summaryrefslogtreecommitdiff
path: root/clang/lib/AST/ASTImporter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/AST/ASTImporter.cpp')
-rw-r--r--clang/lib/AST/ASTImporter.cpp4676
1 files changed, 4676 insertions, 0 deletions
diff --git a/clang/lib/AST/ASTImporter.cpp b/clang/lib/AST/ASTImporter.cpp
new file mode 100644
index 0000000..3879907
--- /dev/null
+++ b/clang/lib/AST/ASTImporter.cpp
@@ -0,0 +1,4676 @@
+//===--- ASTImporter.cpp - Importing ASTs from other Contexts ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ASTImporter class which imports AST nodes from one
+// context into another context.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/ASTImporter.h"
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/TypeVisitor.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/SourceManager.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include <deque>
+
+namespace clang {
+ class ASTNodeImporter : public TypeVisitor<ASTNodeImporter, QualType>,
+ public DeclVisitor<ASTNodeImporter, Decl *>,
+ public StmtVisitor<ASTNodeImporter, Stmt *> {
+ ASTImporter &Importer;
+
+ public:
+ explicit ASTNodeImporter(ASTImporter &Importer) : Importer(Importer) { }
+
+ using TypeVisitor<ASTNodeImporter, QualType>::Visit;
+ using DeclVisitor<ASTNodeImporter, Decl *>::Visit;
+ using StmtVisitor<ASTNodeImporter, Stmt *>::Visit;
+
+ // Importing types
+ QualType VisitType(const Type *T);
+ QualType VisitBuiltinType(const BuiltinType *T);
+ QualType VisitComplexType(const ComplexType *T);
+ QualType VisitPointerType(const PointerType *T);
+ QualType VisitBlockPointerType(const BlockPointerType *T);
+ QualType VisitLValueReferenceType(const LValueReferenceType *T);
+ QualType VisitRValueReferenceType(const RValueReferenceType *T);
+ QualType VisitMemberPointerType(const MemberPointerType *T);
+ QualType VisitConstantArrayType(const ConstantArrayType *T);
+ QualType VisitIncompleteArrayType(const IncompleteArrayType *T);
+ QualType VisitVariableArrayType(const VariableArrayType *T);
+ // FIXME: DependentSizedArrayType
+ // FIXME: DependentSizedExtVectorType
+ QualType VisitVectorType(const VectorType *T);
+ QualType VisitExtVectorType(const ExtVectorType *T);
+ QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T);
+ QualType VisitFunctionProtoType(const FunctionProtoType *T);
+ // FIXME: UnresolvedUsingType
+ QualType VisitParenType(const ParenType *T);
+ QualType VisitTypedefType(const TypedefType *T);
+ QualType VisitTypeOfExprType(const TypeOfExprType *T);
+ // FIXME: DependentTypeOfExprType
+ QualType VisitTypeOfType(const TypeOfType *T);
+ QualType VisitDecltypeType(const DecltypeType *T);
+ QualType VisitUnaryTransformType(const UnaryTransformType *T);
+ QualType VisitAutoType(const AutoType *T);
+ // FIXME: DependentDecltypeType
+ QualType VisitRecordType(const RecordType *T);
+ QualType VisitEnumType(const EnumType *T);
+ // FIXME: TemplateTypeParmType
+ // FIXME: SubstTemplateTypeParmType
+ QualType VisitTemplateSpecializationType(const TemplateSpecializationType *T);
+ QualType VisitElaboratedType(const ElaboratedType *T);
+ // FIXME: DependentNameType
+ // FIXME: DependentTemplateSpecializationType
+ QualType VisitObjCInterfaceType(const ObjCInterfaceType *T);
+ QualType VisitObjCObjectType(const ObjCObjectType *T);
+ QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T);
+
+ // Importing declarations
+ bool ImportDeclParts(NamedDecl *D, DeclContext *&DC,
+ DeclContext *&LexicalDC, DeclarationName &Name,
+ SourceLocation &Loc);
+ void ImportDefinitionIfNeeded(Decl *FromD, Decl *ToD = 0);
+ void ImportDeclarationNameLoc(const DeclarationNameInfo &From,
+ DeclarationNameInfo& To);
+ void ImportDeclContext(DeclContext *FromDC, bool ForceImport = false);
+
+ /// \brief What we should import from the definition.
+ enum ImportDefinitionKind {
+ /// \brief Import the default subset of the definition, which might be
+ /// nothing (if minimal import is set) or might be everything (if minimal
+ /// import is not set).
+ IDK_Default,
+ /// \brief Import everything.
+ IDK_Everything,
+ /// \brief Import only the bare bones needed to establish a valid
+ /// DeclContext.
+ IDK_Basic
+ };
+
+ bool shouldForceImportDeclContext(ImportDefinitionKind IDK) {
+ return IDK == IDK_Everything ||
+ (IDK == IDK_Default && !Importer.isMinimalImport());
+ }
+
+ bool ImportDefinition(RecordDecl *From, RecordDecl *To,
+ ImportDefinitionKind Kind = IDK_Default);
+ bool ImportDefinition(EnumDecl *From, EnumDecl *To,
+ ImportDefinitionKind Kind = IDK_Default);
+ bool ImportDefinition(ObjCInterfaceDecl *From, ObjCInterfaceDecl *To,
+ ImportDefinitionKind Kind = IDK_Default);
+ bool ImportDefinition(ObjCProtocolDecl *From, ObjCProtocolDecl *To,
+ ImportDefinitionKind Kind = IDK_Default);
+ TemplateParameterList *ImportTemplateParameterList(
+ TemplateParameterList *Params);
+ TemplateArgument ImportTemplateArgument(const TemplateArgument &From);
+ bool ImportTemplateArguments(const TemplateArgument *FromArgs,
+ unsigned NumFromArgs,
+ SmallVectorImpl<TemplateArgument> &ToArgs);
+ bool IsStructuralMatch(RecordDecl *FromRecord, RecordDecl *ToRecord);
+ bool IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToRecord);
+ bool IsStructuralMatch(ClassTemplateDecl *From, ClassTemplateDecl *To);
+ Decl *VisitDecl(Decl *D);
+ Decl *VisitTranslationUnitDecl(TranslationUnitDecl *D);
+ Decl *VisitNamespaceDecl(NamespaceDecl *D);
+ Decl *VisitTypedefNameDecl(TypedefNameDecl *D, bool IsAlias);
+ Decl *VisitTypedefDecl(TypedefDecl *D);
+ Decl *VisitTypeAliasDecl(TypeAliasDecl *D);
+ Decl *VisitEnumDecl(EnumDecl *D);
+ Decl *VisitRecordDecl(RecordDecl *D);
+ Decl *VisitEnumConstantDecl(EnumConstantDecl *D);
+ Decl *VisitFunctionDecl(FunctionDecl *D);
+ Decl *VisitCXXMethodDecl(CXXMethodDecl *D);
+ Decl *VisitCXXConstructorDecl(CXXConstructorDecl *D);
+ Decl *VisitCXXDestructorDecl(CXXDestructorDecl *D);
+ Decl *VisitCXXConversionDecl(CXXConversionDecl *D);
+ Decl *VisitFieldDecl(FieldDecl *D);
+ Decl *VisitIndirectFieldDecl(IndirectFieldDecl *D);
+ Decl *VisitObjCIvarDecl(ObjCIvarDecl *D);
+ Decl *VisitVarDecl(VarDecl *D);
+ Decl *VisitImplicitParamDecl(ImplicitParamDecl *D);
+ Decl *VisitParmVarDecl(ParmVarDecl *D);
+ Decl *VisitObjCMethodDecl(ObjCMethodDecl *D);
+ Decl *VisitObjCCategoryDecl(ObjCCategoryDecl *D);
+ Decl *VisitObjCProtocolDecl(ObjCProtocolDecl *D);
+ Decl *VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
+ Decl *VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
+ Decl *VisitObjCImplementationDecl(ObjCImplementationDecl *D);
+ Decl *VisitObjCPropertyDecl(ObjCPropertyDecl *D);
+ Decl *VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D);
+ Decl *VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D);
+ Decl *VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D);
+ Decl *VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D);
+ Decl *VisitClassTemplateDecl(ClassTemplateDecl *D);
+ Decl *VisitClassTemplateSpecializationDecl(
+ ClassTemplateSpecializationDecl *D);
+
+ // Importing statements
+ Stmt *VisitStmt(Stmt *S);
+
+ // Importing expressions
+ Expr *VisitExpr(Expr *E);
+ Expr *VisitDeclRefExpr(DeclRefExpr *E);
+ Expr *VisitIntegerLiteral(IntegerLiteral *E);
+ Expr *VisitCharacterLiteral(CharacterLiteral *E);
+ Expr *VisitParenExpr(ParenExpr *E);
+ Expr *VisitUnaryOperator(UnaryOperator *E);
+ Expr *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E);
+ Expr *VisitBinaryOperator(BinaryOperator *E);
+ Expr *VisitCompoundAssignOperator(CompoundAssignOperator *E);
+ Expr *VisitImplicitCastExpr(ImplicitCastExpr *E);
+ Expr *VisitCStyleCastExpr(CStyleCastExpr *E);
+ };
+}
+using namespace clang;
+
+//----------------------------------------------------------------------------
+// Structural Equivalence
+//----------------------------------------------------------------------------
+
+namespace {
+ struct StructuralEquivalenceContext {
+ /// \brief AST contexts for which we are checking structural equivalence.
+ ASTContext &C1, &C2;
+
+ /// \brief The set of "tentative" equivalences between two canonical
+ /// declarations, mapping from a declaration in the first context to the
+ /// declaration in the second context that we believe to be equivalent.
+ llvm::DenseMap<Decl *, Decl *> TentativeEquivalences;
+
+ /// \brief Queue of declarations in the first context whose equivalence
+ /// with a declaration in the second context still needs to be verified.
+ std::deque<Decl *> DeclsToCheck;
+
+ /// \brief Declaration (from, to) pairs that are known not to be equivalent
+ /// (which we have already complained about).
+ llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls;
+
+ /// \brief Whether we're being strict about the spelling of types when
+ /// unifying two types.
+ bool StrictTypeSpelling;
+
+ StructuralEquivalenceContext(ASTContext &C1, ASTContext &C2,
+ llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls,
+ bool StrictTypeSpelling = false)
+ : C1(C1), C2(C2), NonEquivalentDecls(NonEquivalentDecls),
+ StrictTypeSpelling(StrictTypeSpelling) { }
+
+ /// \brief Determine whether the two declarations are structurally
+ /// equivalent.
+ bool IsStructurallyEquivalent(Decl *D1, Decl *D2);
+
+ /// \brief Determine whether the two types are structurally equivalent.
+ bool IsStructurallyEquivalent(QualType T1, QualType T2);
+
+ private:
+ /// \brief Finish checking all of the structural equivalences.
+ ///
+ /// \returns true if an error occurred, false otherwise.
+ bool Finish();
+
+ public:
+ DiagnosticBuilder Diag1(SourceLocation Loc, unsigned DiagID) {
+ return C1.getDiagnostics().Report(Loc, DiagID);
+ }
+
+ DiagnosticBuilder Diag2(SourceLocation Loc, unsigned DiagID) {
+ return C2.getDiagnostics().Report(Loc, DiagID);
+ }
+ };
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ QualType T1, QualType T2);
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Decl *D1, Decl *D2);
+
+/// \brief Determine if two APInts have the same value, after zero-extending
+/// one of them (if needed!) to ensure that the bit-widths match.
+static bool IsSameValue(const llvm::APInt &I1, const llvm::APInt &I2) {
+ if (I1.getBitWidth() == I2.getBitWidth())
+ return I1 == I2;
+
+ if (I1.getBitWidth() > I2.getBitWidth())
+ return I1 == I2.zext(I1.getBitWidth());
+
+ return I1.zext(I2.getBitWidth()) == I2;
+}
+
+/// \brief Determine if two APSInts have the same value, zero- or sign-extending
+/// as needed.
+static bool IsSameValue(const llvm::APSInt &I1, const llvm::APSInt &I2) {
+ if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
+ return I1 == I2;
+
+ // Check for a bit-width mismatch.
+ if (I1.getBitWidth() > I2.getBitWidth())
+ return IsSameValue(I1, I2.extend(I1.getBitWidth()));
+ else if (I2.getBitWidth() > I1.getBitWidth())
+ return IsSameValue(I1.extend(I2.getBitWidth()), I2);
+
+ // We have a signedness mismatch. Turn the signed value into an unsigned
+ // value.
+ if (I1.isSigned()) {
+ if (I1.isNegative())
+ return false;
+
+ return llvm::APSInt(I1, true) == I2;
+ }
+
+ if (I2.isNegative())
+ return false;
+
+ return I1 == llvm::APSInt(I2, true);
+}
+
+/// \brief Determine structural equivalence of two expressions.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Expr *E1, Expr *E2) {
+ if (!E1 || !E2)
+ return E1 == E2;
+
+ // FIXME: Actually perform a structural comparison!
+ return true;
+}
+
+/// \brief Determine whether two identifiers are equivalent.
+static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
+ const IdentifierInfo *Name2) {
+ if (!Name1 || !Name2)
+ return Name1 == Name2;
+
+ return Name1->getName() == Name2->getName();
+}
+
+/// \brief Determine whether two nested-name-specifiers are equivalent.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ NestedNameSpecifier *NNS1,
+ NestedNameSpecifier *NNS2) {
+ // FIXME: Implement!
+ return true;
+}
+
+/// \brief Determine whether two template arguments are equivalent.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const TemplateArgument &Arg1,
+ const TemplateArgument &Arg2) {
+ if (Arg1.getKind() != Arg2.getKind())
+ return false;
+
+ switch (Arg1.getKind()) {
+ case TemplateArgument::Null:
+ return true;
+
+ case TemplateArgument::Type:
+ return Context.IsStructurallyEquivalent(Arg1.getAsType(), Arg2.getAsType());
+
+ case TemplateArgument::Integral:
+ if (!Context.IsStructurallyEquivalent(Arg1.getIntegralType(),
+ Arg2.getIntegralType()))
+ return false;
+
+ return IsSameValue(*Arg1.getAsIntegral(), *Arg2.getAsIntegral());
+
+ case TemplateArgument::Declaration:
+ if (!Arg1.getAsDecl() || !Arg2.getAsDecl())
+ return !Arg1.getAsDecl() && !Arg2.getAsDecl();
+ return Context.IsStructurallyEquivalent(Arg1.getAsDecl(), Arg2.getAsDecl());
+
+ case TemplateArgument::Template:
+ return IsStructurallyEquivalent(Context,
+ Arg1.getAsTemplate(),
+ Arg2.getAsTemplate());
+
+ case TemplateArgument::TemplateExpansion:
+ return IsStructurallyEquivalent(Context,
+ Arg1.getAsTemplateOrTemplatePattern(),
+ Arg2.getAsTemplateOrTemplatePattern());
+
+ case TemplateArgument::Expression:
+ return IsStructurallyEquivalent(Context,
+ Arg1.getAsExpr(), Arg2.getAsExpr());
+
+ case TemplateArgument::Pack:
+ if (Arg1.pack_size() != Arg2.pack_size())
+ return false;
+
+ for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I)
+ if (!IsStructurallyEquivalent(Context,
+ Arg1.pack_begin()[I],
+ Arg2.pack_begin()[I]))
+ return false;
+
+ return true;
+ }
+
+ llvm_unreachable("Invalid template argument kind");
+}
+
+/// \brief Determine structural equivalence for the common part of array
+/// types.
+static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const ArrayType *Array1,
+ const ArrayType *Array2) {
+ if (!IsStructurallyEquivalent(Context,
+ Array1->getElementType(),
+ Array2->getElementType()))
+ return false;
+ if (Array1->getSizeModifier() != Array2->getSizeModifier())
+ return false;
+ if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
+ return false;
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two types.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ QualType T1, QualType T2) {
+ if (T1.isNull() || T2.isNull())
+ return T1.isNull() && T2.isNull();
+
+ if (!Context.StrictTypeSpelling) {
+ // We aren't being strict about token-to-token equivalence of types,
+ // so map down to the canonical type.
+ T1 = Context.C1.getCanonicalType(T1);
+ T2 = Context.C2.getCanonicalType(T2);
+ }
+
+ if (T1.getQualifiers() != T2.getQualifiers())
+ return false;
+
+ Type::TypeClass TC = T1->getTypeClass();
+
+ if (T1->getTypeClass() != T2->getTypeClass()) {
+ // Compare function types with prototypes vs. without prototypes as if
+ // both did not have prototypes.
+ if (T1->getTypeClass() == Type::FunctionProto &&
+ T2->getTypeClass() == Type::FunctionNoProto)
+ TC = Type::FunctionNoProto;
+ else if (T1->getTypeClass() == Type::FunctionNoProto &&
+ T2->getTypeClass() == Type::FunctionProto)
+ TC = Type::FunctionNoProto;
+ else
+ return false;
+ }
+
+ switch (TC) {
+ case Type::Builtin:
+ // FIXME: Deal with Char_S/Char_U.
+ if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
+ return false;
+ break;
+
+ case Type::Complex:
+ if (!IsStructurallyEquivalent(Context,
+ cast<ComplexType>(T1)->getElementType(),
+ cast<ComplexType>(T2)->getElementType()))
+ return false;
+ break;
+
+ case Type::Pointer:
+ if (!IsStructurallyEquivalent(Context,
+ cast<PointerType>(T1)->getPointeeType(),
+ cast<PointerType>(T2)->getPointeeType()))
+ return false;
+ break;
+
+ case Type::BlockPointer:
+ if (!IsStructurallyEquivalent(Context,
+ cast<BlockPointerType>(T1)->getPointeeType(),
+ cast<BlockPointerType>(T2)->getPointeeType()))
+ return false;
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference: {
+ const ReferenceType *Ref1 = cast<ReferenceType>(T1);
+ const ReferenceType *Ref2 = cast<ReferenceType>(T2);
+ if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
+ return false;
+ if (Ref1->isInnerRef() != Ref2->isInnerRef())
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Ref1->getPointeeTypeAsWritten(),
+ Ref2->getPointeeTypeAsWritten()))
+ return false;
+ break;
+ }
+
+ case Type::MemberPointer: {
+ const MemberPointerType *MemPtr1 = cast<MemberPointerType>(T1);
+ const MemberPointerType *MemPtr2 = cast<MemberPointerType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ MemPtr1->getPointeeType(),
+ MemPtr2->getPointeeType()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ QualType(MemPtr1->getClass(), 0),
+ QualType(MemPtr2->getClass(), 0)))
+ return false;
+ break;
+ }
+
+ case Type::ConstantArray: {
+ const ConstantArrayType *Array1 = cast<ConstantArrayType>(T1);
+ const ConstantArrayType *Array2 = cast<ConstantArrayType>(T2);
+ if (!IsSameValue(Array1->getSize(), Array2->getSize()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+ break;
+ }
+
+ case Type::IncompleteArray:
+ if (!IsArrayStructurallyEquivalent(Context,
+ cast<ArrayType>(T1),
+ cast<ArrayType>(T2)))
+ return false;
+ break;
+
+ case Type::VariableArray: {
+ const VariableArrayType *Array1 = cast<VariableArrayType>(T1);
+ const VariableArrayType *Array2 = cast<VariableArrayType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Array1->getSizeExpr(), Array2->getSizeExpr()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentSizedArray: {
+ const DependentSizedArrayType *Array1 = cast<DependentSizedArrayType>(T1);
+ const DependentSizedArrayType *Array2 = cast<DependentSizedArrayType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Array1->getSizeExpr(), Array2->getSizeExpr()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentSizedExtVector: {
+ const DependentSizedExtVectorType *Vec1
+ = cast<DependentSizedExtVectorType>(T1);
+ const DependentSizedExtVectorType *Vec2
+ = cast<DependentSizedExtVectorType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Vec1->getSizeExpr(), Vec2->getSizeExpr()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ break;
+ }
+
+ case Type::Vector:
+ case Type::ExtVector: {
+ const VectorType *Vec1 = cast<VectorType>(T1);
+ const VectorType *Vec2 = cast<VectorType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ if (Vec1->getNumElements() != Vec2->getNumElements())
+ return false;
+ if (Vec1->getVectorKind() != Vec2->getVectorKind())
+ return false;
+ break;
+ }
+
+ case Type::FunctionProto: {
+ const FunctionProtoType *Proto1 = cast<FunctionProtoType>(T1);
+ const FunctionProtoType *Proto2 = cast<FunctionProtoType>(T2);
+ if (Proto1->getNumArgs() != Proto2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Proto1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Proto1->getArgType(I),
+ Proto2->getArgType(I)))
+ return false;
+ }
+ if (Proto1->isVariadic() != Proto2->isVariadic())
+ return false;
+ if (Proto1->getExceptionSpecType() != Proto2->getExceptionSpecType())
+ return false;
+ if (Proto1->getExceptionSpecType() == EST_Dynamic) {
+ if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
+ return false;
+ for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Proto1->getExceptionType(I),
+ Proto2->getExceptionType(I)))
+ return false;
+ }
+ } else if (Proto1->getExceptionSpecType() == EST_ComputedNoexcept) {
+ if (!IsStructurallyEquivalent(Context,
+ Proto1->getNoexceptExpr(),
+ Proto2->getNoexceptExpr()))
+ return false;
+ }
+ if (Proto1->getTypeQuals() != Proto2->getTypeQuals())
+ return false;
+
+ // Fall through to check the bits common with FunctionNoProtoType.
