summaryrefslogtreecommitdiff
path: root/clang/lib/AST/DeclCXX.cpp
diff options
context:
space:
mode:
authorZancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au>2012-09-24 09:58:17 +1000
committerZancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au>2012-09-24 09:58:17 +1000
commit222e2a7620e6520ffaf4fc4e69d79c18da31542e (patch)
tree7bfbc05bfa3b41c8f9d2e56d53a0bc3e310df239 /clang/lib/AST/DeclCXX.cpp
parent3d206f03985b50beacae843d880bccdc91a9f424 (diff)
Add the clang library to the repo (with some of my changes, too).
Diffstat (limited to 'clang/lib/AST/DeclCXX.cpp')
-rw-r--r--clang/lib/AST/DeclCXX.cpp2029
1 files changed, 2029 insertions, 0 deletions
diff --git a/clang/lib/AST/DeclCXX.cpp b/clang/lib/AST/DeclCXX.cpp
new file mode 100644
index 0000000..114322b
--- /dev/null
+++ b/clang/lib/AST/DeclCXX.cpp
@@ -0,0 +1,2029 @@
+//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the C++ related Decl classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Decl Allocation/Deallocation Method Implementations
+//===----------------------------------------------------------------------===//
+
+void AccessSpecDecl::anchor() { }
+
+AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(AccessSpecDecl));
+ return new (Mem) AccessSpecDecl(EmptyShell());
+}
+
+CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
+ : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
+ UserDeclaredMoveConstructor(false), UserDeclaredCopyAssignment(false),
+ UserDeclaredMoveAssignment(false), UserDeclaredDestructor(false),
+ Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
+ Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
+ HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
+ HasMutableFields(false), HasOnlyCMembers(true),
+ HasTrivialDefaultConstructor(true),
+ HasConstexprNonCopyMoveConstructor(false),
+ DefaultedDefaultConstructorIsConstexpr(true),
+ DefaultedCopyConstructorIsConstexpr(true),
+ DefaultedMoveConstructorIsConstexpr(true),
+ HasConstexprDefaultConstructor(false), HasConstexprCopyConstructor(false),
+ HasConstexprMoveConstructor(false), HasTrivialCopyConstructor(true),
+ HasTrivialMoveConstructor(true), HasTrivialCopyAssignment(true),
+ HasTrivialMoveAssignment(true), HasTrivialDestructor(true),
+ HasIrrelevantDestructor(true),
+ HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
+ UserProvidedDefaultConstructor(false), DeclaredDefaultConstructor(false),
+ DeclaredCopyConstructor(false), DeclaredMoveConstructor(false),
+ DeclaredCopyAssignment(false), DeclaredMoveAssignment(false),
+ DeclaredDestructor(false), FailedImplicitMoveConstructor(false),
+ FailedImplicitMoveAssignment(false), IsLambda(false), NumBases(0),
+ NumVBases(0), Bases(), VBases(), Definition(D), FirstFriend(0) {
+}
+
+CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
+ : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
+ DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
+ TemplateOrInstantiation() { }
+
+CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
+ DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ CXXRecordDecl* PrevDecl,
+ bool DelayTypeCreation) {
+ CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
+ Id, PrevDecl);
+
+ // FIXME: DelayTypeCreation seems like such a hack
+ if (!DelayTypeCreation)
+ C.getTypeDeclType(R, PrevDecl);
+ return R;
+}
+
+CXXRecordDecl *CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
+ SourceLocation Loc, bool Dependent) {
+ CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TTK_Class, DC, Loc, Loc,
+ 0, 0);
+ R->IsBeingDefined = true;
+ R->DefinitionData = new (C) struct LambdaDefinitionData(R, Dependent);
+ C.getTypeDeclType(R, /*PrevDecl=*/0);
+ return R;
+}
+
+CXXRecordDecl *
+CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXRecordDecl));
+ return new (Mem) CXXRecordDecl(CXXRecord, TTK_Struct, 0, SourceLocation(),
+ SourceLocation(), 0, 0);
+}
+
+void
+CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
+ unsigned NumBases) {
+ ASTContext &C = getASTContext();
+
+ if (!data().Bases.isOffset() && data().NumBases > 0)
+ C.Deallocate(data().getBases());
+
+ if (NumBases) {
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is [...] a class with [...] no base classes [...].
+ data().Aggregate = false;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class...
+ data().PlainOldData = false;
+ }
+
+ // The set of seen virtual base types.
+ llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
+
+ // The virtual bases of this class.
+ SmallVector<const CXXBaseSpecifier *, 8> VBases;
+
+ data().Bases = new(C) CXXBaseSpecifier [NumBases];
+ data().NumBases = NumBases;
+ for (unsigned i = 0; i < NumBases; ++i) {
+ data().getBases()[i] = *Bases[i];
+ // Keep track of inherited vbases for this base class.
+ const CXXBaseSpecifier *Base = Bases[i];
+ QualType BaseType = Base->getType();
+ // Skip dependent types; we can't do any checking on them now.
+ if (BaseType->isDependentType())
+ continue;
+ CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
+
+ // A class with a non-empty base class is not empty.
+ // FIXME: Standard ref?
+ if (!BaseClassDecl->isEmpty()) {
+ if (!data().Empty) {
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // [...]
+ // -- either has no non-static data members in the most derived
+ // class and at most one base class with non-static data members,
+ // or has no base classes with non-static data members, and
+ // If this is the second non-empty base, then neither of these two
+ // clauses can be true.
+ data().IsStandardLayout = false;
+ }
+
+ data().Empty = false;
+ data().HasNoNonEmptyBases = false;
+ }
+
+ // C++ [class.virtual]p1:
+ // A class that declares or inherits a virtual function is called a
+ // polymorphic class.
+ if (BaseClassDecl->isPolymorphic())
+ data().Polymorphic = true;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that: [...]
+ // -- has no non-standard-layout base classes
+ if (!BaseClassDecl->isStandardLayout())
+ data().IsStandardLayout = false;
+
+ // Record if this base is the first non-literal field or base.
+ if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType())
+ data().HasNonLiteralTypeFieldsOrBases = true;
+
+ // Now go through all virtual bases of this base and add them.
+ for (CXXRecordDecl::base_class_iterator VBase =
+ BaseClassDecl->vbases_begin(),
+ E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
+ // Add this base if it's not already in the list.
+ if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType())))
+ VBases.push_back(VBase);
+ }
+
+ if (Base->isVirtual()) {
+ // Add this base if it's not already in the list.
+ if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
+ VBases.push_back(Base);
+
+ // C++0x [meta.unary.prop] is_empty:
+ // T is a class type, but not a union type, with ... no virtual base
+ // classes
+ data().Empty = false;
+
+ // C++ [class.ctor]p5:
+ // A default constructor is trivial [...] if:
+ // -- its class has [...] no virtual bases
+ data().HasTrivialDefaultConstructor = false;
+
+ // C++0x [class.copy]p13:
+ // A copy/move constructor for class X is trivial if it is neither
+ // user-provided nor deleted and if
+ // -- class X has no virtual functions and no virtual base classes, and
+ data().HasTrivialCopyConstructor = false;
+ data().HasTrivialMoveConstructor = false;
+
+ // C++0x [class.copy]p27:
+ // A copy/move assignment operator for class X is trivial if it is
+ // neither user-provided nor deleted and if
+ // -- class X has no virtual functions and no virtual base classes, and
+ data().HasTrivialCopyAssignment = false;
+ data().HasTrivialMoveAssignment = false;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that: [...]
+ // -- has [...] no virtual base classes
+ data().IsStandardLayout = false;
+
+ // C++11 [dcl.constexpr]p4:
+ // In the definition of a constexpr constructor [...]
+ // -- the class shall not have any virtual base classes
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+ data().DefaultedCopyConstructorIsConstexpr = false;
+ data().DefaultedMoveConstructorIsConstexpr = false;
+ } else {
+ // C++ [class.ctor]p5:
+ // A default constructor is trivial [...] if:
+ // -- all the direct base classes of its class have trivial default
+ // constructors.
+ if (!BaseClassDecl->hasTrivialDefaultConstructor())
+ data().HasTrivialDefaultConstructor = false;
+
+ // C++0x [class.copy]p13:
+ // A copy/move constructor for class X is trivial if [...]
