diff options
Diffstat (limited to 'clang/lib/AST/DeclCXX.cpp')
-rw-r--r-- | clang/lib/AST/DeclCXX.cpp | 2029 |
1 files changed, 2029 insertions, 0 deletions
diff --git a/clang/lib/AST/DeclCXX.cpp b/clang/lib/AST/DeclCXX.cpp new file mode 100644 index 0000000..114322b --- /dev/null +++ b/clang/lib/AST/DeclCXX.cpp @@ -0,0 +1,2029 @@ +//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the C++ related Decl classes. +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/ASTMutationListener.h" +#include "clang/AST/CXXInheritance.h" +#include "clang/AST/Expr.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/TypeLoc.h" +#include "clang/Basic/IdentifierTable.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +using namespace clang; + +//===----------------------------------------------------------------------===// +// Decl Allocation/Deallocation Method Implementations +//===----------------------------------------------------------------------===// + +void AccessSpecDecl::anchor() { } + +AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(AccessSpecDecl)); + return new (Mem) AccessSpecDecl(EmptyShell()); +} + +CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) + : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false), + UserDeclaredMoveConstructor(false), UserDeclaredCopyAssignment(false), + UserDeclaredMoveAssignment(false), UserDeclaredDestructor(false), + Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), + Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true), + HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false), + HasMutableFields(false), HasOnlyCMembers(true), + HasTrivialDefaultConstructor(true), + HasConstexprNonCopyMoveConstructor(false), + DefaultedDefaultConstructorIsConstexpr(true), + DefaultedCopyConstructorIsConstexpr(true), + DefaultedMoveConstructorIsConstexpr(true), + HasConstexprDefaultConstructor(false), HasConstexprCopyConstructor(false), + HasConstexprMoveConstructor(false), HasTrivialCopyConstructor(true), + HasTrivialMoveConstructor(true), HasTrivialCopyAssignment(true), + HasTrivialMoveAssignment(true), HasTrivialDestructor(true), + HasIrrelevantDestructor(true), + HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false), + UserProvidedDefaultConstructor(false), DeclaredDefaultConstructor(false), + DeclaredCopyConstructor(false), DeclaredMoveConstructor(false), + DeclaredCopyAssignment(false), DeclaredMoveAssignment(false), + DeclaredDestructor(false), FailedImplicitMoveConstructor(false), + FailedImplicitMoveAssignment(false), IsLambda(false), NumBases(0), + NumVBases(0), Bases(), VBases(), Definition(D), FirstFriend(0) { +} + +CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC, + SourceLocation StartLoc, SourceLocation IdLoc, + IdentifierInfo *Id, CXXRecordDecl *PrevDecl) + : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl), + DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0), + TemplateOrInstantiation() { } + +CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, + DeclContext *DC, SourceLocation StartLoc, + SourceLocation IdLoc, IdentifierInfo *Id, + CXXRecordDecl* PrevDecl, + bool DelayTypeCreation) { + CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc, + Id, PrevDecl); + + // FIXME: DelayTypeCreation seems like such a hack + if (!DelayTypeCreation) + C.getTypeDeclType(R, PrevDecl); + return R; +} + +CXXRecordDecl *CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, + SourceLocation Loc, bool Dependent) { + CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TTK_Class, DC, Loc, Loc, + 0, 0); + R->IsBeingDefined = true; + R->DefinitionData = new (C) struct LambdaDefinitionData(R, Dependent); + C.getTypeDeclType(R, /*PrevDecl=*/0); + return R; +} + +CXXRecordDecl * +CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXRecordDecl)); + return new (Mem) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(), + SourceLocation(), 0, 0); +} + +void +CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, + unsigned NumBases) { + ASTContext &C = getASTContext(); + + if (!data().Bases.isOffset() && data().NumBases > 0) + C.Deallocate(data().getBases()); + + if (NumBases) { + // C++ [dcl.init.aggr]p1: + // An aggregate is [...] a class with [...] no base classes [...]. + data().Aggregate = false; + + // C++ [class]p4: + // A POD-struct is an aggregate class... + data().PlainOldData = false; + } + + // The set of seen virtual base types. + llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; + + // The virtual bases of this class. + SmallVector<const CXXBaseSpecifier *, 8> VBases; + + data().Bases = new(C) CXXBaseSpecifier [NumBases]; + data().NumBases = NumBases; + for (unsigned i = 0; i < NumBases; ++i) { + data().getBases()[i] = *Bases[i]; + // Keep track of inherited vbases for this base class. + const CXXBaseSpecifier *Base = Bases[i]; + QualType BaseType = Base->getType(); + // Skip dependent types; we can't do any checking on them now. + if (BaseType->isDependentType()) + continue; + CXXRecordDecl *BaseClassDecl + = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); + + // A class with a non-empty base class is not empty. + // FIXME: Standard ref? + if (!BaseClassDecl->isEmpty()) { + if (!data().Empty) { + // C++0x [class]p7: + // A standard-layout class is a class that: + // [...] + // -- either has no non-static data members in the most derived + // class and at most one base class with non-static data members, + // or has no base classes with non-static data members, and + // If this is the second non-empty base, then neither of these two + // clauses can be true. + data().IsStandardLayout = false; + } + + data().Empty = false; + data().HasNoNonEmptyBases = false; + } + + // C++ [class.virtual]p1: + // A class that declares or inherits a virtual function is called a + // polymorphic class. + if (BaseClassDecl->isPolymorphic()) + data().Polymorphic = true; + + // C++0x [class]p7: + // A standard-layout class is a class that: [...] + // -- has no non-standard-layout base classes + if (!BaseClassDecl->isStandardLayout()) + data().IsStandardLayout = false; + + // Record if this base is the first non-literal field or base. + if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType()) + data().HasNonLiteralTypeFieldsOrBases = true; + + // Now go through all virtual bases of this base and add them. + for (CXXRecordDecl::base_class_iterator VBase = + BaseClassDecl->vbases_begin(), + E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) { + // Add this base if it's not already in the list. + if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType()))) + VBases.push_back(VBase); + } + + if (Base->isVirtual()) { + // Add this base if it's not already in the list. + if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType))) + VBases.push_back(Base); + + // C++0x [meta.unary.prop] is_empty: + // T is a class type, but not a union type, with ... no virtual base + // classes + data().Empty = false; + + // C++ [class.ctor]p5: + // A default constructor is trivial [...] if: + // -- its class has [...] no virtual bases + data().HasTrivialDefaultConstructor = false; + + // C++0x [class.copy]p13: + // A copy/move constructor for class X is trivial if it is neither + // user-provided nor deleted and if + // -- class X has no virtual functions and no virtual base classes, and + data().HasTrivialCopyConstructor = false; + data().HasTrivialMoveConstructor = false; + + // C++0x [class.copy]p27: + // A copy/move assignment operator for class X is trivial if it is + // neither user-provided nor deleted and if + // -- class X has no virtual functions and no virtual base classes, and + data().HasTrivialCopyAssignment = false; + data().HasTrivialMoveAssignment = false; + + // C++0x [class]p7: + // A standard-layout class is a class that: [...] + // -- has [...] no virtual base classes + data().IsStandardLayout = false; + + // C++11 [dcl.constexpr]p4: + // In the definition of a constexpr constructor [...] + // -- the class shall not have any virtual base classes + data().DefaultedDefaultConstructorIsConstexpr = false; + data().DefaultedCopyConstructorIsConstexpr = false; + data().DefaultedMoveConstructorIsConstexpr = false; + } else { + // C++ [class.ctor]p5: + // A default constructor is trivial [...] if: + // -- all the direct base classes of its class have trivial default + // constructors. + if (!BaseClassDecl->hasTrivialDefaultConstructor()) + data().HasTrivialDefaultConstructor = false; + + // C++0x [class.copy]p13: + // A copy/move constructor for class X is trivial if [...] + // [...] + // -- the constructor selected to copy/move each direct base class + // subobject is trivial, and + // FIXME: C++0x: We need to only consider the