+ }
+
+ case Type::FunctionNoProto: {
+ const FunctionType *Function1 = cast<FunctionType>(T1);
+ const FunctionType *Function2 = cast<FunctionType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Function1->getResultType(),
+ Function2->getResultType()))
+ return false;
+ if (Function1->getExtInfo() != Function2->getExtInfo())
+ return false;
+ break;
+ }
+
+ case Type::UnresolvedUsing:
+ if (!IsStructurallyEquivalent(Context,
+ cast<UnresolvedUsingType>(T1)->getDecl(),
+ cast<UnresolvedUsingType>(T2)->getDecl()))
+ return false;
+
+ break;
+
+ case Type::Attributed:
+ if (!IsStructurallyEquivalent(Context,
+ cast<AttributedType>(T1)->getModifiedType(),
+ cast<AttributedType>(T2)->getModifiedType()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ cast<AttributedType>(T1)->getEquivalentType(),
+ cast<AttributedType>(T2)->getEquivalentType()))
+ return false;
+ break;
+
+ case Type::Paren:
+ if (!IsStructurallyEquivalent(Context,
+ cast<ParenType>(T1)->getInnerType(),
+ cast<ParenType>(T2)->getInnerType()))
+ return false;
+ break;
+
+ case Type::Typedef:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypedefType>(T1)->getDecl(),
+ cast<TypedefType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::TypeOfExpr:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
+ cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
+ return false;
+ break;
+
+ case Type::TypeOf:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypeOfType>(T1)->getUnderlyingType(),
+ cast<TypeOfType>(T2)->getUnderlyingType()))
+ return false;
+ break;
+
+ case Type::UnaryTransform:
+ if (!IsStructurallyEquivalent(Context,
+ cast<UnaryTransformType>(T1)->getUnderlyingType(),
+ cast<UnaryTransformType>(T1)->getUnderlyingType()))
+ return false;
+ break;
+
+ case Type::Decltype:
+ if (!IsStructurallyEquivalent(Context,
+ cast<DecltypeType>(T1)->getUnderlyingExpr(),
+ cast<DecltypeType>(T2)->getUnderlyingExpr()))
+ return false;
+ break;
+
+ case Type::Auto:
+ if (!IsStructurallyEquivalent(Context,
+ cast<AutoType>(T1)->getDeducedType(),
+ cast<AutoType>(T2)->getDeducedType()))
+ return false;
+ break;
+
+ case Type::Record:
+ case Type::Enum:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TagType>(T1)->getDecl(),
+ cast<TagType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::TemplateTypeParm: {
+ const TemplateTypeParmType *Parm1 = cast<TemplateTypeParmType>(T1);
+ const TemplateTypeParmType *Parm2 = cast<TemplateTypeParmType>(T2);
+ if (Parm1->getDepth() != Parm2->getDepth())
+ return false;
+ if (Parm1->getIndex() != Parm2->getIndex())
+ return false;
+ if (Parm1->isParameterPack() != Parm2->isParameterPack())
+ return false;
+
+ // Names of template type parameters are never significant.
+ break;
+ }
+
+ case Type::SubstTemplateTypeParm: {
+ const SubstTemplateTypeParmType *Subst1
+ = cast<SubstTemplateTypeParmType>(T1);
+ const SubstTemplateTypeParmType *Subst2
+ = cast<SubstTemplateTypeParmType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ QualType(Subst1->getReplacedParameter(), 0),
+ QualType(Subst2->getReplacedParameter(), 0)))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Subst1->getReplacementType(),
+ Subst2->getReplacementType()))
+ return false;
+ break;
+ }
+
+ case Type::SubstTemplateTypeParmPack: {
+ const SubstTemplateTypeParmPackType *Subst1
+ = cast<SubstTemplateTypeParmPackType>(T1);
+ const SubstTemplateTypeParmPackType *Subst2
+ = cast<SubstTemplateTypeParmPackType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ QualType(Subst1->getReplacedParameter(), 0),
+ QualType(Subst2->getReplacedParameter(), 0)))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Subst1->getArgumentPack(),
+ Subst2->getArgumentPack()))
+ return false;
+ break;
+ }
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *Spec1
+ = cast<TemplateSpecializationType>(T1);
+ const TemplateSpecializationType *Spec2
+ = cast<TemplateSpecializationType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getTemplateName(),
+ Spec2->getTemplateName()))
+ return false;
+ if (Spec1->getNumArgs() != Spec2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getArg(I), Spec2->getArg(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::Elaborated: {
+ const ElaboratedType *Elab1 = cast<ElaboratedType>(T1);
+ const ElaboratedType *Elab2 = cast<ElaboratedType>(T2);
+ // CHECKME: what if a keyword is ETK_None or ETK_typename ?
+ if (Elab1->getKeyword() != Elab2->getKeyword())
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Elab1->getQualifier(),
+ Elab2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Context,
+ Elab1->getNamedType(),
+ Elab2->getNamedType()))
+ return false;
+ break;
+ }
+
+ case Type::InjectedClassName: {
+ const InjectedClassNameType *Inj1 = cast<InjectedClassNameType>(T1);
+ const InjectedClassNameType *Inj2 = cast<InjectedClassNameType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Inj1->getInjectedSpecializationType(),
+ Inj2->getInjectedSpecializationType()))
+ return false;
+ break;
+ }
+
+ case Type::DependentName: {
+ const DependentNameType *Typename1 = cast<DependentNameType>(T1);
+ const DependentNameType *Typename2 = cast<DependentNameType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Typename1->getQualifier(),
+ Typename2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
+ Typename2->getIdentifier()))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentTemplateSpecialization: {
+ const DependentTemplateSpecializationType *Spec1 =
+ cast<DependentTemplateSpecializationType>(T1);
+ const DependentTemplateSpecializationType *Spec2 =
+ cast<DependentTemplateSpecializationType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getQualifier(),
+ Spec2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Spec1->getIdentifier(),
+ Spec2->getIdentifier()))
+ return false;
+ if (Spec1->getNumArgs() != Spec2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getArg(I), Spec2->getArg(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::PackExpansion:
+ if (!IsStructurallyEquivalent(Context,
+ cast<PackExpansionType>(T1)->getPattern(),
+ cast<PackExpansionType>(T2)->getPattern()))
+ return false;
+ break;
+
+ case Type::ObjCInterface: {
+ const ObjCInterfaceType *Iface1 = cast<ObjCInterfaceType>(T1);
+ const ObjCInterfaceType *Iface2 = cast<ObjCInterfaceType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Iface1->getDecl(), Iface2->getDecl()))
+ return false;
+ break;
+ }
+
+ case Type::ObjCObject: {
+ const ObjCObjectType *Obj1 = cast<ObjCObjectType>(T1);
+ const ObjCObjectType *Obj2 = cast<ObjCObjectType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Obj1->getBaseType(),
+ Obj2->getBaseType()))
+ return false;
+ if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
+ return false;
+ for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context,
+ Obj1->getProtocol(I),
+ Obj2->getProtocol(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::ObjCObjectPointer: {
+ const ObjCObjectPointerType *Ptr1 = cast<ObjCObjectPointerType>(T1);
+ const ObjCObjectPointerType *Ptr2 = cast<ObjCObjectPointerType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Ptr1->getPointeeType(),
+ Ptr2->getPointeeType()))
+ return false;
+ break;
+ }
+
+ case Type::Atomic: {
+ if (!IsStructurallyEquivalent(Context,
+ cast<AtomicType>(T1)->getValueType(),
+ cast<AtomicType>(T2)->getValueType()))
+ return false;
+ break;
+ }
+
+ } // end switch
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two fields.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ FieldDecl *Field1, FieldDecl *Field2) {
+ RecordDecl *Owner2 = cast<RecordDecl>(Field2->getDeclContext());
+
+ if (!IsStructurallyEquivalent(Context,
+ Field1->getType(), Field2->getType())) {
+ Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(Owner2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field)
+ << Field2->getDeclName() << Field2->getType();
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field)
+ << Field1->getDeclName() << Field1->getType();
+ return false;
+ }
+
+ if (Field1->isBitField() != Field2->isBitField()) {
+ Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(Owner2);
+ if (Field1->isBitField()) {
+ Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
+ << Field1->getDeclName() << Field1->getType()
+ << Field1->getBitWidthValue(Context.C1);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field)
+ << Field2->getDeclName();
+ } else {
+ Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
+ << Field2->getDeclName() << Field2->getType()
+ << Field2->getBitWidthValue(Context.C2);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field)
+ << Field1->getDeclName();
+ }
+ return false;
+ }
+
+ if (Field1->isBitField()) {
+ // Make sure that the bit-fields are the same length.
+ unsigned Bits1 = Field1->getBitWidthValue(Context.C1);
+ unsigned Bits2 = Field2->getBitWidthValue(Context.C2);
+
+ if (Bits1 != Bits2) {
+ Context.Diag2(Owner2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(Owner2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
+ << Field2->getDeclName() << Field2->getType() << Bits2;
+ Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
+ << Field1->getDeclName() << Field1->getType() << Bits1;
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two records.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ RecordDecl *D1, RecordDecl *D2) {
+ if (D1->isUnion() != D2->isUnion()) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
+ << D1->getDeclName() << (unsigned)D1->getTagKind();
+ return false;
+ }
+
+ // If both declarations are class template specializations, we know
+ // the ODR applies, so check the template and template arguments.
+ ClassTemplateSpecializationDecl *Spec1
+ = dyn_cast<ClassTemplateSpecializationDecl>(D1);
+ ClassTemplateSpecializationDecl *Spec2
+ = dyn_cast<ClassTemplateSpecializationDecl>(D2);
+ if (Spec1 && Spec2) {
+ // Check that the specialized templates are the same.
+ if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(),
+ Spec2->getSpecializedTemplate()))
+ return false;
+
+ // Check that the template arguments are the same.
+ if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size())
+ return false;
+
+ for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I)
+ if (!IsStructurallyEquivalent(Context,
+ Spec1->getTemplateArgs().get(I),
+ Spec2->getTemplateArgs().get(I)))
+ return false;
+ }
+ // If one is a class template specialization and the other is not, these
+ // structures are different.
+ else if (Spec1 || Spec2)
+ return false;
+
+ // Compare the definitions of these two records. If either or both are
+ // incomplete, we assume that they are equivalent.
+ D1 = D1->getDefinition();
+ D2 = D2->getDefinition();
+ if (!D1 || !D2)
+ return true;
+
+ if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
+ if (CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
+ if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
+ << D2CXX->getNumBases();
+ Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
+ << D1CXX->getNumBases();
+ return false;
+ }
+
+ // Check the base classes.
+ for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
+ BaseEnd1 = D1CXX->bases_end(),
+ Base2 = D2CXX->bases_begin();
+ Base1 != BaseEnd1;
+ ++Base1, ++Base2) {
+ if (!IsStructurallyEquivalent(Context,
+ Base1->getType(), Base2->getType())) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Base2->getLocStart(), diag::note_odr_base)
+ << Base2->getType()
+ << Base2->getSourceRange();
+ Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
+ << Base1->getType()
+ << Base1->getSourceRange();
+ return false;
+ }
+
+ // Check virtual vs. non-virtual inheritance mismatch.
+ if (Base1->isVirtual() != Base2->isVirtual()) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Base2->getLocStart(),
+ diag::note_odr_virtual_base)
+ << Base2->isVirtual() << Base2->getSourceRange();
+ Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
+ << Base1->isVirtual()
+ << Base1->getSourceRange();
+ return false;
+ }
+ }
+ } else if (D1CXX->getNumBases() > 0) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
+ Context.Diag1(Base1->getLocStart(), diag::note_odr_base)
+ << Base1->getType()
+ << Base1->getSourceRange();
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
+ return false;
+ }
+ }
+
+ // Check the fields for consistency.
+ CXXRecordDecl::field_iterator Field2 = D2->field_begin(),
+ Field2End = D2->field_end();
+ for (CXXRecordDecl::field_iterator Field1 = D1->field_begin(),
+ Field1End = D1->field_end();
+ Field1 != Field1End;
+ ++Field1, ++Field2) {
+ if (Field2 == Field2End) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field)
+ << Field1->getDeclName() << Field1->getType();
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
+ return false;
+ }
+
+ if (!IsStructurallyEquivalent(Context, *Field1, *Field2))
+ return false;
+ }
+
+ if (Field2 != Field2End) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field)
+ << Field2->getDeclName() << Field2->getType();
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Determine structural equivalence of two enums.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ EnumDecl *D1, EnumDecl *D2) {
+ EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
+ EC2End = D2->enumerator_end();
+ for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
+ EC1End = D1->enumerator_end();
+ EC1 != EC1End; ++EC1, ++EC2) {
+ if (EC2 == EC2End) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
+ << EC1->getDeclName()
+ << EC1->getInitVal().toString(10);
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
+ return false;
+ }
+
+ llvm::APSInt Val1 = EC1->getInitVal();
+ llvm::APSInt Val2 = EC2->getInitVal();
+ if (!IsSameValue(Val1, Val2) ||
+ !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
+ << EC2->getDeclName()
+ << EC2->getInitVal().toString(10);
+ Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
+ << EC1->getDeclName()
+ << EC1->getInitVal().toString(10);
+ return false;
+ }
+ }
+
+ if (EC2 != EC2End) {
+ Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent)
+ << Context.C2.getTypeDeclType(D2);
+ Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
+ << EC2->getDeclName()
+ << EC2->getInitVal().toString(10);
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ TemplateParameterList *Params1,
+ TemplateParameterList *Params2) {
+ if (Params1->size() != Params2->size()) {
+ Context.Diag2(Params2->getTemplateLoc(),
+ diag::err_odr_different_num_template_parameters)
+ << Params1->size() << Params2->size();
+ Context.Diag1(Params1->getTemplateLoc(),
+ diag::note_odr_template_parameter_list);
+ return false;
+ }
+
+ for (unsigned I = 0, N = Params1->size(); I != N; ++I) {
+ if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) {
+ Context.Diag2(Params2->getParam(I)->getLocation(),
+ diag::err_odr_different_template_parameter_kind);
+ Context.Diag1(Params1->getParam(I)->getLocation(),
+ diag::note_odr_template_parameter_here);
+ return false;
+ }
+
+ if (!Context.IsStructurallyEquivalent(Params1->getParam(I),
+ Params2->getParam(I))) {
+
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ TemplateTypeParmDecl *D1,
+ TemplateTypeParmDecl *D2) {
+ if (D1->isParameterPack() != D2->isParameterPack()) {
+ Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
+ << D2->isParameterPack();
+ Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
+ << D1->isParameterPack();
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ NonTypeTemplateParmDecl *D1,
+ NonTypeTemplateParmDecl *D2) {
+ // FIXME: Enable once we have variadic templates.
+#if 0
+ if (D1->isParameterPack() != D2->isParameterPack()) {
+ Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
+ << D2->isParameterPack();
+ Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
+ << D1->isParameterPack();
+ return false;
+ }
+#endif
+
+ // Check types.
+ if (!Context.IsStructurallyEquivalent(D1->getType(), D2->getType())) {
+ Context.Diag2(D2->getLocation(),
+ diag::err_odr_non_type_parameter_type_inconsistent)
+ << D2->getType() << D1->getType();
+ Context.Diag1(D1->getLocation(), diag::note_odr_value_here)
+ << D1->getType();
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ TemplateTemplateParmDecl *D1,
+ TemplateTemplateParmDecl *D2) {
+ // FIXME: Enable once we have variadic templates.
+#if 0
+ if (D1->isParameterPack() != D2->isParameterPack()) {
+ Context.Diag2(D2->getLocation(), diag::err_odr_parameter_pack_non_pack)
+ << D2->isParameterPack();
+ Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
+ << D1->isParameterPack();
+ return false;
+ }
+#endif
+
+ // Check template parameter lists.
+ return IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
+ D2->getTemplateParameters());
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ ClassTemplateDecl *D1,
+ ClassTemplateDecl *D2) {
+ // Check template parameters.
+ if (!IsStructurallyEquivalent(Context,
+ D1->getTemplateParameters(),
+ D2->getTemplateParameters()))
+ return false;
+
+ // Check the templated declaration.
+ return Context.IsStructurallyEquivalent(D1->getTemplatedDecl(),
+ D2->getTemplatedDecl());
+}
+
+/// \brief Determine structural equivalence of two declarations.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Decl *D1, Decl *D2) {
+ // FIXME: Check for known structural equivalences via a callback of some sort.
+
+ // Check whether we already know that these two declarations are not
+ // structurally equivalent.
+ if (Context.NonEquivalentDecls.count(std::make_pair(D1->getCanonicalDecl(),
+ D2->getCanonicalDecl())))
+ return false;
+
+ // Determine whether we've already produced a tentative equivalence for D1.
+ Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()];
+ if (EquivToD1)
+ return EquivToD1 == D2->getCanonicalDecl();
+
+ // Produce a tentative equivalence D1 <-> D2, which will be checked later.
+ EquivToD1 = D2->getCanonicalDecl();
+ Context.DeclsToCheck.push_back(D1->getCanonicalDecl());
+ return true;
+}
+
+bool StructuralEquivalenceContext::IsStructurallyEquivalent(Decl *D1,
+ Decl *D2) {
+ if (!::IsStructurallyEquivalent(*this, D1, D2))
+ return false;
+
+ return !Finish();
+}
+
+bool StructuralEquivalenceContext::IsStructurallyEquivalent(QualType T1,
+ QualType T2) {
+ if (!::IsStructurallyEquivalent(*this, T1, T2))
+ return false;
+
+ return !Finish();
+}
+
+bool StructuralEquivalenceContext::Finish() {
+ while (!DeclsToCheck.empty()) {
+ // Check the next declaration.
+ Decl *D1 = DeclsToCheck.front();
+ DeclsToCheck.pop_front();
+
+ Decl *D2 = TentativeEquivalences[D1];
+ assert(D2 && "Unrecorded tentative equivalence?");
+
+ bool Equivalent = true;
+
+ // FIXME: Switch on all declaration kinds. For now, we're just going to
+ // check the obvious ones.
+ if (RecordDecl *Record1 = dyn_cast<RecordDecl>(D1)) {
+ if (RecordDecl *Record2 = dyn_cast<RecordDecl>(D2)) {
+ // Check for equivalent structure names.
+ IdentifierInfo *Name1 = Record1->getIdentifier();
+ if (!Name1 && Record1->getTypedefNameForAnonDecl())
+ Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier();
+ IdentifierInfo *Name2 = Record2->getIdentifier();
+ if (!Name2 && Record2->getTypedefNameForAnonDecl())
+ Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2) ||
+ !::IsStructurallyEquivalent(*this, Record1, Record2))
+ Equivalent = false;
+ } else {
+ // Record/non-record mismatch.
