summaryrefslogtreecommitdiff
path: root/clang/lib/AST/RecordLayoutBuilder.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/AST/RecordLayoutBuilder.cpp')
-rw-r--r--clang/lib/AST/RecordLayoutBuilder.cpp2488
1 files changed, 2488 insertions, 0 deletions
diff --git a/clang/lib/AST/RecordLayoutBuilder.cpp b/clang/lib/AST/RecordLayoutBuilder.cpp
new file mode 100644
index 0000000..c2d9294
--- /dev/null
+++ b/clang/lib/AST/RecordLayoutBuilder.cpp
@@ -0,0 +1,2488 @@
+//=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Attr.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "llvm/Support/Format.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/CrashRecoveryContext.h"
+
+using namespace clang;
+
+namespace {
+
+/// BaseSubobjectInfo - Represents a single base subobject in a complete class.
+/// For a class hierarchy like
+///
+/// class A { };
+/// class B : A { };
+/// class C : A, B { };
+///
+/// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
+/// instances, one for B and two for A.
+///
+/// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
+struct BaseSubobjectInfo {
+ /// Class - The class for this base info.
+ const CXXRecordDecl *Class;
+
+ /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
+ bool IsVirtual;
+
+ /// Bases - Information about the base subobjects.
+ SmallVector<BaseSubobjectInfo*, 4> Bases;
+
+ /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
+ /// of this base info (if one exists).
+ BaseSubobjectInfo *PrimaryVirtualBaseInfo;
+
+ // FIXME: Document.
+ const BaseSubobjectInfo *Derived;
+};
+
+/// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
+/// offsets while laying out a C++ class.
+class EmptySubobjectMap {
+ const ASTContext &Context;
+ uint64_t CharWidth;
+
+ /// Class - The class whose empty entries we're keeping track of.
+ const CXXRecordDecl *Class;
+
+ /// EmptyClassOffsets - A map from offsets to empty record decls.
+ typedef SmallVector<const CXXRecordDecl *, 1> ClassVectorTy;
+ typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
+ EmptyClassOffsetsMapTy EmptyClassOffsets;
+
+ /// MaxEmptyClassOffset - The highest offset known to contain an empty
+ /// base subobject.
+ CharUnits MaxEmptyClassOffset;
+
+ /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
+ /// member subobject that is empty.
+ void ComputeEmptySubobjectSizes();
+
+ void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
+
+ void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
+ CharUnits Offset, bool PlacingEmptyBase);
+
+ void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
+ const CXXRecordDecl *Class,
+ CharUnits Offset);
+ void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
+
+ /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
+ /// subobjects beyond the given offset.
+ bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
+ return Offset <= MaxEmptyClassOffset;
+ }
+
+ CharUnits
+ getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
+ uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
+ assert(FieldOffset % CharWidth == 0 &&
+ "Field offset not at char boundary!");
+
+ return Context.toCharUnitsFromBits(FieldOffset);
+ }
+
+protected:
+ bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
+ CharUnits Offset) const;
+
+ bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
+ CharUnits Offset);
+
+ bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
+ const CXXRecordDecl *Class,
+ CharUnits Offset) const;
+ bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
+ CharUnits Offset) const;
+
+public:
+ /// This holds the size of the largest empty subobject (either a base
+ /// or a member). Will be zero if the record being built doesn't contain
+ /// any empty classes.
+ CharUnits SizeOfLargestEmptySubobject;
+
+ EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
+ : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
+ ComputeEmptySubobjectSizes();
+ }
+
+ /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
+ /// at the given offset.
+ /// Returns false if placing the record will result in two components
+ /// (direct or indirect) of the same type having the same offset.
+ bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
+ CharUnits Offset);
+
+ /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
+ /// offset.
+ bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
+};
+
+void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
+ // Check the bases.
+ for (CXXRecordDecl::base_class_const_iterator I = Class->bases_begin(),
+ E = Class->bases_end(); I != E; ++I) {
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ CharUnits EmptySize;
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
+ if (BaseDecl->isEmpty()) {
+ // If the class decl is empty, get its size.
+ EmptySize = Layout.getSize();
+ } else {
+ // Otherwise, we get the largest empty subobject for the decl.
+ EmptySize = Layout.getSizeOfLargestEmptySubobject();
+ }
+
+ if (EmptySize > SizeOfLargestEmptySubobject)
+ SizeOfLargestEmptySubobject = EmptySize;
+ }
+
+ // Check the fields.
+ for (CXXRecordDecl::field_iterator I = Class->field_begin(),
+ E = Class->field_end(); I != E; ++I) {
+ const FieldDecl *FD = *I;
+
+ const RecordType *RT =
+ Context.getBaseElementType(FD->getType())->getAs<RecordType>();
+
+ // We only care about record types.
+ if (!RT)
+ continue;
+
+ CharUnits EmptySize;
+ const CXXRecordDecl *MemberDecl = cast<CXXRecordDecl>(RT->getDecl());
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
+ if (MemberDecl->isEmpty()) {
+ // If the class decl is empty, get its size.
+ EmptySize = Layout.getSize();
+ } else {
+ // Otherwise, we get the largest empty subobject for the decl.
+ EmptySize = Layout.getSizeOfLargestEmptySubobject();
+ }
+
+ if (EmptySize > SizeOfLargestEmptySubobject)
+ SizeOfLargestEmptySubobject = EmptySize;
+ }
+}
+
+bool
+EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
+ CharUnits Offset) const {
+ // We only need to check empty bases.
+ if (!RD->isEmpty())
+ return true;
+
+ EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
+ if (I == EmptyClassOffsets.end())
+ return true;
+
+ const ClassVectorTy& Classes = I->second;
+ if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
+ return true;
+
+ // There is already an empty class of the same type at this offset.
+ return false;
+}
+
+void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
+ CharUnits Offset) {
+ // We only care about empty bases.
+ if (!RD->isEmpty())
+ return;
+
+ // If we have empty structures inside an union, we can assign both
+ // the same offset. Just avoid pushing them twice in the list.
+ ClassVectorTy& Classes = EmptyClassOffsets[Offset];
+ if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
+ return;
+
+ Classes.push_back(RD);
+
+ // Update the empty class offset.
+ if (Offset > MaxEmptyClassOffset)
+ MaxEmptyClassOffset = Offset;
+}
+
+bool
+EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
+ CharUnits Offset) {
+ // We don't have to keep looking past the maximum offset that's known to
+ // contain an empty class.
+ if (!AnyEmptySubobjectsBeyondOffset(Offset))
+ return true;
+
+ if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
+ return false;
+
+ // Traverse all non-virtual bases.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
+ for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
+ BaseSubobjectInfo* Base = Info->Bases[I];
+ if (Base->IsVirtual)
+ continue;
+
+ CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
+
+ if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
+ return false;
+ }
+
+ if (Info->PrimaryVirtualBaseInfo) {
+ BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
+
+ if (Info == PrimaryVirtualBaseInfo->Derived) {
+ if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
+ return false;
+ }
+ }
+
+ // Traverse all member variables.
+ unsigned FieldNo = 0;
+ for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
+ E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
+ const FieldDecl *FD = *I;
+ if (FD->isBitField())
+ continue;
+
+ CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
+ if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset))
+ return false;
+ }
+
+ return true;
+}
+
+void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
+ CharUnits Offset,
+ bool PlacingEmptyBase) {
+ if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
+ // We know that the only empty subobjects that can conflict with empty
+ // subobject of non-empty bases, are empty bases that can be placed at
+ // offset zero. Because of this, we only need to keep track of empty base
+ // subobjects with offsets less than the size of the largest empty
+ // subobject for our class.
+ return;
+ }
+
+ AddSubobjectAtOffset(Info->Class, Offset);
+
+ // Traverse all non-virtual bases.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
+ for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
+ BaseSubobjectInfo* Base = Info->Bases[I];
+ if (Base->IsVirtual)
+ continue;
+
+ CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
+ UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
+ }
+
+ if (Info->PrimaryVirtualBaseInfo) {
+ BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
+
+ if (Info == PrimaryVirtualBaseInfo->Derived)
+ UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
+ PlacingEmptyBase);
+ }
+
+ // Traverse all member variables.
+ unsigned FieldNo = 0;
+ for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
+ E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
+ const FieldDecl *FD = *I;
+ if (FD->isBitField())
+ continue;
+
+ CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
+ UpdateEmptyFieldSubobjects(FD, FieldOffset);
+ }
+}
+
+bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
+ CharUnits Offset) {
+ // If we know this class doesn't have any empty subobjects we don't need to
+ // bother checking.
+ if (SizeOfLargestEmptySubobject.isZero())
+ return true;
+
+ if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
+ return false;
+
+ // We are able to place the base at this offset. Make sure to update the
+ // empty base subobject map.
+ UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
+ return true;
+}
+
+bool
+EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
+ const CXXRecordDecl *Class,
+ CharUnits Offset) const {
+ // We don't have to keep looking past the maximum offset that's known to
+ // contain an empty class.
+ if (!AnyEmptySubobjectsBeyondOffset(Offset))
+ return true;
+
+ if (!CanPlaceSubobjectAtOffset(RD, Offset))
+ return false;
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // Traverse all non-virtual bases.
+ for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
+ E = RD->bases_end(); I != E; ++I) {
+ if (I->isVirtual())
+ continue;
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
+ if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
+ return false;
+ }
+
+ if (RD == Class) {
+ // This is the most derived class, traverse virtual bases as well.
+ for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
+ E = RD->vbases_end(); I != E; ++I) {
+ const CXXRecordDecl *VBaseDecl =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
+ if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
+ return false;
+ }
+ }
+
+ // Traverse all member variables.
+ unsigned FieldNo = 0;
+ for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
+ I != E; ++I, ++FieldNo) {
+ const FieldDecl *FD = *I;
+ if (FD->isBitField())
+ continue;
+
+ CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
+
+ if (!CanPlaceFieldSubobjectAtOffset(FD, FieldOffset))
+ return false;
+ }
+
+ return true;
+}
+
+bool
+EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
+ CharUnits Offset) const {
+ // We don't have to keep looking past the maximum offset that's known to
+ // contain an empty class.
