {
+ // There are up to five conditions we need to test for:
+ // 1) if isSigned, we need to check whether numElements is negative;
+ // 2) if numElementsWidth > sizeWidth, we need to check whether
+ // numElements is larger than something representable in size_t;
+ // 3) if minElements > 0, we need to check whether numElements is smaller
+ // than that.
+ // 4) we need to compute
+ // sizeWithoutCookie := numElements * typeSizeMultiplier
+ // and check whether it overflows; and
+ // 5) if we need a cookie, we need to compute
+ // size := sizeWithoutCookie + cookieSize
+ // and check whether it overflows.
+
+ llvm::Value *hasOverflow = 0;
+
+ // If numElementsWidth > sizeWidth, then one way or another, we're
+ // going to have to do a comparison for (2), and this happens to
+ // take care of (1), too.
+ if (numElementsWidth > sizeWidth) {
+ llvm::APInt threshold(numElementsWidth, 1);
+ threshold <<= sizeWidth;
+
+ llvm::Value *thresholdV
+ = llvm::ConstantInt::get(numElementsType, threshold);
+
+ hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
+ numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
+
+ // Otherwise, if we're signed, we want to sext up to size_t.
+ } else if (isSigned) {
+ if (numElementsWidth < sizeWidth)
+ numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
+
+ // If there's a non-1 type size multiplier, then we can do the
+ // signedness check at the same time as we do the multiply
+ // because a negative number times anything will cause an
+ // unsigned overflow. Otherwise, we have to do it here. But at least
+ // in this case, we can subsume the >= minElements check.
+ if (typeSizeMultiplier == 1)
+ hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
+ llvm::ConstantInt::get(CGF.SizeTy, minElements));
+
+ // Otherwise, zext up to size_t if necessary.
+ } else if (numElementsWidth < sizeWidth) {
+ numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
+ }
+
+ assert(numElements->getType() == CGF.SizeTy);
+
+ if (minElements) {
+ // Don't allow allocation of fewer elements than we have initializers.
+ if (!hasOverflow) {
+ hasOverflow = CGF.Builder.CreateICmpULT(numElements,
+ llvm::ConstantInt::get(CGF.SizeTy, minElements));
+ } else if (numElementsWidth > sizeWidth) {
+ // The other existing overflow subsumes this check.
+ // We do an unsigned comparison, since any signed value < -1 is
+ // taken care of either above or below.
+ hasOverflow = CGF.Builder.CreateOr(hasOverflow,
+ CGF.Builder.CreateICmpULT(numElements,
+ llvm::ConstantInt::get(CGF.SizeTy, minElements)));
+ }
+ }
+
+ size = numElements;
+
+ // Multiply by the type size if necessary. This multiplier
+ // includes all the factors for nested arrays.
+ //
+ // This step also causes numElements to be scaled up by the
+ // nested-array factor if necessary. Overflow on this computation
+ // can be ignored because the result shouldn't be used if
+ // allocation fails.
+ if (typeSizeMultiplier != 1) {
+ llvm::Value *umul_with_overflow
+ = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
+
+ llvm::Value *tsmV =
+ llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
+ llvm::Value *result =
+ CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
+
+ llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
+ if (hasOverflow)
+ hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
+ else
+ hasOverflow = overflowed;
+
+ size = CGF.Builder.CreateExtractValue(result, 0);
+
+ // Also scale up numElements by the array size multiplier.
+ if (arraySizeMultiplier != 1) {
+ // If the base element type size is 1, then we can re-use the
+ // multiply we just did.
+ if (typeSize.isOne()) {
+ assert(arraySizeMultiplier == typeSizeMultiplier);
+ numElements = size;
+
+ // Otherwise we need a separate multiply.
+ } else {
+ llvm::Value *asmV =
+ llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
+ numElements = CGF.Builder.CreateMul(numElements, asmV);
+ }
+ }
+ } else {
+ // numElements doesn't need to be scaled.
+ assert(arraySizeMultiplier == 1);
+ }
+
+ // Add in the cookie size if necessary.
+ if (cookieSize != 0) {
+ sizeWithoutCookie = size;
+
+ llvm::Value *uadd_with_overflow
+ = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
+
+ llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
+ llvm::Value *result =
+ CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
+
+ llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
+ if (hasOverflow)
+ hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
+ else
+ hasOverflow = overflowed;
+
+ size = CGF.Builder.CreateExtractValue(result, 0);
+ }
+
+ // If we had any possibility of dynamic overflow, make a select to
+ // overwrite 'size' with an all-ones value, which should cause
+ // operator new to throw.