+ Equivalent = false;
+ }
+ } else if (EnumDecl *Enum1 = dyn_cast<EnumDecl>(D1)) {
+ if (EnumDecl *Enum2 = dyn_cast<EnumDecl>(D2)) {
+ // Check for equivalent enum names.
+ IdentifierInfo *Name1 = Enum1->getIdentifier();
+ if (!Name1 && Enum1->getTypedefNameForAnonDecl())
+ Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier();
+ IdentifierInfo *Name2 = Enum2->getIdentifier();
+ if (!Name2 && Enum2->getTypedefNameForAnonDecl())
+ Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2) ||
+ !::IsStructurallyEquivalent(*this, Enum1, Enum2))
+ Equivalent = false;
+ } else {
+ // Enum/non-enum mismatch
+ Equivalent = false;
+ }
+ } else if (TypedefNameDecl *Typedef1 = dyn_cast<TypedefNameDecl>(D1)) {
+ if (TypedefNameDecl *Typedef2 = dyn_cast<TypedefNameDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(),
+ Typedef2->getIdentifier()) ||
+ !::IsStructurallyEquivalent(*this,
+ Typedef1->getUnderlyingType(),
+ Typedef2->getUnderlyingType()))
+ Equivalent = false;
+ } else {
+ // Typedef/non-typedef mismatch.
+ Equivalent = false;
+ }
+ } else if (ClassTemplateDecl *ClassTemplate1
+ = dyn_cast<ClassTemplateDecl>(D1)) {
+ if (ClassTemplateDecl *ClassTemplate2 = dyn_cast<ClassTemplateDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(ClassTemplate1->getIdentifier(),
+ ClassTemplate2->getIdentifier()) ||
+ !::IsStructurallyEquivalent(*this, ClassTemplate1, ClassTemplate2))
+ Equivalent = false;
+ } else {
+ // Class template/non-class-template mismatch.
+ Equivalent = false;
+ }
+ } else if (TemplateTypeParmDecl *TTP1= dyn_cast<TemplateTypeParmDecl>(D1)) {
+ if (TemplateTypeParmDecl *TTP2 = dyn_cast<TemplateTypeParmDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
+ Equivalent = false;
+ } else {
+ // Kind mismatch.
+ Equivalent = false;
+ }
+ } else if (NonTypeTemplateParmDecl *NTTP1
+ = dyn_cast<NonTypeTemplateParmDecl>(D1)) {
+ if (NonTypeTemplateParmDecl *NTTP2
+ = dyn_cast<NonTypeTemplateParmDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2))
+ Equivalent = false;
+ } else {
+ // Kind mismatch.
+ Equivalent = false;
+ }
+ } else if (TemplateTemplateParmDecl *TTP1
+ = dyn_cast<TemplateTemplateParmDecl>(D1)) {
+ if (TemplateTemplateParmDecl *TTP2
+ = dyn_cast<TemplateTemplateParmDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
+ Equivalent = false;
+ } else {
+ // Kind mismatch.
+ Equivalent = false;
+ }
+ }
+
+ if (!Equivalent) {
+ // Note that these two declarations are not equivalent (and we already
+ // know about it).
+ NonEquivalentDecls.insert(std::make_pair(D1->getCanonicalDecl(),
+ D2->getCanonicalDecl()));
+ return true;
+ }
+ // FIXME: Check other declaration kinds!
+ }
+
+ return false;
+}
+
+//----------------------------------------------------------------------------
+// Import Types
+//----------------------------------------------------------------------------
+
+QualType ASTNodeImporter::VisitType(const Type *T) {
+ Importer.FromDiag(SourceLocation(), diag::err_unsupported_ast_node)
+ << T->getTypeClassName();
+ return QualType();
+}
+
+QualType ASTNodeImporter::VisitBuiltinType(const BuiltinType *T) {
+ switch (T->getKind()) {
+#define SHARED_SINGLETON_TYPE(Expansion)
+#define BUILTIN_TYPE(Id, SingletonId) \
+ case BuiltinType::Id: return Importer.getToContext().SingletonId;
+#include "clang/AST/BuiltinTypes.def"
+
+ // FIXME: for Char16, Char32, and NullPtr, make sure that the "to"
+ // context supports C++.
+
+ // FIXME: for ObjCId, ObjCClass, and ObjCSel, make sure that the "to"
+ // context supports ObjC.
+
+ case BuiltinType::Char_U:
+ // The context we're importing from has an unsigned 'char'. If we're
+ // importing into a context with a signed 'char', translate to
+ // 'unsigned char' instead.
+ if (Importer.getToContext().getLangOpts().CharIsSigned)
+ return Importer.getToContext().UnsignedCharTy;
+
+ return Importer.getToContext().CharTy;
+
+ case BuiltinType::Char_S:
+ // The context we're importing from has an unsigned 'char'. If we're
+ // importing into a context with a signed 'char', translate to
+ // 'unsigned char' instead.
+ if (!Importer.getToContext().getLangOpts().CharIsSigned)
+ return Importer.getToContext().SignedCharTy;
+
+ return Importer.getToContext().CharTy;
+
+ case BuiltinType::WChar_S:
+ case BuiltinType::WChar_U:
+ // FIXME: If not in C++, shall we translate to the C equivalent of
+ // wchar_t?
+ return Importer.getToContext().WCharTy;
+ }
+
+ llvm_unreachable("Invalid BuiltinType Kind!");
+}
+
+QualType ASTNodeImporter::VisitComplexType(const ComplexType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getComplexType(ToElementType);
+}
+
+QualType ASTNodeImporter::VisitPointerType(const PointerType *T) {
+ QualType ToPointeeType = Importer.Import(T->getPointeeType());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getPointerType(ToPointeeType);
+}
+
+QualType ASTNodeImporter::VisitBlockPointerType(const BlockPointerType *T) {
+ // FIXME: Check for blocks support in "to" context.
+ QualType ToPointeeType = Importer.Import(T->getPointeeType());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getBlockPointerType(ToPointeeType);
+}
+
+QualType
+ASTNodeImporter::VisitLValueReferenceType(const LValueReferenceType *T) {
+ // FIXME: Check for C++ support in "to" context.
+ QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getLValueReferenceType(ToPointeeType);
+}
+
+QualType
+ASTNodeImporter::VisitRValueReferenceType(const RValueReferenceType *T) {
+ // FIXME: Check for C++0x support in "to" context.
+ QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getRValueReferenceType(ToPointeeType);
+}
+
+QualType ASTNodeImporter::VisitMemberPointerType(const MemberPointerType *T) {
+ // FIXME: Check for C++ support in "to" context.
+ QualType ToPointeeType = Importer.Import(T->getPointeeType());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ QualType ClassType = Importer.Import(QualType(T->getClass(), 0));
+ return Importer.getToContext().getMemberPointerType(ToPointeeType,
+ ClassType.getTypePtr());
+}
+
+QualType ASTNodeImporter::VisitConstantArrayType(const ConstantArrayType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getConstantArrayType(ToElementType,
+ T->getSize(),
+ T->getSizeModifier(),
+ T->getIndexTypeCVRQualifiers());
+}
+
+QualType
+ASTNodeImporter::VisitIncompleteArrayType(const IncompleteArrayType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getIncompleteArrayType(ToElementType,
+ T->getSizeModifier(),
+ T->getIndexTypeCVRQualifiers());
+}
+
+QualType ASTNodeImporter::VisitVariableArrayType(const VariableArrayType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ Expr *Size = Importer.Import(T->getSizeExpr());
+ if (!Size)
+ return QualType();
+
+ SourceRange Brackets = Importer.Import(T->getBracketsRange());
+ return Importer.getToContext().getVariableArrayType(ToElementType, Size,
+ T->getSizeModifier(),
+ T->getIndexTypeCVRQualifiers(),
+ Brackets);
+}
+
+QualType ASTNodeImporter::VisitVectorType(const VectorType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getVectorType(ToElementType,
+ T->getNumElements(),
+ T->getVectorKind());
+}
+
+QualType ASTNodeImporter::VisitExtVectorType(const ExtVectorType *T) {
+ QualType ToElementType = Importer.Import(T->getElementType());
+ if (ToElementType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getExtVectorType(ToElementType,
+ T->getNumElements());
+}
+
+QualType
+ASTNodeImporter::VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
+ // FIXME: What happens if we're importing a function without a prototype
+ // into C++? Should we make it variadic?
+ QualType ToResultType = Importer.Import(T->getResultType());
+ if (ToResultType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getFunctionNoProtoType(ToResultType,
+ T->getExtInfo());
+}
+
+QualType ASTNodeImporter::VisitFunctionProtoType(const FunctionProtoType *T) {
+ QualType ToResultType = Importer.Import(T->getResultType());
+ if (ToResultType.isNull())
+ return QualType();
+
+ // Import argument types
+ SmallVector<QualType, 4> ArgTypes;
+ for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
+ AEnd = T->arg_type_end();
+ A != AEnd; ++A) {
+ QualType ArgType = Importer.Import(*A);
+ if (ArgType.isNull())
+ return QualType();
+ ArgTypes.push_back(ArgType);
+ }
+
+ // Import exception types
+ SmallVector<QualType, 4> ExceptionTypes;
+ for (FunctionProtoType::exception_iterator E = T->exception_begin(),
+ EEnd = T->exception_end();
+ E != EEnd; ++E) {
+ QualType ExceptionType = Importer.Import(*E);
+ if (ExceptionType.isNull())
+ return QualType();
+ ExceptionTypes.push_back(ExceptionType);
+ }
+
+ FunctionProtoType::ExtProtoInfo EPI = T->getExtProtoInfo();
+ EPI.Exceptions = ExceptionTypes.data();
+
+ return Importer.getToContext().getFunctionType(ToResultType, ArgTypes.data(),
+ ArgTypes.size(), EPI);
+}
+
+QualType ASTNodeImporter::VisitParenType(const ParenType *T) {
+ QualType ToInnerType = Importer.Import(T->getInnerType());
+ if (ToInnerType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getParenType(ToInnerType);
+}
+
+QualType ASTNodeImporter::VisitTypedefType(const TypedefType *T) {
+ TypedefNameDecl *ToDecl
+ = dyn_cast_or_null<TypedefNameDecl>(Importer.Import(T->getDecl()));
+ if (!ToDecl)
+ return QualType();
+
+ return Importer.getToContext().getTypeDeclType(ToDecl);
+}
+
+QualType ASTNodeImporter::VisitTypeOfExprType(const TypeOfExprType *T) {
+ Expr *ToExpr = Importer.Import(T->getUnderlyingExpr());
+ if (!ToExpr)
+ return QualType();
+
+ return Importer.getToContext().getTypeOfExprType(ToExpr);
+}
+
+QualType ASTNodeImporter::VisitTypeOfType(const TypeOfType *T) {
+ QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType());
+ if (ToUnderlyingType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getTypeOfType(ToUnderlyingType);
+}
+
+QualType ASTNodeImporter::VisitDecltypeType(const DecltypeType *T) {
+ // FIXME: Make sure that the "to" context supports C++0x!
+ Expr *ToExpr = Importer.Import(T->getUnderlyingExpr());
+ if (!ToExpr)
+ return QualType();
+
+ QualType UnderlyingType = Importer.Import(T->getUnderlyingType());
+ if (UnderlyingType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getDecltypeType(ToExpr, UnderlyingType);
+}
+
+QualType ASTNodeImporter::VisitUnaryTransformType(const UnaryTransformType *T) {
+ QualType ToBaseType = Importer.Import(T->getBaseType());
+ QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType());
+ if (ToBaseType.isNull() || ToUnderlyingType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getUnaryTransformType(ToBaseType,
+ ToUnderlyingType,
+ T->getUTTKind());
+}
+
+QualType ASTNodeImporter::VisitAutoType(const AutoType *T) {
+ // FIXME: Make sure that the "to" context supports C++0x!
+ QualType FromDeduced = T->getDeducedType();
+ QualType ToDeduced;
+ if (!FromDeduced.isNull()) {
+ ToDeduced = Importer.Import(FromDeduced);
+ if (ToDeduced.isNull())
+ return QualType();
+ }
+
+ return Importer.getToContext().getAutoType(ToDeduced);
+}
+
+QualType ASTNodeImporter::VisitRecordType(const RecordType *T) {
+ RecordDecl *ToDecl
+ = dyn_cast_or_null<RecordDecl>(Importer.Import(T->getDecl()));
+ if (!ToDecl)
+ return QualType();
+
+ return Importer.getToContext().getTagDeclType(ToDecl);
+}
+
+QualType ASTNodeImporter::VisitEnumType(const EnumType *T) {
+ EnumDecl *ToDecl
+ = dyn_cast_or_null<EnumDecl>(Importer.Import(T->getDecl()));
+ if (!ToDecl)
+ return QualType();
+
+ return Importer.getToContext().getTagDeclType(ToDecl);
+}
+
+QualType ASTNodeImporter::VisitTemplateSpecializationType(
+ const TemplateSpecializationType *T) {
+ TemplateName ToTemplate = Importer.Import(T->getTemplateName());
+ if (ToTemplate.isNull())
+ return QualType();
+
+ SmallVector<TemplateArgument, 2> ToTemplateArgs;
+ if (ImportTemplateArguments(T->getArgs(), T->getNumArgs(), ToTemplateArgs))
+ return QualType();
+
+ QualType ToCanonType;
+ if (!QualType(T, 0).isCanonical()) {
+ QualType FromCanonType
+ = Importer.getFromContext().getCanonicalType(QualType(T, 0));
+ ToCanonType =Importer.Import(FromCanonType);
+ if (ToCanonType.isNull())
+ return QualType();
+ }
+ return Importer.getToContext().getTemplateSpecializationType(ToTemplate,
+ ToTemplateArgs.data(),
+ ToTemplateArgs.size(),
+ ToCanonType);
+}
+
+QualType ASTNodeImporter::VisitElaboratedType(const ElaboratedType *T) {
+ NestedNameSpecifier *ToQualifier = 0;
+ // Note: the qualifier in an ElaboratedType is optional.
+ if (T->getQualifier()) {
+ ToQualifier = Importer.Import(T->getQualifier());
+ if (!ToQualifier)
+ return QualType();
+ }
+
+ QualType ToNamedType = Importer.Import(T->getNamedType());
+ if (ToNamedType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getElaboratedType(T->getKeyword(),
+ ToQualifier, ToNamedType);
+}
+
+QualType ASTNodeImporter::VisitObjCInterfaceType(const ObjCInterfaceType *T) {
+ ObjCInterfaceDecl *Class
+ = dyn_cast_or_null<ObjCInterfaceDecl>(Importer.Import(T->getDecl()));
+ if (!Class)
+ return QualType();
+
+ return Importer.getToContext().getObjCInterfaceType(Class);
+}
+
+QualType ASTNodeImporter::VisitObjCObjectType(const ObjCObjectType *T) {
+ QualType ToBaseType = Importer.Import(T->getBaseType());
+ if (ToBaseType.isNull())
+ return QualType();
+
+ SmallVector<ObjCProtocolDecl *, 4> Protocols;
+ for (ObjCObjectType::qual_iterator P = T->qual_begin(),
+ PEnd = T->qual_end();
+ P != PEnd; ++P) {
+ ObjCProtocolDecl *Protocol
+ = dyn_cast_or_null<ObjCProtocolDecl>(Importer.Import(*P));
+ if (!Protocol)
+ return QualType();
+ Protocols.push_back(Protocol);
+ }
+
+ return Importer.getToContext().getObjCObjectType(ToBaseType,
+ Protocols.data(),
+ Protocols.size());
+}
+
+QualType
+ASTNodeImporter::VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
+ QualType ToPointeeType = Importer.Import(T->getPointeeType());
+ if (ToPointeeType.isNull())
+ return QualType();
+
+ return Importer.getToContext().getObjCObjectPointerType(ToPointeeType);
+}
+
+//----------------------------------------------------------------------------
+// Import Declarations
+//----------------------------------------------------------------------------
+bool ASTNodeImporter::ImportDeclParts(NamedDecl *D, DeclContext *&DC,
+ DeclContext *&LexicalDC,
+ DeclarationName &Name,
+ SourceLocation &Loc) {
+ // Import the context of this declaration.
+ DC = Importer.ImportContext(D->getDeclContext());
+ if (!DC)
+ return true;
+
+ LexicalDC = DC;
+ if (D->getDeclContext() != D->getLexicalDeclContext()) {
+ LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
+ if (!LexicalDC)
+ return true;
+ }
+
+ // Import the name of this declaration.
+ Name = Importer.Import(D->getDeclName());
+ if (D->getDeclName() && !Name)
+ return true;
+
+ // Import the location of this declaration.
+ Loc = Importer.Import(D->getLocation());
+ return false;
+}
+
+void ASTNodeImporter::ImportDefinitionIfNeeded(Decl *FromD, Decl *ToD) {
+ if (!FromD)
+ return;
+
+ if (!ToD) {
+ ToD = Importer.Import(FromD);
+ if (!ToD)
+ return;
+ }
+
+ if (RecordDecl *FromRecord = dyn_cast<RecordDecl>(FromD)) {
+ if (RecordDecl *ToRecord = cast_or_null<RecordDecl>(ToD)) {
+ if (FromRecord->getDefinition() && !ToRecord->getDefinition()) {
+ ImportDefinition(FromRecord, ToRecord);
+ }
+ }
+ return;
+ }
+
+ if (EnumDecl *FromEnum = dyn_cast<EnumDecl>(FromD)) {
+ if (EnumDecl *ToEnum = cast_or_null<EnumDecl>(ToD)) {
+ if (FromEnum->getDefinition() && !ToEnum->getDefinition()) {
+ ImportDefinition(FromEnum, ToEnum);
+ }
+ }
+ return;
+ }
+}
+
+void
+ASTNodeImporter::ImportDeclarationNameLoc(const DeclarationNameInfo &From,
+ DeclarationNameInfo& To) {
+ // NOTE: To.Name and To.Loc are already imported.
+ // We only have to import To.LocInfo.
+ switch (To.getName().getNameKind()) {
+ case DeclarationName::Identifier:
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ case DeclarationName::CXXUsingDirective:
+ return;
+
+ case DeclarationName::CXXOperatorName: {
+ SourceRange Range = From.getCXXOperatorNameRange();
+ To.setCXXOperatorNameRange(Importer.Import(Range));
+ return;
+ }
+ case DeclarationName::CXXLiteralOperatorName: {
+ SourceLocation Loc = From.getCXXLiteralOperatorNameLoc();
+ To.setCXXLiteralOperatorNameLoc(Importer.Import(Loc));
+ return;
+ }
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName: {
+ TypeSourceInfo *FromTInfo = From.getNamedTypeInfo();
+ To.setNamedTypeInfo(Importer.Import(FromTInfo));
+ return;
+ }
+ }
+ llvm_unreachable("Unknown name kind.");
+}
+
+void ASTNodeImporter::ImportDeclContext(DeclContext *FromDC, bool ForceImport) {
+ if (Importer.isMinimalImport() && !ForceImport) {
+ Importer.ImportContext(FromDC);
+ return;
+ }
+
+ for (DeclContext::decl_iterator From = FromDC->decls_begin(),
+ FromEnd = FromDC->decls_end();
+ From != FromEnd;
+ ++From)
+ Importer.Import(*From);
+}
+
+bool ASTNodeImporter::ImportDefinition(RecordDecl *From, RecordDecl *To,
+ ImportDefinitionKind Kind) {
+ if (To->getDefinition() || To->isBeingDefined()) {
+ if (Kind == IDK_Everything)
+ ImportDeclContext(From, /*ForceImport=*/true);
+
+ return false;
+ }
+
+ To->startDefinition();
+
+ // Add base classes.