selected constructor + // instead of all of them. + if (!BaseClassDecl->hasTrivialCopyConstructor()) + data().HasTrivialCopyConstructor = false; + if (!BaseClassDecl->hasTrivialMoveConstructor()) + data().HasTrivialMoveConstructor = false; + + // C++0x [class.copy]p27: + // A copy/move assignment operator for class X is trivial if [...] + // [...] + // -- the assignment operator selected to copy/move each direct base + // class subobject is trivial, and + // FIXME: C++0x: We need to only consider the selected operator instead + // of all of them. + if (!BaseClassDecl->hasTrivialCopyAssignment()) + data().HasTrivialCopyAssignment = false; + if (!BaseClassDecl->hasTrivialMoveAssignment()) + data().HasTrivialMoveAssignment = false; + + // C++11 [class.ctor]p6: + // If that user-written default constructor would satisfy the + // requirements of a constexpr constructor, the implicitly-defined + // default constructor is constexpr. + if (!BaseClassDecl->hasConstexprDefaultConstructor()) + data().DefaultedDefaultConstructorIsConstexpr = false; + + // C++11 [class.copy]p13: + // If the implicitly-defined constructor would satisfy the requirements + // of a constexpr constructor, the implicitly-defined constructor is + // constexpr. + // C++11 [dcl.constexpr]p4: + // -- every constructor involved in initializing [...] base class + // sub-objects shall be a constexpr constructor + if (!BaseClassDecl->hasConstexprCopyConstructor()) + data().DefaultedCopyConstructorIsConstexpr = false; + if (BaseClassDecl->hasDeclaredMoveConstructor() || + BaseClassDecl->needsImplicitMoveConstructor()) + // FIXME: If the implicit move constructor generated for the base class + // would be ill-formed, the implicit move constructor generated for the + // derived class calls the base class' copy constructor. + data().DefaultedMoveConstructorIsConstexpr &= + BaseClassDecl->hasConstexprMoveConstructor(); + else if (!BaseClassDecl->hasConstexprCopyConstructor()) + data().DefaultedMoveConstructorIsConstexpr = false; + } + + // C++ [class.ctor]p3: + // A destructor is trivial if all the direct base classes of its class + // have trivial destructors. + if (!BaseClassDecl->hasTrivialDestructor()) + data().HasTrivialDestructor = false; + + if (!BaseClassDecl->hasIrrelevantDestructor()) + data().HasIrrelevantDestructor = false; + + // A class has an Objective-C object member if... or any of its bases + // has an Objective-C object member. + if (BaseClassDecl->hasObjectMember()) + setHasObjectMember(true); + + // Keep track of the presence of mutable fields. + if (BaseClassDecl->hasMutableFields()) + data().HasMutableFields = true; + } + + if (VBases.empty()) + return; + + // Create base specifier for any direct or indirect virtual bases. + data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; + data().NumVBases = VBases.size(); + for (int I = 0, E = VBases.size(); I != E; ++I) + data().getVBases()[I] = *VBases[I]; +} + +/// Callback function for CXXRecordDecl::forallBases that acknowledges +/// that it saw a base class. +static bool SawBase(const CXXRecordDecl *, void *) { + return true; +} + +bool CXXRecordDecl::hasAnyDependentBases() const { + if (!isDependentContext()) + return false; + + return !forallBases(SawBase, 0); +} + +bool CXXRecordDecl::hasConstCopyConstructor() const { + return getCopyConstructor(Qualifiers::Const) != 0; +} + +bool CXXRecordDecl::isTriviallyCopyable() const { + // C++0x [class]p5: + // A trivially copyable class is a class that: + // -- has no non-trivial copy constructors, + if (!hasTrivialCopyConstructor()) return false; + // -- has no non-trivial move constructors, + if (!hasTrivialMoveConstructor()) return false; + // -- has no non-trivial copy assignment operators, + if (!hasTrivialCopyAssignment()) return false; + // -- has no non-trivial move assignment operators, and + if (!hasTrivialMoveAssignment()) return false; + // -- has a trivial destructor. + if (!hasTrivialDestructor()) return false; + + return true; +} + +/// \brief Perform a simplistic form of overload resolution that only considers +/// cv-qualifiers on a single parameter, and return the best overload candidate +/// (if there is one). +static CXXMethodDecl * +GetBestOverloadCandidateSimple( + const SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) { + if (Cands.empty()) + return 0; + if (Cands.size() == 1) + return Cands[0].first; + + unsigned Best = 0, N = Cands.size(); + for (unsigned I = 1; I != N; ++I) + if (Cands[Best].second.compatiblyIncludes(Cands[I].second)) + Best = I; + + for (unsigned I = 1; I != N; ++I) + if (Cands[Best].second.compatiblyIncludes(Cands[I].second)) + return 0; + + return Cands[Best].first; +} + +CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(unsigned TypeQuals) const{ + ASTContext &Context = getASTContext(); + QualType ClassType + = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this)); + DeclarationName ConstructorName + = Context.DeclarationNames.getCXXConstructorName( + Context.getCanonicalType(ClassType)); + unsigned FoundTQs; + SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found; + DeclContext::lookup_const_iterator Con, ConEnd; + for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName); + Con != ConEnd; ++Con) { + // C++ [class.copy]p2: + // A non-template constructor for class X is a copy constructor if [...] + if (isa<FunctionTemplateDecl>(*Con)) + continue; + + CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); + if (Constructor->isCopyConstructor(FoundTQs)) { + if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) || + (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const))) + Found.push_back(std::make_pair( + const_cast<CXXConstructorDecl *>(Constructor), + Qualifiers::fromCVRMask(FoundTQs))); + } + } + + return cast_or_null<CXXConstructorDecl>( + GetBestOverloadCandidateSimple(Found)); +} + +CXXConstructorDecl *CXXRecordDecl::getMoveConstructor() const { + for (ctor_iterator I = ctor_begin(), E = ctor_end(); I != E; ++I) + if (I->isMoveConstructor()) + return *I; + + return 0; +} + +CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const { + ASTContext &Context = getASTContext(); + QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this)); + DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); + + SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found; + DeclContext::lookup_const_iterator Op, OpEnd; + for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) { + // C++ [class.copy]p9: + // A user-declared copy assignment operator is a non-static non-template + // member function of class X with exactly one parameter of type X, X&, + // const X&, volatile X& or const volatile X&. + const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op); + if (!Method || Method->isStatic() || Method->getPrimaryTemplate()) + continue; + + const FunctionProtoType *FnType + = Method->getType()->getAs<FunctionProtoType>(); + assert(FnType && "Overloaded operator has no prototype."); + // Don't assert on this; an invalid decl might have been left in the AST. + if (FnType->getNumArgs() != 1 || FnType->isVariadic()) + continue; + + QualType ArgType = FnType->getArgType(0); + Qualifiers Quals; + if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) { + ArgType = Ref->getPointeeType(); + // If we have a const argument and we have a reference to a non-const, + // this function does not match. + if (ArgIsConst && !ArgType.isConstQualified()) + continue; + + Quals = ArgType.getQualifiers(); + } else { + // By-value copy-assignment operators are treated like const X& + // copy-assignment operators. + Quals = Qualifiers::fromCVRMask(Qualifiers::Const); + } + + if (!Context.hasSameUnqualifiedType(ArgType, Class)) + continue; + + // Save this copy-assignment operator. It might be "the one". + Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals)); + } + + // Use a simplistic form of overload resolution to find the candidate. + return GetBestOverloadCandidateSimple(Found); +} + +CXXMethodDecl *CXXRecordDecl::getMoveAssignmentOperator() const { + for (method_iterator I = method_begin(), E = method_end(); I != E; ++I) + if (I->isMoveAssignmentOperator()) + return *I; + + return 0; +} + +void CXXRecordDecl::markedVirtualFunctionPure() { + // C++ [class.abstract]p2: + // A class is abstract if it has at least one pure virtual function. + data().Abstract = true; +} + +void CXXRecordDecl::addedMember(Decl *D) { + if (!D->isImplicit() && + !isa<FieldDecl>(D) && + !isa<IndirectFieldDecl>(D) && + (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class)) + data().HasOnlyCMembers = false; + + // Ignore friends and invalid declarations. + if (D->getFriendObjectKind() || D->isInvalidDecl()) + return; + + FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); + if (FunTmpl) + D = FunTmpl->getTemplatedDecl(); + + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { + if (Method->isVirtual()) { + // C++ [dcl.init.aggr]p1: + // An aggregate is an array or a class with [...] no virtual functions. + data().Aggregate = false; + + // C++ [class]p4: + // A POD-struct is an aggregate class... + data().PlainOldData = false; + + // Virtual functions make the class non-empty. + // FIXME: Standard ref? + data().Empty = false; + + // C++ [class.virtual]p1: + // A class that declares or inherits a virtual function is called a + // polymorphic class. + data().Polymorphic = true; + + // C++0x [class.ctor]p5 + // A default constructor is trivial [...] if: + // -- its class has no virtual functions [...] + data().HasTrivialDefaultConstructor = false; + + // C++0x [class.copy]p13: + // A copy/move constructor for class X is trivial if [...] + // -- class X has no virtual functions [...] + data().HasTrivialCopyConstructor = false; + data().HasTrivialMoveConstructor = false; + + // C++0x [class.copy]p27: + // A copy/move assignment operator for class X is trivial if [...] + // -- class X has no virtual functions [...] + data().HasTrivialCopyAssignment = false; + data().HasTrivialMoveAssignment = false; + + // C++0x [class]p7: + // A standard-layout class is a class that: [...] + // -- has no virtual functions + data().IsStandardLayout = false; + } + } + + if (D->isImplicit()) { + // Notify that an implicit member was added after the definition + // was completed. + if (!isBeingDefined()) + if (ASTMutationListener *L = getASTMutationListener()) + L->AddedCXXImplicitMember(data().Definition, D); + + // If this is a special member function, note that it was added and then + // return early. + if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { + if (Constructor->isDefaultConstructor()) { + data().DeclaredDefaultConstructor = true; + if (Constructor->isConstexpr()) { + data().HasConstexprDefaultConstructor = true; + data().HasConstexprNonCopyMoveConstructor = true; + } + } else if (Constructor->isCopyConstructor()) { + data().DeclaredCopyConstructor = true; + if (Constructor->isConstexpr()) + data().HasConstexprCopyConstructor = true; + } else if (Constructor->isMoveConstructor()) { + data().DeclaredMoveConstructor = true; + if (Constructor->isConstexpr()) + data().HasConstexprMoveConstructor = true; + } else + goto NotASpecialMember; + return; + } else if (isa<CXXDestructorDecl>(D)) { + data().DeclaredDestructor = true; + return; + } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { + if (Method->isCopyAssignmentOperator()) + data().DeclaredCopyAssignment = true; + else if (Method->isMoveAssignmentOperator()) + data().DeclaredMoveAssignment = true; + else + goto NotASpecialMember; + return; + } + +NotASpecialMember:; + // Any other implicit declarations are handled like normal declarations. + } + + // Handle (user-declared) constructors. + if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { + // Note that we have a user-declared constructor. + data().UserDeclaredConstructor = true; + + // Technically, "user-provided" is only defined for special member + // functions, but the intent of the standard is clearly that it should apply + // to all functions. + bool UserProvided = Constructor->isUserProvided(); + + if (Constructor->isDefaultConstructor()) { + data().DeclaredDefaultConstructor = true; + if (UserProvided) { + // C++0x [class.ctor]p5: + // A default constructor is trivial if it is not user-provided [...] + data().HasTrivialDefaultConstructor = false; + data().UserProvidedDefaultConstructor = true; + } + if (Constructor->isConstexpr()) { + data().HasConstexprDefaultConstructor = true; + data().HasConstexprNonCopyMoveConstructor = true; + } + } + + // Note when we have a user-declared copy or move constructor, which will + // suppress the implicit declaration of those constructors. + if (!FunTmpl) { + if (Constructor->isCopyConstructor()) { + data().UserDeclaredCopyConstructor = true; + data().DeclaredCopyConstructor = true; + + // C++0x [class.copy]p13: + // A copy/move constructor for class X is trivial if it is not + // user-provided [...] + if (UserProvided) + data().HasTrivialCopyConstructor = false; + + if (Constructor->isConstexpr()) + data().HasConstexprCopyConstructor = true; + } else if (Constructor->isMoveConstructor()) { + data().UserDeclaredMoveConstructor = true; + data().DeclaredMoveConstructor = true; + + // C++0x [class.copy]p13: + // A copy/move constructor for class X is trivial if it is not + // user-provided [...] + if (UserProvided) + data().HasTrivialMoveConstructor = false; + + if (Constructor->isConstexpr()) + data().HasConstexprMoveConstructor = true; + } + } + if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) { + // Record if we see any constexpr constructors which are neither copy + // nor move constructors. + data().HasConstexprNonCopyMoveConstructor = true; + } + + // C++ [dcl.init.aggr]p1: + // An aggregate is an array or a class with no user-declared + // constructors [...]. + // C++0x [dcl.init.aggr]p1: + // An aggregate is an array or a class with no user-provided + // constructors [...]. + if (!getASTContext().getLangOpts().CPlusPlus0x || UserProvided) + data().Aggregate = false; + + // C++ [class]p4: + // A POD-struct is an aggregate class [...] + // Since the POD bit is meant to be C++03 POD-ness, clear it even if the + // type is technically an aggregate in C++0x since it wouldn't be in 03. + data().PlainOldData = false; + + return; + } + + // Handle (user-declared) destructors. + if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) { + data().DeclaredDestructor = true; + data().UserDeclaredDestructor = true; + data().HasIrrelevantDestructor = false; + + // C++ [class]p4: + // A POD-struct is an aggregate class that has [...] no user-defined + // destructor. + // This bit is the C++03 POD bit, not the 0x one. + data().PlainOldData = false; + + // C++11 [class.dtor]p5: + // A destructor is trivial if it is not user-provided and if + // -- the destructor is not virtual. + if (DD->isUserProvided() || DD->isVirtual()) { + data().HasTrivialDestructor = false; + // C++11 [dcl.constexpr]p1: + // The constexpr specifier shall be applied only to [...] the + // declaration of a static data member of a literal type. + // C++11 [basic.types]p10: + // A type is a literal type if it is [...] a class type that [...] has + // a trivial destructor. + data().DefaultedDefaultConstructorIsConstexpr = false; + data().DefaultedCopyConstructorIsConstexpr = false; + data().DefaultedMoveConstructorIsConstexpr = false; + } + + return; + } + + // Handle (user-declared) member functions. + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { + if (Method->isCopyAssignmentOperator()) { + // C++ [class]p4: + // A POD-struct is an aggregate class that [...] has no user-defined + // copy assignment operator [...]. + // This is the C++03 bit only. + data().PlainOldData = false; + + // This is a copy assignment operator. + + // Suppress the implicit declaration of a copy constructor. + data().UserDeclaredCopyAssignment = true; + data().DeclaredCopyAssignment = true; + + // C++0x [class.copy]p27: + // A copy/move assignment operator for class X is trivial if it is + // neither user-provided nor deleted [...] + if (Method->isUserProvided()) + data().HasTrivialCopyAssignment = false; + + return; + } + + if (Method->isMoveAssignmentOperator()) { + // This is an extension in C++03 mode, but we'll keep consistency by + // taking a move assignment operator to induce non-POD-ness + data().PlainOldData = false; + + // This is a move assignment operator. + data().UserDeclaredMoveAssignment = true; + data().DeclaredMoveAssignment = true; + + // C++0x [class.copy]p27: + // A copy/move assignment operator for class X is trivial if it is + // neither user-provided nor deleted [...] + if (Method->isUserProvided()) + data().HasTrivialMoveAssignment = false; + } + + // Keep the list of conversion functions up-to-date. + if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { + // We don't record specializations. + if (Conversion->getPrimaryTemplate()) + return; + + // FIXME: We intentionally don't use the decl's access here because it + // hasn't been set yet. That's really just a misdesign in Sema. + + if (FunTmpl) { + if (FunTmpl->getPreviousDecl()) + data().Conversions.replace(FunTmpl->getPreviousDecl(), + FunTmpl); + else + data().Conversions.addDecl(FunTmpl); + } else { + if (Conversion->getPreviousDecl()) + data().Conversions.replace(Conversion->getPreviousDecl(), + Conversion); + else + data().Conversions.addDecl(Conversion); + } + } + + return; + } + + // Handle non-static data members. + if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) { + // C++ [class.bit]p2: + // A declaration for a bit-field that omits the identifier declares an + // unnamed bit-field. Unnamed bit-fields are not members and cannot be + // initialized. + if (Field->isUnnamedBitfield()) + return; + + // C++ [dcl.init.aggr]p1: + // An aggregate is an array or a class (clause 9) with [...] no + // private or protected non-static data members (clause 11). + // + // A POD must be an aggregate. + if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { + data().Aggregate = false; + data().PlainOldData = false; + } + + // C++0x [class]p7: + // A standard-layout class is a class that: + // [...] + // -- has the same access control for all non-static data members, + switch (D->getAccess()) { + case AS_private: data().HasPrivateFields = true; break; + case AS_protected: data().HasProtectedFields = true; break; + case AS_public: data().HasPublicFields = true; break; + case AS_none: llvm_unreachable("Invalid access specifier"); + }; + if ((data().HasPrivateFields + data().HasProtectedFields + + data().HasPublicFields) > 1) + data().IsStandardLayout = false; + + // Keep track of the presence of mutable fields. + if (Field->isMutable()) + data().HasMutableFields = true; + + // C++0x [class]p9: + // A POD struct is a class that is both a trivial class and a + // standard-layout class, and has no non-static data members of type + // non-POD struct, non-POD union (or array of such types). + // + // Automatic Reference Counting: the presence of a member of Objective-C pointer type + // that does not explicitly have no lifetime makes the class a non-POD. + // However, we delay setting PlainOldData to false in this case so that + // Sema has a chance to diagnostic causes where the same class will be + // non-POD with Automatic Reference Counting but a POD without Instant Objects. + // In this case, the class will become a non-POD class when we complete + // the definition. + ASTContext &Context = getASTContext(); + QualType T = Context.getBaseElementType(Field->getType()); + if (T->isObjCRetainableType() || T.isObjCGCStrong()) { + if (!Context.getLangOpts().ObjCAutoRefCount || + T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) + setHasObjectMember(true); + } else if (!T.isPODType(Context)) + data().PlainOldData = false; + + if (T->isReferenceType()) { + data().HasTrivialDefaultConstructor = false; + + // C++0x [class]p7: + // A standard-layout class is a class that: + // -- has no non-static data members of type [...] reference, + data().IsStandardLayout = false; + } + + // Record if this field is the first non-literal or volatile field or base. + if (!T->isLiteralType() || T.isVolatileQualified()) + data().HasNonLiteralTypeFieldsOrBases = true; + + if (Field->hasInClassInitializer()) { + // C++0x [class]p5: + // A default constructor is trivial if [...] no non-static data member + // of its class has a brace-or-equal-initializer. + data().HasTrivialDefaultConstructor = false; + + // C++0x [dcl.init.aggr]p1: + // An aggregate is a [...] class with [...] no + // brace-or-equal-initializers for non-static data members. + data().Aggregate = false; + + // C++0x [class]p10: + // A POD struct is [...] a trivial class. + data().PlainOldData = false; + } + + if (const RecordType *RecordTy = T->getAs<RecordType>()) { + CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); + if (FieldRec->getDefinition()) { + // C++0x [class.ctor]p5: + // A default constructor is trivial [...] if: + // -- for all the non-static data members of its class that are of + // class type (or array thereof), each such class has a trivial + // default constructor. + if (!FieldRec->hasTrivialDefaultConstructor()) + data().HasTrivialDefaultConstructor = false; + + // C++0x [class.copy]p13: + // A copy/move constructor for class X is trivial if [...] + // [...] + // -- for each non-static data member of X that is of class type (or + // an array thereof), the constructor selected to copy/move that + // member is trivial; + // FIXME: C++0x: We don't correctly model 'selected' constructors. + if (!FieldRec->hasTrivialCopyConstructor()) + data().HasTrivialCopyConstructor = false; + if (!FieldRec->hasTrivialMoveConstructor()) + data().HasTrivialMoveConstructor = false; + + // C++0x [class.copy]p27: + // A copy/move assignment operator for class X is trivial if [...] + // [...] + // -- for each non-static data member of X that is of class type (or + // an array thereof), the assignment operator selected to + // copy/move that member is trivial; + // FIXME: C++0x: We don't correctly model 'selected' operators. + if (!FieldRec->hasTrivialCopyAssignment()) + data().HasTrivialCopyAssignment = false; + if (!FieldRec->hasTrivialMoveAssignment()) + data().HasTrivialMoveAssignment = false; + + if (!FieldRec->hasTrivialDestructor()) + data().HasTrivialDestructor = false; + if (!FieldRec->hasIrrelevantDestructor()) + data().HasIrrelevantDestructor = false; + if (FieldRec->hasObjectMember()) + setHasObjectMember(true); + + // C++0x [class]p7: + // A standard-layout class is a class that: + // -- has no non-static data members of type non-standard-layout + // class (or array of such types) [...] + if (!FieldRec->isStandardLayout()) + data().IsStandardLayout = false; + + // C++0x [class]p7: + // A standard-layout class is a class that: + // [...] + // -- has no base classes of the same type as the first non-static + // data member. + // We don't want to expend bits in the state of the record decl + // tracking whether this is the first non-static data member so we + // cheat a bit and use some of the existing state: the empty bit. + // Virtual bases and virtual methods make a class non-empty, but they + // also make it non-standard-layout so we needn't check here. + // A non-empty base class may leave the class standard-layout, but not + // if we have arrived here, and have at least on non-static data + // member. If IsStandardLayout remains true, then the first non-static + // data member must come through here with Empty still true, and Empty + // will subsequently be set to false below. + if (data().IsStandardLayout && data().Empty) { + for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(), + BE = bases_end(); + BI != BE; ++BI) { + if (Context.hasSameUnqualifiedType(BI->getType(), T)) { + data().IsStandardLayout = false; + break; + } + } + } + + // Keep track of the presence of mutable fields. + if (FieldRec->hasMutableFields()) + data().HasMutableFields = true; + + // C++11 [class.copy]p13: + // If the implicitly-defined constructor would satisfy the + // requirements of a constexpr constructor, the implicitly-defined + // constructor is constexpr. + // C++11 [dcl.constexpr]p4: + // -- every constructor involved in initializing non-static data + // members [...] shall be a constexpr constructor + if (!Field->hasInClassInitializer() && + !FieldRec->hasConstexprDefaultConstructor()) + // The standard requires any in-class initializer to be a constant + // expression. We consider this to be a defect. + data().DefaultedDefaultConstructorIsConstexpr = false; + + if (!FieldRec->hasConstexprCopyConstructor()) + data().DefaultedCopyConstructorIsConstexpr = false; + + if (FieldRec->hasDeclaredMoveConstructor() || + FieldRec->needsImplicitMoveConstructor()) + // FIXME: If the implicit move constructor generated for the member's + // class would be ill-formed, the implicit move constructor generated + // for this class calls the member's copy constructor. + data().DefaultedMoveConstructorIsConstexpr &= + FieldRec->hasConstexprMoveConstructor(); + else if (!FieldRec->hasConstexprCopyConstructor()) + data().DefaultedMoveConstructorIsConstexpr = false; + } + } else { + // Base element type of field is a non-class type. + if (!T->isLiteralType()) { + data().DefaultedDefaultConstructorIsConstexpr = false; + data().DefaultedCopyConstructorIsConstexpr = false; + data().DefaultedMoveConstructorIsConstexpr = false; + } else if (!Field->hasInClassInitializer()) + data().DefaultedDefaultConstructorIsConstexpr = false; + } + + // C++0x [class]p7: + // A standard-layout class is a class that: + // [...] + // -- either has no non-static data members in the most derived + // class and at most one base class with non-static data members, + // or has no base classes with non-static data members, and + // At this point we know that we have a non-static data member, so the last + // clause holds. + if (!data().HasNoNonEmptyBases) + data().IsStandardLayout = false; + + // If this is not a zero-length bit-field, then the class is not empty. + if (data().Empty) { + if (!Field->isBitField() || + (!Field->getBitWidth()->isTypeDependent() && + !Field->getBitWidth()->isValueDependent() && + Field->getBitWidthValue(Context) != 0)) + data().Empty = false; + } + } + + // Handle using declarations of conversion functions. + if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) + if (Shadow->getDeclName().getNameKind() + == DeclarationName::CXXConversionFunctionName) + data().Conversions.addDecl(Shadow, Shadow->getAccess()); +} + +bool CXXRecordDecl::isCLike() const { + if (getTagKind() == TTK_Class || !TemplateOrInstantiation.isNull()) + return false; + if (!hasDefinition()) + return true; + + return isPOD() && data().HasOnlyCMembers; +} + +void CXXRecordDecl::getCaptureFields( + llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures, + FieldDecl *&ThisCapture) const { + Captures.clear(); + ThisCapture = 0; + + LambdaDefinitionData &Lambda = getLambdaData(); + RecordDecl::field_iterator Field = field_begin(); + for (LambdaExpr::Capture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures; + C != CEnd; ++C, ++Field) { + if (C->capturesThis()) { + ThisCapture = *Field; + continue; + } + + Captures[C->getCapturedVar()] = *Field; + } +} + + +static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { + QualType T; + if (isa<UsingShadowDecl>(Conv)) + Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl(); + if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv)) + T = ConvTemp->getTemplatedDecl()->getResultType(); + else + T = cast<CXXConversionDecl>(Conv)->getConversionType(); + return Context.getCanonicalType(T); +} + +/// Collect the visible conversions of a base class. +/// +/// \param Base a base class of the class we're considering +/// \param InVirtual whether this base class is a virtual base (or a base +/// of a virtual base) +/// \param Access the access along the inheritance path to this base +/// \param ParentHiddenTypes the conversions provided by the inheritors +/// of this base +/// \param Output the set to which to add conversions from non-virtual bases +/// \param VOutput the set to which to add conversions from virtual bases +/// \param HiddenVBaseCs the set of conversions which were hidden in a +/// virtual base along some inheritance path +static void CollectVisibleConversions(ASTContext &Context, + CXXRecordDecl *Record, + bool InVirtual, + AccessSpecifier Access, + const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, + UnresolvedSetImpl &Output, + UnresolvedSetImpl &VOutput, + llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) { + // The set of types which have conversions in this class or its + // subclasses. As an optimization, we don't copy the derived set + // unless it might change. + const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; + llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; + + // Collect the direct conversions and figure out which conversions + // will be hidden in the subclasses. + UnresolvedSetImpl &Cs = *Record->getConversionFunctions(); + if (!Cs.empty()) { + HiddenTypesBuffer = ParentHiddenTypes; + HiddenTypes = &HiddenTypesBuffer; + + for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { + bool Hidden = + !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl())); + + // If this conversion is hidden and we're in a virtual base, + // remember that it's hidden along some inheritance path. + if (Hidden && InVirtual) + HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); + + // If this conversion isn't hidden, add it to the appropriate output. + else if (!Hidden) { + AccessSpecifier IAccess + = CXXRecordDecl::MergeAccess(Access, I.getAccess()); + + if (InVirtual) + VOutput.addDecl(I.getDecl(), IAccess); + else + Output.addDecl(I.getDecl(), IAccess); + } + } + } + + // Collect information recursively from any base classes. + for (CXXRecordDecl::base_class_iterator + I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { + const RecordType *RT = I->getType()->getAs<RecordType>(); + if (!RT) continue; + + AccessSpecifier BaseAccess + = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier()); + bool BaseInVirtual = InVirtual || I->isVirtual(); + + CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl()); + CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, + *HiddenTypes, Output, VOutput, HiddenVBaseCs); + } +} + +/// Collect the visible conversions of a class. +/// +/// This would be extremely straightforward if it weren't for virtual +/// bases. It might be worth special-casing that, really. +static void CollectVisibleConversions(ASTContext &Context, + CXXRecordDecl *Record, + UnresolvedSetImpl &Output) { + // The collection of all conversions in virtual bases that we've + // found. These will be added to the output as long as they don't + // appear in the hidden-conversions set. + UnresolvedSet<8> VBaseCs; + + // The set of conversions in virtual bases that we've determined to + // be hidden. + llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; + + // The set of types hidden by classes derived from this one. + llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; + + // Go ahead and collect the direct conversions and add them to the + // hidden-types set. + UnresolvedSetImpl &Cs = *Record->getConversionFunctions(); + Output.append(Cs.begin(), Cs.end()); + for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) + HiddenTypes.insert(GetConversionType(Context, I.getDecl())); + + // Recursively collect conversions from base classes. + for (CXXRecordDecl::base_class_iterator + I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { + const RecordType *RT = I->getType()->getAs<RecordType>(); + if (!RT) continue; + + CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), + I->isVirtual(), I->getAccessSpecifier(), + HiddenTypes, Output, VBaseCs, HiddenVBaseCs); + } + + // Add any unhidden conversions provided by virtual bases. + for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); + I != E; ++I) { + if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) + Output.addDecl(I.getDecl(), I.getAccess()); + } +} + +/// getVisibleConversionFunctions - get all conversion functions visible +/// in current class; including conversion function templates. +const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() { + // If root class, all conversions are visible. + if (bases_begin() == bases_end()) + return &data().Conversions; + // If visible conversion list is already evaluated, return it. + if (data().ComputedVisibleConversions) + return &data().VisibleConversions; + CollectVisibleConversions(getASTContext(), this, data().VisibleConversions); + data().ComputedVisibleConversions = true; + return &data().VisibleConversions; +} + +void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { + // This operation is O(N) but extremely rare. Sema only uses it to + // remove UsingShadowDecls in a class that were followed by a direct + // declaration, e.g.: + // class A : B { + // using B::operator int; + // operator int(); + // }; + // This is uncommon by itself and even more uncommon in conjunction + // with sufficiently large numbers of directly-declared conversions + // that asymptotic behavior matters. + + UnresolvedSetImpl &Convs = *getConversionFunctions(); + for (unsigned I = 0, E = Convs.size(); I != E; ++I) { + if (Convs[I].getDecl() == ConvDecl) { + Convs.erase(I); + assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end() + && "conversion was found multiple times in unresolved set"); + return; + } + } + + llvm_unreachable("conversion not found in set!"); +} + +CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) + return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); + + return 0; +} + +MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { + return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); +} + +void +CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, + TemplateSpecializationKind TSK) { + assert(TemplateOrInstantiation.isNull() && + "Previous template or instantiation?"); + assert(!isa<ClassTemplateSpecializationDecl>(this)); + TemplateOrInstantiation + = new (getASTContext()) MemberSpecializationInfo(RD, TSK); +} + +TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ + if (const ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(this)) + return Spec->getSpecializationKind(); + + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) + return MSInfo->getTemplateSpecializationKind(); + + return TSK_Undeclared; +} + +void +CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { + if (ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(this)) { + Spec->setSpecializationKind(TSK); + return; + } + + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { + MSInfo->setTemplateSpecializationKind(TSK); + return; + } + + llvm_unreachable("Not a class template or member class specialization"); +} + +CXXDestructorDecl *CXXRecordDecl::getDestructor() const { + ASTContext &Context = getASTContext(); + QualType ClassType = Context.getTypeDeclType(this); + + DeclarationName Name + = Context.DeclarationNames.getCXXDestructorName( + Context.getCanonicalType(ClassType)); + + DeclContext::lookup_const_iterator I, E; + llvm::tie(I, E) = lookup(Name); + if (I == E) + return 0; + + CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I); + return Dtor; +} + +void CXXRecordDecl::completeDefinition() { + completeDefinition(0); +} + +void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { + RecordDecl::completeDefinition(); + + if (hasObjectMember() && getASTContext().getLangOpts().ObjCAutoRefCount) { + // Objective-C Automatic Reference Counting: + // If a class has a non-static data member of Objective-C pointer + // type (or array thereof), it is a non-POD type and its + // default constructor (if any), copy constructor, copy assignment + // operator, and destructor are non-trivial. + struct DefinitionData &Data = data(); + Data.PlainOldData = false; + Data.HasTrivialDefaultConstructor = false; + Data.HasTrivialCopyConstructor = false; + Data.HasTrivialCopyAssignment = false; + Data.HasTrivialDestructor = false; + Data.HasIrrelevantDestructor = false; + } + + // If the class may be abstract (but hasn't been marked as such), check for + // any pure final overriders. + if (mayBeAbstract()) { + CXXFinalOverriderMap MyFinalOverriders; + if (!FinalOverriders) { + getFinalOverriders(MyFinalOverriders); + FinalOverriders = &MyFinalOverriders; + } + + bool Done = false; + for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), + MEnd = FinalOverriders->end(); + M != MEnd && !Done; ++M) { + for (OverridingMethods::iterator SO = M->second.begin(), + SOEnd = M->second.end(); + SO != SOEnd && !Done; ++SO) { + assert(SO->second.size() > 0 && + "All virtual functions have overridding virtual functions"); + + // C++ [class.abstract]p4: + // A class is abstract if it contains or inherits at least one + // pure virtual function for which the final overrider is pure + // virtual. + if (SO->second.front().Method->isPure()) { + data().Abstract = true; + Done = true; + break; + } + } + } + } + + // Set access bits correctly on the directly-declared conversions. + for (UnresolvedSetIterator I = data().Conversions.begin(), + E = data().Conversions.end(); + I != E; ++I) + data().Conversions.setAccess(I, (*I)->getAccess()); +} + +bool CXXRecordDecl::mayBeAbstract() const { + if (data().Abstract || isInvalidDecl() || !data().Polymorphic || + isDependentContext()) + return false; + + for (CXXRecordDecl::base_class_const_iterator B = bases_begin(), + BEnd = bases_end(); + B != BEnd; ++B) { + CXXRecordDecl *BaseDecl + = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl()); + if (BaseDecl->isAbstract()) + return true; + } + + return false; +} + +void CXXMethodDecl::anchor() { } + +CXXMethodDecl * +CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, + SourceLocation StartLoc, + const DeclarationNameInfo &NameInfo, + QualType T, TypeSourceInfo *TInfo, + bool isStatic, StorageClass SCAsWritten, bool isInline, + bool isConstexpr, SourceLocation EndLocation) { + return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo, + isStatic, SCAsWritten, isInline, isConstexpr, + EndLocation); +} + +CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXMethodDecl)); + return new (Mem) CXXMethodDecl(CXXMethod, 0, SourceLocation(), + DeclarationNameInfo(), QualType(), + 0, false, SC_None, false, false, + SourceLocation()); +} + +bool CXXMethodDecl::isUsualDeallocationFunction() const { + if (getOverloadedOperator() != OO_Delete && + getOverloadedOperator() != OO_Array_Delete) + return false; + + // C++ [basic.stc.dynamic.deallocation]p2: + // A template instance is never a usual deallocation function, + // regardless of its signature. + if (getPrimaryTemplate()) + return false; + + // C++ [basic.stc.dynamic.deallocation]p2: + // If a class T has a member deallocation function named operator delete + // with exactly one parameter, then that function is a usual (non-placement) + // deallocation function. [...] + if (getNumParams() == 1) + return true; + + // C++ [basic.stc.dynamic.deallocation]p2: + // [...] If class T does not declare such an operator delete but does + // declare a member deallocation function named operator delete with + // exactly two parameters, the second of which has type std::size_t (18.1), + // then this function is a usual deallocation function. + ASTContext &Context = getASTContext(); + if (getNumParams() != 2 || + !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(), + Context.getSizeType())) + return false; + + // This function is a usual deallocation function if there are no + // single-parameter deallocation functions of the same kind. + for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName()); + R.first != R.second; ++R.first) { + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first)) + if (FD->getNumParams() == 1) + return false; + } + + return true; +} + +bool CXXMethodDecl::isCopyAssignmentOperator() const { + // C++0x [class.copy]p17: + // A user-declared copy assignment operator X::operator= is a non-static + // non-template member function of class X with exactly one parameter of + // type X, X&, const X&, volatile X& or const volatile X&. + if (/*operator=*/getOverloadedOperator() != OO_Equal || + /*non-static*/ isStatic() || + /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate()) + return false; + + QualType ParamType = getParamDecl(0)->getType(); + if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>()) + ParamType = Ref->getPointeeType(); + + ASTContext &Context = getASTContext(); + QualType ClassType + = Context.getCanonicalType(Context.getTypeDeclType(getParent())); + return Context.hasSameUnqualifiedType(ClassType, ParamType); +} + +bool CXXMethodDecl::isMoveAssignmentOperator() const { + // C++0x [class.copy]p19: + // A user-declared move assignment operator X::operator= is a non-static + // non-template member function of class X with exactly one parameter of type + // X&&, const X&&, volatile X&&, or const volatile X&&. + if (getOverloadedOperator() != OO_Equal || isStatic() || + getPrimaryTemplate() || getDescribedFunctionTemplate()) + return false; + + QualType ParamType = getParamDecl(0)->getType(); + if (!isa<RValueReferenceType>(ParamType)) + return false; + ParamType = ParamType->getPointeeType(); + + ASTContext &Context = getASTContext(); + QualType ClassType + = Context.getCanonicalType(Context.getTypeDeclType(getParent())); + return Context.hasSameUnqualifiedType(ClassType, ParamType); +} + +void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { + assert(MD->isCanonicalDecl() && "Method is not canonical!"); + assert(!MD->getParent()->isDependentContext() && + "Can't add an overridden method to a class template!"); + assert(MD->isVirtual() && "Method is not virtual!"); + + getASTContext().addOverriddenMethod(this, MD); +} + +CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { + if (isa<CXXConstructorDecl>(this)) return 0; + return getASTContext().overridden_methods_begin(this); +} + +CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { + if (isa<CXXConstructorDecl>(this)) return 0; + return getASTContext().overridden_methods_end(this); +} + +unsigned CXXMethodDecl::size_overridden_methods() const { + if (isa<CXXConstructorDecl>(this)) return 0; + return getASTContext().overridden_methods_size(this); +} + +QualType CXXMethodDecl::getThisType(ASTContext &C) const { + // C++ 9.3.2p1: The type of this in a member function of a class X is X*. + // If the member function is declared const, the type of this is const X*, + // if the member function is declared volatile, the type of this is + // volatile X*, and if the member function is declared const volatile, + // the type of this is const volatile X*. + + assert(isInstance() && "No 'this' for static methods!"); + + QualType ClassTy = C.getTypeDeclType(getParent()); + ClassTy = C.getQualifiedType(ClassTy, + Qualifiers::fromCVRMask(getTypeQualifiers())); + return C.getPointerType(ClassTy); +} + +bool CXXMethodDecl::hasInlineBody() const { + // If this function is a template instantiation, look at the template from + // which it was instantiated. + const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); + if (!CheckFn) + CheckFn = this; + + const FunctionDecl *fn; + return CheckFn->hasBody(fn) && !fn->isOutOfLine(); +} + +bool CXXMethodDecl::isLambdaStaticInvoker() const { + return getParent()->isLambda() && + getIdentifier() && getIdentifier()->getName() == "__invoke"; +} + + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + TypeSourceInfo *TInfo, bool IsVirtual, + SourceLocation L, Expr *Init, + SourceLocation R, + SourceLocation EllipsisLoc) + : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), + LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), + IsWritten(false), SourceOrderOrNumArrayIndices(0) +{ +} + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + FieldDecl *Member, + SourceLocation MemberLoc, + SourceLocation L, Expr *Init, + SourceLocation R) + : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), + LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), + IsWritten(false), SourceOrderOrNumArrayIndices(0) +{ +} + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + IndirectFieldDecl *Member, + SourceLocation MemberLoc, + SourceLocation L, Expr *Init, + SourceLocation R) + : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), + LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), + IsWritten(false), SourceOrderOrNumArrayIndices(0) +{ +} + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + TypeSourceInfo *TInfo, + SourceLocation L, Expr *Init, + SourceLocation R) + : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init), + LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false), + IsWritten(false), SourceOrderOrNumArrayIndices(0) +{ +} + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + FieldDecl *Member, + SourceLocation MemberLoc, + SourceLocation L, Expr *Init, + SourceLocation R, + VarDecl **Indices, + unsigned NumIndices) + : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), + LParenLoc(L), RParenLoc(R), IsVirtual(false), + IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices) +{ + VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1); + memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *)); +} + +CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context, + FieldDecl *Member, + SourceLocation MemberLoc, + SourceLocation L, Expr *Init, + SourceLocation R, + VarDecl **Indices, + unsigned NumIndices) { + void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) + + sizeof(VarDecl *) * NumIndices, + llvm::alignOf<CXXCtorInitializer>()); + return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R, + Indices, NumIndices); +} + +TypeLoc CXXCtorInitializer::getBaseClassLoc() const { + if (isBaseInitializer()) + return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); + else + return TypeLoc(); +} + +const Type *CXXCtorInitializer::getBaseClass() const { + if (isBaseInitializer()) + return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); + else + return 0; +} + +SourceLocation CXXCtorInitializer::getSourceLocation() const { + if (isAnyMemberInitializer()) + return getMemberLocation(); + + if (isInClassMemberInitializer()) + return getAnyMember()->getLocation(); + + if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>()) + return TSInfo->getTypeLoc().getLocalSourceRange().getBegin(); + + return SourceLocation(); +} + +SourceRange CXXCtorInitializer::getSourceRange() const { + if (isInClassMemberInitializer()) { + FieldDecl *D = getAnyMember(); + if (Expr *I = D->getInClassInitializer()) + return I->getSourceRange(); + return SourceRange(); + } + + return SourceRange(getSourceLocation(), getRParenLoc()); +} + +void CXXConstructorDecl::anchor() { } + +CXXConstructorDecl * +CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConstructorDecl)); + return new (Mem) CXXConstructorDecl(0, SourceLocation(),DeclarationNameInfo(), + QualType(), 0, false, false, false,false); +} + +CXXConstructorDecl * +CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, + SourceLocation StartLoc, + const DeclarationNameInfo &NameInfo, + QualType T, TypeSourceInfo *TInfo, + bool isExplicit, bool isInline, + bool isImplicitlyDeclared, bool isConstexpr) { + assert(NameInfo.getName().getNameKind() + == DeclarationName::CXXConstructorName && + "Name must refer to a constructor"); + return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo, + isExplicit, isInline, isImplicitlyDeclared, + isConstexpr); +} + +CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { + assert(isDelegatingConstructor() && "Not a delegating constructor!"); + Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); + if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E)) + return Construct->getConstructor(); + + return 0; +} + +bool CXXConstructorDecl::isDefaultConstructor() const { + // C++ [class.ctor]p5: + // A default constructor for a class X is a constructor of class + // X that can be called without an argument. + return (getNumParams() == 0) || + (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg()); +} + +bool +CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { + return isCopyOrMoveConstructor(TypeQuals) && + getParamDecl(0)->getType()->isLValueReferenceType(); +} + +bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { + return isCopyOrMoveConstructor(TypeQuals) && + getParamDecl(0)->getType()->isRValueReferenceType(); +} + +/// \brief Determine whether this is a copy or move constructor. +bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { + // C++ [class.copy]p2: + // A non-template constructor for class X is a copy constructor + // if its first parameter is of type X&, const X&, volatile X& or + // const volatile X&, and either there are no other parameters + // or else all other parameters have default arguments (8.3.6). + // C++0x [class.copy]p3: + // A non-template constructor for class X is a move constructor if its + // first parameter is of type X&&, const X&&, volatile X&&, or + // const volatile X&&, and either there are no other parameters or else + // all other parameters have default arguments. + if ((getNumParams() < 1) || + (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || + (getPrimaryTemplate() != 0) || + (getDescribedFunctionTemplate() != 0)) + return false; + + const ParmVarDecl *Param = getParamDecl(0); + + // Do we have a reference type? + const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>(); + if (!ParamRefType) + return false; + + // Is it a reference to our class type? + ASTContext &Context = getASTContext(); + + CanQualType PointeeType + = Context.getCanonicalType(ParamRefType->getPointeeType()); + CanQualType ClassTy + = Context.getCanonicalType(Context.getTagDeclType(getParent())); + if (PointeeType.getUnqualifiedType() != ClassTy) + return false; + + // FIXME: other qualifiers? + + // We have a copy or move constructor. + TypeQuals = PointeeType.getCVRQualifiers(); + return true; +} + +bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { + // C++ [class.conv.ctor]p1: + // A constructor declared without the function-specifier explicit + // that can be called with a single parameter specifies a + // conversion from the type of its first parameter to the type of + // its class. Such a constructor is called a converting + // constructor. + if (isExplicit() && !AllowExplicit) + return false; + + return (getNumParams() == 0 && + getType()->getAs<FunctionProtoType>()->isVariadic()) || + (getNumParams() == 1) || + (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg()); +} + +bool CXXConstructorDecl::isSpecializationCopyingObject() const { + if ((getNumParams() < 1) || + (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || + (getPrimaryTemplate() == 0) || + (getDescribedFunctionTemplate() != 0)) + return false; + + const ParmVarDecl *Param = getParamDecl(0); + + ASTContext &Context = getASTContext(); + CanQualType ParamType = Context.getCanonicalType(Param->getType()); + + // Is it the same as our our class type? + CanQualType ClassTy + = Context.getCanonicalType(Context.getTagDeclType(getParent())); + if (ParamType.getUnqualifiedType() != ClassTy) + return false; + + return true; +} + +const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const { + // Hack: we store the inherited constructor in the overridden method table + method_iterator It = getASTContext().overridden_methods_begin(this); + if (It == getASTContext().overridden_methods_end(this)) + return 0; + + return cast<CXXConstructorDecl>(*It); +} + +void +CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){ + // Hack: we store the inherited constructor in the overridden method table + assert(getASTContext().overridden_methods_size(this) == 0 && + "Base ctor already set."); + getASTContext().addOverriddenMethod(this, BaseCtor); +} + +void CXXDestructorDecl::anchor() { } + +CXXDestructorDecl * +CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXDestructorDecl)); + return new (Mem) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(), + QualType(), 