+ if (hasOverflow)
+ size = CGF.Builder.CreateSelect(hasOverflow,
+ llvm::Constant::getAllOnesValue(CGF.SizeTy),
+ size);
+ }
+
+ if (cookieSize == 0)
+ sizeWithoutCookie = size;
+ else
+ assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
+
+ return size;
+}
+
+static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
+ QualType AllocType, llvm::Value *NewPtr) {
+
+ CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
+ if (!CGF.hasAggregateLLVMType(AllocType))
+ CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
+ Alignment),
+ false);
+ else if (AllocType->isAnyComplexType())
+ CGF.EmitComplexExprIntoAddr(Init, NewPtr,
+ AllocType.isVolatileQualified());
+ else {
+ AggValueSlot Slot
+ = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased);
+ CGF.EmitAggExpr(Init, Slot);
+
+ CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init);
+ }
+}
+
+void
+CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
+ QualType elementType,
+ llvm::Value *beginPtr,
+ llvm::Value *numElements) {
+ if (!E->hasInitializer())
+ return; // We have a POD type.
+
+ llvm::Value *explicitPtr = beginPtr;
+ // Find the end of the array, hoisted out of the loop.
+ llvm::Value *endPtr =
+ Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
+
+ unsigned initializerElements = 0;
+
+ const Expr *Init = E->getInitializer();
+ llvm::AllocaInst *endOfInit = 0;
+ QualType::DestructionKind dtorKind = elementType.isDestructedType();
+ EHScopeStack::stable_iterator cleanup;
+ llvm::Instruction *cleanupDominator = 0;
+ // If the initializer is an initializer list, first do the explicit elements.
+ if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
+ initializerElements = ILE->getNumInits();
+
+ // Enter a partial-destruction cleanup if necessary.
+ if (needsEHCleanup(dtorKind)) {
+ // In principle we could tell the cleanup where we are more
+ // directly, but the control flow can get so varied here that it
+ // would actually be quite complex. Therefore we go through an
+ // alloca.
+ endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
+ cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
+ pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
+ getDestroyer(dtorKind));
+ cleanup = EHStack.stable_begin();
+ }
+
+ for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
+ // Tell the cleanup that it needs to destroy up to this
+ // element. TODO: some of these stores can be trivially
+ // observed to be unnecessary.
+ if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
+ StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr);
+ explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next");
+ }
+
+ // The remaining elements are filled with the array filler expression.
+ Init = ILE->getArrayFiller();
+ }
+
+ // Create the continuation block.
+ llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
+
+ // If the number of elements isn't constant, we have to now check if there is
+ // anything left to initialize.
+ if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
+ // If all elements have already been initialized, skip the whole loop.
+ if (constNum->getZExtValue() <= initializerElements) {
+ // If there was a cleanup, deactivate it.
+ if (cleanupDominator)
+ DeactivateCleanupBlock(cleanup, cleanupDominator);;
+ return;
+ }
+ } else {
+ llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
+ llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
+ "array.isempty");
+ Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
+ EmitBlock(nonEmptyBB);
+ }
+
+ // Enter the loop.
+ llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
+
+ EmitBlock(loopBB);
+
+ // Set up the current-element phi.
+ llvm::PHINode *curPtr =
+ Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
+ curPtr->addIncoming(explicitPtr, entryBB);
+
+ // Store the new cleanup position for irregular cleanups.
+ if (endOfInit) Builder.CreateStore(curPtr, endOfInit);
+
+ // Enter a partial-destruction cleanup if necessary.
+ if (!cleanupDominator && needsEHCleanup(dtorKind)) {
+ pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
+ getDestroyer(dtorKind));
+ cleanup = EHStack.stable_begin();
+ cleanupDominator = Builder.CreateUnreachable();
+ }
+
+ // Emit the initializer into this element.
+ StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);
+
+ // Leave the cleanup if we entered one.
+ if (cleanupDominator) {
+ DeactivateCleanupBlock(cleanup, cleanupDominator);
+ cleanupDominator->eraseFromParent();
+ }
+
+ // Advance to the next element.
+ llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");
+
+ // Check whether we've gotten to the end of the array and, if so,
+ // exit the loop.
+ llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
+ Builder.CreateCondBr(isEnd, contBB, loopBB);
+ curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
+
+ EmitBlock(contBB);
+}
+
+static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
+ llvm::Value *NewPtr, llvm::Value *Size) {
+ CGF.EmitCastToVoidPtr(NewPtr);
+ CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
+ CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
+ Alignment.getQuantity(), false);
+}
+
+static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
+ QualType ElementType,
+ llvm::Value *NewPtr,
+ llvm::Value *NumElements,
+ llvm::Value *AllocSizeWithoutCookie) {
+ const Expr *Init = E->getInitializer();
+ if (E->isArray()) {
+ if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
+ CXXConstructorDecl *Ctor = CCE->getConstructor();
+ bool RequiresZeroInitialization = false;
+ if (Ctor->isTrivial()) {
+ // If new expression did not specify value-initialization, then there
+ // is no initialization.
