summaryrefslogtreecommitdiff
path: root/clang/lib/AST/ASTDiagnostic.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/AST/ASTDiagnostic.cpp')
-rw-r--r--clang/lib/AST/ASTDiagnostic.cpp331
1 files changed, 331 insertions, 0 deletions
diff --git a/clang/lib/AST/ASTDiagnostic.cpp b/clang/lib/AST/ASTDiagnostic.cpp
new file mode 100644
index 0000000..ca4fe26
--- /dev/null
+++ b/clang/lib/AST/ASTDiagnostic.cpp
@@ -0,0 +1,331 @@
+//===--- ASTDiagnostic.cpp - Diagnostic Printing Hooks for AST Nodes ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a diagnostic formatting hook for AST elements.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/ASTDiagnostic.h"
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Type.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+// Returns a desugared version of the QualType, and marks ShouldAKA as true
+// whenever we remove significant sugar from the type.
+static QualType Desugar(ASTContext &Context, QualType QT, bool &ShouldAKA) {
+ QualifierCollector QC;
+
+ while (true) {
+ const Type *Ty = QC.strip(QT);
+
+ // Don't aka just because we saw an elaborated type...
+ if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Ty)) {
+ QT = ET->desugar();
+ continue;
+ }
+ // ... or a paren type ...
+ if (const ParenType *PT = dyn_cast<ParenType>(Ty)) {
+ QT = PT->desugar();
+ continue;
+ }
+ // ...or a substituted template type parameter ...
+ if (const SubstTemplateTypeParmType *ST =
+ dyn_cast<SubstTemplateTypeParmType>(Ty)) {
+ QT = ST->desugar();
+ continue;
+ }
+ // ...or an attributed type...
+ if (const AttributedType *AT = dyn_cast<AttributedType>(Ty)) {
+ QT = AT->desugar();
+ continue;
+ }
+ // ... or an auto type.
+ if (const AutoType *AT = dyn_cast<AutoType>(Ty)) {
+ if (!AT->isSugared())
+ break;
+ QT = AT->desugar();
+ continue;
+ }
+
+ // Don't desugar template specializations, unless it's an alias template.
+ if (const TemplateSpecializationType *TST
+ = dyn_cast<TemplateSpecializationType>(Ty))
+ if (!TST->isTypeAlias())
+ break;
+
+ // Don't desugar magic Objective-C types.
+ if (QualType(Ty,0) == Context.getObjCIdType() ||
+ QualType(Ty,0) == Context.getObjCClassType() ||
+ QualType(Ty,0) == Context.getObjCSelType() ||
+ QualType(Ty,0) == Context.getObjCProtoType())
+ break;
+
+ // Don't desugar va_list.
+ if (QualType(Ty,0) == Context.getBuiltinVaListType())
+ break;
+
+ // Otherwise, do a single-step desugar.
+ QualType Underlying;
+ bool IsSugar = false;
+ switch (Ty->getTypeClass()) {
+#define ABSTRACT_TYPE(Class, Base)
+#define TYPE(Class, Base) \
+case Type::Class: { \
+const Class##Type *CTy = cast<Class##Type>(Ty); \
+if (CTy->isSugared()) { \
+IsSugar = true; \
+Underlying = CTy->desugar(); \
+} \
+break; \
+}
+#include "clang/AST/TypeNodes.def"
+ }
+
+ // If it wasn't sugared, we're done.
+ if (!IsSugar)
+ break;
+
+ // If the desugared type is a vector type, we don't want to expand
+ // it, it will turn into an attribute mess. People want their "vec4".
+ if (isa<VectorType>(Underlying))
+ break;
+
+ // Don't desugar through the primary typedef of an anonymous type.
+ if (const TagType *UTT = Underlying->getAs<TagType>())
+ if (const TypedefType *QTT = dyn_cast<TypedefType>(QT))
+ if (UTT->getDecl()->getTypedefNameForAnonDecl() == QTT->getDecl())
+ break;
+
+ // Record that we actually looked through an opaque type here.
+ ShouldAKA = true;
+ QT = Underlying;
+ }
+
+ // If we have a pointer-like type, desugar the pointee as well.
+ // FIXME: Handle other pointer-like types.