+ // [...]
+ // -- the constructor selected to copy/move each direct base class
+ // subobject is trivial, and
+ // FIXME: C++0x: We need to only consider the selected constructor
+ // instead of all of them.
+ if (!BaseClassDecl->hasTrivialCopyConstructor())
+ data().HasTrivialCopyConstructor = false;
+ if (!BaseClassDecl->hasTrivialMoveConstructor())
+ data().HasTrivialMoveConstructor = false;
+
+ // C++0x [class.copy]p27:
+ // A copy/move assignment operator for class X is trivial if [...]
+ // [...]
+ // -- the assignment operator selected to copy/move each direct base
+ // class subobject is trivial, and
+ // FIXME: C++0x: We need to only consider the selected operator instead
+ // of all of them.
+ if (!BaseClassDecl->hasTrivialCopyAssignment())
+ data().HasTrivialCopyAssignment = false;
+ if (!BaseClassDecl->hasTrivialMoveAssignment())
+ data().HasTrivialMoveAssignment = false;
+
+ // C++11 [class.ctor]p6:
+ // If that user-written default constructor would satisfy the
+ // requirements of a constexpr constructor, the implicitly-defined
+ // default constructor is constexpr.
+ if (!BaseClassDecl->hasConstexprDefaultConstructor())
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+
+ // C++11 [class.copy]p13:
+ // If the implicitly-defined constructor would satisfy the requirements
+ // of a constexpr constructor, the implicitly-defined constructor is
+ // constexpr.
+ // C++11 [dcl.constexpr]p4:
+ // -- every constructor involved in initializing [...] base class
+ // sub-objects shall be a constexpr constructor
+ if (!BaseClassDecl->hasConstexprCopyConstructor())
+ data().DefaultedCopyConstructorIsConstexpr = false;
+ if (BaseClassDecl->hasDeclaredMoveConstructor() ||
+ BaseClassDecl->needsImplicitMoveConstructor())
+ // FIXME: If the implicit move constructor generated for the base class
+ // would be ill-formed, the implicit move constructor generated for the
+ // derived class calls the base class' copy constructor.
+ data().DefaultedMoveConstructorIsConstexpr &=
+ BaseClassDecl->hasConstexprMoveConstructor();
+ else if (!BaseClassDecl->hasConstexprCopyConstructor())
+ data().DefaultedMoveConstructorIsConstexpr = false;
+ }
+
+ // C++ [class.ctor]p3:
+ // A destructor is trivial if all the direct base classes of its class
+ // have trivial destructors.
+ if (!BaseClassDecl->hasTrivialDestructor())
+ data().HasTrivialDestructor = false;
+
+ if (!BaseClassDecl->hasIrrelevantDestructor())
+ data().HasIrrelevantDestructor = false;
+
+ // A class has an Objective-C object member if... or any of its bases
+ // has an Objective-C object member.
+ if (BaseClassDecl->hasObjectMember())
+ setHasObjectMember(true);
+
+ // Keep track of the presence of mutable fields.
+ if (BaseClassDecl->hasMutableFields())
+ data().HasMutableFields = true;
+ }
+
+ if (VBases.empty())
+ return;
+
+ // Create base specifier for any direct or indirect virtual bases.
+ data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
+ data().NumVBases = VBases.size();
+ for (int I = 0, E = VBases.size(); I != E; ++I)
+ data().getVBases()[I] = *VBases[I];
+}
+
+/// Callback function for CXXRecordDecl::forallBases that acknowledges
+/// that it saw a base class.
+static bool SawBase(const CXXRecordDecl *, void *) {
+ return true;
+}
+
+bool CXXRecordDecl::hasAnyDependentBases() const {
+ if (!isDependentContext())
+ return false;
+
+ return !forallBases(SawBase, 0);
+}
+
+bool CXXRecordDecl::hasConstCopyConstructor() const {
+ return getCopyConstructor(Qualifiers::Const) != 0;
+}
+
+bool CXXRecordDecl::isTriviallyCopyable() const {
+ // C++0x [class]p5:
+ // A trivially copyable class is a class that:
+ // -- has no non-trivial copy constructors,
+ if (!hasTrivialCopyConstructor()) return false;
+ // -- has no non-trivial move constructors,
+ if (!hasTrivialMoveConstructor()) return false;
+ // -- has no non-trivial copy assignment operators,
+ if (!hasTrivialCopyAssignment()) return false;
+ // -- has no non-trivial move assignment operators, and
+ if (!hasTrivialMoveAssignment()) return false;
+ // -- has a trivial destructor.
+ if (!hasTrivialDestructor()) return false;
+
+ return true;
+}
+
+/// \brief Perform a simplistic form of overload resolution that only considers
+/// cv-qualifiers on a single parameter, and return the best overload candidate
+/// (if there is one).
+static CXXMethodDecl *
+GetBestOverloadCandidateSimple(
+ const SmallVectorImpl<std::pair<CXXMethodDecl *, Qualifiers> > &Cands) {
+ if (Cands.empty())
+ return 0;
+ if (Cands.size() == 1)
+ return Cands[0].first;
+
+ unsigned Best = 0, N = Cands.size();
+ for (unsigned I = 1; I != N; ++I)
+ if (Cands[Best].second.compatiblyIncludes(Cands[I].second))
+ Best = I;
+
+ for (unsigned I = 1; I != N; ++I)
+ if (Cands[Best].second.compatiblyIncludes(Cands[I].second))
+ return 0;
+
+ return Cands[Best].first;
+}
+
+CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(unsigned TypeQuals) const{
+ ASTContext &Context = getASTContext();
+ QualType ClassType
+ = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
+ DeclarationName ConstructorName
+ = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(ClassType));
+ unsigned FoundTQs;
+ SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
+ DeclContext::lookup_const_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
+ Con != ConEnd; ++Con) {
+ // C++ [class.copy]p2:
+ // A non-template constructor for class X is a copy constructor if [...]
+ if (isa<FunctionTemplateDecl>(*Con))
+ continue;
+
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
+ if (Constructor->isCopyConstructor(FoundTQs)) {
+ if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
+ (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
+ Found.push_back(std::make_pair(
+ const_cast<CXXConstructorDecl *>(Constructor),
+ Qualifiers::fromCVRMask(FoundTQs)));
+ }
+ }
+
+ return cast_or_null<CXXConstructorDecl>(
+ GetBestOverloadCandidateSimple(Found));
+}
+
+CXXConstructorDecl *CXXRecordDecl::getMoveConstructor() const {
+ for (ctor_iterator I = ctor_begin(), E = ctor_end(); I != E; ++I)
+ if (I->isMoveConstructor())
+ return *I;
+
+ return 0;
+}
+
+CXXMethodDecl *CXXRecordDecl::getCopyAssignmentOperator(bool ArgIsConst) const {
+ ASTContext &Context = getASTContext();
+ QualType Class = Context.getTypeDeclType(const_cast<CXXRecordDecl *>(this));
+ DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
+
+ SmallVector<std::pair<CXXMethodDecl *, Qualifiers>, 4> Found;
+ DeclContext::lookup_const_iterator Op, OpEnd;
+ for (llvm::tie(Op, OpEnd) = this->lookup(Name); Op != OpEnd; ++Op) {
+ // C++ [class.copy]p9:
+ // A user-declared copy assignment operator is a non-static non-template
+ // member function of class X with exactly one parameter of type X, X&,
+ // const X&, volatile X& or const volatile X&.
+ const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
+ if (!Method || Method->isStatic() || Method->getPrimaryTemplate())
+ continue;
+
+ const FunctionProtoType *FnType
+ = Method->getType()->getAs<FunctionProtoType>();
+ assert(FnType && "Overloaded operator has no prototype.");
+ // Don't assert on this; an invalid decl might have been left in the AST.
+ if (FnType->getNumArgs() != 1 || FnType->isVariadic())
+ continue;
+
+ QualType ArgType = FnType->getArgType(0);
+ Qualifiers Quals;
+ if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
+ ArgType = Ref->getPointeeType();
+ // If we have a const argument and we have a reference to a non-const,
+ // this function does not match.