+ if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
+ return;
+
+ if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
+ // Optimization: since zero initialization will just set the memory
+ // to all zeroes, generate a single memset to do it in one shot.
+ EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
+ return;
+ }
+
+ RequiresZeroInitialization = true;
+ }
+
+ CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
+ CCE->arg_begin(), CCE->arg_end(),
+ RequiresZeroInitialization);
+ return;
+ } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
+ CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
+ // Optimization: since zero initialization will just set the memory
+ // to all zeroes, generate a single memset to do it in one shot.
+ EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
+ return;
+ }
+ CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
+ return;
+ }
+
+ if (!Init)
+ return;
+
+ StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
+}
+
+namespace {
+ /// A cleanup to call the given 'operator delete' function upon
+ /// abnormal exit from a new expression.
+ class CallDeleteDuringNew : public EHScopeStack::Cleanup {
+ size_t NumPlacementArgs;
+ const FunctionDecl *OperatorDelete;
+ llvm::Value *Ptr;
+ llvm::Value *AllocSize;
+
+ RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
+
+ public:
+ static size_t getExtraSize(size_t NumPlacementArgs) {
+ return NumPlacementArgs * sizeof(RValue);
+ }
+
+ CallDeleteDuringNew(size_t NumPlacementArgs,
+ const FunctionDecl *OperatorDelete,
+ llvm::Value *Ptr,
+ llvm::Value *AllocSize)
+ : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
+ Ptr(Ptr), AllocSize(AllocSize) {}
+
+ void setPlacementArg(unsigned I, RValue Arg) {
+ assert(I < NumPlacementArgs && "index out of range");
+ getPlacementArgs()[I] = Arg;
+ }
+
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ const FunctionProtoType *FPT
+ = OperatorDelete->getType()->getAs<FunctionProtoType>();
+ assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
+ (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
+
+ CallArgList DeleteArgs;
+
+ // The first argument is always a void*.
+ FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
+ DeleteArgs.add(RValue::get(Ptr), *AI++);
+
+ // A member 'operator delete' can take an extra 'size_t' argument.
+ if (FPT->getNumArgs() == NumPlacementArgs + 2)
+ DeleteArgs.add(RValue::get(AllocSize), *AI++);
+
+ // Pass the rest of the arguments, which must match exactly.
+ for (unsigned I = 0; I != NumPlacementArgs; ++I)
+ DeleteArgs.add(getPlacementArgs()[I], *AI++);
+
+ // Call 'operator delete'.
+ CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT),
+ CGF.CGM.GetAddrOfFunction(OperatorDelete),
+ ReturnValueSlot(), DeleteArgs, OperatorDelete);
+ }
+ };
+
+ /// A cleanup to call the given 'operator delete' function upon
+ /// abnormal exit from a new expression when the new expression is
+ /// conditional.
+ class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
+ size_t NumPlacementArgs;
+ const FunctionDecl *OperatorDelete;
+ DominatingValue<RValue>::saved_type Ptr;
+ DominatingValue<RValue>::saved_type AllocSize;
+
+ DominatingValue<RValue>::saved_type *getPlacementArgs() {
+ return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
+ }
+
+ public:
+ static size_t getExtraSize(size_t NumPlacementArgs) {
+ return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
+ }
+
+ CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
+ const FunctionDecl *OperatorDelete,
+ DominatingValue<RValue>::saved_type Ptr,
+ DominatingValue<RValue>::saved_type AllocSize)
+ : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
+ Ptr(Ptr), AllocSize(AllocSize) {}
+
+ void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
+ assert(I < NumPlacementArgs && "index out of range");
+ getPlacementArgs()[I] = Arg;
+ }
+
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ const FunctionProtoType *FPT
+ = OperatorDelete->getType()->getAs<FunctionProtoType>();
+ assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
+ (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
+
+ CallArgList DeleteArgs;
+
+ // The first argument is always a void*.
+ FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
+ DeleteArgs.add(Ptr.restore(CGF), *AI++);
+
+ // A member 'operator delete' can take an extra 'size_t' argument.
+ if (FPT->getNumArgs() == NumPlacementArgs + 2) {
+ RValue RV = AllocSize.restore(CGF);
+ DeleteArgs.add(RV, *AI++);
+ }
+
+ // Pass the rest of the arguments, which must match exactly.
+ for (unsigned I = 0; I != NumPlacementArgs; ++I) {
+ RValue RV = getPlacementArgs()[I].restore(CGF);
+ DeleteArgs.add(RV, *AI++);
+ }
+
+ // Call 'operator delete'.