+ if (!AnyEmptySubobjectsBeyondOffset(Offset))
+ return true;
+
+ QualType T = FD->getType();
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
+ }
+
+ // If we have an array type we need to look at every element.
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
+ QualType ElemTy = Context.getBaseElementType(AT);
+ const RecordType *RT = ElemTy->getAs<RecordType>();
+ if (!RT)
+ return true;
+
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ uint64_t NumElements = Context.getConstantArrayElementCount(AT);
+ CharUnits ElementOffset = Offset;
+ for (uint64_t I = 0; I != NumElements; ++I) {
+ // We don't have to keep looking past the maximum offset that's known to
+ // contain an empty class.
+ if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
+ return true;
+
+ if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
+ return false;
+
+ ElementOffset += Layout.getSize();
+ }
+ }
+
+ return true;
+}
+
+bool
+EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
+ CharUnits Offset) {
+ if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
+ return false;
+
+ // We are able to place the member variable at this offset.
+ // Make sure to update the empty base subobject map.
+ UpdateEmptyFieldSubobjects(FD, Offset);
+ return true;
+}
+
+void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
+ const CXXRecordDecl *Class,
+ CharUnits Offset) {
+ // We know that the only empty subobjects that can conflict with empty
+ // field subobjects are subobjects of empty bases that can be placed at offset
+ // zero. Because of this, we only need to keep track of empty field
+ // subobjects with offsets less than the size of the largest empty
+ // subobject for our class.
+ if (Offset >= SizeOfLargestEmptySubobject)
+ return;
+
+ AddSubobjectAtOffset(RD, Offset);
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // Traverse all non-virtual bases.
+ for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
+ E = RD->bases_end(); I != E; ++I) {
+ if (I->isVirtual())
+ continue;
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
+ UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
+ }
+
+ if (RD == Class) {
+ // This is the most derived class, traverse virtual bases as well.
+ for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
+ E = RD->vbases_end(); I != E; ++I) {
+ const CXXRecordDecl *VBaseDecl =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
+ UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
+ }
+ }
+
+ // Traverse all member variables.
+ unsigned FieldNo = 0;
+ for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
+ I != E; ++I, ++FieldNo) {
+ const FieldDecl *FD = *I;
+ if (FD->isBitField())
+ continue;
+
+ CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
+
+ UpdateEmptyFieldSubobjects(FD, FieldOffset);
+ }
+}
+
+void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
+ CharUnits Offset) {
+ QualType T = FD->getType();
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ UpdateEmptyFieldSubobjects(RD, RD, Offset);
+ return;
+ }
+
+ // If we have an array type we need to update every element.
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
+ QualType ElemTy = Context.getBaseElementType(AT);
+ const RecordType *RT = ElemTy->getAs<RecordType>();
+ if (!RT)
+ return;
+
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ uint64_t NumElements = Context.getConstantArrayElementCount(AT);
+ CharUnits ElementOffset = Offset;
+
+ for (uint64_t I = 0; I != NumElements; ++I) {
+ // We know that the only empty subobjects that can conflict with empty
+ // field subobjects are subobjects of empty bases that can be placed at
+ // offset zero. Because of this, we only need to keep track of empty field
+ // subobjects with offsets less than the size of the largest empty
+ // subobject for our class.
+ if (ElementOffset >= SizeOfLargestEmptySubobject)
+ return;
+
+ UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
+ ElementOffset += Layout.getSize();
+ }
+ }
+}
+
+class RecordLayoutBuilder {
+protected:
+ // FIXME: Remove this and make the appropriate fields public.
+ friend class clang::ASTContext;
+
+ const ASTContext &Context;
+
+ EmptySubobjectMap *EmptySubobjects;
+
+ /// Size - The current size of the record layout.
+ uint64_t Size;
+
+ /// Alignment - The current alignment of the record layout.
+ CharUnits Alignment;
+
+ /// \brief The alignment if attribute packed is not used.
+ CharUnits UnpackedAlignment;
+
+ SmallVector<uint64_t, 16> FieldOffsets;
+
+ /// \brief Whether the external AST source has provided a layout for this
+ /// record.
+ unsigned ExternalLayout : 1;
+
+ /// \brief Whether we need to infer alignment, even when we have an
+ /// externally-provided layout.
+ unsigned InferAlignment : 1;
+
+ /// Packed - Whether the record is packed or not.
+ unsigned Packed : 1;
+
+ unsigned IsUnion : 1;
+
+ unsigned IsMac68kAlign : 1;
+
+ unsigned IsMsStruct : 1;
+
+ /// UnfilledBitsInLastByte - If the last field laid out was a bitfield,
+ /// this contains the number of bits in the last byte that can be used for
+ /// an adjacent bitfield if necessary.
+ unsigned char UnfilledBitsInLastByte;
+
+ /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
+ /// #pragma pack.
+ CharUnits MaxFieldAlignment;
+
+ /// DataSize - The data size of the record being laid out.
+ uint64_t DataSize;
+
+ CharUnits NonVirtualSize;
+ CharUnits NonVirtualAlignment;
+
+ FieldDecl *ZeroLengthBitfield;
+
+ /// PrimaryBase - the primary base class (if one exists) of the class
+ /// we're laying out.
+ const CXXRecordDecl *PrimaryBase;
+
+ /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
+ /// out is virtual.
+ bool PrimaryBaseIsVirtual;
+
+ /// VFPtrOffset - Virtual function table offset. Only for MS layout.
+ CharUnits VFPtrOffset;
+
+ /// VBPtrOffset - Virtual base table offset. Only for MS layout.
+ CharUnits VBPtrOffset;
+
+ typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
+
+ /// Bases - base classes and their offsets in the record.
+ BaseOffsetsMapTy Bases;
+
+ // VBases - virtual base classes and their offsets in the record.
+ BaseOffsetsMapTy VBases;
+
+ /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
+ /// primary base classes for some other direct or indirect base class.
+ CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
+
+ /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
+ /// inheritance graph order. Used for determining the primary base class.
+ const CXXRecordDecl *FirstNearlyEmptyVBase;
+
+ /// VisitedVirtualBases - A set of all the visited virtual bases, used to
+ /// avoid visiting virtual bases more than once.
+ llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
+
+ /// \brief Externally-provided size.
+ uint64_t ExternalSize;
+
+ /// \brief Externally-provided alignment.
+ uint64_t ExternalAlign;
+
+ /// \brief Externally-provided field offsets.
+ llvm::DenseMap<const FieldDecl *, uint64_t> ExternalFieldOffsets;
+
+ /// \brief Externally-provided direct, non-virtual base offsets.
+ llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalBaseOffsets;
+
+ /// \brief Externally-provided virtual base offsets.
+ llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalVirtualBaseOffsets;
+
+ RecordLayoutBuilder(const ASTContext &Context,
+ EmptySubobjectMap *EmptySubobjects)
+ : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
+ Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
+ ExternalLayout(false), InferAlignment(false),
+ Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
+ UnfilledBitsInLastByte(0), MaxFieldAlignment(CharUnits::Zero()),
+ DataSize(0), NonVirtualSize(CharUnits::Zero()),
+ NonVirtualAlignment(CharUnits::One()),
+ ZeroLengthBitfield(0), PrimaryBase(0),
+ PrimaryBaseIsVirtual(false),
+ VFPtrOffset(CharUnits::fromQuantity(-1)),
+ VBPtrOffset(CharUnits::fromQuantity(-1)),
+ FirstNearlyEmptyVBase(0) { }
+
+ /// Reset this RecordLayoutBuilder to a fresh state, using the given
+ /// alignment as the initial alignment. This is used for the
+ /// correct layout of vb-table pointers in MSVC.
+ void resetWithTargetAlignment(CharUnits TargetAlignment) {
+ const ASTContext &Context = this->Context;
+ EmptySubobjectMap *EmptySubobjects = this->EmptySubobjects;
+ this->~RecordLayoutBuilder();
+ new (this) RecordLayoutBuilder(Context, EmptySubobjects);
+ Alignment = UnpackedAlignment = TargetAlignment;
+ }
+
+ void Layout(const RecordDecl *D);
+ void Layout(const CXXRecordDecl *D);
+ void Layout(const ObjCInterfaceDecl *D);
+
+ void LayoutFields(const RecordDecl *D);
+ void LayoutField(const FieldDecl *D);
+ void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
+ bool FieldPacked, const FieldDecl *D);
+ void LayoutBitField(const FieldDecl *D);
+
+ bool isMicrosoftCXXABI() const {
+ return Context.getTargetInfo().getCXXABI() == CXXABI_Microsoft;
+ }
+
+ void MSLayoutVirtualBases(const CXXRecordDecl *RD);
+
+ /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
+ llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
+
+ typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
+ BaseSubobjectInfoMapTy;
+
+ /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
+ /// of the class we're laying out to their base subobject info.
+ BaseSubobjectInfoMapTy VirtualBaseInfo;
+
+ /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
+ /// class we're laying out to their base subobject info.
+ BaseSubobjectInfoMapTy NonVirtualBaseInfo;
+
+ /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
+ /// bases of the given class.
+ void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
+
+ /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
+ /// single class and all of its base classes.
+ BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
+ bool IsVirtual,
+ BaseSubobjectInfo *Derived);
+
+ /// DeterminePrimaryBase - Determine the primary base of the given class.
+ void DeterminePrimaryBase(const CXXRecordDecl *RD);
+
+ void SelectPrimaryVBase(const CXXRecordDecl *RD);
+
+ void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
+
+ /// LayoutNonVirtualBases - Determines the primary base class (if any) and
+ /// lays it out. Will then proceed to lay out all non-virtual base clasess.