+ if (ArgIsConst && !ArgType.isConstQualified())
+ continue;
+
+ Quals = ArgType.getQualifiers();
+ } else {
+ // By-value copy-assignment operators are treated like const X&
+ // copy-assignment operators.
+ Quals = Qualifiers::fromCVRMask(Qualifiers::Const);
+ }
+
+ if (!Context.hasSameUnqualifiedType(ArgType, Class))
+ continue;
+
+ // Save this copy-assignment operator. It might be "the one".
+ Found.push_back(std::make_pair(const_cast<CXXMethodDecl *>(Method), Quals));
+ }
+
+ // Use a simplistic form of overload resolution to find the candidate.
+ return GetBestOverloadCandidateSimple(Found);
+}
+
+CXXMethodDecl *CXXRecordDecl::getMoveAssignmentOperator() const {
+ for (method_iterator I = method_begin(), E = method_end(); I != E; ++I)
+ if (I->isMoveAssignmentOperator())
+ return *I;
+
+ return 0;
+}
+
+void CXXRecordDecl::markedVirtualFunctionPure() {
+ // C++ [class.abstract]p2:
+ // A class is abstract if it has at least one pure virtual function.
+ data().Abstract = true;
+}
+
+void CXXRecordDecl::addedMember(Decl *D) {
+ if (!D->isImplicit() &&
+ !isa<FieldDecl>(D) &&
+ !isa<IndirectFieldDecl>(D) &&
+ (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class))
+ data().HasOnlyCMembers = false;
+
+ // Ignore friends and invalid declarations.
+ if (D->getFriendObjectKind() || D->isInvalidDecl())
+ return;
+
+ FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
+ if (FunTmpl)
+ D = FunTmpl->getTemplatedDecl();
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ if (Method->isVirtual()) {
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class with [...] no virtual functions.
+ data().Aggregate = false;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class...
+ data().PlainOldData = false;
+
+ // Virtual functions make the class non-empty.
+ // FIXME: Standard ref?
+ data().Empty = false;
+
+ // C++ [class.virtual]p1:
+ // A class that declares or inherits a virtual function is called a
+ // polymorphic class.
+ data().Polymorphic = true;
+
+ // C++0x [class.ctor]p5
+ // A default constructor is trivial [...] if:
+ // -- its class has no virtual functions [...]
+ data().HasTrivialDefaultConstructor = false;
+
+ // C++0x [class.copy]p13:
+ // A copy/move constructor for class X is trivial if [...]
+ // -- class X has no virtual functions [...]
+ data().HasTrivialCopyConstructor = false;
+ data().HasTrivialMoveConstructor = false;
+
+ // C++0x [class.copy]p27:
+ // A copy/move assignment operator for class X is trivial if [...]
+ // -- class X has no virtual functions [...]
+ data().HasTrivialCopyAssignment = false;
+ data().HasTrivialMoveAssignment = false;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that: [...]
+ // -- has no virtual functions
+ data().IsStandardLayout = false;
+ }
+ }
+
+ if (D->isImplicit()) {
+ // Notify that an implicit member was added after the definition
+ // was completed.
+ if (!isBeingDefined())
+ if (ASTMutationListener *L = getASTMutationListener())
+ L->AddedCXXImplicitMember(data().Definition, D);
+
+ // If this is a special member function, note that it was added and then
+ // return early.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
+ if (Constructor->isDefaultConstructor()) {
+ data().DeclaredDefaultConstructor = true;
+ if (Constructor->isConstexpr()) {
+ data().HasConstexprDefaultConstructor = true;
+ data().HasConstexprNonCopyMoveConstructor = true;
+ }
+ } else if (Constructor->isCopyConstructor()) {
+ data().DeclaredCopyConstructor = true;
+ if (Constructor->isConstexpr())
+ data().HasConstexprCopyConstructor = true;
+ } else if (Constructor->isMoveConstructor()) {
+ data().DeclaredMoveConstructor = true;
+ if (Constructor->isConstexpr())
+ data().HasConstexprMoveConstructor = true;
+ } else
+ goto NotASpecialMember;
+ return;
+ } else if (isa<CXXDestructorDecl>(D)) {
+ data().DeclaredDestructor = true;
+ return;
+ } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ if (Method->isCopyAssignmentOperator())
+ data().DeclaredCopyAssignment = true;
+ else if (Method->isMoveAssignmentOperator())
+ data().DeclaredMoveAssignment = true;
+ else
+ goto NotASpecialMember;
+ return;
+ }
+
+NotASpecialMember:;
+ // Any other implicit declarations are handled like normal declarations.
+ }
+
+ // Handle (user-declared) constructors.
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
+ // Note that we have a user-declared constructor.
+ data().UserDeclaredConstructor = true;
+
+ // Technically, "user-provided" is only defined for special member
+ // functions, but the intent of the standard is clearly that it should apply
+ // to all functions.
+ bool UserProvided = Constructor->isUserProvided();
+
+ if (Constructor->isDefaultConstructor()) {
+ data().DeclaredDefaultConstructor = true;
+ if (UserProvided) {
+ // C++0x [class.ctor]p5:
+ // A default constructor is trivial if it is not user-provided [...]
+ data().HasTrivialDefaultConstructor = false;
+ data().UserProvidedDefaultConstructor = true;
+ }
+ if (Constructor->isConstexpr()) {
+ data().HasConstexprDefaultConstructor = true;
+ data().HasConstexprNonCopyMoveConstructor = true;
+ }
+ }
+
+ // Note when we have a user-declared copy or move constructor, which will
+ // suppress the implicit declaration of those constructors.
+ if (!FunTmpl) {
+ if (Constructor->isCopyConstructor()) {
+ data().UserDeclaredCopyConstructor = true;
+ data().DeclaredCopyConstructor = true;
+
+ // C++0x [class.copy]p13:
+ // A copy/move constructor for class X is trivial if it is not
+ // user-provided [...]
+ if (UserProvided)
+ data().HasTrivialCopyConstructor = false;
+
+ if (Constructor->isConstexpr())
+ data().HasConstexprCopyConstructor = true;
+ } else if (Constructor->isMoveConstructor()) {
+ data().UserDeclaredMoveConstructor = true;
+ data().DeclaredMoveConstructor = true;
+
+ // C++0x [class.copy]p13:
+ // A copy/move constructor for class X is trivial if it is not
+ // user-provided [...]
+ if (UserProvided)
+ data().HasTrivialMoveConstructor = false;
+
+ if (Constructor->isConstexpr())
+ data().HasConstexprMoveConstructor = true;
+ }
+ }
+ if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) {
+ // Record if we see any constexpr constructors which are neither copy
+ // nor move constructors.
+ data().HasConstexprNonCopyMoveConstructor = true;
+ }
+
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class with no user-declared
+ // constructors [...].
+ // C++0x [dcl.init.aggr]p1:
+ // An aggregate is an array or a class with no user-provided
+ // constructors [...].
+ if (!getASTContext().getLangOpts().CPlusPlus0x || UserProvided)
+ data().Aggregate = false;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class [...]
+ // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
+ // type is technically an aggregate in C++0x since it wouldn't be in 03.
+ data().PlainOldData = false;
+
+ return;
+ }
+
+ // Handle (user-declared) destructors.
+ if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
+ data().DeclaredDestructor = true;
+ data().UserDeclaredDestructor = true;
+ data().HasIrrelevantDestructor = false;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class that has [...] no user-defined
+ // destructor.
+ // This bit is the C++03 POD bit, not the 0x one.
+ data().PlainOldData = false;
+
+ // C++11 [class.dtor]p5:
+ // A destructor is trivial if it is not user-provided and if
+ // -- the destructor is not virtual.
+ if (DD->isUserProvided() || DD->isVirtual()) {
+ data().HasTrivialDestructor = false;
+ // C++11 [dcl.constexpr]p1:
+ // The constexpr specifier shall be applied only to [...] the
+ // declaration of a static data member of a literal type.
+ // C++11 [basic.types]p10:
+ // A type is a literal type if it is [...] a class type that [...] has
+ // a trivial destructor.
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+ data().DefaultedCopyConstructorIsConstexpr = false;
+ data().DefaultedMoveConstructorIsConstexpr = false;
+ }
+
+ return;
+ }
+
+ // Handle (user-declared) member functions.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ if (Method->isCopyAssignmentOperator()) {
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class that [...] has no user-defined
+ // copy assignment operator [...].