+ if (CXXRecordDecl *ToCXX = dyn_cast<CXXRecordDecl>(To)) {
+ CXXRecordDecl *FromCXX = cast<CXXRecordDecl>(From);
+
+ struct CXXRecordDecl::DefinitionData &ToData = ToCXX->data();
+ struct CXXRecordDecl::DefinitionData &FromData = FromCXX->data();
+ ToData.UserDeclaredConstructor = FromData.UserDeclaredConstructor;
+ ToData.UserDeclaredCopyConstructor = FromData.UserDeclaredCopyConstructor;
+ ToData.UserDeclaredMoveConstructor = FromData.UserDeclaredMoveConstructor;
+ ToData.UserDeclaredCopyAssignment = FromData.UserDeclaredCopyAssignment;
+ ToData.UserDeclaredMoveAssignment = FromData.UserDeclaredMoveAssignment;
+ ToData.UserDeclaredDestructor = FromData.UserDeclaredDestructor;
+ ToData.Aggregate = FromData.Aggregate;
+ ToData.PlainOldData = FromData.PlainOldData;
+ ToData.Empty = FromData.Empty;
+ ToData.Polymorphic = FromData.Polymorphic;
+ ToData.Abstract = FromData.Abstract;
+ ToData.IsStandardLayout = FromData.IsStandardLayout;
+ ToData.HasNoNonEmptyBases = FromData.HasNoNonEmptyBases;
+ ToData.HasPrivateFields = FromData.HasPrivateFields;
+ ToData.HasProtectedFields = FromData.HasProtectedFields;
+ ToData.HasPublicFields = FromData.HasPublicFields;
+ ToData.HasMutableFields = FromData.HasMutableFields;
+ ToData.HasOnlyCMembers = FromData.HasOnlyCMembers;
+ ToData.HasTrivialDefaultConstructor = FromData.HasTrivialDefaultConstructor;
+ ToData.HasConstexprNonCopyMoveConstructor
+ = FromData.HasConstexprNonCopyMoveConstructor;
+ ToData.DefaultedDefaultConstructorIsConstexpr
+ = FromData.DefaultedDefaultConstructorIsConstexpr;
+ ToData.DefaultedCopyConstructorIsConstexpr
+ = FromData.DefaultedCopyConstructorIsConstexpr;
+ ToData.DefaultedMoveConstructorIsConstexpr
+ = FromData.DefaultedMoveConstructorIsConstexpr;
+ ToData.HasConstexprDefaultConstructor
+ = FromData.HasConstexprDefaultConstructor;
+ ToData.HasConstexprCopyConstructor = FromData.HasConstexprCopyConstructor;
+ ToData.HasConstexprMoveConstructor = FromData.HasConstexprMoveConstructor;
+ ToData.HasTrivialCopyConstructor = FromData.HasTrivialCopyConstructor;
+ ToData.HasTrivialMoveConstructor = FromData.HasTrivialMoveConstructor;
+ ToData.HasTrivialCopyAssignment = FromData.HasTrivialCopyAssignment;
+ ToData.HasTrivialMoveAssignment = FromData.HasTrivialMoveAssignment;
+ ToData.HasTrivialDestructor = FromData.HasTrivialDestructor;
+ ToData.HasIrrelevantDestructor = FromData.HasIrrelevantDestructor;
+ ToData.HasNonLiteralTypeFieldsOrBases
+ = FromData.HasNonLiteralTypeFieldsOrBases;
+ // ComputedVisibleConversions not imported.
+ ToData.UserProvidedDefaultConstructor
+ = FromData.UserProvidedDefaultConstructor;
+ ToData.DeclaredDefaultConstructor = FromData.DeclaredDefaultConstructor;
+ ToData.DeclaredCopyConstructor = FromData.DeclaredCopyConstructor;
+ ToData.DeclaredMoveConstructor = FromData.DeclaredMoveConstructor;
+ ToData.DeclaredCopyAssignment = FromData.DeclaredCopyAssignment;
+ ToData.DeclaredMoveAssignment = FromData.DeclaredMoveAssignment;
+ ToData.DeclaredDestructor = FromData.DeclaredDestructor;
+ ToData.FailedImplicitMoveConstructor
+ = FromData.FailedImplicitMoveConstructor;
+ ToData.FailedImplicitMoveAssignment = FromData.FailedImplicitMoveAssignment;
+ ToData.IsLambda = FromData.IsLambda;
+
+ SmallVector<CXXBaseSpecifier *, 4> Bases;
+ for (CXXRecordDecl::base_class_iterator
+ Base1 = FromCXX->bases_begin(),
+ FromBaseEnd = FromCXX->bases_end();
+ Base1 != FromBaseEnd;
+ ++Base1) {
+ QualType T = Importer.Import(Base1->getType());
+ if (T.isNull())
+ return true;
+
+ SourceLocation EllipsisLoc;
+ if (Base1->isPackExpansion())
+ EllipsisLoc = Importer.Import(Base1->getEllipsisLoc());
+
+ // Ensure that we have a definition for the base.
+ ImportDefinitionIfNeeded(Base1->getType()->getAsCXXRecordDecl());
+
+ Bases.push_back(
+ new (Importer.getToContext())
+ CXXBaseSpecifier(Importer.Import(Base1->getSourceRange()),
+ Base1->isVirtual(),
+ Base1->isBaseOfClass(),
+ Base1->getAccessSpecifierAsWritten(),
+ Importer.Import(Base1->getTypeSourceInfo()),
+ EllipsisLoc));
+ }
+ if (!Bases.empty())
+ ToCXX->setBases(Bases.data(), Bases.size());
+ }
+
+ if (shouldForceImportDeclContext(Kind))
+ ImportDeclContext(From, /*ForceImport=*/true);
+
+ To->completeDefinition();
+ return false;
+}
+
+bool ASTNodeImporter::ImportDefinition(EnumDecl *From, EnumDecl *To,
+ ImportDefinitionKind Kind) {
+ if (To->getDefinition() || To->isBeingDefined()) {
+ if (Kind == IDK_Everything)
+ ImportDeclContext(From, /*ForceImport=*/true);
+ return false;
+ }
+
+ To->startDefinition();
+
+ QualType T = Importer.Import(Importer.getFromContext().getTypeDeclType(From));
+ if (T.isNull())
+ return true;
+
+ QualType ToPromotionType = Importer.Import(From->getPromotionType());
+ if (ToPromotionType.isNull())
+ return true;
+
+ if (shouldForceImportDeclContext(Kind))
+ ImportDeclContext(From, /*ForceImport=*/true);
+
+ // FIXME: we might need to merge the number of positive or negative bits
+ // if the enumerator lists don't match.
+ To->completeDefinition(T, ToPromotionType,
+ From->getNumPositiveBits(),
+ From->getNumNegativeBits());
+ return false;
+}
+
+TemplateParameterList *ASTNodeImporter::ImportTemplateParameterList(
+ TemplateParameterList *Params) {
+ SmallVector<NamedDecl *, 4> ToParams;
+ ToParams.reserve(Params->size());
+ for (TemplateParameterList::iterator P = Params->begin(),
+ PEnd = Params->end();
+ P != PEnd; ++P) {
+ Decl *To = Importer.Import(*P);
+ if (!To)
+ return 0;
+
+ ToParams.push_back(cast<NamedDecl>(To));
+ }
+
+ return TemplateParameterList::Create(Importer.getToContext(),
+ Importer.Import(Params->getTemplateLoc()),
+ Importer.Import(Params->getLAngleLoc()),
+ ToParams.data(), ToParams.size(),
+ Importer.Import(Params->getRAngleLoc()));
+}
+
+TemplateArgument
+ASTNodeImporter::ImportTemplateArgument(const TemplateArgument &From) {
+ switch (From.getKind()) {
+ case TemplateArgument::Null:
+ return TemplateArgument();
+
+ case TemplateArgument::Type: {
+ QualType ToType = Importer.Import(From.getAsType());
+ if (ToType.isNull())
+ return TemplateArgument();
+ return TemplateArgument(ToType);
+ }
+
+ case TemplateArgument::Integral: {
+ QualType ToType = Importer.Import(From.getIntegralType());
+ if (ToType.isNull())
+ return TemplateArgument();
+ return TemplateArgument(*From.getAsIntegral(), ToType);
+ }
+
+ case TemplateArgument::Declaration:
+ if (Decl *To = Importer.Import(From.getAsDecl()))
+ return TemplateArgument(To);
+ return TemplateArgument();
+
+ case TemplateArgument::Template: {
+ TemplateName ToTemplate = Importer.Import(From.getAsTemplate());
+ if (ToTemplate.isNull())
+ return TemplateArgument();
+
+ return TemplateArgument(ToTemplate);
+ }
+
+ case TemplateArgument::TemplateExpansion: {
+ TemplateName ToTemplate
+ = Importer.Import(From.getAsTemplateOrTemplatePattern());
+ if (ToTemplate.isNull())
+ return TemplateArgument();
+
+ return TemplateArgument(ToTemplate, From.getNumTemplateExpansions());
+ }
+
+ case TemplateArgument::Expression:
+ if (Expr *ToExpr = Importer.Import(From.getAsExpr()))
+ return TemplateArgument(ToExpr);
+ return TemplateArgument();
+
+ case TemplateArgument::Pack: {
+ SmallVector<TemplateArgument, 2> ToPack;
+ ToPack.reserve(From.pack_size());
+ if (ImportTemplateArguments(From.pack_begin(), From.pack_size(), ToPack))
+ return TemplateArgument();
+
+ TemplateArgument *ToArgs
+ = new (Importer.getToContext()) TemplateArgument[ToPack.size()];
+ std::copy(ToPack.begin(), ToPack.end(), ToArgs);
+ return TemplateArgument(ToArgs, ToPack.size());
+ }
+ }
+
+ llvm_unreachable("Invalid template argument kind");
+}
+
+bool ASTNodeImporter::ImportTemplateArguments(const TemplateArgument *FromArgs,
+ unsigned NumFromArgs,
+ SmallVectorImpl<TemplateArgument> &ToArgs) {
+ for (unsigned I = 0; I != NumFromArgs; ++I) {
+ TemplateArgument To = ImportTemplateArgument(FromArgs[I]);
+ if (To.isNull() && !FromArgs[I].isNull())
+ return true;
+
+ ToArgs.push_back(To);
+ }
+
+ return false;
+}
+
+bool ASTNodeImporter::IsStructuralMatch(RecordDecl *FromRecord,
+ RecordDecl *ToRecord) {
+ StructuralEquivalenceContext Ctx(Importer.getFromContext(),
+ Importer.getToContext(),
+ Importer.getNonEquivalentDecls());
+ return Ctx.IsStructurallyEquivalent(FromRecord, ToRecord);
+}
+
+bool ASTNodeImporter::IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToEnum) {
+ StructuralEquivalenceContext Ctx(Importer.getFromContext(),
+ Importer.getToContext(),
+ Importer.getNonEquivalentDecls());
+ return Ctx.IsStructurallyEquivalent(FromEnum, ToEnum);
+}
+
+bool ASTNodeImporter::IsStructuralMatch(ClassTemplateDecl *From,
+ ClassTemplateDecl *To) {
+ StructuralEquivalenceContext Ctx(Importer.getFromContext(),
+ Importer.getToContext(),
+ Importer.getNonEquivalentDecls());
+ return Ctx.IsStructurallyEquivalent(From, To);
+}
+
+Decl *ASTNodeImporter::VisitDecl(Decl *D) {
+ Importer.FromDiag(D->getLocation(), diag::err_unsupported_ast_node)
+ << D->getDeclKindName();
+ return 0;
+}
+
+Decl *ASTNodeImporter::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
+ TranslationUnitDecl *ToD =
+ Importer.getToContext().getTranslationUnitDecl();
+
+ Importer.Imported(D, ToD);
+
+ return ToD;
+}
+
+Decl *ASTNodeImporter::VisitNamespaceDecl(NamespaceDecl *D) {
+ // Import the major distinguishing characteristics of this namespace.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ NamespaceDecl *MergeWithNamespace = 0;
+ if (!Name) {
+ // This is an anonymous namespace. Adopt an existing anonymous
+ // namespace if we can.
+ // FIXME: Not testable.
+ if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC))
+ MergeWithNamespace = TU->getAnonymousNamespace();
+ else
+ MergeWithNamespace = cast<NamespaceDecl>(DC)->getAnonymousNamespace();
+ } else {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Namespace))
+ continue;
+
+ if (NamespaceDecl *FoundNS = dyn_cast<NamespaceDecl>(FoundDecls[I])) {
+ MergeWithNamespace = FoundNS;
+ ConflictingDecls.clear();
+ break;
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Namespace,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ }
+ }
+
+ // Create the "to" namespace, if needed.
+ NamespaceDecl *ToNamespace = MergeWithNamespace;
+ if (!ToNamespace) {
+ ToNamespace = NamespaceDecl::Create(Importer.getToContext(), DC,
+ D->isInline(),
+ Importer.Import(D->getLocStart()),
+ Loc, Name.getAsIdentifierInfo(),
+ /*PrevDecl=*/0);
+ ToNamespace->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(ToNamespace);
+
+ // If this is an anonymous namespace, register it as the anonymous
+ // namespace within its context.
+ if (!Name) {
+ if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(DC))
+ TU->setAnonymousNamespace(ToNamespace);
+ else
+ cast<NamespaceDecl>(DC)->setAnonymousNamespace(ToNamespace);
+ }
+ }
+ Importer.Imported(D, ToNamespace);
+
+ ImportDeclContext(D);
+
+ return ToNamespace;
+}
+
+Decl *ASTNodeImporter::VisitTypedefNameDecl(TypedefNameDecl *D, bool IsAlias) {
+ // Import the major distinguishing characteristics of this typedef.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // If this typedef is not in block scope, determine whether we've
+ // seen a typedef with the same name (that we can merge with) or any
+ // other entity by that name (which name lookup could conflict with).
+ if (!DC->isFunctionOrMethod()) {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
+ continue;
+ if (TypedefNameDecl *FoundTypedef =
+ dyn_cast<TypedefNameDecl>(FoundDecls[I])) {
+ if (Importer.IsStructurallyEquivalent(D->getUnderlyingType(),
+ FoundTypedef->getUnderlyingType()))
+ return Importer.Imported(D, FoundTypedef);
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ if (!Name)
+ return 0;
+ }
+ }
+
+ // Import the underlying type of this typedef;
+ QualType T = Importer.Import(D->getUnderlyingType());
+ if (T.isNull())
+ return 0;
+
+ // Create the new typedef node.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ SourceLocation StartL = Importer.Import(D->getLocStart());
+ TypedefNameDecl *ToTypedef;
+ if (IsAlias)
+ ToTypedef = TypeAliasDecl::Create(Importer.getToContext(), DC,
+ StartL, Loc,
+ Name.getAsIdentifierInfo(),
+ TInfo);
+ else
+ ToTypedef = TypedefDecl::Create(Importer.getToContext(), DC,
+ StartL, Loc,
+ Name.getAsIdentifierInfo(),
+ TInfo);
+
+ ToTypedef->setAccess(D->getAccess());
+ ToTypedef->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToTypedef);
+ LexicalDC->addDeclInternal(ToTypedef);
+
+ return ToTypedef;
+}
+
+Decl *ASTNodeImporter::VisitTypedefDecl(TypedefDecl *D) {
+ return VisitTypedefNameDecl(D, /*IsAlias=*/false);
+}
+
+Decl *ASTNodeImporter::VisitTypeAliasDecl(TypeAliasDecl *D) {
+ return VisitTypedefNameDecl(D, /*IsAlias=*/true);
+}
+
+Decl *ASTNodeImporter::VisitEnumDecl(EnumDecl *D) {
+ // Import the major distinguishing characteristics of this enum.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Figure out what enum name we're looking for.
+ unsigned IDNS = Decl::IDNS_Tag;
+ DeclarationName SearchName = Name;
+ if (!SearchName && D->getTypedefNameForAnonDecl()) {
+ SearchName = Importer.Import(D->getTypedefNameForAnonDecl()->getDeclName());
+ IDNS = Decl::IDNS_Ordinary;
+ } else if (Importer.getToContext().getLangOpts().CPlusPlus)
+ IDNS |= Decl::IDNS_Ordinary;
+
+ // We may already have an enum of the same name; try to find and match it.
+ if (!DC->isFunctionOrMethod() && SearchName) {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(SearchName, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
+ continue;
+
+ Decl *Found = FoundDecls[I];
+ if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Found)) {
+ if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>())
+ Found = Tag->getDecl();
+ }
+
+ if (EnumDecl *FoundEnum = dyn_cast<EnumDecl>(Found)) {
+ if (IsStructuralMatch(D, FoundEnum))
+ return Importer.Imported(D, FoundEnum);
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ }
+ }
+
+ // Create the enum declaration.
+ EnumDecl *D2 = EnumDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getLocStart()),
+ Loc, Name.getAsIdentifierInfo(), 0,
+ D->isScoped(), D->isScopedUsingClassTag(),
+ D->isFixed());
+ // Import the qualifier, if any.
+ D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
+ D2->setAccess(D->getAccess());
+ D2->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, D2);
+ LexicalDC->addDeclInternal(D2);
+
+ // Import the integer type.
+ QualType ToIntegerType = Importer.Import(D->getIntegerType());
+ if (ToIntegerType.isNull())
+ return 0;
+ D2->setIntegerType(ToIntegerType);
+
+ // Import the definition
+ if (D->isCompleteDefinition() && ImportDefinition(D, D2))
+ return 0;
+
+ return D2;
+}
+
+Decl *ASTNodeImporter::VisitRecordDecl(RecordDecl *D) {
+ // If this record has a definition in the translation unit we're coming from,
+ // but this particular declaration is not that definition, import the
+ // definition and map to that.
+ TagDecl *Definition = D->getDefinition();
+ if (Definition && Definition != D) {
+ Decl *ImportedDef = Importer.Import(Definition);
+ if (!ImportedDef)
+ return 0;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ // Import the major distinguishing characteristics of this record.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Figure out what structure name we're looking for.
+ unsigned IDNS = Decl::IDNS_Tag;
+ DeclarationName SearchName = Name;
+ if (!SearchName && D->getTypedefNameForAnonDecl()) {
+ SearchName = Importer.Import(D->getTypedefNameForAnonDecl()->getDeclName());
+ IDNS = Decl::IDNS_Ordinary;
+ } else if (Importer.getToContext().getLangOpts().CPlusPlus)
+ IDNS |= Decl::IDNS_Ordinary;
+
+ // We may already have a record of the same name; try to find and match it.
+ RecordDecl *AdoptDecl = 0;
+ if (!DC->isFunctionOrMethod() && SearchName) {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(SearchName, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
+ continue;
+
+ Decl *Found = FoundDecls[I];
+ if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Found)) {
+ if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>())
+ Found = Tag->getDecl();
+ }
+
+ if (RecordDecl *FoundRecord = dyn_cast<RecordDecl>(Found)) {
+ if (RecordDecl *FoundDef = FoundRecord->getDefinition()) {
+ if (!D->isCompleteDefinition() || IsStructuralMatch(D, FoundDef)) {
+ // The record types structurally match, or the "from" translation
+ // unit only had a forward declaration anyway; call it the same
+ // function.
+ // FIXME: For C++, we should also merge methods here.
+ return Importer.Imported(D, FoundDef);
+ }
+ } else {
+ // We have a forward declaration of this type, so adopt that forward
+ // declaration rather than building a new one.
+ AdoptDecl = FoundRecord;
+ continue;
+ }
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ }
+ }
+
+ // Create the record declaration.