+ CGF.EmitCall(CGF.CGM.getTypes().arrangeFunctionCall(DeleteArgs, FPT),
+ CGF.CGM.GetAddrOfFunction(OperatorDelete),
+ ReturnValueSlot(), DeleteArgs, OperatorDelete);
+ }
+ };
+}
+
+/// Enter a cleanup to call 'operator delete' if the initializer in a
+/// new-expression throws.
+static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
+ const CXXNewExpr *E,
+ llvm::Value *NewPtr,
+ llvm::Value *AllocSize,
+ const CallArgList &NewArgs) {
+ // If we're not inside a conditional branch, then the cleanup will
+ // dominate and we can do the easier (and more efficient) thing.
+ if (!CGF.isInConditionalBranch()) {
+ CallDeleteDuringNew *Cleanup = CGF.EHStack
+ .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
+ E->getNumPlacementArgs(),
+ E->getOperatorDelete(),
+ NewPtr, AllocSize);
+ for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
+ Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
+
+ return;
+ }
+
+ // Otherwise, we need to save all this stuff.
+ DominatingValue<RValue>::saved_type SavedNewPtr =
+ DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
+ DominatingValue<RValue>::saved_type SavedAllocSize =
+ DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
+
+ CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
+ .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
+ E->getNumPlacementArgs(),
+ E->getOperatorDelete(),
+ SavedNewPtr,
+ SavedAllocSize);
+ for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
+ Cleanup->setPlacementArg(I,
+ DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
+
+ CGF.initFullExprCleanup();
+}
+
+llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
+ // The element type being allocated.
+ QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
+
+ // 1. Build a call to the allocation function.
+ FunctionDecl *allocator = E->getOperatorNew();
+ const FunctionProtoType *allocatorType =
+ allocator->getType()->castAs<FunctionProtoType>();
+
+ CallArgList allocatorArgs;
+
+ // The allocation size is the first argument.
+ QualType sizeType = getContext().getSizeType();
+
+ // If there is a brace-initializer, cannot allocate fewer elements than inits.
+ unsigned minElements = 0;
+ if (E->isArray() && E->hasInitializer()) {
+ if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
+ minElements = ILE->getNumInits();
+ }
+
+ llvm::Value *numElements = 0;
+ llvm::Value *allocSizeWithoutCookie = 0;
+ llvm::Value *allocSize =
+ EmitCXXNewAllocSize(*this, E, minElements, numElements,
+ allocSizeWithoutCookie);
+
+ allocatorArgs.add(RValue::get(allocSize), sizeType);
+
+ // Emit the rest of the arguments.
+ // FIXME: Ideally, this should just use EmitCallArgs.
+ CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
+
+ // First, use the types from the function type.
+ // We start at 1 here because the first argument (the allocation size)
+ // has already been emitted.
+ for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
+ ++i, ++placementArg) {
+ QualType argType = allocatorType->getArgType(i);
+
+ assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
+ placementArg->getType()) &&
+ "type mismatch in call argument!");
+
+ EmitCallArg(allocatorArgs, *placementArg, argType);
+ }
+
+ // Either we've emitted all the call args, or we have a call to a
+ // variadic function.
+ assert((placementArg == E->placement_arg_end() ||
+ allocatorType->isVariadic()) &&
+ "Extra arguments to non-variadic function!");
+
+ // If we still have any arguments, emit them using the type of the argument.
+ for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
+ placementArg != placementArgsEnd; ++placementArg) {
+ EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
+ }
+
+ // Emit the allocation call. If the allocator is a global placement
+ // operator, just "inline" it directly.
+ RValue RV;
+ if (allocator->isReservedGlobalPlacementOperator()) {
+ assert(allocatorArgs.size() == 2);
+ RV = allocatorArgs[1].RV;
+ // TODO: kill any unnecessary computations done for the size
+ // argument.
+ } else {
+ RV = EmitCall(CGM.getTypes().arrangeFunctionCall(allocatorArgs,
+ allocatorType),
+ CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
+ allocatorArgs, allocator);
+ }
+
+ // Emit a null check on the allocation result if the allocation
+ // function is allowed to return null (because it has a non-throwing
+ // exception spec; for this part, we inline
+ // CXXNewExpr::shouldNullCheckAllocation()) and we have an
+ // interesting initializer.
+ bool nullCheck = allocatorType->isNothrow(getContext()) &&
+ (!allocType.isPODType(getContext()) || E->hasInitializer());
+
+ llvm::BasicBlock *nullCheckBB = 0;
+ llvm::BasicBlock *contBB = 0;
+
+ llvm::Value *allocation = RV.getScalarVal();
+ unsigned AS =
+ cast<llvm::PointerType>(allocation->getType())->getAddressSpace();
+
+ // The null-check means that the initializer is conditionally
+ // evaluated.