+ // This is the C++03 bit only.
+ data().PlainOldData = false;
+
+ // This is a copy assignment operator.
+
+ // Suppress the implicit declaration of a copy constructor.
+ data().UserDeclaredCopyAssignment = true;
+ data().DeclaredCopyAssignment = true;
+
+ // C++0x [class.copy]p27:
+ // A copy/move assignment operator for class X is trivial if it is
+ // neither user-provided nor deleted [...]
+ if (Method->isUserProvided())
+ data().HasTrivialCopyAssignment = false;
+
+ return;
+ }
+
+ if (Method->isMoveAssignmentOperator()) {
+ // This is an extension in C++03 mode, but we'll keep consistency by
+ // taking a move assignment operator to induce non-POD-ness
+ data().PlainOldData = false;
+
+ // This is a move assignment operator.
+ data().UserDeclaredMoveAssignment = true;
+ data().DeclaredMoveAssignment = true;
+
+ // C++0x [class.copy]p27:
+ // A copy/move assignment operator for class X is trivial if it is
+ // neither user-provided nor deleted [...]
+ if (Method->isUserProvided())
+ data().HasTrivialMoveAssignment = false;
+ }
+
+ // Keep the list of conversion functions up-to-date.
+ if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
+ // We don't record specializations.
+ if (Conversion->getPrimaryTemplate())
+ return;
+
+ // FIXME: We intentionally don't use the decl's access here because it
+ // hasn't been set yet. That's really just a misdesign in Sema.
+
+ if (FunTmpl) {
+ if (FunTmpl->getPreviousDecl())
+ data().Conversions.replace(FunTmpl->getPreviousDecl(),
+ FunTmpl);
+ else
+ data().Conversions.addDecl(FunTmpl);
+ } else {
+ if (Conversion->getPreviousDecl())
+ data().Conversions.replace(Conversion->getPreviousDecl(),
+ Conversion);
+ else
+ data().Conversions.addDecl(Conversion);
+ }
+ }
+
+ return;
+ }
+
+ // Handle non-static data members.
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
+ // C++ [class.bit]p2:
+ // A declaration for a bit-field that omits the identifier declares an
+ // unnamed bit-field. Unnamed bit-fields are not members and cannot be
+ // initialized.
+ if (Field->isUnnamedBitfield())
+ return;
+
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class (clause 9) with [...] no
+ // private or protected non-static data members (clause 11).
+ //
+ // A POD must be an aggregate.
+ if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
+ data().Aggregate = false;
+ data().PlainOldData = false;
+ }
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // [...]
+ // -- has the same access control for all non-static data members,
+ switch (D->getAccess()) {
+ case AS_private: data().HasPrivateFields = true; break;
+ case AS_protected: data().HasProtectedFields = true; break;
+ case AS_public: data().HasPublicFields = true; break;
+ case AS_none: llvm_unreachable("Invalid access specifier");
+ };
+ if ((data().HasPrivateFields + data().HasProtectedFields +
+ data().HasPublicFields) > 1)
+ data().IsStandardLayout = false;
+
+ // Keep track of the presence of mutable fields.
+ if (Field->isMutable())
+ data().HasMutableFields = true;
+
+ // C++0x [class]p9:
+ // A POD struct is a class that is both a trivial class and a
+ // standard-layout class, and has no non-static data members of type
+ // non-POD struct, non-POD union (or array of such types).
+ //
+ // Automatic Reference Counting: the presence of a member of Objective-C pointer type
+ // that does not explicitly have no lifetime makes the class a non-POD.
+ // However, we delay setting PlainOldData to false in this case so that
+ // Sema has a chance to diagnostic causes where the same class will be
+ // non-POD with Automatic Reference Counting but a POD without Instant Objects.
+ // In this case, the class will become a non-POD class when we complete
+ // the definition.
+ ASTContext &Context = getASTContext();
+ QualType T = Context.getBaseElementType(Field->getType());
+ if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
+ if (!Context.getLangOpts().ObjCAutoRefCount ||
+ T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone)
+ setHasObjectMember(true);
+ } else if (!T.isPODType(Context))
+ data().PlainOldData = false;
+
+ if (T->isReferenceType()) {
+ data().HasTrivialDefaultConstructor = false;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // -- has no non-static data members of type [...] reference,
+ data().IsStandardLayout = false;
+ }
+
+ // Record if this field is the first non-literal or volatile field or base.
+ if (!T->isLiteralType() || T.isVolatileQualified())
+ data().HasNonLiteralTypeFieldsOrBases = true;
+
+ if (Field->hasInClassInitializer()) {
+ // C++0x [class]p5:
+ // A default constructor is trivial if [...] no non-static data member
+ // of its class has a brace-or-equal-initializer.
+ data().HasTrivialDefaultConstructor = false;
+
+ // C++0x [dcl.init.aggr]p1:
+ // An aggregate is a [...] class with [...] no
+ // brace-or-equal-initializers for non-static data members.
+ data().Aggregate = false;
+
+ // C++0x [class]p10:
+ // A POD struct is [...] a trivial class.
+ data().PlainOldData = false;
+ }
+
+ if (const RecordType *RecordTy = T->getAs<RecordType>()) {
+ CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
+ if (FieldRec->getDefinition()) {
+ // C++0x [class.ctor]p5:
+ // A default constructor is trivial [...] if:
+ // -- for all the non-static data members of its class that are of
+ // class type (or array thereof), each such class has a trivial
+ // default constructor.
+ if (!FieldRec->hasTrivialDefaultConstructor())
+ data().HasTrivialDefaultConstructor = false;
+
+ // C++0x [class.copy]p13:
+ // A copy/move constructor for class X is trivial if [...]
+ // [...]
+ // -- for each non-static data member of X that is of class type (or
+ // an array thereof), the constructor selected to copy/move that
+ // member is trivial;
+ // FIXME: C++0x: We don't correctly model 'selected' constructors.
+ if (!FieldRec->hasTrivialCopyConstructor())
+ data().HasTrivialCopyConstructor = false;
+ if (!FieldRec->hasTrivialMoveConstructor())
+ data().HasTrivialMoveConstructor = false;
+
+ // C++0x [class.copy]p27:
+ // A copy/move assignment operator for class X is trivial if [...]
+ // [...]
+ // -- for each non-static data member of X that is of class type (or
+ // an array thereof), the assignment operator selected to
+ // copy/move that member is trivial;
+ // FIXME: C++0x: We don't correctly model 'selected' operators.
+ if (!FieldRec->hasTrivialCopyAssignment())
+ data().HasTrivialCopyAssignment = false;
+ if (!FieldRec->hasTrivialMoveAssignment())
+ data().HasTrivialMoveAssignment = false;
+
+ if (!FieldRec->hasTrivialDestructor())
+ data().HasTrivialDestructor = false;
+ if (!FieldRec->hasIrrelevantDestructor())
+ data().HasIrrelevantDestructor = false;
+ if (FieldRec->hasObjectMember())
+ setHasObjectMember(true);
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // -- has no non-static data members of type non-standard-layout
+ // class (or array of such types) [...]
+ if (!FieldRec->isStandardLayout())
+ data().IsStandardLayout = false;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // [...]
+ // -- has no base classes of the same type as the first non-static
+ // data member.
+ // We don't want to expend bits in the state of the record decl
+ // tracking whether this is the first non-static data member so we
+ // cheat a bit and use some of the existing state: the empty bit.
+ // Virtual bases and virtual methods make a class non-empty, but they
+ // also make it non-standard-layout so we needn't check here.
+ // A non-empty base class may leave the class standard-layout, but not
+ // if we have arrived here, and have at least on non-static data
+ // member. If IsStandardLayout remains true, then the first non-static
+ // data member must come through here with Empty still true, and Empty
+ // will subsequently be set to false below.
+ if (data().IsStandardLayout && data().Empty) {
+ for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(),
+ BE = bases_end();
+ BI != BE; ++BI) {
+ if (Context.hasSameUnqualifiedType(BI->getType(), T)) {
+ data().IsStandardLayout = false;
+ break;
+ }
+ }
+ }
+
+ // Keep track of the presence of mutable fields.