+ if (const PointerType *Ty = QT->getAs<PointerType>()) {
+ QT = Context.getPointerType(Desugar(Context, Ty->getPointeeType(),
+ ShouldAKA));
+ } else if (const LValueReferenceType *Ty = QT->getAs<LValueReferenceType>()) {
+ QT = Context.getLValueReferenceType(Desugar(Context, Ty->getPointeeType(),
+ ShouldAKA));
+ } else if (const RValueReferenceType *Ty = QT->getAs<RValueReferenceType>()) {
+ QT = Context.getRValueReferenceType(Desugar(Context, Ty->getPointeeType(),
+ ShouldAKA));
+ }
+
+ return QC.apply(Context, QT);
+}
+
+/// \brief Convert the given type to a string suitable for printing as part of
+/// a diagnostic.
+///
+/// There are four main criteria when determining whether we should have an
+/// a.k.a. clause when pretty-printing a type:
+///
+/// 1) Some types provide very minimal sugar that doesn't impede the
+/// user's understanding --- for example, elaborated type
+/// specifiers. If this is all the sugar we see, we don't want an
+/// a.k.a. clause.
+/// 2) Some types are technically sugared but are much more familiar
+/// when seen in their sugared form --- for example, va_list,
+/// vector types, and the magic Objective C types. We don't
+/// want to desugar these, even if we do produce an a.k.a. clause.
+/// 3) Some types may have already been desugared previously in this diagnostic.
+/// if this is the case, doing another "aka" would just be clutter.
+/// 4) Two different types within the same diagnostic have the same output
+/// string. In this case, force an a.k.a with the desugared type when
+/// doing so will provide additional information.
+///
+/// \param Context the context in which the type was allocated
+/// \param Ty the type to print
+/// \param QualTypeVals pointer values to QualTypes which are used in the
+/// diagnostic message
+static std::string
+ConvertTypeToDiagnosticString(ASTContext &Context, QualType Ty,
+ const DiagnosticsEngine::ArgumentValue *PrevArgs,
+ unsigned NumPrevArgs,
+ ArrayRef<intptr_t> QualTypeVals) {
+ // FIXME: Playing with std::string is really slow.
+ bool ForceAKA = false;
+ QualType CanTy = Ty.getCanonicalType();
+ std::string S = Ty.getAsString(Context.getPrintingPolicy());
+ std::string CanS = CanTy.getAsString(Context.getPrintingPolicy());
+
+ for (unsigned I = 0, E = QualTypeVals.size(); I != E; ++I) {
+ QualType CompareTy =
+ QualType::getFromOpaquePtr(reinterpret_cast<void*>(QualTypeVals[I]));
+ if (CompareTy.isNull())
+ continue;
+ if (CompareTy == Ty)
+ continue; // Same types
+ QualType CompareCanTy = CompareTy.getCanonicalType();
+ if (CompareCanTy == CanTy)
+ continue; // Same canonical types
+ std::string CompareS = CompareTy.getAsString(Context.getPrintingPolicy());
+ bool aka;
+ QualType CompareDesugar = Desugar(Context, CompareTy, aka);
+ std::string CompareDesugarStr =
+ CompareDesugar.getAsString(Context.getPrintingPolicy());
+ if (CompareS != S && CompareDesugarStr != S)
+ continue; // The type string is different than the comparison string
+ // and the desugared comparison string.
+ std::string CompareCanS =
+ CompareCanTy.getAsString(Context.getPrintingPolicy());
+
+ if (CompareCanS == CanS)
+ continue; // No new info from canonical type
+
+ ForceAKA = true;
+ break;
+ }
+
+ // Check to see if we already desugared this type in this
+ // diagnostic. If so, don't do it again.
+ bool Repeated = false;
+ for (unsigned i = 0; i != NumPrevArgs; ++i) {
+ // TODO: Handle ak_declcontext case.
+ if (PrevArgs[i].first == DiagnosticsEngine::ak_qualtype) {
+ void *Ptr = (void*)PrevArgs[i].second;
+ QualType PrevTy(QualType::getFromOpaquePtr(Ptr));
+ if (PrevTy == Ty) {
+ Repeated = true;
+ break;
+ }
+ }
+ }
+
+ // Consider producing an a.k.a. clause if removing all the direct
+ // sugar gives us something "significantly different".