+ ConditionalEvaluation conditional(*this);
+
+ if (nullCheck) {
+ conditional.begin(*this);
+
+ nullCheckBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
+ contBB = createBasicBlock("new.cont");
+
+ llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
+ Builder.CreateCondBr(isNull, contBB, notNullBB);
+ EmitBlock(notNullBB);
+ }
+
+ // If there's an operator delete, enter a cleanup to call it if an
+ // exception is thrown.
+ EHScopeStack::stable_iterator operatorDeleteCleanup;
+ llvm::Instruction *cleanupDominator = 0;
+ if (E->getOperatorDelete() &&
+ !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
+ EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
+ operatorDeleteCleanup = EHStack.stable_begin();
+ cleanupDominator = Builder.CreateUnreachable();
+ }
+
+ assert((allocSize == allocSizeWithoutCookie) ==
+ CalculateCookiePadding(*this, E).isZero());
+ if (allocSize != allocSizeWithoutCookie) {
+ assert(E->isArray());
+ allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
+ numElements,
+ E, allocType);
+ }
+
+ llvm::Type *elementPtrTy
+ = ConvertTypeForMem(allocType)->getPointerTo(AS);
+ llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
+
+ EmitNewInitializer(*this, E, allocType, result, numElements,
+ allocSizeWithoutCookie);
+ if (E->isArray()) {
+ // NewPtr is a pointer to the base element type. If we're
+ // allocating an array of arrays, we'll need to cast back to the
+ // array pointer type.
+ llvm::Type *resultType = ConvertTypeForMem(E->getType());
+ if (result->getType() != resultType)
+ result = Builder.CreateBitCast(result, resultType);
+ }
+
+ // Deactivate the 'operator delete' cleanup if we finished
+ // initialization.
+ if (operatorDeleteCleanup.isValid()) {
+ DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
+ cleanupDominator->eraseFromParent();
+ }
+
+ if (nullCheck) {
+ conditional.end(*this);
+
+ llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
+ EmitBlock(contBB);
+
+ llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
+ PHI->addIncoming(result, notNullBB);
+ PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
+ nullCheckBB);
+
+ result = PHI;
+ }
+
+ return result;
+}
+
+void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
+ llvm::Value *Ptr,
+ QualType DeleteTy) {
+ assert(DeleteFD->getOverloadedOperator() == OO_Delete);
+
+ const FunctionProtoType *DeleteFTy =
+ DeleteFD->getType()->getAs<FunctionProtoType>();
+
+ CallArgList DeleteArgs;
+
+ // Check if we need to pass the size to the delete operator.
+ llvm::Value *Size = 0;
+ QualType SizeTy;
+ if (DeleteFTy->getNumArgs() == 2) {
+ SizeTy = DeleteFTy->getArgType(1);
+ CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
+ Size = llvm::ConstantInt::get(ConvertType(SizeTy),
+ DeleteTypeSize.getQuantity());
+ }
+
+ QualType ArgTy = DeleteFTy->getArgType(0);
+ llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
+ DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
+
+ if (Size)
+ DeleteArgs.add(RValue::get(Size), SizeTy);
+
+ // Emit the call to delete.
+ EmitCall(CGM.getTypes().arrangeFunctionCall(DeleteArgs, DeleteFTy),
+ CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
+ DeleteArgs, DeleteFD);
+}
+
+namespace {
+ /// Calls the given 'operator delete' on a single object.
+ struct CallObjectDelete : EHScopeStack::Cleanup {
+ llvm::Value *Ptr;
+ const FunctionDecl *OperatorDelete;
+ QualType ElementType;
+
+ CallObjectDelete(llvm::Value *Ptr,
+ const FunctionDecl *OperatorDelete,
+ QualType ElementType)
+ : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
+ }
+ };
+}
+
+/// Emit the code for deleting a single object.
+static void EmitObjectDelete(CodeGenFunction &CGF,
+ const FunctionDecl *OperatorDelete,
+ llvm::Value *Ptr,
+ QualType ElementType,
+ bool UseGlobalDelete) {
+ // Find the destructor for the type, if applicable. If the
+ // destructor is virtual, we'll just emit the vcall and return.
+ const CXXDestructorDecl *Dtor = 0;
+ if (const RecordType *RT = ElementType->getAs<RecordType>()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
+ Dtor = RD->getDestructor();
+
+ if (Dtor->isVirtual()) {
+ if (UseGlobalDelete) {
+ // If we're supposed to call the global delete, make sure we do so
+ // even if the destructor throws.
+ CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
+ Ptr, OperatorDelete,
+ ElementType);
+ }
+
+ llvm::Type *Ty =
+ CGF.getTypes().GetFunctionType(
+ CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete));
+
+ llvm::Value *Callee
+ = CGF.BuildVirtualCall(Dtor,
+ UseGlobalDelete? Dtor_Complete : Dtor_Deleting,
+ Ptr, Ty);
+ CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
+ 0, 0);
+
+ if (UseGlobalDelete) {
+ CGF.PopCleanupBlock();
+ }
+
+ return;
+ }
+ }
+ }
+
+ // Make sure that we call delete even if the dtor throws.
+ // This doesn't have to a conditional cleanup because we're going
+ // to pop it off in a second.
+ CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
+ Ptr, OperatorDelete, ElementType);
+
+ if (Dtor)
+ CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
+ /*ForVirtualBase=*/false, Ptr);
+ else if (CGF.getLangOpts().ObjCAutoRefCount &&
+ ElementType->isObjCLifetimeType()) {
+ switch (ElementType.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ break;
+
+ case Qualifiers::OCL_Strong: {
+ // Load the pointer value.
+ llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
+ ElementType.isVolatileQualified());
+
+ CGF.EmitARCRelease(PtrValue, /*precise*/ true);
+ break;
+ }
+
+ case Qualifiers::OCL_Weak:
+ CGF.EmitARCDestroyWeak(Ptr);
+ break;
+ }
+ }
+
+ CGF.PopCleanupBlock();
+}
+
+namespace {
+ /// Calls the given 'operator delete' on an array of objects.
+ struct CallArrayDelete : EHScopeStack::Cleanup {
+ llvm::Value *Ptr;
+ const FunctionDecl *OperatorDelete;
+ llvm::Value *NumElements;
+ QualType ElementType;
+ CharUnits CookieSize;
+
+ CallArrayDelete(llvm::Value *Ptr,
+ const FunctionDecl *OperatorDelete,
+ llvm::Value *NumElements,
+ QualType ElementType,
+ CharUnits CookieSize)
+ : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
+ ElementType(ElementType), CookieSize(CookieSize) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ const FunctionProtoType *DeleteFTy =
+ OperatorDelete->getType()->getAs<FunctionProtoType>();
+ assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
+
+ CallArgList Args;
+
+ // Pass the pointer as the first argument.
+ QualType VoidPtrTy = DeleteFTy->getArgType(0);
+ llvm::Value *DeletePtr
+ = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
+ Args.add(RValue::get(DeletePtr), VoidPtrTy);
+
+ // Pass the original requested size as the second argument.
+ if (DeleteFTy->getNumArgs() == 2) {
+ QualType size_t = DeleteFTy->getArgType(1);
+ llvm::IntegerType *SizeTy
+ = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
+
+ CharUnits ElementTypeSize =
+ CGF.CGM.getContext().getTypeSizeInChars(ElementType);
+
+ // The size of an element, multiplied by the number of elements.
+ llvm::Value *Size
+ = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
+ Size = CGF.Builder.CreateMul(Size, NumElements);
+
+ // Plus the size of the cookie if applicable.
+ if (!CookieSize.isZero()) {
+ llvm::Value *CookieSizeV
+ = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
+ Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
+ }
+
+ Args.add(RValue::get(Size), size_t);
+ }
+
+ // Emit the call to delete.
+ CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Args, DeleteFTy),
+ CGF.CGM.GetAddrOfFunction(OperatorDelete),
+ ReturnValueSlot(), Args, OperatorDelete);
+ }
+ };
+}
+
+/// Emit the code for deleting an array of objects.
+static void EmitArrayDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *E,
+ llvm::Value *deletedPtr,
+ QualType elementType) {
+ llvm::Value *numElements = 0;
+ llvm::Value *allocatedPtr = 0;
+ CharUnits cookieSize;
+ CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
+ numElements, allocatedPtr, cookieSize);
+
+ assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
+
+ // Make sure that we call delete even if one of the dtors throws.
+ const FunctionDecl *operatorDelete = E->getOperatorDelete();
+ CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
+ allocatedPtr, operatorDelete,
+ numElements, elementType,
+ cookieSize);
+
+ // Destroy the elements.
+ if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
+ assert(numElements && "no element count for a type with a destructor!");
+
+ llvm::Value *arrayEnd =
+ CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
+
+ // Note that it is legal to allocate a zero-length array, and we
+ // can never fold the check away because the length should always
+ // come from a cookie.
+ CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
+ CGF.getDestroyer(dtorKind),
+ /*checkZeroLength*/ true,
+ CGF.needsEHCleanup(dtorKind));
+ }
+
+ // Pop the cleanup block.