+ if (FieldRec->hasMutableFields())
+ data().HasMutableFields = true;
+
+ // C++11 [class.copy]p13:
+ // If the implicitly-defined constructor would satisfy the
+ // requirements of a constexpr constructor, the implicitly-defined
+ // constructor is constexpr.
+ // C++11 [dcl.constexpr]p4:
+ // -- every constructor involved in initializing non-static data
+ // members [...] shall be a constexpr constructor
+ if (!Field->hasInClassInitializer() &&
+ !FieldRec->hasConstexprDefaultConstructor())
+ // The standard requires any in-class initializer to be a constant
+ // expression. We consider this to be a defect.
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+
+ if (!FieldRec->hasConstexprCopyConstructor())
+ data().DefaultedCopyConstructorIsConstexpr = false;
+
+ if (FieldRec->hasDeclaredMoveConstructor() ||
+ FieldRec->needsImplicitMoveConstructor())
+ // FIXME: If the implicit move constructor generated for the member's
+ // class would be ill-formed, the implicit move constructor generated
+ // for this class calls the member's copy constructor.
+ data().DefaultedMoveConstructorIsConstexpr &=
+ FieldRec->hasConstexprMoveConstructor();
+ else if (!FieldRec->hasConstexprCopyConstructor())
+ data().DefaultedMoveConstructorIsConstexpr = false;
+ }
+ } else {
+ // Base element type of field is a non-class type.
+ if (!T->isLiteralType()) {
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+ data().DefaultedCopyConstructorIsConstexpr = false;
+ data().DefaultedMoveConstructorIsConstexpr = false;
+ } else if (!Field->hasInClassInitializer())
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+ }
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // [...]
+ // -- either has no non-static data members in the most derived
+ // class and at most one base class with non-static data members,
+ // or has no base classes with non-static data members, and
+ // At this point we know that we have a non-static data member, so the last
+ // clause holds.
+ if (!data().HasNoNonEmptyBases)
+ data().IsStandardLayout = false;
+
+ // If this is not a zero-length bit-field, then the class is not empty.
+ if (data().Empty) {
+ if (!Field->isBitField() ||
+ (!Field->getBitWidth()->isTypeDependent() &&
+ !Field->getBitWidth()->isValueDependent() &&
+ Field->getBitWidthValue(Context) != 0))
+ data().Empty = false;
+ }
+ }
+
+ // Handle using declarations of conversion functions.
+ if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D))
+ if (Shadow->getDeclName().getNameKind()
+ == DeclarationName::CXXConversionFunctionName)
+ data().Conversions.addDecl(Shadow, Shadow->getAccess());
+}
+
+bool CXXRecordDecl::isCLike() const {
+ if (getTagKind() == TTK_Class || !TemplateOrInstantiation.isNull())
+ return false;
+ if (!hasDefinition())
+ return true;
+
+ return isPOD() && data().HasOnlyCMembers;
+}
+
+void CXXRecordDecl::getCaptureFields(
+ llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
+ FieldDecl *&ThisCapture) const {
+ Captures.clear();
+ ThisCapture = 0;
+
+ LambdaDefinitionData &Lambda = getLambdaData();
+ RecordDecl::field_iterator Field = field_begin();
+ for (LambdaExpr::Capture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
+ C != CEnd; ++C, ++Field) {
+ if (C->capturesThis()) {
+ ThisCapture = *Field;
+ continue;
+ }
+
+ Captures[C->getCapturedVar()] = *Field;
+ }
+}
+
+
+static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
+ QualType T;
+ if (isa<UsingShadowDecl>(Conv))
+ Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
+ if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
+ T = ConvTemp->getTemplatedDecl()->getResultType();
+ else
+ T = cast<CXXConversionDecl>(Conv)->getConversionType();
+ return Context.getCanonicalType(T);
+}
+
+/// Collect the visible conversions of a base class.
+///
+/// \param Base a base class of the class we're considering
+/// \param InVirtual whether this base class is a virtual base (or a base
+/// of a virtual base)
+/// \param Access the access along the inheritance path to this base
+/// \param ParentHiddenTypes the conversions provided by the inheritors
+/// of this base
+/// \param Output the set to which to add conversions from non-virtual bases
+/// \param VOutput the set to which to add conversions from virtual bases
+/// \param HiddenVBaseCs the set of conversions which were hidden in a
+/// virtual base along some inheritance path
+static void CollectVisibleConversions(ASTContext &Context,
+ CXXRecordDecl *Record,
+ bool InVirtual,
+ AccessSpecifier Access,
+ const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
+ UnresolvedSetImpl &Output,
+ UnresolvedSetImpl &VOutput,
+ llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
+ // The set of types which have conversions in this class or its
+ // subclasses. As an optimization, we don't copy the derived set
+ // unless it might change.
+ const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
+ llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
+
+ // Collect the direct conversions and figure out which conversions
+ // will be hidden in the subclasses.
+ UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
+ if (!Cs.empty()) {
+ HiddenTypesBuffer = ParentHiddenTypes;
+ HiddenTypes = &HiddenTypesBuffer;
+
+ for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
+ bool Hidden =
+ !HiddenTypesBuffer.insert(GetConversionType(Context, I.getDecl()));
+
+ // If this conversion is hidden and we're in a virtual base,
+ // remember that it's hidden along some inheritance path.
+ if (Hidden && InVirtual)
+ HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
+
+ // If this conversion isn't hidden, add it to the appropriate output.
+ else if (!Hidden) {
+ AccessSpecifier IAccess
+ = CXXRecordDecl::MergeAccess(Access, I.getAccess());
+
+ if (InVirtual)
+ VOutput.addDecl(I.getDecl(), IAccess);
+ else
+ Output.addDecl(I.getDecl(), IAccess);
+ }
+ }
+ }
+
+ // Collect information recursively from any base classes.
+ for (CXXRecordDecl::base_class_iterator
+ I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
+ const RecordType *RT = I->getType()->getAs<RecordType>();
+ if (!RT) continue;
+
+ AccessSpecifier BaseAccess
+ = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
+ bool BaseInVirtual = InVirtual || I->isVirtual();
+
+ CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
+ CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
+ *HiddenTypes, Output, VOutput, HiddenVBaseCs);
+ }
+}
+
+/// Collect the visible conversions of a class.
+///
+/// This would be extremely straightforward if it weren't for virtual
+/// bases. It might be worth special-casing that, really.
+static void CollectVisibleConversions(ASTContext &Context,
+ CXXRecordDecl *Record,
+ UnresolvedSetImpl &Output) {
+ // The collection of all conversions in virtual bases that we've
+ // found. These will be added to the output as long as they don't
+ // appear in the hidden-conversions set.
+ UnresolvedSet<8> VBaseCs;
+
+ // The set of conversions in virtual bases that we've determined to
+ // be hidden.
+ llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
+
+ // The set of types hidden by classes derived from this one.
+ llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
+
+ // Go ahead and collect the direct conversions and add them to the
+ // hidden-types set.
+ UnresolvedSetImpl &Cs = *Record->getConversionFunctions();
+ Output.append(Cs.begin(), Cs.end());
+ for (UnresolvedSetIterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
+ HiddenTypes.insert(GetConversionType(Context, I.getDecl()));
+
+ // Recursively collect conversions from base classes.
+ for (CXXRecordDecl::base_class_iterator
+ I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
+ const RecordType *RT = I->getType()->getAs<RecordType>();
+ if (!RT) continue;
+
+ CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
+ I->isVirtual(), I->getAccessSpecifier(),
+ HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
+ }
+
+ // Add any unhidden conversions provided by virtual bases.
+ for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
+ I != E; ++I) {
+ if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
+ Output.addDecl(I.getDecl(), I.getAccess());
+ }
+}
+
+/// getVisibleConversionFunctions - get all conversion functions visible
+/// in current class; including conversion function templates.
+const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() {
+ // If root class, all conversions are visible.
+ if (bases_begin() == bases_end())
+ return &data().Conversions;
+ // If visible conversion list is already evaluated, return it.