+ void LayoutNonVirtualBases(const CXXRecordDecl *RD);
+
+ /// LayoutNonVirtualBase - Lays out a single non-virtual base.
+ void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
+
+ void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
+ CharUnits Offset);
+
+ bool needsVFTable(const CXXRecordDecl *RD) const;
+ bool hasNewVirtualFunction(const CXXRecordDecl *RD) const;
+ bool isPossiblePrimaryBase(const CXXRecordDecl *Base) const;
+
+ /// LayoutVirtualBases - Lays out all the virtual bases.
+ void LayoutVirtualBases(const CXXRecordDecl *RD,
+ const CXXRecordDecl *MostDerivedClass);
+
+ /// LayoutVirtualBase - Lays out a single virtual base.
+ void LayoutVirtualBase(const BaseSubobjectInfo *Base);
+
+ /// LayoutBase - Will lay out a base and return the offset where it was
+ /// placed, in chars.
+ CharUnits LayoutBase(const BaseSubobjectInfo *Base);
+
+ /// InitializeLayout - Initialize record layout for the given record decl.
+ void InitializeLayout(const Decl *D);
+
+ /// FinishLayout - Finalize record layout. Adjust record size based on the
+ /// alignment.
+ void FinishLayout(const NamedDecl *D);
+
+ void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
+ void UpdateAlignment(CharUnits NewAlignment) {
+ UpdateAlignment(NewAlignment, NewAlignment);
+ }
+
+ /// \brief Retrieve the externally-supplied field offset for the given
+ /// field.
+ ///
+ /// \param Field The field whose offset is being queried.
+ /// \param ComputedOffset The offset that we've computed for this field.
+ uint64_t updateExternalFieldOffset(const FieldDecl *Field,
+ uint64_t ComputedOffset);
+
+ void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
+ uint64_t UnpackedOffset, unsigned UnpackedAlign,
+ bool isPacked, const FieldDecl *D);
+
+ DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
+
+ CharUnits getSize() const {
+ assert(Size % Context.getCharWidth() == 0);
+ return Context.toCharUnitsFromBits(Size);
+ }
+ uint64_t getSizeInBits() const { return Size; }
+
+ void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
+ void setSize(uint64_t NewSize) { Size = NewSize; }
+
+ CharUnits getAligment() const { return Alignment; }
+
+ CharUnits getDataSize() const {
+ assert(DataSize % Context.getCharWidth() == 0);
+ return Context.toCharUnitsFromBits(DataSize);
+ }
+ uint64_t getDataSizeInBits() const { return DataSize; }
+
+ void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
+ void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
+
+ RecordLayoutBuilder(const RecordLayoutBuilder&); // DO NOT IMPLEMENT
+ void operator=(const RecordLayoutBuilder&); // DO NOT IMPLEMENT
+public:
+ static const CXXMethodDecl *ComputeKeyFunction(const CXXRecordDecl *RD);
+};
+} // end anonymous namespace
+
+void
+RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
+ for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
+ E = RD->bases_end(); I != E; ++I) {
+ assert(!I->getType()->isDependentType() &&
+ "Cannot layout class with dependent bases.");
+
+ const CXXRecordDecl *Base =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ // Check if this is a nearly empty virtual base.
+ if (I->isVirtual() && Context.isNearlyEmpty(Base)) {
+ // If it's not an indirect primary base, then we've found our primary
+ // base.
+ if (!IndirectPrimaryBases.count(Base)) {
+ PrimaryBase = Base;
+ PrimaryBaseIsVirtual = true;
+ return;
+ }
+
+ // Is this the first nearly empty virtual base?
+ if (!FirstNearlyEmptyVBase)
+ FirstNearlyEmptyVBase = Base;
+ }
+
+ SelectPrimaryVBase(Base);
+ if (PrimaryBase)
+ return;
+ }
+}
+
+/// DeterminePrimaryBase - Determine the primary base of the given class.
+void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
+ // If the class isn't dynamic, it won't have a primary base.
+ if (!RD->isDynamicClass())
+ return;
+
+ // Compute all the primary virtual bases for all of our direct and
+ // indirect bases, and record all their primary virtual base classes.
+ RD->getIndirectPrimaryBases(IndirectPrimaryBases);
+
+ // If the record has a dynamic base class, attempt to choose a primary base
+ // class. It is the first (in direct base class order) non-virtual dynamic
+ // base class, if one exists.
+ for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
+ e = RD->bases_end(); i != e; ++i) {
+ // Ignore virtual bases.
+ if (i->isVirtual())
+ continue;
+
+ const CXXRecordDecl *Base =
+ cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
+
+ if (isPossiblePrimaryBase(Base)) {
+ // We found it.
+ PrimaryBase = Base;
+ PrimaryBaseIsVirtual = false;
+ return;
+ }
+ }
+
+ // The Microsoft ABI doesn't have primary virtual bases.
+ if (isMicrosoftCXXABI()) {
+ assert(!PrimaryBase && "Should not get here with a primary base!");
+ return;
+ }
+
+ // Under the Itanium ABI, if there is no non-virtual primary base class,
+ // try to compute the primary virtual base. The primary virtual base is
+ // the first nearly empty virtual base that is not an indirect primary
+ // virtual base class, if one exists.
+ if (RD->getNumVBases() != 0) {
+ SelectPrimaryVBase(RD);
+ if (PrimaryBase)
+ return;
+ }
+
+ // Otherwise, it is the first indirect primary base class, if one exists.
+ if (FirstNearlyEmptyVBase) {
+ PrimaryBase = FirstNearlyEmptyVBase;
+ PrimaryBaseIsVirtual = true;
+ return;
+ }
+
+ assert(!PrimaryBase && "Should not get here with a primary base!");
+}
+
+BaseSubobjectInfo *
+RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
+ bool IsVirtual,
+ BaseSubobjectInfo *Derived) {
+ BaseSubobjectInfo *Info;
+
+ if (IsVirtual) {
+ // Check if we already have info about this virtual base.
+ BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
+ if (InfoSlot) {
+ assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
+ return InfoSlot;
+ }
+
+ // We don't, create it.
+ InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
+ Info = InfoSlot;
+ } else {
+ Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
+ }
+
+ Info->Class = RD;
+ Info->IsVirtual = IsVirtual;
+ Info->Derived = 0;
+ Info->PrimaryVirtualBaseInfo = 0;
+
+ const CXXRecordDecl *PrimaryVirtualBase = 0;
+ BaseSubobjectInfo *PrimaryVirtualBaseInfo = 0;
+
+ // Check if this base has a primary virtual base.
+ if (RD->getNumVBases()) {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ if (Layout.isPrimaryBaseVirtual()) {
+ // This base does have a primary virtual base.
+ PrimaryVirtualBase = Layout.getPrimaryBase();
+ assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
+
+ // Now check if we have base subobject info about this primary base.
+ PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
+
+ if (PrimaryVirtualBaseInfo) {
+ if (PrimaryVirtualBaseInfo->Derived) {
+ // We did have info about this primary base, and it turns out that it
+ // has already been claimed as a primary virtual base for another
+ // base.
+ PrimaryVirtualBase = 0;
+ } else {
+ // We can claim this base as our primary base.
+ Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
+ PrimaryVirtualBaseInfo->Derived = Info;
+ }
+ }
+ }
+ }
+
+ // Now go through all direct bases.
+ for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
+ E = RD->bases_end(); I != E; ++I) {
+ bool IsVirtual = I->isVirtual();
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
+ }
+
+ if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
+ // Traversing the bases must have created the base info for our primary
+ // virtual base.
+ PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
+ assert(PrimaryVirtualBaseInfo &&
+ "Did not create a primary virtual base!");
+
+ // Claim the primary virtual base as our primary virtual base.
+ Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
+ PrimaryVirtualBaseInfo->Derived = Info;
+ }
+
+ return Info;
+}
+
+void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
+ for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
+ E = RD->bases_end(); I != E; ++I) {
+ bool IsVirtual = I->isVirtual();
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ // Compute the base subobject info for this base.
+ BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 0);
+
+ if (IsVirtual) {
+ // ComputeBaseInfo has already added this base for us.
+ assert(VirtualBaseInfo.count(BaseDecl) &&
+ "Did not add virtual base!");
+ } else {
+ // Add the base info to the map of non-virtual bases.
+ assert(!NonVirtualBaseInfo.count(BaseDecl) &&
+ "Non-virtual base already exists!");
+ NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
+ }
+ }
+}
+
+void
+RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
+ CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
+
+ // The maximum field alignment overrides base align.
+ if (!MaxFieldAlignment.isZero()) {
+ BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
+ UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
+ }
+
+ // Round up the current record size to pointer alignment.
+ setSize(getSize().RoundUpToAlignment(BaseAlign));
+ setDataSize(getSize());
+
+ // Update the alignment.
+ UpdateAlignment(BaseAlign, UnpackedBaseAlign);
+}
+
+void
+RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
+ // Then, determine the primary base class.
+ DeterminePrimaryBase(RD);
+
+ // Compute base subobject info.
+ ComputeBaseSubobjectInfo(RD);
+
+ // If we have a primary base class, lay it out.
+ if (PrimaryBase) {
+ if (PrimaryBaseIsVirtual) {
+ // If the primary virtual base was a primary virtual base of some other
+ // base class we'll have to steal it.
+ BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
+ PrimaryBaseInfo->Derived = 0;
+
+ // We have a virtual primary base, insert it as an indirect primary base.
+ IndirectPrimaryBases.insert(PrimaryBase);
+
+ assert(!VisitedVirtualBases.count(PrimaryBase) &&
+ "vbase already visited!");
+ VisitedVirtualBases.insert(PrimaryBase);
+
+ LayoutVirtualBase(PrimaryBaseInfo);
+ } else {
+ BaseSubobjectInfo *PrimaryBaseInfo =
+ NonVirtualBaseInfo.lookup(PrimaryBase);
+ assert(PrimaryBaseInfo &&
+ "Did not find base info for non-virtual primary base!");
+
+ LayoutNonVirtualBase(PrimaryBaseInfo);
+ }
+
+ // If this class needs a vtable/vf-table and didn't get one from a
+ // primary base, add it in now.