+ CGF.PopCleanupBlock();
+}
+
+void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
+
+ // Get at the argument before we performed the implicit conversion
+ // to void*.
+ const Expr *Arg = E->getArgument();
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
+ if (ICE->getCastKind() != CK_UserDefinedConversion &&
+ ICE->getType()->isVoidPointerType())
+ Arg = ICE->getSubExpr();
+ else
+ break;
+ }
+
+ llvm::Value *Ptr = EmitScalarExpr(Arg);
+
+ // Null check the pointer.
+ llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
+ llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
+
+ llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
+
+ Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
+ EmitBlock(DeleteNotNull);
+
+ // We might be deleting a pointer to array. If so, GEP down to the
+ // first non-array element.
+ // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
+ QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
+ if (DeleteTy->isConstantArrayType()) {
+ llvm::Value *Zero = Builder.getInt32(0);
+ SmallVector<llvm::Value*,8> GEP;
+
+ GEP.push_back(Zero); // point at the outermost array
+
+ // For each layer of array type we're pointing at:
+ while (const ConstantArrayType *Arr
+ = getContext().getAsConstantArrayType(DeleteTy)) {
+ // 1. Unpeel the array type.
+ DeleteTy = Arr->getElementType();
+
+ // 2. GEP to the first element of the array.
+ GEP.push_back(Zero);
+ }
+
+ Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
+ }
+
+ assert(ConvertTypeForMem(DeleteTy) ==
+ cast<llvm::PointerType>(Ptr->getType())->getElementType());
+
+ if (E->isArrayForm()) {
+ EmitArrayDelete(*this, E, Ptr, DeleteTy);
+ } else {
+ EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
+ E->isGlobalDelete());
+ }
+
+ EmitBlock(DeleteEnd);
+}
+
+static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
+ // void __cxa_bad_typeid();
+ llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
+
+ return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
+}
+
+static void EmitBadTypeidCall(CodeGenFunction &CGF) {
+ llvm::Value *Fn = getBadTypeidFn(CGF);
+ CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+}
+
+static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
+ const Expr *E,
+ llvm::Type *StdTypeInfoPtrTy) {
+ // Get the vtable pointer.
+ llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
+
+ // C++ [expr.typeid]p2:
+ // If the glvalue expression is obtained by applying the unary * operator to
+ // a pointer and the pointer is a null pointer value, the typeid expression
+ // throws the std::bad_typeid exception.
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
+ if (UO->getOpcode() == UO_Deref) {
+ llvm::BasicBlock *BadTypeidBlock =
+ CGF.createBasicBlock("typeid.bad_typeid");
+ llvm::BasicBlock *EndBlock =
+ CGF.createBasicBlock("typeid.end");
+
+ llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
+ CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
+
+ CGF.EmitBlock(BadTypeidBlock);
+ EmitBadTypeidCall(CGF);
+ CGF.EmitBlock(EndBlock);
+ }
+ }
+
+ llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
+ StdTypeInfoPtrTy->getPointerTo());
+
+ // Load the type info.
+ Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
+ return CGF.Builder.CreateLoad(Value);
+}
+
+llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
+ llvm::Type *StdTypeInfoPtrTy =
+ ConvertType(E->getType())->getPointerTo();
+
+ if (E->isTypeOperand()) {
+ llvm::Constant *TypeInfo =
+ CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
+ return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
+ }
+
+ // C++ [expr.typeid]p2:
+ // When typeid is applied to a glvalue expression whose type is a
+ // polymorphic class type, the result refers to a std::type_info object
+ // representing the type of the most derived object (that is, the dynamic
+ // type) to which the glvalue refers.
+ if (E->getExprOperand()->isGLValue()) {
+ if (const RecordType *RT =
+ E->getExprOperand()->getType()->getAs<RecordType>()) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->isPolymorphic())
+ return EmitTypeidFromVTable(*this, E->getExprOperand(),
+ StdTypeInfoPtrTy);
+ }
+ }
+
+ QualType OperandTy = E->getExprOperand()->getType();
+ return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
+ StdTypeInfoPtrTy);
+}
+
+static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
+ // void *__dynamic_cast(const void *sub,
+ // const abi::__class_type_info *src,
+ // const abi::__class_type_info *dst,
+ // std::ptrdiff_t src2dst_offset);
+
+ llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
+ llvm::Type *PtrDiffTy =
+ CGF.ConvertType(CGF.getContext().getPointerDiffType());
+
+ llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
+
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(Int8PtrTy, Args, false);
+
+ return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast");
+}
+
+static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
+ // void __cxa_bad_cast();
+ llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
+ return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
+}
+
+static void EmitBadCastCall(CodeGenFunction &CGF) {
+ llvm::Value *Fn = getBadCastFn(CGF);
+ CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+}
+
+static llvm::Value *
+EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
+ QualType SrcTy, QualType DestTy,
+ llvm::BasicBlock *CastEnd) {
+ llvm::Type *PtrDiffLTy =
+ CGF.ConvertType(CGF.getContext().getPointerDiffType());
+ llvm::Type *DestLTy = CGF.ConvertType(DestTy);
+
+ if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
+ if (PTy->getPointeeType()->isVoidType()) {
+ // C++ [expr.dynamic.cast]p7:
+ // If T is "pointer to cv void," then the result is a pointer to the
+ // most derived object pointed to by v.