+ if (data().ComputedVisibleConversions)
+ return &data().VisibleConversions;
+ CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
+ data().ComputedVisibleConversions = true;
+ return &data().VisibleConversions;
+}
+
+void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
+ // This operation is O(N) but extremely rare. Sema only uses it to
+ // remove UsingShadowDecls in a class that were followed by a direct
+ // declaration, e.g.:
+ // class A : B {
+ // using B::operator int;
+ // operator int();
+ // };
+ // This is uncommon by itself and even more uncommon in conjunction
+ // with sufficiently large numbers of directly-declared conversions
+ // that asymptotic behavior matters.
+
+ UnresolvedSetImpl &Convs = *getConversionFunctions();
+ for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
+ if (Convs[I].getDecl() == ConvDecl) {
+ Convs.erase(I);
+ assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
+ && "conversion was found multiple times in unresolved set");
+ return;
+ }
+ }
+
+ llvm_unreachable("conversion not found in set!");
+}
+
+CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
+ return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
+
+ return 0;
+}
+
+MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
+ return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
+}
+
+void
+CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
+ TemplateSpecializationKind TSK) {
+ assert(TemplateOrInstantiation.isNull() &&
+ "Previous template or instantiation?");
+ assert(!isa<ClassTemplateSpecializationDecl>(this));
+ TemplateOrInstantiation
+ = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
+}
+
+TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
+ if (const ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(this))
+ return Spec->getSpecializationKind();
+
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
+ return MSInfo->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+void
+CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
+ Spec->setSpecializationKind(TSK);
+ return;
+ }
+
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
+ MSInfo->setTemplateSpecializationKind(TSK);
+ return;
+ }
+
+ llvm_unreachable("Not a class template or member class specialization");
+}
+
+CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
+ ASTContext &Context = getASTContext();
+ QualType ClassType = Context.getTypeDeclType(this);
+
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXDestructorName(
+ Context.getCanonicalType(ClassType));
+
+ DeclContext::lookup_const_iterator I, E;
+ llvm::tie(I, E) = lookup(Name);
+ if (I == E)
+ return 0;
+
+ CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
+ return Dtor;
+}
+
+void CXXRecordDecl::completeDefinition() {
+ completeDefinition(0);
+}
+
+void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
+ RecordDecl::completeDefinition();
+
+ if (hasObjectMember() && getASTContext().getLangOpts().ObjCAutoRefCount) {
+ // Objective-C Automatic Reference Counting:
+ // If a class has a non-static data member of Objective-C pointer
+ // type (or array thereof), it is a non-POD type and its
+ // default constructor (if any), copy constructor, copy assignment
+ // operator, and destructor are non-trivial.
+ struct DefinitionData &Data = data();
+ Data.PlainOldData = false;
+ Data.HasTrivialDefaultConstructor = false;
+ Data.HasTrivialCopyConstructor = false;
+ Data.HasTrivialCopyAssignment = false;
+ Data.HasTrivialDestructor = false;
+ Data.HasIrrelevantDestructor = false;
+ }
+
+ // If the class may be abstract (but hasn't been marked as such), check for
+ // any pure final overriders.
+ if (mayBeAbstract()) {
+ CXXFinalOverriderMap MyFinalOverriders;
+ if (!FinalOverriders) {
+ getFinalOverriders(MyFinalOverriders);
+ FinalOverriders = &MyFinalOverriders;
+ }
+
+ bool Done = false;
+ for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
+ MEnd = FinalOverriders->end();
+ M != MEnd && !Done; ++M) {
+ for (OverridingMethods::iterator SO = M->second.begin(),
+ SOEnd = M->second.end();
+ SO != SOEnd && !Done; ++SO) {
+ assert(SO->second.size() > 0 &&
+ "All virtual functions have overridding virtual functions");
+
+ // C++ [class.abstract]p4:
+ // A class is abstract if it contains or inherits at least one
+ // pure virtual function for which the final overrider is pure
+ // virtual.
+ if (SO->second.front().Method->isPure()) {
+ data().Abstract = true;
+ Done = true;
+ break;
+ }
+ }
+ }
+ }
+
+ // Set access bits correctly on the directly-declared conversions.
+ for (UnresolvedSetIterator I = data().Conversions.begin(),
+ E = data().Conversions.end();
+ I != E; ++I)
+ data().Conversions.setAccess(I, (*I)->getAccess());
+}
+
+bool CXXRecordDecl::mayBeAbstract() const {
+ if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
+ isDependentContext())
+ return false;
+
+ for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
+ BEnd = bases_end();
+ B != BEnd; ++B) {
+ CXXRecordDecl *BaseDecl
+ = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
+ if (BaseDecl->isAbstract())
+ return true;
+ }
+
+ return false;
+}
+
+void CXXMethodDecl::anchor() { }
+
+CXXMethodDecl *
+CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isStatic, StorageClass SCAsWritten, bool isInline,
+ bool isConstexpr, SourceLocation EndLocation) {
+ return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
+ isStatic, SCAsWritten, isInline, isConstexpr,
+ EndLocation);
+}
+
+CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXMethodDecl));
+ return new (Mem) CXXMethodDecl(CXXMethod, 0, SourceLocation(),
+ DeclarationNameInfo(), QualType(),
+ 0, false, SC_None, false, false,
+ SourceLocation());
+}
+
+bool CXXMethodDecl::isUsualDeallocationFunction() const {
+ if (getOverloadedOperator() != OO_Delete &&
+ getOverloadedOperator() != OO_Array_Delete)
+ return false;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // A template instance is never a usual deallocation function,
+ // regardless of its signature.
+ if (getPrimaryTemplate())
+ return false;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // If a class T has a member deallocation function named operator delete
+ // with exactly one parameter, then that function is a usual (non-placement)
+ // deallocation function. [...]
+ if (getNumParams() == 1)
+ return true;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // [...] If class T does not declare such an operator delete but does
+ // declare a member deallocation function named operator delete with
+ // exactly two parameters, the second of which has type std::size_t (18.1),
+ // then this function is a usual deallocation function.
+ ASTContext &Context = getASTContext();
+ if (getNumParams() != 2 ||
+ !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
+ Context.getSizeType()))
+ return false;
+
+ // This function is a usual deallocation function if there are no
+ // single-parameter deallocation functions of the same kind.
+ for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
+ R.first != R.second; ++R.first) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
+ if (FD->getNumParams() == 1)
+ return false;
+ }
+
+ return true;
+}
+
+bool CXXMethodDecl::isCopyAssignmentOperator() const {
+ // C++0x [class.copy]p17:
+ // A user-declared copy assignment operator X::operator= is a non-static
+ // non-template member function of class X with exactly one parameter of
+ // type X, X&, const X&, volatile X& or const volatile X&.
+ if (/*operator=*/getOverloadedOperator() != OO_Equal ||
+ /*non-static*/ isStatic() ||
+ /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate())
+ return false;
+
+ QualType ParamType = getParamDecl(0)->getType();
+ if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
+ ParamType = Ref->getPointeeType();
+
+ ASTContext &Context = getASTContext();
+ QualType ClassType
+ = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
+ return Context.hasSameUnqualifiedType(ClassType, ParamType);
+}
+
+bool CXXMethodDecl::isMoveAssignmentOperator() const {
+ // C++0x [class.copy]p19:
+ // A user-declared move assignment operator X::operator= is a non-static
+ // non-template member function of class X with exactly one parameter of type
+ // X&&, const X&&, volatile X&&, or const volatile X&&.
+ if (getOverloadedOperator() != OO_Equal || isStatic() ||
+ getPrimaryTemplate() || getDescribedFunctionTemplate())
+ return false;
+
+ QualType ParamType = getParamDecl(0)->getType();
+ if (!isa<RValueReferenceType>(ParamType))
+ return false;
+ ParamType = ParamType->getPointeeType();
+
+ ASTContext &Context = getASTContext();
+ QualType ClassType
+ = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
+ return Context.hasSameUnqualifiedType(ClassType, ParamType);
+}
+
+void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
+ assert(MD->isCanonicalDecl() && "Method is not canonical!");
+ assert(!MD->getParent()->isDependentContext() &&
+ "Can't add an overridden method to a class template!");
+ assert(MD->isVirtual() && "Method is not virtual!");
+
+ getASTContext().addOverriddenMethod(this, MD);
+}
+
+CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
+ if (isa<CXXConstructorDecl>(this)) return 0;
+ return getASTContext().overridden_methods_begin(this);
+}
+
+CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
+ if (isa<CXXConstructorDecl>(this)) return 0;
+ return getASTContext().overridden_methods_end(this);
+}
+
+unsigned CXXMethodDecl::size_overridden_methods() const {
+ if (isa<CXXConstructorDecl>(this)) return 0;
+ return getASTContext().overridden_methods_size(this);
+}
+
+QualType CXXMethodDecl::getThisType(ASTContext &C) const {
+ // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
+ // If the member function is declared const, the type of this is const X*,
+ // if the member function is declared volatile, the type of this is
+ // volatile X*, and if the member function is declared const volatile,
+ // the type of this is const volatile X*.