+ RecordDecl *D2 = AdoptDecl;
+ SourceLocation StartLoc = Importer.Import(D->getLocStart());
+ if (!D2) {
+ if (isa<CXXRecordDecl>(D)) {
+ CXXRecordDecl *D2CXX = CXXRecordDecl::Create(Importer.getToContext(),
+ D->getTagKind(),
+ DC, StartLoc, Loc,
+ Name.getAsIdentifierInfo());
+ D2 = D2CXX;
+ D2->setAccess(D->getAccess());
+ } else {
+ D2 = RecordDecl::Create(Importer.getToContext(), D->getTagKind(),
+ DC, StartLoc, Loc, Name.getAsIdentifierInfo());
+ }
+
+ D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
+ D2->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(D2);
+ }
+
+ Importer.Imported(D, D2);
+
+ if (D->isCompleteDefinition() && ImportDefinition(D, D2, IDK_Default))
+ return 0;
+
+ return D2;
+}
+
+Decl *ASTNodeImporter::VisitEnumConstantDecl(EnumConstantDecl *D) {
+ // Import the major distinguishing characteristics of this enumerator.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ // Determine whether there are any other declarations with the same name and
+ // in the same context.
+ if (!LexicalDC->isFunctionOrMethod()) {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
+ continue;
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ if (!Name)
+ return 0;
+ }
+ }
+
+ Expr *Init = Importer.Import(D->getInitExpr());
+ if (D->getInitExpr() && !Init)
+ return 0;
+
+ EnumConstantDecl *ToEnumerator
+ = EnumConstantDecl::Create(Importer.getToContext(), cast<EnumDecl>(DC), Loc,
+ Name.getAsIdentifierInfo(), T,
+ Init, D->getInitVal());
+ ToEnumerator->setAccess(D->getAccess());
+ ToEnumerator->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToEnumerator);
+ LexicalDC->addDeclInternal(ToEnumerator);
+ return ToEnumerator;
+}
+
+Decl *ASTNodeImporter::VisitFunctionDecl(FunctionDecl *D) {
+ // Import the major distinguishing characteristics of this function.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Try to find a function in our own ("to") context with the same name, same
+ // type, and in the same context as the function we're importing.
+ if (!LexicalDC->isFunctionOrMethod()) {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
+ continue;
+
+ if (FunctionDecl *FoundFunction = dyn_cast<FunctionDecl>(FoundDecls[I])) {
+ if (isExternalLinkage(FoundFunction->getLinkage()) &&
+ isExternalLinkage(D->getLinkage())) {
+ if (Importer.IsStructurallyEquivalent(D->getType(),
+ FoundFunction->getType())) {
+ // FIXME: Actually try to merge the body and other attributes.
+ return Importer.Imported(D, FoundFunction);
+ }
+
+ // FIXME: Check for overloading more carefully, e.g., by boosting
+ // Sema::IsOverload out to the AST library.
+
+ // Function overloading is okay in C++.
+ if (Importer.getToContext().getLangOpts().CPlusPlus)
+ continue;
+
+ // Complain about inconsistent function types.
+ Importer.ToDiag(Loc, diag::err_odr_function_type_inconsistent)
+ << Name << D->getType() << FoundFunction->getType();
+ Importer.ToDiag(FoundFunction->getLocation(),
+ diag::note_odr_value_here)
+ << FoundFunction->getType();
+ }
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ if (!Name)
+ return 0;
+ }
+ }
+
+ DeclarationNameInfo NameInfo(Name, Loc);
+ // Import additional name location/type info.
+ ImportDeclarationNameLoc(D->getNameInfo(), NameInfo);
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ // Import the function parameters.
+ SmallVector<ParmVarDecl *, 8> Parameters;
+ for (FunctionDecl::param_iterator P = D->param_begin(), PEnd = D->param_end();
+ P != PEnd; ++P) {
+ ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(*P));
+ if (!ToP)
+ return 0;
+
+ Parameters.push_back(ToP);
+ }
+
+ // Create the imported function.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ FunctionDecl *ToFunction = 0;
+ if (CXXConstructorDecl *FromConstructor = dyn_cast<CXXConstructorDecl>(D)) {
+ ToFunction = CXXConstructorDecl::Create(Importer.getToContext(),
+ cast<CXXRecordDecl>(DC),
+ D->getInnerLocStart(),
+ NameInfo, T, TInfo,
+ FromConstructor->isExplicit(),
+ D->isInlineSpecified(),
+ D->isImplicit(),
+ D->isConstexpr());
+ } else if (isa<CXXDestructorDecl>(D)) {
+ ToFunction = CXXDestructorDecl::Create(Importer.getToContext(),
+ cast<CXXRecordDecl>(DC),
+ D->getInnerLocStart(),
+ NameInfo, T, TInfo,
+ D->isInlineSpecified(),
+ D->isImplicit());
+ } else if (CXXConversionDecl *FromConversion
+ = dyn_cast<CXXConversionDecl>(D)) {
+ ToFunction = CXXConversionDecl::Create(Importer.getToContext(),
+ cast<CXXRecordDecl>(DC),
+ D->getInnerLocStart(),
+ NameInfo, T, TInfo,
+ D->isInlineSpecified(),
+ FromConversion->isExplicit(),
+ D->isConstexpr(),
+ Importer.Import(D->getLocEnd()));
+ } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ ToFunction = CXXMethodDecl::Create(Importer.getToContext(),
+ cast<CXXRecordDecl>(DC),
+ D->getInnerLocStart(),
+ NameInfo, T, TInfo,
+ Method->isStatic(),
+ Method->getStorageClassAsWritten(),
+ Method->isInlineSpecified(),
+ D->isConstexpr(),
+ Importer.Import(D->getLocEnd()));
+ } else {
+ ToFunction = FunctionDecl::Create(Importer.getToContext(), DC,
+ D->getInnerLocStart(),
+ NameInfo, T, TInfo, D->getStorageClass(),
+ D->getStorageClassAsWritten(),
+ D->isInlineSpecified(),
+ D->hasWrittenPrototype(),
+ D->isConstexpr());
+ }
+
+ // Import the qualifier, if any.
+ ToFunction->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
+ ToFunction->setAccess(D->getAccess());
+ ToFunction->setLexicalDeclContext(LexicalDC);
+ ToFunction->setVirtualAsWritten(D->isVirtualAsWritten());
+ ToFunction->setTrivial(D->isTrivial());
+ ToFunction->setPure(D->isPure());
+ Importer.Imported(D, ToFunction);
+
+ // Set the parameters.
+ for (unsigned I = 0, N = Parameters.size(); I != N; ++I) {
+ Parameters[I]->setOwningFunction(ToFunction);
+ ToFunction->addDeclInternal(Parameters[I]);
+ }
+ ToFunction->setParams(Parameters);
+
+ // FIXME: Other bits to merge?
+
+ // Add this function to the lexical context.
+ LexicalDC->addDeclInternal(ToFunction);
+
+ return ToFunction;
+}
+
+Decl *ASTNodeImporter::VisitCXXMethodDecl(CXXMethodDecl *D) {
+ return VisitFunctionDecl(D);
+}
+
+Decl *ASTNodeImporter::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
+ return VisitCXXMethodDecl(D);
+}
+
+Decl *ASTNodeImporter::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
+ return VisitCXXMethodDecl(D);
+}
+
+Decl *ASTNodeImporter::VisitCXXConversionDecl(CXXConversionDecl *D) {
+ return VisitCXXMethodDecl(D);
+}
+
+Decl *ASTNodeImporter::VisitFieldDecl(FieldDecl *D) {
+ // Import the major distinguishing characteristics of a variable.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Determine whether we've already imported this field.
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (FieldDecl *FoundField = dyn_cast<FieldDecl>(FoundDecls[I])) {
+ if (Importer.IsStructurallyEquivalent(D->getType(),
+ FoundField->getType())) {
+ Importer.Imported(D, FoundField);
+ return FoundField;
+ }
+
+ Importer.ToDiag(Loc, diag::err_odr_field_type_inconsistent)
+ << Name << D->getType() << FoundField->getType();
+ Importer.ToDiag(FoundField->getLocation(), diag::note_odr_value_here)
+ << FoundField->getType();
+ return 0;
+ }
+ }
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ Expr *BitWidth = Importer.Import(D->getBitWidth());
+ if (!BitWidth && D->getBitWidth())
+ return 0;
+
+ FieldDecl *ToField = FieldDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getInnerLocStart()),
+ Loc, Name.getAsIdentifierInfo(),
+ T, TInfo, BitWidth, D->isMutable(),
+ D->hasInClassInitializer());
+ ToField->setAccess(D->getAccess());
+ ToField->setLexicalDeclContext(LexicalDC);
+ if (ToField->hasInClassInitializer())
+ ToField->setInClassInitializer(D->getInClassInitializer());
+ Importer.Imported(D, ToField);
+ LexicalDC->addDeclInternal(ToField);
+ return ToField;
+}
+
+Decl *ASTNodeImporter::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
+ // Import the major distinguishing characteristics of a variable.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Determine whether we've already imported this field.
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (IndirectFieldDecl *FoundField
+ = dyn_cast<IndirectFieldDecl>(FoundDecls[I])) {
+ if (Importer.IsStructurallyEquivalent(D->getType(),
+ FoundField->getType())) {
+ Importer.Imported(D, FoundField);
+ return FoundField;
+ }
+
+ Importer.ToDiag(Loc, diag::err_odr_field_type_inconsistent)
+ << Name << D->getType() << FoundField->getType();
+ Importer.ToDiag(FoundField->getLocation(), diag::note_odr_value_here)
+ << FoundField->getType();
+ return 0;
+ }
+ }
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ NamedDecl **NamedChain =
+ new (Importer.getToContext())NamedDecl*[D->getChainingSize()];
+
+ unsigned i = 0;
+ for (IndirectFieldDecl::chain_iterator PI = D->chain_begin(),
+ PE = D->chain_end(); PI != PE; ++PI) {
+ Decl* D = Importer.Import(*PI);
+ if (!D)
+ return 0;
+ NamedChain[i++] = cast<NamedDecl>(D);
+ }
+
+ IndirectFieldDecl *ToIndirectField = IndirectFieldDecl::Create(
+ Importer.getToContext(), DC,
+ Loc, Name.getAsIdentifierInfo(), T,
+ NamedChain, D->getChainingSize());
+ ToIndirectField->setAccess(D->getAccess());
+ ToIndirectField->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToIndirectField);
+ LexicalDC->addDeclInternal(ToIndirectField);
+ return ToIndirectField;
+}
+
+Decl *ASTNodeImporter::VisitObjCIvarDecl(ObjCIvarDecl *D) {
+ // Import the major distinguishing characteristics of an ivar.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Determine whether we've already imported this ivar
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (ObjCIvarDecl *FoundIvar = dyn_cast<ObjCIvarDecl>(FoundDecls[I])) {
+ if (Importer.IsStructurallyEquivalent(D->getType(),
+ FoundIvar->getType())) {
+ Importer.Imported(D, FoundIvar);
+ return FoundIvar;
+ }
+
+ Importer.ToDiag(Loc, diag::err_odr_ivar_type_inconsistent)
+ << Name << D->getType() << FoundIvar->getType();
+ Importer.ToDiag(FoundIvar->getLocation(), diag::note_odr_value_here)
+ << FoundIvar->getType();
+ return 0;
+ }
+ }
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ Expr *BitWidth = Importer.Import(D->getBitWidth());
+ if (!BitWidth && D->getBitWidth())
+ return 0;
+
+ ObjCIvarDecl *ToIvar = ObjCIvarDecl::Create(Importer.getToContext(),
+ cast<ObjCContainerDecl>(DC),
+ Importer.Import(D->getInnerLocStart()),
+ Loc, Name.getAsIdentifierInfo(),
+ T, TInfo, D->getAccessControl(),
+ BitWidth, D->getSynthesize());
+ ToIvar->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToIvar);
+ LexicalDC->addDeclInternal(ToIvar);
+ return ToIvar;
+
+}
+
+Decl *ASTNodeImporter::VisitVarDecl(VarDecl *D) {
+ // Import the major distinguishing characteristics of a variable.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Try to find a variable in our own ("to") context with the same name and
+ // in the same context as the variable we're importing.
+ if (D->isFileVarDecl()) {
+ VarDecl *MergeWithVar = 0;
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(IDNS))
+ continue;
+
+ if (VarDecl *FoundVar = dyn_cast<VarDecl>(FoundDecls[I])) {
+ // We have found a variable that we may need to merge with. Check it.
+ if (isExternalLinkage(FoundVar->getLinkage()) &&
+ isExternalLinkage(D->getLinkage())) {
+ if (Importer.IsStructurallyEquivalent(D->getType(),
+ FoundVar->getType())) {
+ MergeWithVar = FoundVar;
+ break;
+ }
+
+ const ArrayType *FoundArray
+ = Importer.getToContext().getAsArrayType(FoundVar->getType());
+ const ArrayType *TArray
+ = Importer.getToContext().getAsArrayType(D->getType());
+ if (FoundArray && TArray) {
+ if (isa<IncompleteArrayType>(FoundArray) &&
+ isa<ConstantArrayType>(TArray)) {
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ FoundVar->setType(T);
+ MergeWithVar = FoundVar;
+ break;
+ } else if (isa<IncompleteArrayType>(TArray) &&
+ isa<ConstantArrayType>(FoundArray)) {
+ MergeWithVar = FoundVar;
+ break;
+ }
+ }
+
+ Importer.ToDiag(Loc, diag::err_odr_variable_type_inconsistent)
+ << Name << D->getType() << FoundVar->getType();
+ Importer.ToDiag(FoundVar->getLocation(), diag::note_odr_value_here)
+ << FoundVar->getType();
+ }
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (MergeWithVar) {
+ // An equivalent variable with external linkage has been found. Link
+ // the two declarations, then merge them.
+ Importer.Imported(D, MergeWithVar);
+
+ if (VarDecl *DDef = D->getDefinition()) {
+ if (VarDecl *ExistingDef = MergeWithVar->getDefinition()) {
+ Importer.ToDiag(ExistingDef->getLocation(),
+ diag::err_odr_variable_multiple_def)
+ << Name;
+ Importer.FromDiag(DDef->getLocation(), diag::note_odr_defined_here);
+ } else {
+ Expr *Init = Importer.Import(DDef->getInit());
+ MergeWithVar->setInit(Init);
+ if (DDef->isInitKnownICE()) {
+ EvaluatedStmt *Eval = MergeWithVar->ensureEvaluatedStmt();
+ Eval->CheckedICE = true;
+ Eval->IsICE = DDef->isInitICE();
+ }
+ }
+ }
+
+ return MergeWithVar;
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, IDNS,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ if (!Name)
+ return 0;
+ }
+ }
+
+ // Import the type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ // Create the imported variable.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ VarDecl *ToVar = VarDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getInnerLocStart()),
+ Loc, Name.getAsIdentifierInfo(),
+ T, TInfo,
+ D->getStorageClass(),
+ D->getStorageClassAsWritten());
+ ToVar->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
+ ToVar->setAccess(D->getAccess());
+ ToVar->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToVar);
+ LexicalDC->addDeclInternal(ToVar);
+
+ // Merge the initializer.
+ // FIXME: Can we really import any initializer? Alternatively, we could force
+ // ourselves to import every declaration of a variable and then only use
+ // getInit() here.
+ ToVar->setInit(Importer.Import(const_cast<Expr *>(D->getAnyInitializer())));
+
+ // FIXME: Other bits to merge?
+
+ return ToVar;
+}
+
+Decl *ASTNodeImporter::VisitImplicitParamDecl(ImplicitParamDecl *D) {
+ // Parameters are created in the translation unit's context, then moved
+ // into the function declaration's context afterward.
+ DeclContext *DC = Importer.getToContext().getTranslationUnitDecl();
+
+ // Import the name of this declaration.
+ DeclarationName Name = Importer.Import(D->getDeclName());
+ if (D->getDeclName() && !Name)
+ return 0;
+
+ // Import the location of this declaration.
+ SourceLocation Loc = Importer.Import(D->getLocation());
+
+ // Import the parameter's type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ // Create the imported parameter.
+ ImplicitParamDecl *ToParm
+ = ImplicitParamDecl::Create(Importer.getToContext(), DC,
+ Loc, Name.getAsIdentifierInfo(),
+ T);
+ return Importer.Imported(D, ToParm);
+}
+
+Decl *ASTNodeImporter::VisitParmVarDecl(ParmVarDecl *D) {
+ // Parameters are created in the translation unit's context, then moved
+ // into the function declaration's context afterward.
+ DeclContext *DC = Importer.getToContext().getTranslationUnitDecl();
+
+ // Import the name of this declaration.
+ DeclarationName Name = Importer.Import(D->getDeclName());
+ if (D->getDeclName() && !Name)
+ return 0;
+
+ // Import the location of this declaration.
+ SourceLocation Loc = Importer.Import(D->getLocation());
+
+ // Import the parameter's type.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ // Create the imported parameter.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ ParmVarDecl *ToParm = ParmVarDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getInnerLocStart()),
+ Loc, Name.getAsIdentifierInfo(),
+ T, TInfo, D->getStorageClass(),
+ D->getStorageClassAsWritten(),
+ /*FIXME: Default argument*/ 0);
+ ToParm->setHasInheritedDefaultArg(D->hasInheritedDefaultArg());
+ return Importer.Imported(D, ToParm);
+}
+
+Decl *ASTNodeImporter::VisitObjCMethodDecl(ObjCMethodDecl *D) {
+ // Import the major distinguishing characteristics of a method.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (ObjCMethodDecl *FoundMethod = dyn_cast<ObjCMethodDecl>(FoundDecls[I])) {
+ if (FoundMethod->isInstanceMethod() != D->isInstanceMethod())
+ continue;
+
+ // Check return types.
+ if (!Importer.IsStructurallyEquivalent(D->getResultType(),
+ FoundMethod->getResultType())) {
+ Importer.ToDiag(Loc, diag::err_odr_objc_method_result_type_inconsistent)
+ << D->isInstanceMethod() << Name
+ << D->getResultType() << FoundMethod->getResultType();
+ Importer.ToDiag(FoundMethod->getLocation(),
+ diag::note_odr_objc_method_here)
+ << D->isInstanceMethod() << Name;
+ return 0;
+ }
+
+ // Check the number of parameters.
+ if (D->param_size() != FoundMethod->param_size()) {
+ Importer.ToDiag(Loc, diag::err_odr_objc_method_num_params_inconsistent)
+ << D->isInstanceMethod() << Name
+ << D->param_size() << FoundMethod->param_size();
+ Importer.ToDiag(FoundMethod->getLocation(),
+ diag::note_odr_objc_method_here)
+ << D->isInstanceMethod() << Name;
+ return 0;
+ }
+
+ // Check parameter types.
+ for (ObjCMethodDecl::param_iterator P = D->param_begin(),
+ PEnd = D->param_end(), FoundP = FoundMethod->param_begin();
+ P != PEnd; ++P, ++FoundP) {
+ if (!Importer.IsStructurallyEquivalent((*P)->getType(),
+ (*FoundP)->getType())) {
+ Importer.FromDiag((*P)->getLocation(),
+ diag::err_odr_objc_method_param_type_inconsistent)
+ << D->isInstanceMethod() << Name
+ << (*P)->getType() << (*FoundP)->getType();
+ Importer.ToDiag((*FoundP)->getLocation(), diag::note_odr_value_here)
+ << (*FoundP)->getType();
+ return 0;
+ }
+ }
+
+ // Check variadic/non-variadic.
+ // Check the number of parameters.
+ if (D->isVariadic() != FoundMethod->isVariadic()) {
+ Importer.ToDiag(Loc, diag::err_odr_objc_method_variadic_inconsistent)
+ << D->isInstanceMethod() << Name;
+ Importer.ToDiag(FoundMethod->getLocation(),
+ diag::note_odr_objc_method_here)
+ << D->isInstanceMethod() << Name;
+ return 0;
+ }
+
+ // FIXME: Any other bits we need to merge?
+ return Importer.Imported(D, FoundMethod);
+ }
+ }
+
+ // Import the result type.
