summaryrefslogtreecommitdiff
path: root/tex/presentation/thomas/slides.tex
diff options
context:
space:
mode:
authorCarlo Zancanaro <carlo@carlo-laptop>2012-04-19 16:21:26 +1000
committerCarlo Zancanaro <carlo@carlo-laptop>2012-04-19 16:21:26 +1000
commit2ee29b3426d2d79872fba35adbeb8d768983ffec (patch)
treec1c516816b7fa8d59bea445abd4505860be376bc /tex/presentation/thomas/slides.tex
parent5d7252681da3b26845fc4e5dcf0b0e94ed9fabb1 (diff)
Add presentation; start a different implementation
Diffstat (limited to 'tex/presentation/thomas/slides.tex')
-rw-r--r--tex/presentation/thomas/slides.tex780
1 files changed, 780 insertions, 0 deletions
diff --git a/tex/presentation/thomas/slides.tex b/tex/presentation/thomas/slides.tex
new file mode 100644
index 0000000..83aa35b
--- /dev/null
+++ b/tex/presentation/thomas/slides.tex
@@ -0,0 +1,780 @@
+\newcommand{\brighten}{\pos{0,0}{\begin{tikzpicture}[fill opacity=.5, opacity=.5]\pgfsetstrokecolor{white}\filldraw[fill=white] (0,0) rectangle (14,12);\end{tikzpicture}}}
+
+\newcommand{\stmtone}{(\vx_1,\vx_2) := (0,1)}
+\newcommand{\stmttwo}{\vx_1 \leq 8 ;\, (\vx_1,\vx_2) := (\vx_1 + 2, \vx_2 + 2)}
+
+%%%
+%%%
+%%%
+
+\title{{\bf Static Analysis \\ through \\Abstract Interpretation, \\Convex Optimization, and\\ Strategy Iteration}}
+
+\author{
+ {\bf Thomas Martin Gawlitza${}^1$}
+ \\[3pt]
+ joint work with
+ \\[3pt]
+ {\bf Helmut Seidl${}^2$}
+}
+
+\institute{
+ $\fourIdx{\text{{\large\bf 1}}}{}{}{}{\text{\includegraphics[height=15mm]{../logos/usyd.pdf}}}$
+ \qquad\qquad
+ $\fourIdx{\text{{\large\bf 2}}}{}{}{}{\text{\includegraphics[height=15mm]{../logos/TUM.pdf}}}$
+}
+
+\date{\bf SAPLING Meeting, November 2011}
+
+%%%
+%%%
+%%%
+
+\newcommand\partone{Abstract Interpretation using Zones}
+\newcommand\parttwo{Max-Strategy Iteration}
+\newcommand\partthree{Conclusion}
+
+\newcommand{\outline}[1]{
+ \frame{\Large\bf
+ \frametitle{Outline}
+ \begin{enumerate}
+ \item
+ \ifthenelse{\equal{#1}{1}}%
+ {\partone}%
+ {\Grey{\partone}}
+ \bigskip
+ \bigskip
+ \item
+ \ifthenelse{\equal{#1}{2}}%
+ {\bf \parttwo}%
+ {\bf\Grey{\parttwo}}
+ \bigskip
+ \bigskip
+ \item
+ \ifthenelse{\equal{#1}{3}}%
+ {\bf\partthree}%
+ {\Grey{\partthree}}
+ \end{enumerate}
+ }
+ \ifthenelse{\equal{#1}{1}}{\section{\partone}}{}
+ \ifthenelse{\equal{#1}{2}}{\section{\parttwo}}{}
+ \ifthenelse{\equal{#1}{3}}{\section{\partthree}}{}
+}
+
+%%%
+%%%
+%%%
+
+\section{Title}
+
+%%%
+
+\frame[plain]{\titlepage}
+
+%%%
+
+\outline{1}
+
+%%%
+
+\begin{frame}{Abstract Domain: {\bf Zones} (1/2)}
+\uncover<2->{
+ \Green{\bf Goal}: \emph{Tight bounds} on the possible values of \emph{integer variables}
+
+ \qquad\qquad (like $\vx_1 \leq 42, \; \vx_2 \leq 13$)
+
+ \bigskip
+ \qquad$\leadsto$ buffer overflows, worst-case execution times, etc.