+
+ assert(isInstance() && "No 'this' for static methods!");
+
+ QualType ClassTy = C.getTypeDeclType(getParent());
+ ClassTy = C.getQualifiedType(ClassTy,
+ Qualifiers::fromCVRMask(getTypeQualifiers()));
+ return C.getPointerType(ClassTy);
+}
+
+bool CXXMethodDecl::hasInlineBody() const {
+ // If this function is a template instantiation, look at the template from
+ // which it was instantiated.
+ const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
+ if (!CheckFn)
+ CheckFn = this;
+
+ const FunctionDecl *fn;
+ return CheckFn->hasBody(fn) && !fn->isOutOfLine();
+}
+
+bool CXXMethodDecl::isLambdaStaticInvoker() const {
+ return getParent()->isLambda() &&
+ getIdentifier() && getIdentifier()->getName() == "__invoke";
+}
+
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ TypeSourceInfo *TInfo, bool IsVirtual,
+ SourceLocation L, Expr *Init,
+ SourceLocation R,
+ SourceLocation EllipsisLoc)
+ : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
+ IsWritten(false), SourceOrderOrNumArrayIndices(0)
+{
+}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ FieldDecl *Member,
+ SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init,
+ SourceLocation R)
+ : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
+ IsWritten(false), SourceOrderOrNumArrayIndices(0)
+{
+}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ IndirectFieldDecl *Member,
+ SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init,
+ SourceLocation R)
+ : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
+ IsWritten(false), SourceOrderOrNumArrayIndices(0)
+{
+}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ TypeSourceInfo *TInfo,
+ SourceLocation L, Expr *Init,
+ SourceLocation R)
+ : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
+ IsWritten(false), SourceOrderOrNumArrayIndices(0)
+{
+}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ FieldDecl *Member,
+ SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init,
+ SourceLocation R,
+ VarDecl **Indices,
+ unsigned NumIndices)
+ : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsVirtual(false),
+ IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
+{
+ VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
+ memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
+}
+
+CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
+ FieldDecl *Member,
+ SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init,
+ SourceLocation R,
+ VarDecl **Indices,
+ unsigned NumIndices) {
+ void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
+ sizeof(VarDecl *) * NumIndices,
+ llvm::alignOf<CXXCtorInitializer>());
+ return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
+ Indices, NumIndices);
+}
+
+TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
+ if (isBaseInitializer())
+ return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
+ else
+ return TypeLoc();
+}
+
+const Type *CXXCtorInitializer::getBaseClass() const {
+ if (isBaseInitializer())
+ return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
+ else
+ return 0;
+}
+
+SourceLocation CXXCtorInitializer::getSourceLocation() const {
+ if (isAnyMemberInitializer())
+ return getMemberLocation();
+
+ if (isInClassMemberInitializer())
+ return getAnyMember()->getLocation();
+
+ if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
+ return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
+
+ return SourceLocation();
+}
+
+SourceRange CXXCtorInitializer::getSourceRange() const {
+ if (isInClassMemberInitializer()) {
+ FieldDecl *D = getAnyMember();
+ if (Expr *I = D->getInClassInitializer())
+ return I->getSourceRange();
+ return SourceRange();
+ }
+
+ return SourceRange(getSourceLocation(), getRParenLoc());
+}
+
+void CXXConstructorDecl::anchor() { }
+
+CXXConstructorDecl *
+CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConstructorDecl));
+ return new (Mem) CXXConstructorDecl(0, SourceLocation(),DeclarationNameInfo(),
+ QualType(), 0, false, false, false,false);
+}
+
+CXXConstructorDecl *
+CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isExplicit, bool isInline,
+ bool isImplicitlyDeclared, bool isConstexpr) {
+ assert(NameInfo.getName().getNameKind()
+ == DeclarationName::CXXConstructorName &&
+ "Name must refer to a constructor");
+ return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
+ isExplicit, isInline, isImplicitlyDeclared,
+ isConstexpr);
+}
+
+CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
+ assert(isDelegatingConstructor() && "Not a delegating constructor!");
+ Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
+ if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
+ return Construct->getConstructor();
+
+ return 0;
+}
+
+bool CXXConstructorDecl::isDefaultConstructor() const {
+ // C++ [class.ctor]p5:
+ // A default constructor for a class X is a constructor of class
+ // X that can be called without an argument.
+ return (getNumParams() == 0) ||
+ (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
+}
+
+bool
+CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
+ return isCopyOrMoveConstructor(TypeQuals) &&
+ getParamDecl(0)->getType()->isLValueReferenceType();
+}
+
+bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
+ return isCopyOrMoveConstructor(TypeQuals) &&
+ getParamDecl(0)->getType()->isRValueReferenceType();
+}
+
+/// \brief Determine whether this is a copy or move constructor.
+bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
+ // C++ [class.copy]p2:
+ // A non-template constructor for class X is a copy constructor
+ // if its first parameter is of type X&, const X&, volatile X& or
+ // const volatile X&, and either there are no other parameters
+ // or else all other parameters have default arguments (8.3.6).
+ // C++0x [class.copy]p3:
+ // A non-template constructor for class X is a move constructor if its
+ // first parameter is of type X&&, const X&&, volatile X&&, or
+ // const volatile X&&, and either there are no other parameters or else
+ // all other parameters have default arguments.
+ if ((getNumParams() < 1) ||
+ (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
+ (getPrimaryTemplate() != 0) ||
+ (getDescribedFunctionTemplate() != 0))
+ return false;
+
+ const ParmVarDecl *Param = getParamDecl(0);
+
+ // Do we have a reference type?
+ const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
+ if (!ParamRefType)
+ return false;
+
+ // Is it a reference to our class type?
+ ASTContext &Context = getASTContext();
+
+ CanQualType PointeeType
+ = Context.getCanonicalType(ParamRefType->getPointeeType());
+ CanQualType ClassTy
+ = Context.getCanonicalType(Context.getTagDeclType(getParent()));
+ if (PointeeType.getUnqualifiedType() != ClassTy)
+ return false;
+
+ // FIXME: other qualifiers?
+
+ // We have a copy or move constructor.
+ TypeQuals = PointeeType.getCVRQualifiers();
+ return true;
+}
+
+bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
+ // C++ [class.conv.ctor]p1:
+ // A constructor declared without the function-specifier explicit
+ // that can be called with a single parameter specifies a
+ // conversion from the type of its first parameter to the type of
+ // its class. Such a constructor is called a converting
+ // constructor.
+ if (isExplicit() && !AllowExplicit)
+ return false;
+
+ return (getNumParams() == 0 &&
+ getType()->getAs<FunctionProtoType>()->isVariadic()) ||
+ (getNumParams() == 1) ||
+ (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
+}
+
+bool CXXConstructorDecl::isSpecializationCopyingObject() const {
+ if ((getNumParams() < 1) ||
+ (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
+ (getPrimaryTemplate() == 0) ||
+ (getDescribedFunctionTemplate() != 0))
+ return false;
+
+ const ParmVarDecl *Param = getParamDecl(0);
+
+ ASTContext &Context = getASTContext();
+ CanQualType ParamType = Context.getCanonicalType(Param->getType());
+
+ // Is it the same as our our class type?