+ QualType ResultTy = Importer.Import(D->getResultType());
+ if (ResultTy.isNull())
+ return 0;
+
+ TypeSourceInfo *ResultTInfo = Importer.Import(D->getResultTypeSourceInfo());
+
+ ObjCMethodDecl *ToMethod
+ = ObjCMethodDecl::Create(Importer.getToContext(),
+ Loc,
+ Importer.Import(D->getLocEnd()),
+ Name.getObjCSelector(),
+ ResultTy, ResultTInfo, DC,
+ D->isInstanceMethod(),
+ D->isVariadic(),
+ D->isSynthesized(),
+ D->isImplicit(),
+ D->isDefined(),
+ D->getImplementationControl(),
+ D->hasRelatedResultType());
+
+ // FIXME: When we decide to merge method definitions, we'll need to
+ // deal with implicit parameters.
+
+ // Import the parameters
+ SmallVector<ParmVarDecl *, 5> ToParams;
+ for (ObjCMethodDecl::param_iterator FromP = D->param_begin(),
+ FromPEnd = D->param_end();
+ FromP != FromPEnd;
+ ++FromP) {
+ ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(*FromP));
+ if (!ToP)
+ return 0;
+
+ ToParams.push_back(ToP);
+ }
+
+ // Set the parameters.
+ for (unsigned I = 0, N = ToParams.size(); I != N; ++I) {
+ ToParams[I]->setOwningFunction(ToMethod);
+ ToMethod->addDeclInternal(ToParams[I]);
+ }
+ SmallVector<SourceLocation, 12> SelLocs;
+ D->getSelectorLocs(SelLocs);
+ ToMethod->setMethodParams(Importer.getToContext(), ToParams, SelLocs);
+
+ ToMethod->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToMethod);
+ LexicalDC->addDeclInternal(ToMethod);
+ return ToMethod;
+}
+
+Decl *ASTNodeImporter::VisitObjCCategoryDecl(ObjCCategoryDecl *D) {
+ // Import the major distinguishing characteristics of a category.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ ObjCInterfaceDecl *ToInterface
+ = cast_or_null<ObjCInterfaceDecl>(Importer.Import(D->getClassInterface()));
+ if (!ToInterface)
+ return 0;
+
+ // Determine if we've already encountered this category.
+ ObjCCategoryDecl *MergeWithCategory
+ = ToInterface->FindCategoryDeclaration(Name.getAsIdentifierInfo());
+ ObjCCategoryDecl *ToCategory = MergeWithCategory;
+ if (!ToCategory) {
+ ToCategory = ObjCCategoryDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getAtStartLoc()),
+ Loc,
+ Importer.Import(D->getCategoryNameLoc()),
+ Name.getAsIdentifierInfo(),
+ ToInterface,
+ Importer.Import(D->getIvarLBraceLoc()),
+ Importer.Import(D->getIvarRBraceLoc()));
+ ToCategory->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(ToCategory);
+ Importer.Imported(D, ToCategory);
+
+ // Import protocols
+ SmallVector<ObjCProtocolDecl *, 4> Protocols;
+ SmallVector<SourceLocation, 4> ProtocolLocs;
+ ObjCCategoryDecl::protocol_loc_iterator FromProtoLoc
+ = D->protocol_loc_begin();
+ for (ObjCCategoryDecl::protocol_iterator FromProto = D->protocol_begin(),
+ FromProtoEnd = D->protocol_end();
+ FromProto != FromProtoEnd;
+ ++FromProto, ++FromProtoLoc) {
+ ObjCProtocolDecl *ToProto
+ = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
+ if (!ToProto)
+ return 0;
+ Protocols.push_back(ToProto);
+ ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
+ }
+
+ // FIXME: If we're merging, make sure that the protocol list is the same.
+ ToCategory->setProtocolList(Protocols.data(), Protocols.size(),
+ ProtocolLocs.data(), Importer.getToContext());
+
+ } else {
+ Importer.Imported(D, ToCategory);
+ }
+
+ // Import all of the members of this category.
+ ImportDeclContext(D);
+
+ // If we have an implementation, import it as well.
+ if (D->getImplementation()) {
+ ObjCCategoryImplDecl *Impl
+ = cast_or_null<ObjCCategoryImplDecl>(
+ Importer.Import(D->getImplementation()));
+ if (!Impl)
+ return 0;
+
+ ToCategory->setImplementation(Impl);
+ }
+
+ return ToCategory;
+}
+
+bool ASTNodeImporter::ImportDefinition(ObjCProtocolDecl *From,
+ ObjCProtocolDecl *To,
+ ImportDefinitionKind Kind) {
+ if (To->getDefinition()) {
+ if (shouldForceImportDeclContext(Kind))
+ ImportDeclContext(From);
+ return false;
+ }
+
+ // Start the protocol definition
+ To->startDefinition();
+
+ // Import protocols
+ SmallVector<ObjCProtocolDecl *, 4> Protocols;
+ SmallVector<SourceLocation, 4> ProtocolLocs;
+ ObjCProtocolDecl::protocol_loc_iterator
+ FromProtoLoc = From->protocol_loc_begin();
+ for (ObjCProtocolDecl::protocol_iterator FromProto = From->protocol_begin(),
+ FromProtoEnd = From->protocol_end();
+ FromProto != FromProtoEnd;
+ ++FromProto, ++FromProtoLoc) {
+ ObjCProtocolDecl *ToProto
+ = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
+ if (!ToProto)
+ return true;
+ Protocols.push_back(ToProto);
+ ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
+ }
+
+ // FIXME: If we're merging, make sure that the protocol list is the same.
+ To->setProtocolList(Protocols.data(), Protocols.size(),
+ ProtocolLocs.data(), Importer.getToContext());
+
+ if (shouldForceImportDeclContext(Kind)) {
+ // Import all of the members of this protocol.
+ ImportDeclContext(From, /*ForceImport=*/true);
+ }
+ return false;
+}
+
+Decl *ASTNodeImporter::VisitObjCProtocolDecl(ObjCProtocolDecl *D) {
+ // If this protocol has a definition in the translation unit we're coming
+ // from, but this particular declaration is not that definition, import the
+ // definition and map to that.
+ ObjCProtocolDecl *Definition = D->getDefinition();
+ if (Definition && Definition != D) {
+ Decl *ImportedDef = Importer.Import(Definition);
+ if (!ImportedDef)
+ return 0;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ // Import the major distinguishing characteristics of a protocol.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ ObjCProtocolDecl *MergeWithProtocol = 0;
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_ObjCProtocol))
+ continue;
+
+ if ((MergeWithProtocol = dyn_cast<ObjCProtocolDecl>(FoundDecls[I])))
+ break;
+ }
+
+ ObjCProtocolDecl *ToProto = MergeWithProtocol;
+ if (!ToProto) {
+ ToProto = ObjCProtocolDecl::Create(Importer.getToContext(), DC,
+ Name.getAsIdentifierInfo(), Loc,
+ Importer.Import(D->getAtStartLoc()),
+ /*PrevDecl=*/0);
+ ToProto->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(ToProto);
+ }
+
+ Importer.Imported(D, ToProto);
+
+ if (D->isThisDeclarationADefinition() && ImportDefinition(D, ToProto))
+ return 0;
+
+ return ToProto;
+}
+
+bool ASTNodeImporter::ImportDefinition(ObjCInterfaceDecl *From,
+ ObjCInterfaceDecl *To,
+ ImportDefinitionKind Kind) {
+ if (To->getDefinition()) {
+ // Check consistency of superclass.
+ ObjCInterfaceDecl *FromSuper = From->getSuperClass();
+ if (FromSuper) {
+ FromSuper = cast_or_null<ObjCInterfaceDecl>(Importer.Import(FromSuper));
+ if (!FromSuper)
+ return true;
+ }
+
+ ObjCInterfaceDecl *ToSuper = To->getSuperClass();
+ if ((bool)FromSuper != (bool)ToSuper ||
+ (FromSuper && !declaresSameEntity(FromSuper, ToSuper))) {
+ Importer.ToDiag(To->getLocation(),
+ diag::err_odr_objc_superclass_inconsistent)
+ << To->getDeclName();
+ if (ToSuper)
+ Importer.ToDiag(To->getSuperClassLoc(), diag::note_odr_objc_superclass)
+ << To->getSuperClass()->getDeclName();
+ else
+ Importer.ToDiag(To->getLocation(),
+ diag::note_odr_objc_missing_superclass);
+ if (From->getSuperClass())
+ Importer.FromDiag(From->getSuperClassLoc(),
+ diag::note_odr_objc_superclass)
+ << From->getSuperClass()->getDeclName();
+ else
+ Importer.FromDiag(From->getLocation(),
+ diag::note_odr_objc_missing_superclass);
+ }
+
+ if (shouldForceImportDeclContext(Kind))
+ ImportDeclContext(From);
+ return false;
+ }
+
+ // Start the definition.
+ To->startDefinition();
+
+ // If this class has a superclass, import it.
+ if (From->getSuperClass()) {
+ ObjCInterfaceDecl *Super = cast_or_null<ObjCInterfaceDecl>(
+ Importer.Import(From->getSuperClass()));
+ if (!Super)
+ return true;
+
+ To->setSuperClass(Super);
+ To->setSuperClassLoc(Importer.Import(From->getSuperClassLoc()));
+ }
+
+ // Import protocols
+ SmallVector<ObjCProtocolDecl *, 4> Protocols;
+ SmallVector<SourceLocation, 4> ProtocolLocs;
+ ObjCInterfaceDecl::protocol_loc_iterator
+ FromProtoLoc = From->protocol_loc_begin();
+
+ for (ObjCInterfaceDecl::protocol_iterator FromProto = From->protocol_begin(),
+ FromProtoEnd = From->protocol_end();
+ FromProto != FromProtoEnd;
+ ++FromProto, ++FromProtoLoc) {
+ ObjCProtocolDecl *ToProto
+ = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto));
+ if (!ToProto)
+ return true;
+ Protocols.push_back(ToProto);
+ ProtocolLocs.push_back(Importer.Import(*FromProtoLoc));
+ }
+
+ // FIXME: If we're merging, make sure that the protocol list is the same.
+ To->setProtocolList(Protocols.data(), Protocols.size(),
+ ProtocolLocs.data(), Importer.getToContext());
+
+ // Import categories. When the categories themselves are imported, they'll
+ // hook themselves into this interface.
+ for (ObjCCategoryDecl *FromCat = From->getCategoryList(); FromCat;
+ FromCat = FromCat->getNextClassCategory())
+ Importer.Import(FromCat);
+
+ // If we have an @implementation, import it as well.
+ if (From->getImplementation()) {
+ ObjCImplementationDecl *Impl = cast_or_null<ObjCImplementationDecl>(
+ Importer.Import(From->getImplementation()));
+ if (!Impl)
+ return true;
+
+ To->setImplementation(Impl);
+ }
+
+ if (shouldForceImportDeclContext(Kind)) {
+ // Import all of the members of this class.
+ ImportDeclContext(From, /*ForceImport=*/true);
+ }
+ return false;
+}
+
+Decl *ASTNodeImporter::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) {
+ // If this class has a definition in the translation unit we're coming from,
+ // but this particular declaration is not that definition, import the
+ // definition and map to that.
+ ObjCInterfaceDecl *Definition = D->getDefinition();
+ if (Definition && Definition != D) {
+ Decl *ImportedDef = Importer.Import(Definition);
+ if (!ImportedDef)
+ return 0;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ // Import the major distinguishing characteristics of an @interface.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Look for an existing interface with the same name.
+ ObjCInterfaceDecl *MergeWithIface = 0;
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary))
+ continue;
+
+ if ((MergeWithIface = dyn_cast<ObjCInterfaceDecl>(FoundDecls[I])))
+ break;
+ }
+
+ // Create an interface declaration, if one does not already exist.
+ ObjCInterfaceDecl *ToIface = MergeWithIface;
+ if (!ToIface) {
+ ToIface = ObjCInterfaceDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getAtStartLoc()),
+ Name.getAsIdentifierInfo(),
+ /*PrevDecl=*/0,Loc,
+ D->isImplicitInterfaceDecl());
+ ToIface->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(ToIface);
+ }
+ Importer.Imported(D, ToIface);
+
+ if (D->isThisDeclarationADefinition() && ImportDefinition(D, ToIface))
+ return 0;
+
+ return ToIface;
+}
+
+Decl *ASTNodeImporter::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
+ ObjCCategoryDecl *Category = cast_or_null<ObjCCategoryDecl>(
+ Importer.Import(D->getCategoryDecl()));
+ if (!Category)
+ return 0;
+
+ ObjCCategoryImplDecl *ToImpl = Category->getImplementation();
+ if (!ToImpl) {
+ DeclContext *DC = Importer.ImportContext(D->getDeclContext());
+ if (!DC)
+ return 0;
+
+ SourceLocation CategoryNameLoc = Importer.Import(D->getCategoryNameLoc());
+ ToImpl = ObjCCategoryImplDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getIdentifier()),
+ Category->getClassInterface(),
+ Importer.Import(D->getLocation()),
+ Importer.Import(D->getAtStartLoc()),
+ CategoryNameLoc);
+
+ DeclContext *LexicalDC = DC;
+ if (D->getDeclContext() != D->getLexicalDeclContext()) {
+ LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
+ if (!LexicalDC)
+ return 0;
+
+ ToImpl->setLexicalDeclContext(LexicalDC);
+ }
+
+ LexicalDC->addDeclInternal(ToImpl);
+ Category->setImplementation(ToImpl);
+ }
+
+ Importer.Imported(D, ToImpl);
+ ImportDeclContext(D);
+ return ToImpl;
+}
+
+Decl *ASTNodeImporter::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
+ // Find the corresponding interface.
+ ObjCInterfaceDecl *Iface = cast_or_null<ObjCInterfaceDecl>(
+ Importer.Import(D->getClassInterface()));
+ if (!Iface)
+ return 0;
+
+ // Import the superclass, if any.
+ ObjCInterfaceDecl *Super = 0;
+ if (D->getSuperClass()) {
+ Super = cast_or_null<ObjCInterfaceDecl>(
+ Importer.Import(D->getSuperClass()));
+ if (!Super)
+ return 0;
+ }
+
+ ObjCImplementationDecl *Impl = Iface->getImplementation();
+ if (!Impl) {
+ // We haven't imported an implementation yet. Create a new @implementation
+ // now.
+ Impl = ObjCImplementationDecl::Create(Importer.getToContext(),
+ Importer.ImportContext(D->getDeclContext()),
+ Iface, Super,
+ Importer.Import(D->getLocation()),
+ Importer.Import(D->getAtStartLoc()),
+ Importer.Import(D->getIvarLBraceLoc()),
+ Importer.Import(D->getIvarRBraceLoc()));
+
+ if (D->getDeclContext() != D->getLexicalDeclContext()) {
+ DeclContext *LexicalDC
+ = Importer.ImportContext(D->getLexicalDeclContext());
+ if (!LexicalDC)
+ return 0;
+ Impl->setLexicalDeclContext(LexicalDC);
+ }
+
+ // Associate the implementation with the class it implements.
+ Iface->setImplementation(Impl);
+ Importer.Imported(D, Iface->getImplementation());
+ } else {
+ Importer.Imported(D, Iface->getImplementation());
+
+ // Verify that the existing @implementation has the same superclass.
+ if ((Super && !Impl->getSuperClass()) ||
+ (!Super && Impl->getSuperClass()) ||
+ (Super && Impl->getSuperClass() &&
+ !declaresSameEntity(Super->getCanonicalDecl(), Impl->getSuperClass()))) {
+ Importer.ToDiag(Impl->getLocation(),
+ diag::err_odr_objc_superclass_inconsistent)
+ << Iface->getDeclName();
+ // FIXME: It would be nice to have the location of the superclass
+ // below.
+ if (Impl->getSuperClass())
+ Importer.ToDiag(Impl->getLocation(),
+ diag::note_odr_objc_superclass)
+ << Impl->getSuperClass()->getDeclName();
+ else
+ Importer.ToDiag(Impl->getLocation(),
+ diag::note_odr_objc_missing_superclass);
+ if (D->getSuperClass())
+ Importer.FromDiag(D->getLocation(),
+ diag::note_odr_objc_superclass)
+ << D->getSuperClass()->getDeclName();
+ else
+ Importer.FromDiag(D->getLocation(),
+ diag::note_odr_objc_missing_superclass);
+ return 0;
+ }
+ }
+
+ // Import all of the members of this @implementation.
+ ImportDeclContext(D);
+
+ return Impl;
+}
+
+Decl *ASTNodeImporter::VisitObjCPropertyDecl(ObjCPropertyDecl *D) {
+ // Import the major distinguishing characteristics of an @property.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // Check whether we have already imported this property.
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (ObjCPropertyDecl *FoundProp
+ = dyn_cast<ObjCPropertyDecl>(FoundDecls[I])) {
+ // Check property types.
+ if (!Importer.IsStructurallyEquivalent(D->getType(),
+ FoundProp->getType())) {
+ Importer.ToDiag(Loc, diag::err_odr_objc_property_type_inconsistent)
+ << Name << D->getType() << FoundProp->getType();
+ Importer.ToDiag(FoundProp->getLocation(), diag::note_odr_value_here)
+ << FoundProp->getType();
+ return 0;
+ }
+
+ // FIXME: Check property attributes, getters, setters, etc.?
+
+ // Consider these properties to be equivalent.
+ Importer.Imported(D, FoundProp);
+ return FoundProp;
+ }
+ }
+
+ // Import the type.
+ TypeSourceInfo *T = Importer.Import(D->getTypeSourceInfo());
+ if (!T)
+ return 0;
+
+ // Create the new property.
+ ObjCPropertyDecl *ToProperty
+ = ObjCPropertyDecl::Create(Importer.getToContext(), DC, Loc,
+ Name.getAsIdentifierInfo(),
+ Importer.Import(D->getAtLoc()),
+ Importer.Import(D->getLParenLoc()),
+ T,
+ D->getPropertyImplementation());
+ Importer.Imported(D, ToProperty);
+ ToProperty->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(ToProperty);
+
+ ToProperty->setPropertyAttributes(D->getPropertyAttributes());
+ ToProperty->setPropertyAttributesAsWritten(
+ D->getPropertyAttributesAsWritten());
+ ToProperty->setGetterName(Importer.Import(D->getGetterName()));
+ ToProperty->setSetterName(Importer.Import(D->getSetterName()));
+ ToProperty->setGetterMethodDecl(
+ cast_or_null<ObjCMethodDecl>(Importer.Import(D->getGetterMethodDecl())));
+ ToProperty->setSetterMethodDecl(
+ cast_or_null<ObjCMethodDecl>(Importer.Import(D->getSetterMethodDecl())));
+ ToProperty->setPropertyIvarDecl(
+ cast_or_null<ObjCIvarDecl>(Importer.Import(D->getPropertyIvarDecl())));
+ return ToProperty;
+}
+
+Decl *ASTNodeImporter::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) {
+ ObjCPropertyDecl *Property = cast_or_null<ObjCPropertyDecl>(
+ Importer.Import(D->getPropertyDecl()));
+ if (!Property)
+ return 0;
+
+ DeclContext *DC = Importer.ImportContext(D->getDeclContext());
+ if (!DC)
+ return 0;
+
+ // Import the lexical declaration context.
+ DeclContext *LexicalDC = DC;
+ if (D->getDeclContext() != D->getLexicalDeclContext()) {
+ LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
+ if (!LexicalDC)
+ return 0;
+ }
+
+ ObjCImplDecl *InImpl = dyn_cast<ObjCImplDecl>(LexicalDC);
+ if (!InImpl)
+ return 0;
+
+ // Import the ivar (for an @synthesize).
+ ObjCIvarDecl *Ivar = 0;
+ if (D->getPropertyIvarDecl()) {
+ Ivar = cast_or_null<ObjCIvarDecl>(
+ Importer.Import(D->getPropertyIvarDecl()));
+ if (!Ivar)
+ return 0;
+ }
+
+ ObjCPropertyImplDecl *ToImpl
+ = InImpl->FindPropertyImplDecl(Property->getIdentifier());
+ if (!ToImpl) {
+ ToImpl = ObjCPropertyImplDecl::Create(Importer.getToContext(), DC,
+ Importer.Import(D->getLocStart()),
+ Importer.Import(D->getLocation()),
+ Property,
+ D->getPropertyImplementation(),
+ Ivar,
+ Importer.Import(D->getPropertyIvarDeclLoc()));
+ ToImpl->setLexicalDeclContext(LexicalDC);
+ Importer.Imported(D, ToImpl);
+ LexicalDC->addDeclInternal(ToImpl);
+ } else {
+ // Check that we have the same kind of property implementation (@synthesize
+ // vs. @dynamic).