+ if (!Repeated) {
+ bool ShouldAKA = false;
+ QualType DesugaredTy = Desugar(Context, Ty, ShouldAKA);
+ if (ShouldAKA || ForceAKA) {
+ if (DesugaredTy == Ty) {
+ DesugaredTy = Ty.getCanonicalType();
+ }
+ std::string akaStr = DesugaredTy.getAsString(Context.getPrintingPolicy());
+ if (akaStr != S) {
+ S = "'" + S + "' (aka '" + akaStr + "')";
+ return S;
+ }
+ }
+ }
+
+ S = "'" + S + "'";
+ return S;
+}
+
+void clang::FormatASTNodeDiagnosticArgument(
+ DiagnosticsEngine::ArgumentKind Kind,
+ intptr_t Val,
+ const char *Modifier,
+ unsigned ModLen,
+ const char *Argument,
+ unsigned ArgLen,
+ const DiagnosticsEngine::ArgumentValue *PrevArgs,
+ unsigned NumPrevArgs,
+ SmallVectorImpl<char> &Output,
+ void *Cookie,
+ ArrayRef<intptr_t> QualTypeVals) {
+ ASTContext &Context = *static_cast<ASTContext*>(Cookie);
+
+ std::string S;
+ bool NeedQuotes = true;
+
+ switch (Kind) {
+ default: llvm_unreachable("unknown ArgumentKind");
+ case DiagnosticsEngine::ak_qualtype: {
+ assert(ModLen == 0 && ArgLen == 0 &&
+ "Invalid modifier for QualType argument");
+
+ QualType Ty(QualType::getFromOpaquePtr(reinterpret_cast<void*>(Val)));
+ S = ConvertTypeToDiagnosticString(Context, Ty, PrevArgs, NumPrevArgs,
+ QualTypeVals);
+ NeedQuotes = false;
+ break;
+ }
+ case DiagnosticsEngine::ak_declarationname: {
+ DeclarationName N = DeclarationName::getFromOpaqueInteger(Val);
+ S = N.getAsString();
+
+ if (ModLen == 9 && !memcmp(Modifier, "objcclass", 9) && ArgLen == 0)
+ S = '+' + S;
+ else if (ModLen == 12 && !memcmp(Modifier, "objcinstance", 12)
+ && ArgLen==0)
+ S = '-' + S;
+ else
+ assert(ModLen == 0 && ArgLen == 0 &&
+ "Invalid modifier for DeclarationName argument");
+ break;
+ }
+ case DiagnosticsEngine::ak_nameddecl: {
+ bool Qualified;
+ if (ModLen == 1 && Modifier[0] == 'q' && ArgLen == 0)
+ Qualified = true;
+ else {
+ assert(ModLen == 0 && ArgLen == 0 &&
+ "Invalid modifier for NamedDecl* argument");
+ Qualified = false;
+ }
+ const NamedDecl *ND = reinterpret_cast<const NamedDecl*>(Val);
+ ND->getNameForDiagnostic(S, Context.getPrintingPolicy(), Qualified);
+ break;
+ }
+ case DiagnosticsEngine::ak_nestednamespec: {
+ llvm::raw_string_ostream OS(S);
+ reinterpret_cast<NestedNameSpecifier*>(Val)->print(OS,
+ Context.getPrintingPolicy());
+ NeedQuotes = false;
+ break;
+ }
+ case DiagnosticsEngine::ak_declcontext: {
+ DeclContext *DC = reinterpret_cast<DeclContext *> (Val);
+ assert(DC && "Should never have a null declaration context");
+
+ if (DC->isTranslationUnit()) {
+ // FIXME: Get these strings from some localized place
+ if (Context.getLangOpts().CPlusPlus)
+ S = "the global namespace";
+ else
+ S = "the global scope";
+ } else if (TypeDecl *Type = dyn_cast<TypeDecl>(DC)) {
+ S = ConvertTypeToDiagnosticString(Context,
+ Context.getTypeDeclType(Type),
+ PrevArgs, NumPrevArgs, QualTypeVals);
+ } else {
+ // FIXME: Get these strings from some localized place
+ NamedDecl *ND = cast<NamedDecl>(DC);
+ if (isa<NamespaceDecl>(ND))
+ S += "namespace ";
+ else if (isa<ObjCMethodDecl>(ND))
+ S += "method ";
+ else if (isa<FunctionDecl>(ND))
+ S += "function ";
+
+ S += "'";
+ ND->getNameForDiagnostic(S, Context.getPrintingPolicy(), true);
+ S += "'";
+ }
+ NeedQuotes = false;
+ break;
+ }
+ }
+
+ if (NeedQuotes)
+ Output.push_back('\'');
+
+ Output.append(S.begin(), S.end());
+
+ if (NeedQuotes)
+ Output.push_back('\'');
+}