+ CanQualType ClassTy
+ = Context.getCanonicalType(Context.getTagDeclType(getParent()));
+ if (ParamType.getUnqualifiedType() != ClassTy)
+ return false;
+
+ return true;
+}
+
+const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
+ // Hack: we store the inherited constructor in the overridden method table
+ method_iterator It = getASTContext().overridden_methods_begin(this);
+ if (It == getASTContext().overridden_methods_end(this))
+ return 0;
+
+ return cast<CXXConstructorDecl>(*It);
+}
+
+void
+CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
+ // Hack: we store the inherited constructor in the overridden method table
+ assert(getASTContext().overridden_methods_size(this) == 0 &&
+ "Base ctor already set.");
+ getASTContext().addOverriddenMethod(this, BaseCtor);
+}
+
+void CXXDestructorDecl::anchor() { }
+
+CXXDestructorDecl *
+CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXDestructorDecl));
+ return new (Mem) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
+ QualType(), 0, false, false);
+}
+
+CXXDestructorDecl *
+CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isInline, bool isImplicitlyDeclared) {
+ assert(NameInfo.getName().getNameKind()
+ == DeclarationName::CXXDestructorName &&
+ "Name must refer to a destructor");
+ return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
+ isImplicitlyDeclared);
+}
+
+void CXXConversionDecl::anchor() { }
+
+CXXConversionDecl *
+CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConversionDecl));
+ return new (Mem) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
+ QualType(), 0, false, false, false,
+ SourceLocation());
+}
+
+CXXConversionDecl *
+CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isInline, bool isExplicit,
+ bool isConstexpr, SourceLocation EndLocation) {
+ assert(NameInfo.getName().getNameKind()
+ == DeclarationName::CXXConversionFunctionName &&
+ "Name must refer to a conversion function");
+ return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
+ isInline, isExplicit, isConstexpr,
+ EndLocation);
+}
+
+bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
+ return isImplicit() && getParent()->isLambda() &&
+ getConversionType()->isBlockPointerType();
+}
+
+void LinkageSpecDecl::anchor() { }
+
+LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
+ DeclContext *DC,
+ SourceLocation ExternLoc,
+ SourceLocation LangLoc,
+ LanguageIDs Lang,
+ SourceLocation RBraceLoc) {
+ return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, RBraceLoc);
+}
+
+LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LinkageSpecDecl));
+ return new (Mem) LinkageSpecDecl(0, SourceLocation(), SourceLocation(),
+ lang_c, SourceLocation());
+}
+
+void UsingDirectiveDecl::anchor() { }
+
+UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L,
+ SourceLocation NamespaceLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation IdentLoc,
+ NamedDecl *Used,
+ DeclContext *CommonAncestor) {
+ if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
+ Used = NS->getOriginalNamespace();
+ return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
+ IdentLoc, Used, CommonAncestor);
+}
+
+UsingDirectiveDecl *
+UsingDirectiveDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDirectiveDecl));
+ return new (Mem) UsingDirectiveDecl(0, SourceLocation(), SourceLocation(),
+ NestedNameSpecifierLoc(),
+ SourceLocation(), 0, 0);
+}
+
+NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
+ if (NamespaceAliasDecl *NA =
+ dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
+ return NA->getNamespace();
+ return cast_or_null<NamespaceDecl>(NominatedNamespace);
+}
+
+void NamespaceDecl::anchor() { }
+
+NamespaceDecl::NamespaceDecl(DeclContext *DC, bool Inline,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ NamespaceDecl *PrevDecl)
+ : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
+ LocStart(StartLoc), RBraceLoc(), AnonOrFirstNamespaceAndInline(0, Inline)
+{
+ setPreviousDeclaration(PrevDecl);
+
+ if (PrevDecl)
+ AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
+}
+
+NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
+ bool Inline, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ NamespaceDecl *PrevDecl) {
+ return new (C) NamespaceDecl(DC, Inline, StartLoc, IdLoc, Id, PrevDecl);
+}
+
+NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceDecl));
+ return new (Mem) NamespaceDecl(0, false, SourceLocation(), SourceLocation(),
+ 0, 0);
+}
+
+void NamespaceAliasDecl::anchor() { }
+
+NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ SourceLocation AliasLoc,
+ IdentifierInfo *Alias,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation IdentLoc,
+ NamedDecl *Namespace) {
+ if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
+ Namespace = NS->getOriginalNamespace();
+ return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias,
+ QualifierLoc, IdentLoc, Namespace);
+}
+
+NamespaceAliasDecl *
+NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceAliasDecl));
+ return new (Mem) NamespaceAliasDecl(0, SourceLocation(), SourceLocation(), 0,
+ NestedNameSpecifierLoc(),
+ SourceLocation(), 0);
+}
+
+void UsingShadowDecl::anchor() { }
+
+UsingShadowDecl *
+UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingShadowDecl));
+ return new (Mem) UsingShadowDecl(0, SourceLocation(), 0, 0);
+}
+
+UsingDecl *UsingShadowDecl::getUsingDecl() const {
+ const UsingShadowDecl *Shadow = this;
+ while (const UsingShadowDecl *NextShadow =
+ dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
+ Shadow = NextShadow;
+ return cast<UsingDecl>(Shadow->UsingOrNextShadow);
+}
+
+void UsingDecl::anchor() { }
+
+void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
+ assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
+ "declaration already in set");
+ assert(S->getUsingDecl() == this);
+
+ if (FirstUsingShadow.getPointer())
+ S->UsingOrNextShadow = FirstUsingShadow.getPointer();
+ FirstUsingShadow.setPointer(S);
+}
+
+void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
+ assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
+ "declaration not in set");
+ assert(S->getUsingDecl() == this);
+
+ // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
+
+ if (FirstUsingShadow.getPointer() == S) {
+ FirstUsingShadow.setPointer(
+ dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
+ S->UsingOrNextShadow = this;
+ return;
+ }
+
+ UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
+ while (Prev->UsingOrNextShadow != S)
+ Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
+ Prev->UsingOrNextShadow = S->UsingOrNextShadow;
+ S->UsingOrNextShadow = this;
+}
+
+UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
+ NestedNameSpecifierLoc QualifierLoc,
+ const DeclarationNameInfo &NameInfo,
+ bool IsTypeNameArg) {
+ return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, IsTypeNameArg);
+}
+
+UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDecl));
+ return new (Mem) UsingDecl(0, SourceLocation(), NestedNameSpecifierLoc(),
+ DeclarationNameInfo(), false);
+}
+
+void UnresolvedUsingValueDecl::anchor() { }
+
+UnresolvedUsingValueDecl *
+UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ const DeclarationNameInfo &NameInfo) {
+ return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
+ QualifierLoc, NameInfo);
+}
+
+UnresolvedUsingValueDecl *
+UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UnresolvedUsingValueDecl));
+ return new (Mem) UnresolvedUsingValueDecl(0, QualType(), SourceLocation(),
+ NestedNameSpecifierLoc(),
+ DeclarationNameInfo());
+}
+
+void UnresolvedUsingTypenameDecl::anchor() { }
+
+UnresolvedUsingTypenameDecl *
+UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ SourceLocation TypenameLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TargetNameLoc,
+ DeclarationName TargetName) {
+ return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
+ QualifierLoc, TargetNameLoc,
+ TargetName.getAsIdentifierInfo());
+}
+
+UnresolvedUsingTypenameDecl *
+UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID,
+ sizeof(UnresolvedUsingTypenameDecl));
+ return new (Mem) UnresolvedUsingTypenameDecl(0, SourceLocation(),
+ SourceLocation(),
+ NestedNameSpecifierLoc(),
+ SourceLocation(),
+ 0);
+}
+
+void StaticAssertDecl::anchor() { }
+
+StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StaticAssertLoc,
+ Expr *AssertExpr,
+ StringLiteral *Message,
+ SourceLocation RParenLoc) {
+ return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
+ RParenLoc);
+}
+
+StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ void *Mem = AllocateDeserializedDecl(C, ID, sizeof(StaticAssertDecl));
+ return new (Mem) StaticAssertDecl(0, SourceLocation(), 0, 0,SourceLocation());
+}
+
+static const char *getAccessName(AccessSpecifier AS) {
+ switch (AS) {
+ case AS_none:
+ llvm_unreachable("Invalid access specifier!");
+ case AS_public:
+ return "public";
+ case AS_private:
+ return "private";
+ case AS_protected:
+ return "protected";
+ }
+ llvm_unreachable("Invalid access specifier!");
+}
+
+const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
+ AccessSpecifier AS) {
+ return DB << getAccessName(AS);
+}
+
+const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
+ AccessSpecifier AS) {
+ return DB << getAccessName(AS);
+}