+ if (D->getPropertyImplementation() != ToImpl->getPropertyImplementation()) {
+ Importer.ToDiag(ToImpl->getLocation(),
+ diag::err_odr_objc_property_impl_kind_inconsistent)
+ << Property->getDeclName()
+ << (ToImpl->getPropertyImplementation()
+ == ObjCPropertyImplDecl::Dynamic);
+ Importer.FromDiag(D->getLocation(),
+ diag::note_odr_objc_property_impl_kind)
+ << D->getPropertyDecl()->getDeclName()
+ << (D->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
+ return 0;
+ }
+
+ // For @synthesize, check that we have the same
+ if (D->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize &&
+ Ivar != ToImpl->getPropertyIvarDecl()) {
+ Importer.ToDiag(ToImpl->getPropertyIvarDeclLoc(),
+ diag::err_odr_objc_synthesize_ivar_inconsistent)
+ << Property->getDeclName()
+ << ToImpl->getPropertyIvarDecl()->getDeclName()
+ << Ivar->getDeclName();
+ Importer.FromDiag(D->getPropertyIvarDeclLoc(),
+ diag::note_odr_objc_synthesize_ivar_here)
+ << D->getPropertyIvarDecl()->getDeclName();
+ return 0;
+ }
+
+ // Merge the existing implementation with the new implementation.
+ Importer.Imported(D, ToImpl);
+ }
+
+ return ToImpl;
+}
+
+Decl *ASTNodeImporter::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) {
+ // For template arguments, we adopt the translation unit as our declaration
+ // context. This context will be fixed when the actual template declaration
+ // is created.
+
+ // FIXME: Import default argument.
+ return TemplateTypeParmDecl::Create(Importer.getToContext(),
+ Importer.getToContext().getTranslationUnitDecl(),
+ Importer.Import(D->getLocStart()),
+ Importer.Import(D->getLocation()),
+ D->getDepth(),
+ D->getIndex(),
+ Importer.Import(D->getIdentifier()),
+ D->wasDeclaredWithTypename(),
+ D->isParameterPack());
+}
+
+Decl *
+ASTNodeImporter::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
+ // Import the name of this declaration.
+ DeclarationName Name = Importer.Import(D->getDeclName());
+ if (D->getDeclName() && !Name)
+ return 0;
+
+ // Import the location of this declaration.
+ SourceLocation Loc = Importer.Import(D->getLocation());
+
+ // Import the type of this declaration.
+ QualType T = Importer.Import(D->getType());
+ if (T.isNull())
+ return 0;
+
+ // Import type-source information.
+ TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo());
+ if (D->getTypeSourceInfo() && !TInfo)
+ return 0;
+
+ // FIXME: Import default argument.
+
+ return NonTypeTemplateParmDecl::Create(Importer.getToContext(),
+ Importer.getToContext().getTranslationUnitDecl(),
+ Importer.Import(D->getInnerLocStart()),
+ Loc, D->getDepth(), D->getPosition(),
+ Name.getAsIdentifierInfo(),
+ T, D->isParameterPack(), TInfo);
+}
+
+Decl *
+ASTNodeImporter::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) {
+ // Import the name of this declaration.
+ DeclarationName Name = Importer.Import(D->getDeclName());
+ if (D->getDeclName() && !Name)
+ return 0;
+
+ // Import the location of this declaration.
+ SourceLocation Loc = Importer.Import(D->getLocation());
+
+ // Import template parameters.
+ TemplateParameterList *TemplateParams
+ = ImportTemplateParameterList(D->getTemplateParameters());
+ if (!TemplateParams)
+ return 0;
+
+ // FIXME: Import default argument.
+
+ return TemplateTemplateParmDecl::Create(Importer.getToContext(),
+ Importer.getToContext().getTranslationUnitDecl(),
+ Loc, D->getDepth(), D->getPosition(),
+ D->isParameterPack(),
+ Name.getAsIdentifierInfo(),
+ TemplateParams);
+}
+
+Decl *ASTNodeImporter::VisitClassTemplateDecl(ClassTemplateDecl *D) {
+ // If this record has a definition in the translation unit we're coming from,
+ // but this particular declaration is not that definition, import the
+ // definition and map to that.
+ CXXRecordDecl *Definition
+ = cast_or_null<CXXRecordDecl>(D->getTemplatedDecl()->getDefinition());
+ if (Definition && Definition != D->getTemplatedDecl()) {
+ Decl *ImportedDef
+ = Importer.Import(Definition->getDescribedClassTemplate());
+ if (!ImportedDef)
+ return 0;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ // Import the major distinguishing characteristics of this class template.
+ DeclContext *DC, *LexicalDC;
+ DeclarationName Name;
+ SourceLocation Loc;
+ if (ImportDeclParts(D, DC, LexicalDC, Name, Loc))
+ return 0;
+
+ // We may already have a template of the same name; try to find and match it.
+ if (!DC->isFunctionOrMethod()) {
+ SmallVector<NamedDecl *, 4> ConflictingDecls;
+ llvm::SmallVector<NamedDecl *, 2> FoundDecls;
+ DC->localUncachedLookup(Name, FoundDecls);
+ for (unsigned I = 0, N = FoundDecls.size(); I != N; ++I) {
+ if (!FoundDecls[I]->isInIdentifierNamespace(Decl::IDNS_Ordinary))
+ continue;
+
+ Decl *Found = FoundDecls[I];
+ if (ClassTemplateDecl *FoundTemplate
+ = dyn_cast<ClassTemplateDecl>(Found)) {
+ if (IsStructuralMatch(D, FoundTemplate)) {
+ // The class templates structurally match; call it the same template.
+ // FIXME: We may be filling in a forward declaration here. Handle
+ // this case!
+ Importer.Imported(D->getTemplatedDecl(),
+ FoundTemplate->getTemplatedDecl());
+ return Importer.Imported(D, FoundTemplate);
+ }
+ }
+
+ ConflictingDecls.push_back(FoundDecls[I]);
+ }
+
+ if (!ConflictingDecls.empty()) {
+ Name = Importer.HandleNameConflict(Name, DC, Decl::IDNS_Ordinary,
+ ConflictingDecls.data(),
+ ConflictingDecls.size());
+ }
+
+ if (!Name)
+ return 0;
+ }
+
+ CXXRecordDecl *DTemplated = D->getTemplatedDecl();
+
+ // Create the declaration that is being templated.
+ SourceLocation StartLoc = Importer.Import(DTemplated->getLocStart());
+ SourceLocation IdLoc = Importer.Import(DTemplated->getLocation());
+ CXXRecordDecl *D2Templated = CXXRecordDecl::Create(Importer.getToContext(),
+ DTemplated->getTagKind(),
+ DC, StartLoc, IdLoc,
+ Name.getAsIdentifierInfo());
+ D2Templated->setAccess(DTemplated->getAccess());
+ D2Templated->setQualifierInfo(Importer.Import(DTemplated->getQualifierLoc()));
+ D2Templated->setLexicalDeclContext(LexicalDC);
+
+ // Create the class template declaration itself.
+ TemplateParameterList *TemplateParams
+ = ImportTemplateParameterList(D->getTemplateParameters());
+ if (!TemplateParams)
+ return 0;
+
+ ClassTemplateDecl *D2 = ClassTemplateDecl::Create(Importer.getToContext(), DC,
+ Loc, Name, TemplateParams,
+ D2Templated,
+ /*PrevDecl=*/0);
+ D2Templated->setDescribedClassTemplate(D2);
+
+ D2->setAccess(D->getAccess());
+ D2->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(D2);
+
+ // Note the relationship between the class templates.
+ Importer.Imported(D, D2);
+ Importer.Imported(DTemplated, D2Templated);
+
+ if (DTemplated->isCompleteDefinition() &&
+ !D2Templated->isCompleteDefinition()) {
+ // FIXME: Import definition!
+ }
+
+ return D2;
+}
+
+Decl *ASTNodeImporter::VisitClassTemplateSpecializationDecl(
+ ClassTemplateSpecializationDecl *D) {
+ // If this record has a definition in the translation unit we're coming from,
+ // but this particular declaration is not that definition, import the
+ // definition and map to that.
+ TagDecl *Definition = D->getDefinition();
+ if (Definition && Definition != D) {
+ Decl *ImportedDef = Importer.Import(Definition);
+ if (!ImportedDef)
+ return 0;
+
+ return Importer.Imported(D, ImportedDef);
+ }
+
+ ClassTemplateDecl *ClassTemplate
+ = cast_or_null<ClassTemplateDecl>(Importer.Import(
+ D->getSpecializedTemplate()));
+ if (!ClassTemplate)
+ return 0;
+
+ // Import the context of this declaration.
+ DeclContext *DC = ClassTemplate->getDeclContext();
+ if (!DC)
+ return 0;
+
+ DeclContext *LexicalDC = DC;
+ if (D->getDeclContext() != D->getLexicalDeclContext()) {
+ LexicalDC = Importer.ImportContext(D->getLexicalDeclContext());
+ if (!LexicalDC)
+ return 0;
+ }
+
+ // Import the location of this declaration.
+ SourceLocation StartLoc = Importer.Import(D->getLocStart());
+ SourceLocation IdLoc = Importer.Import(D->getLocation());
+
+ // Import template arguments.
+ SmallVector<TemplateArgument, 2> TemplateArgs;
+ if (ImportTemplateArguments(D->getTemplateArgs().data(),
+ D->getTemplateArgs().size(),
+ TemplateArgs))
+ return 0;
+
+ // Try to find an existing specialization with these template arguments.
+ void *InsertPos = 0;
+ ClassTemplateSpecializationDecl *D2
+ = ClassTemplate->findSpecialization(TemplateArgs.data(),
+ TemplateArgs.size(), InsertPos);
+ if (D2) {
+ // We already have a class template specialization with these template
+ // arguments.
+
+ // FIXME: Check for specialization vs. instantiation errors.
+
+ if (RecordDecl *FoundDef = D2->getDefinition()) {
+ if (!D->isCompleteDefinition() || IsStructuralMatch(D, FoundDef)) {
+ // The record types structurally match, or the "from" translation
+ // unit only had a forward declaration anyway; call it the same
+ // function.
+ return Importer.Imported(D, FoundDef);
+ }
+ }
+ } else {
+ // Create a new specialization.
+ D2 = ClassTemplateSpecializationDecl::Create(Importer.getToContext(),
+ D->getTagKind(), DC,
+ StartLoc, IdLoc,
+ ClassTemplate,
+ TemplateArgs.data(),
+ TemplateArgs.size(),
+ /*PrevDecl=*/0);
+ D2->setSpecializationKind(D->getSpecializationKind());
+
+ // Add this specialization to the class template.
+ ClassTemplate->AddSpecialization(D2, InsertPos);
+
+ // Import the qualifier, if any.
+ D2->setQualifierInfo(Importer.Import(D->getQualifierLoc()));
+
+ // Add the specialization to this context.
+ D2->setLexicalDeclContext(LexicalDC);
+ LexicalDC->addDeclInternal(D2);
+ }
+ Importer.Imported(D, D2);
+
+ if (D->isCompleteDefinition() && ImportDefinition(D, D2))
+ return 0;
+
+ return D2;
+}
+
+//----------------------------------------------------------------------------
+// Import Statements
+//----------------------------------------------------------------------------
+
+Stmt *ASTNodeImporter::VisitStmt(Stmt *S) {
+ Importer.FromDiag(S->getLocStart(), diag::err_unsupported_ast_node)
+ << S->getStmtClassName();
+ return 0;
+}
+
+//----------------------------------------------------------------------------
+// Import Expressions
+//----------------------------------------------------------------------------
+Expr *ASTNodeImporter::VisitExpr(Expr *E) {
+ Importer.FromDiag(E->getLocStart(), diag::err_unsupported_ast_node)
+ << E->getStmtClassName();
+ return 0;
+}
+
+Expr *ASTNodeImporter::VisitDeclRefExpr(DeclRefExpr *E) {
+ ValueDecl *ToD = cast_or_null<ValueDecl>(Importer.Import(E->getDecl()));
+ if (!ToD)
+ return 0;
+
+ NamedDecl *FoundD = 0;
+ if (E->getDecl() != E->getFoundDecl()) {
+ FoundD = cast_or_null<NamedDecl>(Importer.Import(E->getFoundDecl()));
+ if (!FoundD)
+ return 0;
+ }
+
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return 0;
+
+ DeclRefExpr *DRE = DeclRefExpr::Create(Importer.getToContext(),
+ Importer.Import(E->getQualifierLoc()),
+ Importer.Import(E->getTemplateKeywordLoc()),
+ ToD,
+ E->refersToEnclosingLocal(),
+ Importer.Import(E->getLocation()),
+ T, E->getValueKind(),
+ FoundD,
+ /*FIXME:TemplateArgs=*/0);
+ if (E->hadMultipleCandidates())
+ DRE->setHadMultipleCandidates(true);
+ return DRE;
+}
+
+Expr *ASTNodeImporter::VisitIntegerLiteral(IntegerLiteral *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return 0;
+
+ return IntegerLiteral::Create(Importer.getToContext(),
+ E->getValue(), T,
+ Importer.Import(E->getLocation()));
+}
+
+Expr *ASTNodeImporter::VisitCharacterLiteral(CharacterLiteral *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return 0;
+
+ return new (Importer.getToContext()) CharacterLiteral(E->getValue(),
+ E->getKind(), T,
+ Importer.Import(E->getLocation()));
+}
+
+Expr *ASTNodeImporter::VisitParenExpr(ParenExpr *E) {
+ Expr *SubExpr = Importer.Import(E->getSubExpr());
+ if (!SubExpr)
+ return 0;
+
+ return new (Importer.getToContext())
+ ParenExpr(Importer.Import(E->getLParen()),
+ Importer.Import(E->getRParen()),
+ SubExpr);
+}
+
+Expr *ASTNodeImporter::VisitUnaryOperator(UnaryOperator *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return 0;
+
+ Expr *SubExpr = Importer.Import(E->getSubExpr());
+ if (!SubExpr)
+ return 0;
+
+ return new (Importer.getToContext()) UnaryOperator(SubExpr, E->getOpcode(),
+ T, E->getValueKind(),
+ E->getObjectKind(),
+ Importer.Import(E->getOperatorLoc()));
+}
+
+Expr *ASTNodeImporter::VisitUnaryExprOrTypeTraitExpr(
+ UnaryExprOrTypeTraitExpr *E) {
+ QualType ResultType = Importer.Import(E->getType());
+
+ if (E->isArgumentType()) {
+ TypeSourceInfo *TInfo = Importer.Import(E->getArgumentTypeInfo());
+ if (!TInfo)
+ return 0;
+
+ return new (Importer.getToContext()) UnaryExprOrTypeTraitExpr(E->getKind(),
+ TInfo, ResultType,
+ Importer.Import(E->getOperatorLoc()),
+ Importer.Import(E->getRParenLoc()));
+ }
+
+ Expr *SubExpr = Importer.Import(E->getArgumentExpr());
+ if (!SubExpr)
+ return 0;
+
+ return new (Importer.getToContext()) UnaryExprOrTypeTraitExpr(E->getKind(),
+ SubExpr, ResultType,
+ Importer.Import(E->getOperatorLoc()),
+ Importer.Import(E->getRParenLoc()));
+}
+
+Expr *ASTNodeImporter::VisitBinaryOperator(BinaryOperator *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return 0;
+
+ Expr *LHS = Importer.Import(E->getLHS());
+ if (!LHS)
+ return 0;
+
+ Expr *RHS = Importer.Import(E->getRHS());
+ if (!RHS)
+ return 0;
+
+ return new (Importer.getToContext()) BinaryOperator(LHS, RHS, E->getOpcode(),
+ T, E->getValueKind(),
+ E->getObjectKind(),
+ Importer.Import(E->getOperatorLoc()));
+}
+
+Expr *ASTNodeImporter::VisitCompoundAssignOperator(CompoundAssignOperator *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return 0;
+
+ QualType CompLHSType = Importer.Import(E->getComputationLHSType());
+ if (CompLHSType.isNull())
+ return 0;
+
+ QualType CompResultType = Importer.Import(E->getComputationResultType());
+ if (CompResultType.isNull())
+ return 0;
+
+ Expr *LHS = Importer.Import(E->getLHS());
+ if (!LHS)
+ return 0;
+
+ Expr *RHS = Importer.Import(E->getRHS());
+ if (!RHS)
+ return 0;
+
+ return new (Importer.getToContext())
+ CompoundAssignOperator(LHS, RHS, E->getOpcode(),
+ T, E->getValueKind(),
+ E->getObjectKind(),
+ CompLHSType, CompResultType,
+ Importer.Import(E->getOperatorLoc()));
+}
+
+static bool ImportCastPath(CastExpr *E, CXXCastPath &Path) {
+ if (E->path_empty()) return false;
+
+ // TODO: import cast paths
+ return true;
+}
+
+Expr *ASTNodeImporter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return 0;
+
+ Expr *SubExpr = Importer.Import(E->getSubExpr());
+ if (!SubExpr)
+ return 0;
+
+ CXXCastPath BasePath;
+ if (ImportCastPath(E, BasePath))
+ return 0;
+
+ return ImplicitCastExpr::Create(Importer.getToContext(), T, E->getCastKind(),
+ SubExpr, &BasePath, E->getValueKind());
+}
+
+Expr *ASTNodeImporter::VisitCStyleCastExpr(CStyleCastExpr *E) {
+ QualType T = Importer.Import(E->getType());
+ if (T.isNull())
+ return 0;
+
+ Expr *SubExpr = Importer.Import(E->getSubExpr());
+ if (!SubExpr)
+ return 0;
+
+ TypeSourceInfo *TInfo = Importer.Import(E->getTypeInfoAsWritten());
+ if (!TInfo && E->getTypeInfoAsWritten())
+ return 0;
+
+ CXXCastPath BasePath;
+ if (ImportCastPath(E, BasePath))
+ return 0;
+
+ return CStyleCastExpr::Create(Importer.getToContext(), T,
+ E->getValueKind(), E->getCastKind(),
+ SubExpr, &BasePath, TInfo,
+ Importer.Import(E->getLParenLoc()),
+ Importer.Import(E->getRParenLoc()));
+}
+
+ASTImporter::ASTImporter(ASTContext &ToContext, FileManager &ToFileManager,
+ ASTContext &FromContext, FileManager &FromFileManager,
+ bool MinimalImport)
+ : ToContext(ToContext), FromContext(FromContext),
+ ToFileManager(ToFileManager), FromFileManager(FromFileManager),
+ Minimal(MinimalImport)
+{
+ ImportedDecls[FromContext.getTranslationUnitDecl()]
+ = ToContext.getTranslationUnitDecl();
+}
+
+ASTImporter::~ASTImporter() { }
+
+QualType ASTImporter::Import(QualType FromT) {
+ if (FromT.isNull())
+ return QualType();
+
+ const Type *fromTy = FromT.getTypePtr();
+
+ // Check whether we've already imported this type.
+ llvm::DenseMap<const Type *, const Type *>::iterator Pos
+ = ImportedTypes.find(fromTy);
+ if (Pos != ImportedTypes.end())
+ return ToContext.getQualifiedType(Pos->second, FromT.getLocalQualifiers());
+
+ // Import the type
+ ASTNodeImporter Importer(*this);
+ QualType ToT = Importer.Visit(fromTy);
+ if (ToT.isNull())
+ return ToT;
+
+ // Record the imported type.