+ } else if (needsVFTable(RD)) {
+ assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
+ CharUnits PtrWidth =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
+ CharUnits PtrAlign =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
+ EnsureVTablePointerAlignment(PtrAlign);
+ if (isMicrosoftCXXABI())
+ VFPtrOffset = getSize();
+ setSize(getSize() + PtrWidth);
+ setDataSize(getSize());
+ }
+
+ bool HasDirectVirtualBases = false;
+ bool HasNonVirtualBaseWithVBTable = false;
+
+ // Now lay out the non-virtual bases.
+ for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
+ E = RD->bases_end(); I != E; ++I) {
+
+ // Ignore virtual bases, but remember that we saw one.
+ if (I->isVirtual()) {
+ HasDirectVirtualBases = true;
+ continue;
+ }
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
+
+ // Remember if this base has virtual bases itself.
+ if (BaseDecl->getNumVBases())
+ HasNonVirtualBaseWithVBTable = true;
+
+ // Skip the primary base, because we've already laid it out. The
+ // !PrimaryBaseIsVirtual check is required because we might have a
+ // non-virtual base of the same type as a primary virtual base.
+ if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
+ continue;
+
+ // Lay out the base.
+ BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
+ assert(BaseInfo && "Did not find base info for non-virtual base!");
+
+ LayoutNonVirtualBase(BaseInfo);
+ }
+
+ // In the MS ABI, add the vb-table pointer if we need one, which is
+ // whenever we have a virtual base and we can't re-use a vb-table
+ // pointer from a non-virtual base.
+ if (isMicrosoftCXXABI() &&
+ HasDirectVirtualBases && !HasNonVirtualBaseWithVBTable) {
+ CharUnits PtrWidth =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
+ CharUnits PtrAlign =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
+
+ // MSVC potentially over-aligns the vb-table pointer by giving it
+ // the max alignment of all the non-virtual objects in the class.
+ // This is completely unnecessary, but we're not here to pass
+ // judgment.
+ //
+ // Note that we've only laid out the non-virtual bases, so on the
+ // first pass Alignment won't be set correctly here, but if the
+ // vb-table doesn't end up aligned correctly we'll come through
+ // and redo the layout from scratch with the right alignment.
+ //
+ // TODO: Instead of doing this, just lay out the fields as if the
+ // vb-table were at offset zero, then retroactively bump the field
+ // offsets up.
+ PtrAlign = std::max(PtrAlign, Alignment);
+
+ EnsureVTablePointerAlignment(PtrAlign);
+ VBPtrOffset = getSize();
+ setSize(getSize() + PtrWidth);
+ setDataSize(getSize());
+ }
+}
+
+void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
+ // Layout the base.
+ CharUnits Offset = LayoutBase(Base);
+
+ // Add its base class offset.
+ assert(!Bases.count(Base->Class) && "base offset already exists!");
+ Bases.insert(std::make_pair(Base->Class, Offset));
+
+ AddPrimaryVirtualBaseOffsets(Base, Offset);
+}
+
+void
+RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
+ CharUnits Offset) {
+ // This base isn't interesting, it has no virtual bases.
+ if (!Info->Class->getNumVBases())
+ return;
+
+ // First, check if we have a virtual primary base to add offsets for.
+ if (Info->PrimaryVirtualBaseInfo) {
+ assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
+ "Primary virtual base is not virtual!");
+ if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
+ // Add the offset.
+ assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
+ "primary vbase offset already exists!");
+ VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
+ Offset));
+
+ // Traverse the primary virtual base.
+ AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
+ }
+ }
+
+ // Now go through all direct non-virtual bases.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
+ for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
+ const BaseSubobjectInfo *Base = Info->Bases[I];
+ if (Base->IsVirtual)
+ continue;
+
+ CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
+ AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
+ }
+}
+
+/// needsVFTable - Return true if this class needs a vtable or vf-table
+/// when laid out as a base class. These are treated the same because
+/// they're both always laid out at offset zero.
+///
+/// This function assumes that the class has no primary base.
+bool RecordLayoutBuilder::needsVFTable(const CXXRecordDecl *RD) const {
+ assert(!PrimaryBase);
+
+ // In the Itanium ABI, every dynamic class needs a vtable: even if
+ // this class has no virtual functions as a base class (i.e. it's
+ // non-polymorphic or only has virtual functions from virtual
+ // bases),x it still needs a vtable to locate its virtual bases.
+ if (!isMicrosoftCXXABI())
+ return RD->isDynamicClass();
+
+ // In the MS ABI, we need a vfptr if the class has virtual functions
+ // other than those declared by its virtual bases. The AST doesn't
+ // tell us that directly, and checking manually for virtual
+ // functions that aren't overrides is expensive, but there are
+ // some important shortcuts:
+
+ // - Non-polymorphic classes have no virtual functions at all.
+ if (!RD->isPolymorphic()) return false;
+
+ // - Polymorphic classes with no virtual bases must either declare
+ // virtual functions directly or inherit them, but in the latter
+ // case we would have a primary base.
+ if (RD->getNumVBases() == 0) return true;
+
+ return hasNewVirtualFunction(RD);
+}
+
+/// hasNewVirtualFunction - Does the given polymorphic class declare a
+/// virtual function that does not override a method from any of its
+/// base classes?
+bool
+RecordLayoutBuilder::hasNewVirtualFunction(const CXXRecordDecl *RD) const {
+ assert(RD->isPolymorphic());
+ if (!RD->getNumBases())
+ return true;
+
+ for (CXXRecordDecl::method_iterator method = RD->method_begin();
+ method != RD->method_end();
+ ++method) {
+ if (method->isVirtual() && !method->size_overridden_methods()) {
+ return true;
+ }
+ }
+ return false;
+}
+
+/// isPossiblePrimaryBase - Is the given base class an acceptable
+/// primary base class?
+bool
+RecordLayoutBuilder::isPossiblePrimaryBase(const CXXRecordDecl *Base) const {
+ // In the Itanium ABI, a class can be a primary base class if it has
+ // a vtable for any reason.
+ if (!isMicrosoftCXXABI())
+ return Base->isDynamicClass();
+
+ // In the MS ABI, a class can only be a primary base class if it
+ // provides a vf-table at a static offset. That means it has to be
+ // non-virtual base. The existence of a separate vb-table means
+ // that it's possible to get virtual functions only from a virtual
+ // base, which we have to guard against.
+
+ // First off, it has to have virtual functions.
+ if (!Base->isPolymorphic()) return false;
+
+ // If it has no virtual bases, then everything is at a static offset.
+ if (!Base->getNumVBases()) return true;
+
+ // Okay, just ask the base class's layout.
+ return (Context.getASTRecordLayout(Base).getVFPtrOffset()
+ != CharUnits::fromQuantity(-1));
+}
+
+void
+RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
+ const CXXRecordDecl *MostDerivedClass) {
+ const CXXRecordDecl *PrimaryBase;
+ bool PrimaryBaseIsVirtual;
+
+ if (MostDerivedClass == RD) {
+ PrimaryBase = this->PrimaryBase;
+ PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
+ } else {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ PrimaryBase = Layout.getPrimaryBase();
+ PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
+ }
+
+ for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
+ E = RD->bases_end(); I != E; ++I) {
+ assert(!I->getType()->isDependentType() &&
+ "Cannot layout class with dependent bases.");
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
+
+ if (I->isVirtual()) {
+ if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
+ bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
+
+ // Only lay out the virtual base if it's not an indirect primary base.
+ if (!IndirectPrimaryBase) {
+ // Only visit virtual bases once.
+ if (!VisitedVirtualBases.insert(BaseDecl))
+ continue;
+
+ const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
+ assert(BaseInfo && "Did not find virtual base info!");
+ LayoutVirtualBase(BaseInfo);
+ }
+ }
+ }
+
+ if (!BaseDecl->getNumVBases()) {
+ // This base isn't interesting since it doesn't have any virtual bases.
+ continue;
+ }
+
+ LayoutVirtualBases(BaseDecl, MostDerivedClass);
+ }
+}
+
+void RecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD) {
+
+ if (!RD->getNumVBases())
+ return;
+
+ // This is substantially simplified because there are no virtual
+ // primary bases.
+ for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
+ E = RD->vbases_end(); I != E; ++I) {
+ const CXXRecordDecl *BaseDecl = I->getType()->getAsCXXRecordDecl();
+ const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
+ assert(BaseInfo && "Did not find virtual base info!");
+
+ LayoutVirtualBase(BaseInfo);
+ }
+}
+
+void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) {
+ assert(!Base->Derived && "Trying to lay out a primary virtual base!");
+
+ // Layout the base.
+ CharUnits Offset = LayoutBase(Base);
+
+ // Add its base class offset.
+ assert(!VBases.count(Base->Class) && "vbase offset already exists!");
+ VBases.insert(std::make_pair(Base->Class, Offset));
+
+ AddPrimaryVirtualBaseOffsets(Base, Offset);
+}
+
+CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
+
+
+ CharUnits Offset;
+
+ // Query the external layout to see if it provides an offset.
+ bool HasExternalLayout = false;
+ if (ExternalLayout) {
+ llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
+ if (Base->IsVirtual) {
+ Known = ExternalVirtualBaseOffsets.find(Base->Class);
+ if (Known != ExternalVirtualBaseOffsets.end()) {
+ Offset = Known->second;
+ HasExternalLayout = true;
+ }
+ } else {
+ Known = ExternalBaseOffsets.find(Base->Class);
+ if (Known != ExternalBaseOffsets.end()) {
+ Offset = Known->second;
+ HasExternalLayout = true;
+ }
+ }
+ }
+
+ // If we have an empty base class, try to place it at offset 0.