0, false, false); +} + +CXXDestructorDecl * +CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, + SourceLocation StartLoc, + const DeclarationNameInfo &NameInfo, + QualType T, TypeSourceInfo *TInfo, + bool isInline, bool isImplicitlyDeclared) { + assert(NameInfo.getName().getNameKind() + == DeclarationName::CXXDestructorName && + "Name must refer to a destructor"); + return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline, + isImplicitlyDeclared); +} + +void CXXConversionDecl::anchor() { } + +CXXConversionDecl * +CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConversionDecl)); + return new (Mem) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(), + QualType(), 0, false, false, false, + SourceLocation()); +} + +CXXConversionDecl * +CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD, + SourceLocation StartLoc, + const DeclarationNameInfo &NameInfo, + QualType T, TypeSourceInfo *TInfo, + bool isInline, bool isExplicit, + bool isConstexpr, SourceLocation EndLocation) { + assert(NameInfo.getName().getNameKind() + == DeclarationName::CXXConversionFunctionName && + "Name must refer to a conversion function"); + return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo, + isInline, isExplicit, isConstexpr, + EndLocation); +} + +bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { + return isImplicit() && getParent()->isLambda() && + getConversionType()->isBlockPointerType(); +} + +void LinkageSpecDecl::anchor() { } + +LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, + DeclContext *DC, + SourceLocation ExternLoc, + SourceLocation LangLoc, + LanguageIDs Lang, + SourceLocation RBraceLoc) { + return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc); +} + +LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LinkageSpecDecl)); + return new (Mem) LinkageSpecDecl(0, SourceLocation(), SourceLocation(), + lang_c, SourceLocation()); +} + +void UsingDirectiveDecl::anchor() { } + +UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation L, + SourceLocation NamespaceLoc, + NestedNameSpecifierLoc QualifierLoc, + SourceLocation IdentLoc, + NamedDecl *Used, + DeclContext *CommonAncestor) { + if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used)) + Used = NS->getOriginalNamespace(); + return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, + IdentLoc, Used, CommonAncestor); +} + +UsingDirectiveDecl * +UsingDirectiveDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDirectiveDecl)); + return new (Mem) UsingDirectiveDecl(0, SourceLocation(), SourceLocation(), + NestedNameSpecifierLoc(), + SourceLocation(), 0, 0); +} + +NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { + if (NamespaceAliasDecl *NA = + dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) + return NA->getNamespace(); + return cast_or_null<NamespaceDecl>(NominatedNamespace); +} + +void NamespaceDecl::anchor() { } + +NamespaceDecl::NamespaceDecl(DeclContext *DC, bool Inline, + SourceLocation StartLoc, + SourceLocation IdLoc, IdentifierInfo *Id, + NamespaceDecl *PrevDecl) + : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), + LocStart(StartLoc), RBraceLoc(), AnonOrFirstNamespaceAndInline(0, Inline) +{ + setPreviousDeclaration(PrevDecl); + + if (PrevDecl) + AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace()); +} + +NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, + bool Inline, SourceLocation StartLoc, + SourceLocation IdLoc, IdentifierInfo *Id, + NamespaceDecl *PrevDecl) { + return new (C) NamespaceDecl(DC, Inline, StartLoc, IdLoc, Id, PrevDecl); +} + +NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceDecl)); + return new (Mem) NamespaceDecl(0, false, SourceLocation(), SourceLocation(), + 0, 0); +} + +void NamespaceAliasDecl::anchor() { } + +NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation UsingLoc, + SourceLocation AliasLoc, + IdentifierInfo *Alias, + NestedNameSpecifierLoc QualifierLoc, + SourceLocation IdentLoc, + NamedDecl *Namespace) { + if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) + Namespace = NS->getOriginalNamespace(); + return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias, + QualifierLoc, IdentLoc, Namespace); +} + +NamespaceAliasDecl * +NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceAliasDecl)); + return new (Mem) NamespaceAliasDecl(0, SourceLocation(), SourceLocation(), 0, + NestedNameSpecifierLoc(), + SourceLocation(), 0); +} + +void UsingShadowDecl::anchor() { } + +UsingShadowDecl * +UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingShadowDecl)); + return new (Mem) UsingShadowDecl(0, SourceLocation(), 0, 0); +} + +UsingDecl *UsingShadowDecl::getUsingDecl() const { + const UsingShadowDecl *Shadow = this; + while (const UsingShadowDecl *NextShadow = + dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) + Shadow = NextShadow; + return cast<UsingDecl>(Shadow->UsingOrNextShadow); +} + +void UsingDecl::anchor() { } + +void UsingDecl::addShadowDecl(UsingShadowDecl *S) { + assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() && + "declaration already in set"); + assert(S->getUsingDecl() == this); + + if (FirstUsingShadow.getPointer()) + S->UsingOrNextShadow = FirstUsingShadow.getPointer(); + FirstUsingShadow.setPointer(S); +} + +void UsingDecl::removeShadowDecl(UsingShadowDecl *S) { + assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() && + "declaration not in set"); + assert(S->getUsingDecl() == this); + + // Remove S from the shadow decl chain. This is O(n) but hopefully rare. + + if (FirstUsingShadow.getPointer() == S) { + FirstUsingShadow.setPointer( + dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow)); + S->UsingOrNextShadow = this; + return; + } + + UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); + while (Prev->UsingOrNextShadow != S) + Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); + Prev->UsingOrNextShadow = S->UsingOrNextShadow; + S->UsingOrNextShadow = this; +} + +UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, + NestedNameSpecifierLoc QualifierLoc, + const DeclarationNameInfo &NameInfo, + bool IsTypeNameArg) { + return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg); +} + +UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDecl)); + return new (Mem) UsingDecl(0, SourceLocation(), NestedNameSpecifierLoc(), + DeclarationNameInfo(), false); +} + +void UnresolvedUsingValueDecl::anchor() { } + +UnresolvedUsingValueDecl * +UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation UsingLoc, + NestedNameSpecifierLoc QualifierLoc, + const DeclarationNameInfo &NameInfo) { + return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, + QualifierLoc, NameInfo); +} + +UnresolvedUsingValueDecl * +UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UnresolvedUsingValueDecl)); + return new (Mem) UnresolvedUsingValueDecl(0, QualType(), SourceLocation(), + NestedNameSpecifierLoc(), + DeclarationNameInfo()); +} + +void UnresolvedUsingTypenameDecl::anchor() { } + +UnresolvedUsingTypenameDecl * +UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation UsingLoc, + SourceLocation TypenameLoc, + NestedNameSpecifierLoc QualifierLoc, + SourceLocation TargetNameLoc, + DeclarationName TargetName) { + return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc, + QualifierLoc, TargetNameLoc, + TargetName.getAsIdentifierInfo()); +} + +UnresolvedUsingTypenameDecl * +UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, + sizeof(UnresolvedUsingTypenameDecl)); + return new (Mem) UnresolvedUsingTypenameDecl(0, SourceLocation(), + SourceLocation(), + NestedNameSpecifierLoc(), + SourceLocation(), + 0); +} + +void StaticAssertDecl::anchor() { } + +StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation StaticAssertLoc, + Expr *AssertExpr, + StringLiteral *Message, + SourceLocation RParenLoc) { + return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, + RParenLoc); +} + +StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, + unsigned ID) { + void *Mem = AllocateDeserializedDecl(C, ID, sizeof(StaticAssertDecl)); + return new (Mem) StaticAssertDecl(0, SourceLocation(), 0, 0,SourceLocation()); +} + +static const char *getAccessName(AccessSpecifier AS) { + switch (AS) { + case AS_none: + llvm_unreachable("Invalid access specifier!"); + case AS_public: + return "public"; + case AS_private: + return "private"; + case AS_protected: + return "protected"; + } + llvm_unreachable("Invalid access specifier!"); +} + +const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB, + AccessSpecifier AS) { + return DB << getAccessName(AS); +} + +const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB, + AccessSpecifier AS) { + return DB << getAccessName(AS); +} |