+
+ // Get the vtable pointer.
+ llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
+
+ // Get the offset-to-top from the vtable.
+ llvm::Value *OffsetToTop =
+ CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
+ OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
+
+ // Finally, add the offset to the pointer.
+ Value = CGF.EmitCastToVoidPtr(Value);
+ Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
+
+ return CGF.Builder.CreateBitCast(Value, DestLTy);
+ }
+ }
+
+ QualType SrcRecordTy;
+ QualType DestRecordTy;
+
+ if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
+ SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
+ DestRecordTy = DestPTy->getPointeeType();
+ } else {
+ SrcRecordTy = SrcTy;
+ DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
+ }
+
+ assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
+ assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
+
+ llvm::Value *SrcRTTI =
+ CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
+ llvm::Value *DestRTTI =
+ CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
+
+ // FIXME: Actually compute a hint here.
+ llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL);
+
+ // Emit the call to __dynamic_cast.
+ Value = CGF.EmitCastToVoidPtr(Value);
+ Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value,
+ SrcRTTI, DestRTTI, OffsetHint);
+ Value = CGF.Builder.CreateBitCast(Value, DestLTy);
+
+ /// C++ [expr.dynamic.cast]p9:
+ /// A failed cast to reference type throws std::bad_cast
+ if (DestTy->isReferenceType()) {
+ llvm::BasicBlock *BadCastBlock =
+ CGF.createBasicBlock("dynamic_cast.bad_cast");
+
+ llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
+ CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
+
+ CGF.EmitBlock(BadCastBlock);
+ EmitBadCastCall(CGF);
+ }
+
+ return Value;
+}
+
+static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
+ QualType DestTy) {
+ llvm::Type *DestLTy = CGF.ConvertType(DestTy);
+ if (DestTy->isPointerType())
+ return llvm::Constant::getNullValue(DestLTy);
+
+ /// C++ [expr.dynamic.cast]p9:
+ /// A failed cast to reference type throws std::bad_cast
+ EmitBadCastCall(CGF);
+
+ CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
+ return llvm::UndefValue::get(DestLTy);
+}
+
+llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
+ const CXXDynamicCastExpr *DCE) {
+ QualType DestTy = DCE->getTypeAsWritten();
+
+ if (DCE->isAlwaysNull())
+ return EmitDynamicCastToNull(*this, DestTy);
+
+ QualType SrcTy = DCE->getSubExpr()->getType();
+
+ // C++ [expr.dynamic.cast]p4:
+ // If the value of v is a null pointer value in the pointer case, the result
+ // is the null pointer value of type T.
+ bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
+
+ llvm::BasicBlock *CastNull = 0;
+ llvm::BasicBlock *CastNotNull = 0;
+ llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
+
+ if (ShouldNullCheckSrcValue) {
+ CastNull = createBasicBlock("dynamic_cast.null");
+ CastNotNull = createBasicBlock("dynamic_cast.notnull");
+
+ llvm::Value *IsNull = Builder.CreateIsNull(Value);
+ Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
+ EmitBlock(CastNotNull);
+ }
+
+ Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
+
+ if (ShouldNullCheckSrcValue) {
+ EmitBranch(CastEnd);
+
+ EmitBlock(CastNull);
+ EmitBranch(CastEnd);
+ }
+
+ EmitBlock(CastEnd);
+
+ if (ShouldNullCheckSrcValue) {
+ llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
+ PHI->addIncoming(Value, CastNotNull);
+ PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
+
+ Value = PHI;
+ }
+
+ return Value;
+}
+
+void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
+ RunCleanupsScope Scope(*this);
+ LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
+ Slot.getAlignment());
+
+ CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
+ for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
+ e = E->capture_init_end();
+ i != e; ++i, ++CurField) {
+ // Emit initialization
+
+ LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
+ ArrayRef<VarDecl *> ArrayIndexes;
+ if (CurField->getType()->isArrayType())
+ ArrayIndexes = E->getCaptureInitIndexVars(i);
+ EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
+ }
+}