+ if (Base->Class->isEmpty() &&
+ (!HasExternalLayout || Offset == CharUnits::Zero()) &&
+ EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
+ setSize(std::max(getSize(), Layout.getSize()));
+
+ return CharUnits::Zero();
+ }
+
+ CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlign();
+ CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
+
+ // The maximum field alignment overrides base align.
+ if (!MaxFieldAlignment.isZero()) {
+ BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
+ UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
+ }
+
+ if (!HasExternalLayout) {
+ // Round up the current record size to the base's alignment boundary.
+ Offset = getDataSize().RoundUpToAlignment(BaseAlign);
+
+ // Try to place the base.
+ while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
+ Offset += BaseAlign;
+ } else {
+ bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
+ (void)Allowed;
+ assert(Allowed && "Base subobject externally placed at overlapping offset");
+ }
+
+ if (!Base->Class->isEmpty()) {
+ // Update the data size.
+ setDataSize(Offset + Layout.getNonVirtualSize());
+
+ setSize(std::max(getSize(), getDataSize()));
+ } else
+ setSize(std::max(getSize(), Offset + Layout.getSize()));
+
+ // Remember max struct/class alignment.
+ UpdateAlignment(BaseAlign, UnpackedBaseAlign);
+
+ return Offset;
+}
+
+void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
+ if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
+ IsUnion = RD->isUnion();
+
+ Packed = D->hasAttr<PackedAttr>();
+
+ IsMsStruct = D->hasAttr<MsStructAttr>();
+
+ // Honor the default struct packing maximum alignment flag.
+ if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
+ MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
+ }
+
+ // mac68k alignment supersedes maximum field alignment and attribute aligned,
+ // and forces all structures to have 2-byte alignment. The IBM docs on it
+ // allude to additional (more complicated) semantics, especially with regard
+ // to bit-fields, but gcc appears not to follow that.
+ if (D->hasAttr<AlignMac68kAttr>()) {
+ IsMac68kAlign = true;
+ MaxFieldAlignment = CharUnits::fromQuantity(2);
+ Alignment = CharUnits::fromQuantity(2);
+ } else {
+ if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
+ MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
+
+ if (unsigned MaxAlign = D->getMaxAlignment())
+ UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
+ }
+
+ // If there is an external AST source, ask it for the various offsets.
+ if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
+ if (ExternalASTSource *External = Context.getExternalSource()) {
+ ExternalLayout = External->layoutRecordType(RD,
+ ExternalSize,
+ ExternalAlign,
+ ExternalFieldOffsets,
+ ExternalBaseOffsets,
+ ExternalVirtualBaseOffsets);
+
+ // Update based on external alignment.
+ if (ExternalLayout) {
+ if (ExternalAlign > 0) {
+ Alignment = Context.toCharUnitsFromBits(ExternalAlign);
+ UnpackedAlignment = Alignment;
+ } else {
+ // The external source didn't have alignment information; infer it.
+ InferAlignment = true;
+ }
+ }
+ }
+}
+
+void RecordLayoutBuilder::Layout(const RecordDecl *D) {
+ InitializeLayout(D);
+ LayoutFields(D);
+
+ // Finally, round the size of the total struct up to the alignment of the
+ // struct itself.
+ FinishLayout(D);
+}
+
+void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
+ InitializeLayout(RD);
+
+ // Lay out the vtable and the non-virtual bases.
+ LayoutNonVirtualBases(RD);
+
+ LayoutFields(RD);
+
+ NonVirtualSize = Context.toCharUnitsFromBits(
+ llvm::RoundUpToAlignment(getSizeInBits(),
+ Context.getTargetInfo().getCharAlign()));
+ NonVirtualAlignment = Alignment;
+
+ if (isMicrosoftCXXABI() &&
+ NonVirtualSize != NonVirtualSize.RoundUpToAlignment(Alignment)) {
+ CharUnits AlignMember =
+ NonVirtualSize.RoundUpToAlignment(Alignment) - NonVirtualSize;
+
+ setSize(getSize() + AlignMember);
+ setDataSize(getSize());
+
+ NonVirtualSize = Context.toCharUnitsFromBits(
+ llvm::RoundUpToAlignment(getSizeInBits(),
+ Context.getTargetInfo().getCharAlign()));
+
+ MSLayoutVirtualBases(RD);
+
+ } else {
+ // Lay out the virtual bases and add the primary virtual base offsets.
+ LayoutVirtualBases(RD, RD);
+ }
+
+ // Finally, round the size of the total struct up to the alignment
+ // of the struct itself.
+ FinishLayout(RD);
+
+#ifndef NDEBUG
+ // Check that we have base offsets for all bases.
+ for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
+ E = RD->bases_end(); I != E; ++I) {
+ if (I->isVirtual())
+ continue;
+
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ assert(Bases.count(BaseDecl) && "Did not find base offset!");
+ }
+
+ // And all virtual bases.
+ for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
+ E = RD->vbases_end(); I != E; ++I) {
+ const CXXRecordDecl *BaseDecl =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ assert(VBases.count(BaseDecl) && "Did not find base offset!");
+ }
+#endif
+}
+
+void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
+ if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
+ const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
+
+ UpdateAlignment(SL.getAlignment());
+
+ // We start laying out ivars not at the end of the superclass
+ // structure, but at the next byte following the last field.
+ setSize(SL.getDataSize());
+ setDataSize(getSize());
+ }
+
+ InitializeLayout(D);
+ // Layout each ivar sequentially.
+ for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
+ IVD = IVD->getNextIvar())
+ LayoutField(IVD);
+
+ // Finally, round the size of the total struct up to the alignment of the
+ // struct itself.
+ FinishLayout(D);
+}
+
+void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
+ // Layout each field, for now, just sequentially, respecting alignment. In
+ // the future, this will need to be tweakable by targets.
+ const FieldDecl *LastFD = 0;
+ ZeroLengthBitfield = 0;
+ unsigned RemainingInAlignment = 0;
+ for (RecordDecl::field_iterator Field = D->field_begin(),
+ FieldEnd = D->field_end(); Field != FieldEnd; ++Field) {
+ if (IsMsStruct) {
+ FieldDecl *FD = (*Field);
+ if (Context.ZeroBitfieldFollowsBitfield(FD, LastFD))
+ ZeroLengthBitfield = FD;
+ // Zero-length bitfields following non-bitfield members are
+ // ignored:
+ else if (Context.ZeroBitfieldFollowsNonBitfield(FD, LastFD))
+ continue;
+ // FIXME. streamline these conditions into a simple one.
+ else if (Context.BitfieldFollowsBitfield(FD, LastFD) ||
+ Context.BitfieldFollowsNonBitfield(FD, LastFD) ||
+ Context.NonBitfieldFollowsBitfield(FD, LastFD)) {
+ // 1) Adjacent bit fields are packed into the same 1-, 2-, or
+ // 4-byte allocation unit if the integral types are the same
+ // size and if the next bit field fits into the current
+ // allocation unit without crossing the boundary imposed by the
+ // common alignment requirements of the bit fields.
+ // 2) Establish a new alignment for a bitfield following
+ // a non-bitfield if size of their types differ.
+ // 3) Establish a new alignment for a non-bitfield following
+ // a bitfield if size of their types differ.
+ std::pair<uint64_t, unsigned> FieldInfo =
+ Context.getTypeInfo(FD->getType());
+ uint64_t TypeSize = FieldInfo.first;
+ unsigned FieldAlign = FieldInfo.second;
+ // This check is needed for 'long long' in -m32 mode.
+ if (TypeSize > FieldAlign &&
+ (Context.hasSameType(FD->getType(),
+ Context.UnsignedLongLongTy)
+ ||Context.hasSameType(FD->getType(),
+ Context.LongLongTy)))
+ FieldAlign = TypeSize;
+ FieldInfo = Context.getTypeInfo(LastFD->getType());
+ uint64_t TypeSizeLastFD = FieldInfo.first;
+ unsigned FieldAlignLastFD = FieldInfo.second;
+ // This check is needed for 'long long' in -m32 mode.
+ if (TypeSizeLastFD > FieldAlignLastFD &&
+ (Context.hasSameType(LastFD->getType(),
+ Context.UnsignedLongLongTy)
+ || Context.hasSameType(LastFD->getType(),
+ Context.LongLongTy)))
+ FieldAlignLastFD = TypeSizeLastFD;
+
+ if (TypeSizeLastFD != TypeSize) {
+ if (RemainingInAlignment &&
+ LastFD && LastFD->isBitField() &&
+ LastFD->getBitWidthValue(Context)) {
+ // If previous field was a bitfield with some remaining unfilled
+ // bits, pad the field so current field starts on its type boundary.
+ uint64_t FieldOffset =
+ getDataSizeInBits() - UnfilledBitsInLastByte;
+ uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset;
+ setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
+ Context.getTargetInfo().getCharAlign()));
+ setSize(std::max(getSizeInBits(), getDataSizeInBits()));
+ RemainingInAlignment = 0;
+ }
+
+ uint64_t UnpaddedFieldOffset =
+ getDataSizeInBits() - UnfilledBitsInLastByte;
+ FieldAlign = std::max(FieldAlign, FieldAlignLastFD);
+
+ // The maximum field alignment overrides the aligned attribute.