+ ImportedTypes[fromTy] = ToT.getTypePtr();
+
+ return ToContext.getQualifiedType(ToT, FromT.getLocalQualifiers());
+}
+
+TypeSourceInfo *ASTImporter::Import(TypeSourceInfo *FromTSI) {
+ if (!FromTSI)
+ return FromTSI;
+
+ // FIXME: For now we just create a "trivial" type source info based
+ // on the type and a single location. Implement a real version of this.
+ QualType T = Import(FromTSI->getType());
+ if (T.isNull())
+ return 0;
+
+ return ToContext.getTrivialTypeSourceInfo(T,
+ FromTSI->getTypeLoc().getLocStart());
+}
+
+Decl *ASTImporter::Import(Decl *FromD) {
+ if (!FromD)
+ return 0;
+
+ ASTNodeImporter Importer(*this);
+
+ // Check whether we've already imported this declaration.
+ llvm::DenseMap<Decl *, Decl *>::iterator Pos = ImportedDecls.find(FromD);
+ if (Pos != ImportedDecls.end()) {
+ Decl *ToD = Pos->second;
+ Importer.ImportDefinitionIfNeeded(FromD, ToD);
+ return ToD;
+ }
+
+ // Import the type
+ Decl *ToD = Importer.Visit(FromD);
+ if (!ToD)
+ return 0;
+
+ // Record the imported declaration.
+ ImportedDecls[FromD] = ToD;
+
+ if (TagDecl *FromTag = dyn_cast<TagDecl>(FromD)) {
+ // Keep track of anonymous tags that have an associated typedef.
+ if (FromTag->getTypedefNameForAnonDecl())
+ AnonTagsWithPendingTypedefs.push_back(FromTag);
+ } else if (TypedefNameDecl *FromTypedef = dyn_cast<TypedefNameDecl>(FromD)) {
+ // When we've finished transforming a typedef, see whether it was the
+ // typedef for an anonymous tag.
+ for (SmallVector<TagDecl *, 4>::iterator
+ FromTag = AnonTagsWithPendingTypedefs.begin(),
+ FromTagEnd = AnonTagsWithPendingTypedefs.end();
+ FromTag != FromTagEnd; ++FromTag) {
+ if ((*FromTag)->getTypedefNameForAnonDecl() == FromTypedef) {
+ if (TagDecl *ToTag = cast_or_null<TagDecl>(Import(*FromTag))) {
+ // We found the typedef for an anonymous tag; link them.
+ ToTag->setTypedefNameForAnonDecl(cast<TypedefNameDecl>(ToD));
+ AnonTagsWithPendingTypedefs.erase(FromTag);
+ break;
+ }
+ }
+ }
+ }
+
+ return ToD;
+}
+
+DeclContext *ASTImporter::ImportContext(DeclContext *FromDC) {
+ if (!FromDC)
+ return FromDC;
+
+ DeclContext *ToDC = cast_or_null<DeclContext>(Import(cast<Decl>(FromDC)));
+ if (!ToDC)
+ return 0;
+
+ // When we're using a record/enum/Objective-C class/protocol as a context, we
+ // need it to have a definition.
+ if (RecordDecl *ToRecord = dyn_cast<RecordDecl>(ToDC)) {
+ RecordDecl *FromRecord = cast<RecordDecl>(FromDC);
+ if (ToRecord->isCompleteDefinition()) {
+ // Do nothing.
+ } else if (FromRecord->isCompleteDefinition()) {
+ ASTNodeImporter(*this).ImportDefinition(FromRecord, ToRecord,
+ ASTNodeImporter::IDK_Basic);
+ } else {
+ CompleteDecl(ToRecord);
+ }
+ } else if (EnumDecl *ToEnum = dyn_cast<EnumDecl>(ToDC)) {
+ EnumDecl *FromEnum = cast<EnumDecl>(FromDC);
+ if (ToEnum->isCompleteDefinition()) {
+ // Do nothing.
+ } else if (FromEnum->isCompleteDefinition()) {
+ ASTNodeImporter(*this).ImportDefinition(FromEnum, ToEnum,
+ ASTNodeImporter::IDK_Basic);
+ } else {
+ CompleteDecl(ToEnum);
+ }
+ } else if (ObjCInterfaceDecl *ToClass = dyn_cast<ObjCInterfaceDecl>(ToDC)) {
+ ObjCInterfaceDecl *FromClass = cast<ObjCInterfaceDecl>(FromDC);
+ if (ToClass->getDefinition()) {
+ // Do nothing.
+ } else if (ObjCInterfaceDecl *FromDef = FromClass->getDefinition()) {
+ ASTNodeImporter(*this).ImportDefinition(FromDef, ToClass,
+ ASTNodeImporter::IDK_Basic);
+ } else {
+ CompleteDecl(ToClass);
+ }
+ } else if (ObjCProtocolDecl *ToProto = dyn_cast<ObjCProtocolDecl>(ToDC)) {
+ ObjCProtocolDecl *FromProto = cast<ObjCProtocolDecl>(FromDC);
+ if (ToProto->getDefinition()) {
+ // Do nothing.
+ } else if (ObjCProtocolDecl *FromDef = FromProto->getDefinition()) {
+ ASTNodeImporter(*this).ImportDefinition(FromDef, ToProto,
+ ASTNodeImporter::IDK_Basic);
+ } else {
+ CompleteDecl(ToProto);
+ }
+ }
+
+ return ToDC;
+}
+
+Expr *ASTImporter::Import(Expr *FromE) {
+ if (!FromE)
+ return 0;
+
+ return cast_or_null<Expr>(Import(cast<Stmt>(FromE)));
+}
+
+Stmt *ASTImporter::Import(Stmt *FromS) {
+ if (!FromS)
+ return 0;
+
+ // Check whether we've already imported this declaration.
+ llvm::DenseMap<Stmt *, Stmt *>::iterator Pos = ImportedStmts.find(FromS);
+ if (Pos != ImportedStmts.end())
+ return Pos->second;
+
+ // Import the type
+ ASTNodeImporter Importer(*this);
+ Stmt *ToS = Importer.Visit(FromS);
+ if (!ToS)
+ return 0;
+
+ // Record the imported declaration.
+ ImportedStmts[FromS] = ToS;
+ return ToS;
+}
+
+NestedNameSpecifier *ASTImporter::Import(NestedNameSpecifier *FromNNS) {
+ if (!FromNNS)
+ return 0;
+
+ NestedNameSpecifier *prefix = Import(FromNNS->getPrefix());
+
+ switch (FromNNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ if (IdentifierInfo *II = Import(FromNNS->getAsIdentifier())) {
+ return NestedNameSpecifier::Create(ToContext, prefix, II);
+ }
+ return 0;
+
+ case NestedNameSpecifier::Namespace:
+ if (NamespaceDecl *NS =
+ cast<NamespaceDecl>(Import(FromNNS->getAsNamespace()))) {
+ return NestedNameSpecifier::Create(ToContext, prefix, NS);
+ }
+ return 0;
+
+ case NestedNameSpecifier::NamespaceAlias:
+ if (NamespaceAliasDecl *NSAD =
+ cast<NamespaceAliasDecl>(Import(FromNNS->getAsNamespaceAlias()))) {
+ return NestedNameSpecifier::Create(ToContext, prefix, NSAD);
+ }
+ return 0;
+
+ case NestedNameSpecifier::Global:
+ return NestedNameSpecifier::GlobalSpecifier(ToContext);
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate: {
+ QualType T = Import(QualType(FromNNS->getAsType(), 0u));
+ if (!T.isNull()) {
+ bool bTemplate = FromNNS->getKind() ==
+ NestedNameSpecifier::TypeSpecWithTemplate;
+ return NestedNameSpecifier::Create(ToContext, prefix,
+ bTemplate, T.getTypePtr());
+ }
+ }
+ return 0;
+ }
+
+ llvm_unreachable("Invalid nested name specifier kind");
+}
+
+NestedNameSpecifierLoc ASTImporter::Import(NestedNameSpecifierLoc FromNNS) {
+ // FIXME: Implement!
+ return NestedNameSpecifierLoc();
+}
+
+TemplateName ASTImporter::Import(TemplateName From) {
+ switch (From.getKind()) {
+ case TemplateName::Template:
+ if (TemplateDecl *ToTemplate
+ = cast_or_null<TemplateDecl>(Import(From.getAsTemplateDecl())))
+ return TemplateName(ToTemplate);
+
+ return TemplateName();
+
+ case TemplateName::OverloadedTemplate: {
+ OverloadedTemplateStorage *FromStorage = From.getAsOverloadedTemplate();
+ UnresolvedSet<2> ToTemplates;
+ for (OverloadedTemplateStorage::iterator I = FromStorage->begin(),
+ E = FromStorage->end();
+ I != E; ++I) {
+ if (NamedDecl *To = cast_or_null<NamedDecl>(Import(*I)))
+ ToTemplates.addDecl(To);
+ else
+ return TemplateName();
+ }
+ return ToContext.getOverloadedTemplateName(ToTemplates.begin(),
+ ToTemplates.end());
+ }
+
+ case TemplateName::QualifiedTemplate: {
+ QualifiedTemplateName *QTN = From.getAsQualifiedTemplateName();
+ NestedNameSpecifier *Qualifier = Import(QTN->getQualifier());
+ if (!Qualifier)
+ return TemplateName();
+
+ if (TemplateDecl *ToTemplate
+ = cast_or_null<TemplateDecl>(Import(From.getAsTemplateDecl())))
+ return ToContext.getQualifiedTemplateName(Qualifier,
+ QTN->hasTemplateKeyword(),
+ ToTemplate);
+
+ return TemplateName();
+ }
+
+ case TemplateName::DependentTemplate: {
+ DependentTemplateName *DTN = From.getAsDependentTemplateName();
+ NestedNameSpecifier *Qualifier = Import(DTN->getQualifier());
+ if (!Qualifier)
+ return TemplateName();
+
+ if (DTN->isIdentifier()) {
+ return ToContext.getDependentTemplateName(Qualifier,
+ Import(DTN->getIdentifier()));
+ }
+
+ return ToContext.getDependentTemplateName(Qualifier, DTN->getOperator());
+ }
+
+ case TemplateName::SubstTemplateTemplateParm: {
+ SubstTemplateTemplateParmStorage *subst
+ = From.getAsSubstTemplateTemplateParm();
+ TemplateTemplateParmDecl *param
+ = cast_or_null<TemplateTemplateParmDecl>(Import(subst->getParameter()));
+ if (!param)
+ return TemplateName();
+
+ TemplateName replacement = Import(subst->getReplacement());
+ if (replacement.isNull()) return TemplateName();
+
+ return ToContext.getSubstTemplateTemplateParm(param, replacement);
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ SubstTemplateTemplateParmPackStorage *SubstPack
+ = From.getAsSubstTemplateTemplateParmPack();
+ TemplateTemplateParmDecl *Param
+ = cast_or_null<TemplateTemplateParmDecl>(
+ Import(SubstPack->getParameterPack()));
+ if (!Param)
+ return TemplateName();
+
+ ASTNodeImporter Importer(*this);
+ TemplateArgument ArgPack
+ = Importer.ImportTemplateArgument(SubstPack->getArgumentPack());
+ if (ArgPack.isNull())
+ return TemplateName();
+
+ return ToContext.getSubstTemplateTemplateParmPack(Param, ArgPack);
+ }
+ }
+
+ llvm_unreachable("Invalid template name kind");
+}
+
+SourceLocation ASTImporter::Import(SourceLocation FromLoc) {
+ if (FromLoc.isInvalid())
+ return SourceLocation();
+
+ SourceManager &FromSM = FromContext.getSourceManager();
+
+ // For now, map everything down to its spelling location, so that we
+ // don't have to import macro expansions.
+ // FIXME: Import macro expansions!
+ FromLoc = FromSM.getSpellingLoc(FromLoc);
+ std::pair<FileID, unsigned> Decomposed = FromSM.getDecomposedLoc(FromLoc);
+ SourceManager &ToSM = ToContext.getSourceManager();
+ return ToSM.getLocForStartOfFile(Import(Decomposed.first))
+ .getLocWithOffset(Decomposed.second);
+}
+
+SourceRange ASTImporter::Import(SourceRange FromRange) {
+ return SourceRange(Import(FromRange.getBegin()), Import(FromRange.getEnd()));
+}
+
+FileID ASTImporter::Import(FileID FromID) {
+ llvm::DenseMap<FileID, FileID>::iterator Pos
+ = ImportedFileIDs.find(FromID);
+ if (Pos != ImportedFileIDs.end())
+ return Pos->second;
+
+ SourceManager &FromSM = FromContext.getSourceManager();
+ SourceManager &ToSM = ToContext.getSourceManager();
+ const SrcMgr::SLocEntry &FromSLoc = FromSM.getSLocEntry(FromID);
+ assert(FromSLoc.isFile() && "Cannot handle macro expansions yet");
+
+ // Include location of this file.
+ SourceLocation ToIncludeLoc = Import(FromSLoc.getFile().getIncludeLoc());
+
+ // Map the FileID for to the "to" source manager.
+ FileID ToID;
+ const SrcMgr::ContentCache *Cache = FromSLoc.getFile().getContentCache();
+ if (Cache->OrigEntry) {
+ // FIXME: We probably want to use getVirtualFile(), so we don't hit the
+ // disk again
+ // FIXME: We definitely want to re-use the existing MemoryBuffer, rather
+ // than mmap the files several times.
+ const FileEntry *Entry = ToFileManager.getFile(Cache->OrigEntry->getName());
+ ToID = ToSM.createFileID(Entry, ToIncludeLoc,
+ FromSLoc.getFile().getFileCharacteristic());
+ } else {
+ // FIXME: We want to re-use the existing MemoryBuffer!
+ const llvm::MemoryBuffer *
+ FromBuf = Cache->getBuffer(FromContext.getDiagnostics(), FromSM);
+ llvm::MemoryBuffer *ToBuf
+ = llvm::MemoryBuffer::getMemBufferCopy(FromBuf->getBuffer(),
+ FromBuf->getBufferIdentifier());
+ ToID = ToSM.createFileIDForMemBuffer(ToBuf);
+ }
+
+
+ ImportedFileIDs[FromID] = ToID;
+ return ToID;
+}
+
+void ASTImporter::ImportDefinition(Decl *From) {
+ Decl *To = Import(From);
+ if (!To)
+ return;
+
+ if (DeclContext *FromDC = cast<DeclContext>(From)) {
+ ASTNodeImporter Importer(*this);
+
+ if (RecordDecl *ToRecord = dyn_cast<RecordDecl>(To)) {
+ if (!ToRecord->getDefinition()) {
+ Importer.ImportDefinition(cast<RecordDecl>(FromDC), ToRecord,
+ ASTNodeImporter::IDK_Everything);
+ return;
+ }
+ }
+
+ if (EnumDecl *ToEnum = dyn_cast<EnumDecl>(To)) {
+ if (!ToEnum->getDefinition()) {
+ Importer.ImportDefinition(cast<EnumDecl>(FromDC), ToEnum,
+ ASTNodeImporter::IDK_Everything);
+ return;
+ }
+ }
+
+ if (ObjCInterfaceDecl *ToIFace = dyn_cast<ObjCInterfaceDecl>(To)) {
+ if (!ToIFace->getDefinition()) {
+ Importer.ImportDefinition(cast<ObjCInterfaceDecl>(FromDC), ToIFace,
+ ASTNodeImporter::IDK_Everything);
+ return;
+ }
+ }
+
+ if (ObjCProtocolDecl *ToProto = dyn_cast<ObjCProtocolDecl>(To)) {
+ if (!ToProto->getDefinition()) {
+ Importer.ImportDefinition(cast<ObjCProtocolDecl>(FromDC), ToProto,
+ ASTNodeImporter::IDK_Everything);
+ return;
+ }
+ }
+
+ Importer.ImportDeclContext(FromDC, true);
+ }
+}
+
+DeclarationName ASTImporter::Import(DeclarationName FromName) {
+ if (!FromName)
+ return DeclarationName();
+
+ switch (FromName.getNameKind()) {
+ case DeclarationName::Identifier:
+ return Import(FromName.getAsIdentifierInfo());
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ return Import(FromName.getObjCSelector());
+
+ case DeclarationName::CXXConstructorName: {
+ QualType T = Import(FromName.getCXXNameType());
+ if (T.isNull())
+ return DeclarationName();
+
+ return ToContext.DeclarationNames.getCXXConstructorName(
+ ToContext.getCanonicalType(T));
+ }
+
+ case DeclarationName::CXXDestructorName: {
+ QualType T = Import(FromName.getCXXNameType());
+ if (T.isNull())
+ return DeclarationName();
+
+ return ToContext.DeclarationNames.getCXXDestructorName(
+ ToContext.getCanonicalType(T));
+ }
+
+ case DeclarationName::CXXConversionFunctionName: {
+ QualType T = Import(FromName.getCXXNameType());
+ if (T.isNull())
+ return DeclarationName();
+
+ return ToContext.DeclarationNames.getCXXConversionFunctionName(
+ ToContext.getCanonicalType(T));
+ }
+
+ case DeclarationName::CXXOperatorName:
+ return ToContext.DeclarationNames.getCXXOperatorName(
+ FromName.getCXXOverloadedOperator());
+
+ case DeclarationName::CXXLiteralOperatorName:
+ return ToContext.DeclarationNames.getCXXLiteralOperatorName(
+ Import(FromName.getCXXLiteralIdentifier()));
+
+ case DeclarationName::CXXUsingDirective:
+ // FIXME: STATICS!
+ return DeclarationName::getUsingDirectiveName();
+ }
+
+ llvm_unreachable("Invalid DeclarationName Kind!");
+}
+
+IdentifierInfo *ASTImporter::Import(const IdentifierInfo *FromId) {
+ if (!FromId)
+ return 0;
+
+ return &ToContext.Idents.get(FromId->getName());
+}
+
+Selector ASTImporter::Import(Selector FromSel) {
+ if (FromSel.isNull())
+ return Selector();
+
+ SmallVector<IdentifierInfo *, 4> Idents;
+ Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(0)));
+ for (unsigned I = 1, N = FromSel.getNumArgs(); I < N; ++I)
+ Idents.push_back(Import(FromSel.getIdentifierInfoForSlot(I)));
+ return ToContext.Selectors.getSelector(FromSel.getNumArgs(), Idents.data());
+}
+
+DeclarationName ASTImporter::HandleNameConflict(DeclarationName Name,
+ DeclContext *DC,
+ unsigned IDNS,
+ NamedDecl **Decls,
+ unsigned NumDecls) {
+ return Name;
+}
+
+DiagnosticBuilder ASTImporter::ToDiag(SourceLocation Loc, unsigned DiagID) {
+ return ToContext.getDiagnostics().Report(Loc, DiagID);
+}
+
+DiagnosticBuilder ASTImporter::FromDiag(SourceLocation Loc, unsigned DiagID) {
+ return FromContext.getDiagnostics().Report(Loc, DiagID);
+}
+
+void ASTImporter::CompleteDecl (Decl *D) {
+ if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D)) {
+ if (!ID->getDefinition())
+ ID->startDefinition();
+ }
+ else if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D)) {
+ if (!PD->getDefinition())
+ PD->startDefinition();
+ }
+ else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
+ if (!TD->getDefinition() && !TD->isBeingDefined()) {
+ TD->startDefinition();
+ TD->setCompleteDefinition(true);
+ }
+ }
+ else {
+ assert (0 && "CompleteDecl called on a Decl that can't be completed");
+ }
+}
+
+Decl *ASTImporter::Imported(Decl *From, Decl *To) {
+ ImportedDecls[From] = To;
+ return To;
+}
+
+bool ASTImporter::IsStructurallyEquivalent(QualType From, QualType To) {
+ llvm::DenseMap<const Type *, const Type *>::iterator Pos
+ = ImportedTypes.find(From.getTypePtr());
+ if (Pos != ImportedTypes.end() && ToContext.hasSameType(Import(From), To))
+ return true;
+
+ StructuralEquivalenceContext Ctx(FromContext, ToContext, NonEquivalentDecls);
+ return Ctx.IsStructurallyEquivalent(From, To);
+}