+ if (!MaxFieldAlignment.isZero()) {
+ unsigned MaxFieldAlignmentInBits =
+ Context.toBits(MaxFieldAlignment);
+ FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
+ }
+
+ uint64_t NewSizeInBits =
+ llvm::RoundUpToAlignment(UnpaddedFieldOffset, FieldAlign);
+ setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
+ Context.getTargetInfo().getCharAlign()));
+ UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
+ setSize(std::max(getSizeInBits(), getDataSizeInBits()));
+ }
+ if (FD->isBitField()) {
+ uint64_t FieldSize = FD->getBitWidthValue(Context);
+ assert (FieldSize > 0 && "LayoutFields - ms_struct layout");
+ if (RemainingInAlignment < FieldSize)
+ RemainingInAlignment = TypeSize - FieldSize;
+ else
+ RemainingInAlignment -= FieldSize;
+ }
+ }
+ else if (FD->isBitField()) {
+ uint64_t FieldSize = FD->getBitWidthValue(Context);
+ std::pair<uint64_t, unsigned> FieldInfo =
+ Context.getTypeInfo(FD->getType());
+ uint64_t TypeSize = FieldInfo.first;
+ RemainingInAlignment = TypeSize - FieldSize;
+ }
+ LastFD = FD;
+ }
+ else if (!Context.getTargetInfo().useBitFieldTypeAlignment() &&
+ Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
+ FieldDecl *FD = (*Field);
+ if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
+ ZeroLengthBitfield = FD;
+ }
+ LayoutField(*Field);
+ }
+ if (IsMsStruct && RemainingInAlignment &&
+ LastFD && LastFD->isBitField() && LastFD->getBitWidthValue(Context)) {
+ // If we ended a bitfield before the full length of the type then
+ // pad the struct out to the full length of the last type.
+ uint64_t FieldOffset =
+ getDataSizeInBits() - UnfilledBitsInLastByte;
+ uint64_t NewSizeInBits = RemainingInAlignment + FieldOffset;
+ setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
+ Context.getTargetInfo().getCharAlign()));
+ setSize(std::max(getSizeInBits(), getDataSizeInBits()));
+ }
+}
+
+void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
+ uint64_t TypeSize,
+ bool FieldPacked,
+ const FieldDecl *D) {
+ assert(Context.getLangOpts().CPlusPlus &&
+ "Can only have wide bit-fields in C++!");
+
+ // Itanium C++ ABI 2.4:
+ // If sizeof(T)*8 < n, let T' be the largest integral POD type with
+ // sizeof(T')*8 <= n.
+
+ QualType IntegralPODTypes[] = {
+ Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
+ Context.UnsignedLongTy, Context.UnsignedLongLongTy
+ };
+
+ QualType Type;
+ for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
+ I != E; ++I) {
+ uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);
+
+ if (Size > FieldSize)
+ break;
+
+ Type = IntegralPODTypes[I];
+ }
+ assert(!Type.isNull() && "Did not find a type!");
+
+ CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
+
+ // We're not going to use any of the unfilled bits in the last byte.
+ UnfilledBitsInLastByte = 0;
+
+ uint64_t FieldOffset;
+ uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
+
+ if (IsUnion) {
+ setDataSize(std::max(getDataSizeInBits(), FieldSize));
+ FieldOffset = 0;
+ } else {
+ // The bitfield is allocated starting at the next offset aligned
+ // appropriately for T', with length n bits.
+ FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
+ Context.toBits(TypeAlign));
+
+ uint64_t NewSizeInBits = FieldOffset + FieldSize;
+
+ setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
+ Context.getTargetInfo().getCharAlign()));
+ UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
+ }
+
+ // Place this field at the current location.
+ FieldOffsets.push_back(FieldOffset);
+
+ CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
+ Context.toBits(TypeAlign), FieldPacked, D);
+
+ // Update the size.
+ setSize(std::max(getSizeInBits(), getDataSizeInBits()));
+
+ // Remember max struct/class alignment.
+ UpdateAlignment(TypeAlign);
+}
+
+void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
+ bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
+ uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
+ uint64_t FieldOffset = IsUnion ? 0 : UnpaddedFieldOffset;
+ uint64_t FieldSize = D->getBitWidthValue(Context);
+
+ std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
+ uint64_t TypeSize = FieldInfo.first;
+ unsigned FieldAlign = FieldInfo.second;
+
+ // This check is needed for 'long long' in -m32 mode.
+ if (IsMsStruct && (TypeSize > FieldAlign) &&
+ (Context.hasSameType(D->getType(),
+ Context.UnsignedLongLongTy)
+ || Context.hasSameType(D->getType(), Context.LongLongTy)))
+ FieldAlign = TypeSize;
+
+ if (ZeroLengthBitfield) {
+ std::pair<uint64_t, unsigned> FieldInfo;
+ unsigned ZeroLengthBitfieldAlignment;
+ if (IsMsStruct) {
+ // If a zero-length bitfield is inserted after a bitfield,
+ // and the alignment of the zero-length bitfield is
+ // greater than the member that follows it, `bar', `bar'
+ // will be aligned as the type of the zero-length bitfield.
+ if (ZeroLengthBitfield != D) {
+ FieldInfo = Context.getTypeInfo(ZeroLengthBitfield->getType());
+ ZeroLengthBitfieldAlignment = FieldInfo.second;
+ // Ignore alignment of subsequent zero-length bitfields.
+ if ((ZeroLengthBitfieldAlignment > FieldAlign) || (FieldSize == 0))
+ FieldAlign = ZeroLengthBitfieldAlignment;
+ if (FieldSize)
+ ZeroLengthBitfield = 0;
+ }
+ } else {
+ // The alignment of a zero-length bitfield affects the alignment
+ // of the next member. The alignment is the max of the zero
+ // length bitfield's alignment and a target specific fixed value.
+ unsigned ZeroLengthBitfieldBoundary =
+ Context.getTargetInfo().getZeroLengthBitfieldBoundary();
+ if (ZeroLengthBitfieldBoundary > FieldAlign)
+ FieldAlign = ZeroLengthBitfieldBoundary;
+ }
+ }
+
+ if (FieldSize > TypeSize) {
+ LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
+ return;
+ }
+
+ // The align if the field is not packed. This is to check if the attribute
+ // was unnecessary (-Wpacked).
+ unsigned UnpackedFieldAlign = FieldAlign;
+ uint64_t UnpackedFieldOffset = FieldOffset;
+ if (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield)
+ UnpackedFieldAlign = 1;
+
+ if (FieldPacked ||
+ (!Context.getTargetInfo().useBitFieldTypeAlignment() && !ZeroLengthBitfield))
+ FieldAlign = 1;
+ FieldAlign = std::max(FieldAlign, D->getMaxAlignment());
+ UnpackedFieldAlign = std::max(UnpackedFieldAlign, D->getMaxAlignment());
+
+ // The maximum field alignment overrides the aligned attribute.
+ if (!MaxFieldAlignment.isZero() && FieldSize != 0) {
+ unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
+ FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
+ UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
+ }
+
+ // Check if we need to add padding to give the field the correct alignment.
+ if (FieldSize == 0 ||
+ (MaxFieldAlignment.isZero() &&
+ (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize))
+ FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
+
+ if (FieldSize == 0 ||
+ (MaxFieldAlignment.isZero() &&
+ (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
+ UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
+ UnpackedFieldAlign);
+
+ // Padding members don't affect overall alignment, unless zero length bitfield
+ // alignment is enabled.
+ if (!D->getIdentifier() && !Context.getTargetInfo().useZeroLengthBitfieldAlignment())
+ FieldAlign = UnpackedFieldAlign = 1;
+
+ if (!IsMsStruct)
+ ZeroLengthBitfield = 0;
+
+ if (ExternalLayout)
+ FieldOffset = updateExternalFieldOffset(D, FieldOffset);
+
+ // Place this field at the current location.
+ FieldOffsets.push_back(FieldOffset);
+
+ if (!ExternalLayout)
+ CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
+ UnpackedFieldAlign, FieldPacked, D);
+
+ // Update DataSize to include the last byte containing (part of) the bitfield.
+ if (IsUnion) {
+ // FIXME: I think FieldSize should be TypeSize here.
+ setDataSize(std::max(getDataSizeInBits(), FieldSize));
+ } else {
+ uint64_t NewSizeInBits = FieldOffset + FieldSize;
+
+ setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
+ Context.getTargetInfo().getCharAlign()));
+ UnfilledBitsInLastByte = getDataSizeInBits() - NewSizeInBits;
+ }
+
+ // Update the size.
+ setSize(std::max(getSizeInBits(), getDataSizeInBits()));
+
+ // Remember max struct/class alignment.
+ UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
+ Context.toCharUnitsFromBits(UnpackedFieldAlign));
+}
+
+void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
+ if (D->isBitField()) {
+ LayoutBitField(D);
+ return;
+ }
+
+ uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastByte;
+
+ // Reset the unfilled bits.
+ UnfilledBitsInLastByte = 0;
+
+ bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
+ CharUnits FieldOffset =
+ IsUnion ? CharUnits::Zero() : getDataSize();
+ CharUnits FieldSize;
+ CharUnits FieldAlign;
+
+ if (D->getType()->isIncompleteArrayType()) {
+ // This is a flexible array member; we can't directly
+ // query getTypeInfo about these, so we figure it out here.
+ // Flexible array members don't have any size, but they
+ // have to be aligned appropriately for their element type.
+ FieldSize = CharUnits::Zero();
+ const ArrayType* ATy = Context.getAsArrayType(D->getType());
+ FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
+ } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
+ unsigned AS = RT->getPointeeType().getAddressSpace();
+ FieldSize =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
+ FieldAlign =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
+ } else {
+ std::pair<CharUnits, CharUnits> FieldInfo =
+ Context.getTypeInfoInChars(D->getType());
+ FieldSize = FieldInfo.first;
+ FieldAlign = FieldInfo.second;
+
+ if (ZeroLengthBitfield) {
+ CharUnits ZeroLengthBitfieldBoundary =
+ Context.toCharUnitsFromBits(
+ Context.getTargetInfo().getZeroLengthBitfieldBoundary());
+ if (ZeroLengthBitfieldBoundary == CharUnits::Zero()) {
+ // If a zero-length bitfield is inserted after a bitfield,
+ // and the alignment of the zero-length bitfield is
+ // greater than the member that follows it, `bar', `bar'
+ // will be aligned as the type of the zero-length bitfield.
+ std::pair<CharUnits, CharUnits> FieldInfo =
+ Context.getTypeInfoInChars(ZeroLengthBitfield->getType());
+ CharUnits ZeroLengthBitfieldAlignment = FieldInfo.second;
+ if (ZeroLengthBitfieldAlignment > FieldAlign)
+ FieldAlign = ZeroLengthBitfieldAlignment;
+ } else if (ZeroLengthBitfieldBoundary > FieldAlign) {
+ // Align 'bar' based on a fixed alignment specified by the target.
+ assert(Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
+ "ZeroLengthBitfieldBoundary should only be used in conjunction"
+ " with useZeroLengthBitfieldAlignment.");
+ FieldAlign = ZeroLengthBitfieldBoundary;
+ }
+ ZeroLengthBitfield = 0;
+ }
+
+ if (Context.getLangOpts().MSBitfields || IsMsStruct) {
+ // If MS bitfield layout is required, figure out what type is being
+ // laid out and align the field to the width of that type.
+
+ // Resolve all typedefs down to their base type and round up the field
+ // alignment if necessary.
+ QualType T = Context.getBaseElementType(D->getType());
+ if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
+ CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
+ if (TypeSize > FieldAlign)
+ FieldAlign = TypeSize;
+ }
+ }
+ }
+
+ // The align if the field is not packed. This is to check if the attribute
+ // was unnecessary (-Wpacked).
+ CharUnits UnpackedFieldAlign = FieldAlign;
+ CharUnits UnpackedFieldOffset = FieldOffset;
+
+ if (FieldPacked)
+ FieldAlign = CharUnits::One();
+ CharUnits MaxAlignmentInChars =
+ Context.toCharUnitsFromBits(D->getMaxAlignment());
+ FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
+ UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
+
+ // The maximum field alignment overrides the aligned attribute.
+ if (!MaxFieldAlignment.isZero()) {
+ FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
+ UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
+ }
+
+ // Round up the current record size to the field's alignment boundary.
+ FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
+ UnpackedFieldOffset =
+ UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
+
+ if (ExternalLayout) {
+ FieldOffset = Context.toCharUnitsFromBits(
+ updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
+
+ if (!IsUnion && EmptySubobjects) {
+ // Record the fact that we're placing a field at this offset.
+ bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
+ (void)Allowed;
+ assert(Allowed && "Externally-placed field cannot be placed here");
+ }
+ } else {
+ if (!IsUnion && EmptySubobjects) {
+ // Check if we can place the field at this offset.
+ while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
+ // We couldn't place the field at the offset. Try again at a new offset.
+ FieldOffset += FieldAlign;
+ }
+ }
+ }
+
+ // Place this field at the current location.
+ FieldOffsets.push_back(Context.toBits(FieldOffset));
+
+ if (!ExternalLayout)
+ CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
+ Context.toBits(UnpackedFieldOffset),
+ Context.toBits(UnpackedFieldAlign), FieldPacked, D);
+
+ // Reserve space for this field.
+ uint64_t FieldSizeInBits = Context.toBits(FieldSize);
+ if (IsUnion)
+ setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
+ else
+ setDataSize(FieldOffset + FieldSize);
+
+ // Update the size.
+ setSize(std::max(getSizeInBits(), getDataSizeInBits()));
+
+ // Remember max struct/class alignment.
+ UpdateAlignment(FieldAlign, UnpackedFieldAlign);
+}
+
+void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
+ if (ExternalLayout) {
+ setSize(ExternalSize);
+ return;
+ }
+
+ // In C++, records cannot be of size 0.
+ if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ // Compatibility with gcc requires a class (pod or non-pod)
+ // which is not empty but of size 0; such as having fields of
+ // array of zero-length, remains of Size 0
+ if (RD->isEmpty())
+ setSize(CharUnits::One());
+ }
+ else
+ setSize(CharUnits::One());
+ }
+
+ // MSVC doesn't round up to the alignment of the record with virtual bases.
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ if (isMicrosoftCXXABI() && RD->getNumVBases())
+ return;
+ }
+
+ // Finally, round the size of the record up to the alignment of the
+ // record itself.
+ uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastByte;
+ uint64_t UnpackedSizeInBits =
+ llvm::RoundUpToAlignment(getSizeInBits(),
+ Context.toBits(UnpackedAlignment));
+ CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
+ setSize(llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment)));
+
+ unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
+ if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
+ // Warn if padding was introduced to the struct/class/union.
+ if (getSizeInBits() > UnpaddedSize) {
+ unsigned PadSize = getSizeInBits() - UnpaddedSize;
+ bool InBits = true;
+ if (PadSize % CharBitNum == 0) {
+ PadSize = PadSize / CharBitNum;
+ InBits = false;
+ }
+ Diag(RD->getLocation(), diag::warn_padded_struct_size)
+ << Context.getTypeDeclType(RD)
+ << PadSize
+ << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
+ }
+
+ // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
+ // bother since there won't be alignment issues.
+ if (Packed && UnpackedAlignment > CharUnits::One() &&
+ getSize() == UnpackedSize)
+ Diag(D->getLocation(), diag::warn_unnecessary_packed)
+ << Context.getTypeDeclType(RD);
+ }
+}
+
+void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
+ CharUnits UnpackedNewAlignment) {
+ // The alignment is not modified when using 'mac68k' alignment or when
+ // we have an externally-supplied layout that also provides overall alignment.
+ if (IsMac68kAlign || (ExternalLayout && !InferAlignment))
+ return;
+
+ if (NewAlignment > Alignment) {
+ assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() &&
+ "Alignment not a power of 2"));
+ Alignment = NewAlignment;
+ }
+
+ if (UnpackedNewAlignment > UnpackedAlignment) {
+ assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
+ "Alignment not a power of 2"));
+ UnpackedAlignment = UnpackedNewAlignment;
+ }
+}
+
+uint64_t
+RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
+ uint64_t ComputedOffset) {
+ assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() &&
+ "Field does not have an external offset");
+
+ uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field];
+
+ if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
+ // The externally-supplied field offset is before the field offset we
+ // computed. Assume that the structure is packed.
+ Alignment = CharUnits::fromQuantity(1);
+ InferAlignment = false;
+ }
+
+ // Use the externally-supplied field offset.
+ return ExternalFieldOffset;
+}
+
+void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
+ uint64_t UnpaddedOffset,
+ uint64_t UnpackedOffset,
+ unsigned UnpackedAlign,
+ bool isPacked,
+ const FieldDecl *D) {
+ // We let objc ivars without warning, objc interfaces generally are not used
+ // for padding tricks.
+ if (isa<ObjCIvarDecl>(D))
+ return;
+
+ // Don't warn about structs created without a SourceLocation. This can
+ // be done by clients of the AST, such as codegen.
+ if (D->getLocation().isInvalid())
+ return;
+
+ unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
+
+ // Warn if padding was introduced to the struct/class.
+ if (!IsUnion && Offset > UnpaddedOffset) {
+ unsigned PadSize = Offset - UnpaddedOffset;
+ bool InBits = true;
+ if (PadSize % CharBitNum == 0) {
+ PadSize = PadSize / CharBitNum;
+ InBits = false;
+ }
+ if (D->getIdentifier())
+ Diag(D->getLocation(), diag::warn_padded_struct_field)
+ << (D->getParent()->isStruct() ? 0 : 1) // struct|class
+ << Context.getTypeDeclType(D->getParent())
+ << PadSize
+ << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
+ << D->getIdentifier();
+ else
+ Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
+ << (D->getParent()->isStruct() ? 0 : 1) // struct|class
+ << Context.getTypeDeclType(D->getParent())
+ << PadSize
+ << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
+ }
+
+ // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
+ // bother since there won't be alignment issues.
+ if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
+ Diag(D->getLocation(), diag::warn_unnecessary_packed)
+ << D->getIdentifier();
+}
+
+const CXXMethodDecl *
+RecordLayoutBuilder::ComputeKeyFunction(const CXXRecordDecl *RD) {
+ // If a class isn't polymorphic it doesn't have a key function.
+ if (!RD->isPolymorphic())
+ return 0;
+
+ // A class that is not externally visible doesn't have a key function. (Or
+ // at least, there's no point to assigning a key function to such a class;
+ // this doesn't affect the ABI.)
+ if (RD->getLinkage() != ExternalLinkage)
+ return 0;
+
+ // Template instantiations don't have key functions,see Itanium C++ ABI 5.2.6.
+ // Same behavior as GCC.
+ TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
+ if (TSK == TSK_ImplicitInstantiation ||
+ TSK == TSK_ExplicitInstantiationDefinition)
+ return 0;
+
+ for (CXXRecordDecl::method_iterator I = RD->method_begin(),
+ E = RD->method_end(); I != E; ++I) {
+ const CXXMethodDecl *MD = *I;
+
+ if (!MD->isVirtual())
+ continue;
+
+ if (MD->isPure())
+ continue;
+
+ // Ignore implicit member functions, they are always marked as inline, but
+ // they don't have a body until they're defined.
+ if (MD->isImplicit())
+ continue;
+
+ if (MD->isInlineSpecified())
+ continue;
+
+ if (MD->hasInlineBody())
+ continue;
+
+ // We found it.
+ return MD;
+ }
+
+ return 0;
+}
+
+DiagnosticBuilder
+RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
+ return Context.getDiagnostics().Report(Loc, DiagID);
+}
+
+/// getASTRecordLayout - Get or compute information about the layout of the
+/// specified record (struct/union/class), which indicates its size and field
+/// position information.
+const ASTRecordLayout &
+ASTContext::getASTRecordLayout(const RecordDecl *D) const {
+ // These asserts test different things. A record has a definition
+ // as soon as we begin to parse the definition. That definition is
+ // not a complete definition (which is what isDefinition() tests)
+ // until we *finish* parsing the definition.
+
+ if (D->hasExternalLexicalStorage() && !D->getDefinition())
+ getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
+
+ D = D->getDefinition();
+ assert(D && "Cannot get layout of forward declarations!");
+ assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
+
+ // Look up this layout, if already laid out, return what we have.
+ // Note that we can't save a reference to the entry because this function
+ // is recursive.
+ const ASTRecordLayout *Entry = ASTRecordLayouts[D];
+ if (Entry) return *Entry;
+
+ const ASTRecordLayout *NewEntry;
+
+ if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+ EmptySubobjectMap EmptySubobjects(*this, RD);
+ RecordLayoutBuilder Builder(*this, &EmptySubobjects);
+ Builder.Layout(RD);
+
+ // MSVC gives the vb-table pointer an alignment equal to that of
+ // the non-virtual part of the structure. That's an inherently
+ // multi-pass operation. If our first pass doesn't give us
+ // adequate alignment, try again with the specified minimum
+ // alignment. This is *much* more maintainable than computing the
+ // alignment in advance in a separately-coded pass; it's also
+ // significantly more efficient in the common case where the
+ // vb-table doesn't need extra padding.
+ if (Builder.VBPtrOffset != CharUnits::fromQuantity(-1) &&
+ (Builder.VBPtrOffset % Builder.NonVirtualAlignment) != 0) {
+ Builder.resetWithTargetAlignment(Builder.NonVirtualAlignment);
+ Builder.Layout(RD);
+ }
+
+ // FIXME: This is not always correct. See the part about bitfields at
+ // http://www.codesourcery.com/public/cxx-abi/abi.html#POD for more info.
+ // FIXME: IsPODForThePurposeOfLayout should be stored in the record layout.
+ // This does not affect the calculations of MSVC layouts
+ bool IsPODForThePurposeOfLayout =
+ (!Builder.isMicrosoftCXXABI() && cast<CXXRecordDecl>(D)->isPOD());
+
+ // FIXME: This should be done in FinalizeLayout.
+ CharUnits DataSize =
+ IsPODForThePurposeOfLayout ? Builder.getSize() : Builder.getDataSize();
+ CharUnits NonVirtualSize =
+ IsPODForThePurposeOfLayout ? DataSize : Builder.NonVirtualSize;
+
+ NewEntry =
+ new (*this) ASTRecordLayout(*this, Builder.getSize(),
+ Builder.Alignment,
+ Builder.VFPtrOffset,
+ Builder.VBPtrOffset,
+ DataSize,
+ Builder.FieldOffsets.data(),
+ Builder.FieldOffsets.size(),
+ NonVirtualSize,
+ Builder.NonVirtualAlignment,
+ EmptySubobjects.SizeOfLargestEmptySubobject,
+ Builder.PrimaryBase,
+ Builder.PrimaryBaseIsVirtual,
+ Builder.Bases, Builder.VBases);
+ } else {
+ RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
+ Builder.Layout(D);
+
+ NewEntry =
+ new (*this) ASTRecordLayout(*this, Builder.getSize(),
+ Builder.Alignment,
+ Builder.getSize(),
+ Builder.FieldOffsets.data(),
+ Builder.FieldOffsets.size());
+ }
+
+ ASTRecordLayouts[D] = NewEntry;
+
+ if (getLangOpts().DumpRecordLayouts) {
+ llvm::errs() << "\n*** Dumping AST Record Layout\n";
+ DumpRecordLayout(D, llvm::errs(), getLangOpts().DumpRecordLayoutsSimple);
+ }
+
+ return *NewEntry;
+}
+
+const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
+ RD = cast<CXXRecordDecl>(RD->getDefinition());
+ assert(RD && "Cannot get key function for forward declarations!");
+
+ const CXXMethodDecl *&Entry = KeyFunctions[RD];
+ if (!Entry)
+ Entry = RecordLayoutBuilder::ComputeKeyFunction(RD);
+
+ return Entry;
+}
+
+static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
+ const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
+ return Layout.getFieldOffset(FD->getFieldIndex());
+}
+
+uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
+ uint64_t OffsetInBits;
+ if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
+ OffsetInBits = ::getFieldOffset(*this, FD);
+ } else {
+ const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
+
+ OffsetInBits = 0;
+ for (IndirectFieldDecl::chain_iterator CI = IFD->chain_begin(),
+ CE = IFD->chain_end();
+ CI != CE; ++CI)
+ OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(*CI));
+ }
+
+ return OffsetInBits;
+}
+
+/// getObjCLayout - Get or compute information about the layout of the
+/// given interface.
+///
+/// \param Impl - If given, also include the layout of the interface's
+/// implementation. This may differ by including synthesized ivars.
+const ASTRecordLayout &
+ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
+ const ObjCImplementationDecl *Impl) const {
+ // Retrieve the definition
+ if (D->hasExternalLexicalStorage() && !D->getDefinition())
+ getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
+ D = D->getDefinition();
+ assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
+
+ // Look up this layout, if already laid out, return what we have.
+ ObjCContainerDecl *Key =
+ Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
+ if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
+ return *Entry;
+
+ // Add in synthesized ivar count if laying out an implementation.
+ if (Impl) {
+ unsigned SynthCount = CountNonClassIvars(D);
+ // If there aren't any sythesized ivars then reuse the interface
+ // entry. Note we can't cache this because we simply free all
+ // entries later; however we shouldn't look up implementations
+ // frequently.
+ if (SynthCount == 0)
+ return getObjCLayout(D, 0);
+ }
+
+ RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/0);
+ Builder.Layout(D);
+
+ const ASTRecordLayout *NewEntry =
+ new (*this) ASTRecordLayout(*this, Builder.getSize(),
+ Builder.Alignment,
+ Builder.getDataSize(),
+ Builder.FieldOffsets.data(),
+ Builder.FieldOffsets.size());
+
+ ObjCLayouts[Key] = NewEntry;
+
+ return *NewEntry;
+}
+
+static void PrintOffset(raw_ostream &OS,
+ CharUnits Offset, unsigned IndentLevel) {
+ OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
+ OS.indent(IndentLevel * 2);
+}
+
+static void DumpCXXRecordLayout(raw_ostream &OS,
+ const CXXRecordDecl *RD, const ASTContext &C,
+ CharUnits Offset,
+ unsigned IndentLevel,
+ const char* Description,
+ bool IncludeVirtualBases) {
+ const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
+
+ PrintOffset(OS, Offset, IndentLevel);
+ OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
+ if (Description)
+ OS << ' ' << Description;
+ if (RD->isEmpty())
+ OS << " (empty)";
+ OS << '\n';
+
+ IndentLevel++;
+
+ const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
+ bool HasVfptr = Layout.getVFPtrOffset() != CharUnits::fromQuantity(-1);
+ bool HasVbptr = Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1);
+
+ // Vtable pointer.
+ if (RD->isDynamicClass() && !PrimaryBase &&
+ C.getTargetInfo().getCXXABI() != CXXABI_Microsoft) {
+ PrintOffset(OS, Offset, IndentLevel);
+ OS << '(' << *RD << " vtable pointer)\n";
+ }
+
+ // Dump (non-virtual) bases
+ for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
+ E = RD->bases_end(); I != E; ++I) {
+ assert(!I->getType()->isDependentType() &&
+ "Cannot layout class with dependent bases.");
+ if (I->isVirtual())
+ continue;
+
+ const CXXRecordDecl *Base =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
+
+ DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
+ Base == PrimaryBase ? "(primary base)" : "(base)",
+ /*IncludeVirtualBases=*/false);
+ }
+
+ // vfptr and vbptr (for Microsoft C++ ABI)
+ if (HasVfptr) {
+ PrintOffset(OS, Offset + Layout.getVFPtrOffset(), IndentLevel);
+ OS << '(' << *RD << " vftable pointer)\n";
+ }
+ if (HasVbptr) {
+ PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
+ OS << '(' << *RD << " vbtable pointer)\n";
+ }
+
+ // Dump fields.
+ uint64_t FieldNo = 0;
+ for (CXXRecordDecl::field_iterator I = RD->field_begin(),
+ E = RD->field_end(); I != E; ++I, ++FieldNo) {
+ const FieldDecl *Field = *I;
+ CharUnits FieldOffset = Offset +
+ C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
+
+ if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
+ if (const CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
+ DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
+ Field->getName().data(),
+ /*IncludeVirtualBases=*/true);
+ continue;
+ }
+ }
+
+ PrintOffset(OS, FieldOffset, IndentLevel);
+ OS << Field->getType().getAsString() << ' ' << *Field << '\n';
+ }
+
+ if (!IncludeVirtualBases)
+ return;
+
+ // Dump virtual bases.
+ for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
+ E = RD->vbases_end(); I != E; ++I) {
+ assert(I->isVirtual() && "Found non-virtual class!");
+ const CXXRecordDecl *VBase =
+ cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
+
+ CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
+ DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
+ VBase == PrimaryBase ?
+ "(primary virtual base)" : "(virtual base)",
+ /*IncludeVirtualBases=*/false);
+ }
+
+ OS << " sizeof=" << Layout.getSize().getQuantity();
+ OS << ", dsize=" << Layout.getDataSize().getQuantity();
+ OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
+ OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
+ OS << ", nvalign=" << Layout.getNonVirtualAlign().getQuantity() << '\n';
+ OS << '\n';
+}
+
+void ASTContext::DumpRecordLayout(const RecordDecl *RD,
+ raw_ostream &OS,
+ bool Simple) const {
+ const ASTRecordLayout &Info = getASTRecordLayout(RD);
+
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ if (!Simple)
+ return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, 0,
+ /*IncludeVirtualBases=*/true);
+
+ OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
+ if (!Simple) {
+ OS << "Record: ";
+ RD->dump();
+ }
+ OS << "\nLayout: ";
+ OS << "<ASTRecordLayout\n";
+ OS << " Size:" << toBits(Info.getSize()) << "\n";
+ OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
+ OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
+ OS << " FieldOffsets: [";
+ for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
+ if (i) OS << ", ";
+ OS << Info.getFieldOffset(i);
+ }
+ OS << "]>\n";
+}