+}
+
+\uncover<3->{
+ \bigskip
+ \Green{\bf Definition}:
+ Invariants of the form
+ \begin{align*}
+ \bigwedge_\vx \vx \leq b_{\vx} \wedge \bigwedge_\vx -\vx \leq b_{-\vx} \wedge \bigwedge_{\vx,\vy} \vx - \vy \leq b_{\vx-\vy}
+ \end{align*}
+
+ That is:
+ \emph{bounds} on \emph{variables} and
+ \emph{differences of variables}.
+}
+
+\uncover<4->{
+ \bigskip
+ \Green{\bf Applications}:
+
+ \smallskip
+ Model-checking of timed automata \cite{DBLP:conf/eef/Yovine96,DBLP:conf/rtss/LarsenLPY97}
+
+ \smallskip
+ Static program analysis \cite{Sagiv01,DBLP:conf/pado/Mine01}
+}
+
+\end{frame}
+
+%%%
+
+\begin{frame}{Abstract Domain: {\bf Zones} (2/2)}
+\uncover<2->{
+ \Green{\bf Our point of view}:
+ Zones are special \emph{template polyhedra}
+
+ \smallskip
+ \qquad$\leadsto$ template polyhedra: \cite{DBLP:conf/vmcai/SankaranarayananSM05}
+}
+
+\uncover<3->{
+ \bigskip
+ \Green{\bf Given}:
+ \emph{template constraint matrix} $T \in \{-1,0,1\}^{m\times n}$, where every row contains
+ \emph{at most one $1$}, and
+ \emph{at most one $-1$}.
+ Then:
+\begin{align*}
+ \gamma(b)
+ &:=
+ \{ x \in \Z^n \mid T x \leq b \}
+ &&
+ \text{for all } b \in \CZ^m
+ \\
+ \alpha(X)
+ &:=
+ \min \; \{ b \in \CZ^m \mid \gamma(b) \supseteq X \}
+ &&
+ \text{for all } X \subseteq \Z^n
+\end{align*}
+}
+
+\uncover<4->{
+ \Green{\bf Example}:
+ Let
+ $
+ T
+ =
+ \begin{pmatrix}
+ 1 & 0 \\
+ 0 & 1 \\
+ -1 & 1
+ \end{pmatrix}
+ $.
+ Then:
+
+ $
+ \gamma\left(
+ \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}
+ \right)
+ =
+ \left\{
+ \begin{pmatrix} \vx_1 \\ \vx_2 \end{pmatrix} \in \Z^2
+ \mid
+ T \begin{pmatrix} \vx_1 \\ \vx_2 \end{pmatrix}
+ \leq
+ \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}
+ \right\}
+ =
+ \begin{matrix}\mbox{\scalebox{0.5}{
+ \begin{tikzpicture}[show background grid,scale=1]
+ \filldraw[fill=lightgray,color=lightgray]
+ (-1,-1) -- (0-1,1-1) -- (1,2) -- (3,2) -- (3,-1) -- (-1,-1);
+ \draw[thick, ->] (-1,0) -- (4.2,0) node[right] {$\vx_1$-axis};
+ \draw[thick, ->] (0,-1) -- (0,3.2) node[above] {$\vx_2$-axis};
+ \draw[ultra thick] (-1,2) -- (4,2) node[above] {$\vx_2 \leq 2$};
+ \draw[ultra thick] (-1,0) -- (2,3) node[above,xshift=2mm] {$\vx_2 \leq 1 {+} \vx_1$};
+ \draw[ultra thick] (3,-1) -- (3,3) node[right] {$\vx_1 \leq 3$};
+ \end{tikzpicture}}}\end{matrix}
+ $
+}
+\end{frame}
+
+%%%
+
+\begin{frame}{Zone-based Static Program Analysis}
+\uncover<2->{
+ \Green{\bf Goal}:
+ Find minimal \emph{zones} that are \emph{invariants}
+}
+
+\uncover<3->{
+ \bigskip
+ \Green{\bf Example}:
+ \begin{center}
+
+ $
+ \begin{matrix}\mbox{\scalebox{0.8}{\begin{tikzpicture}
+ \node (start) [circle,draw] {$a$};
+ \node (null) [coordinate,right of = start] {};
+ \node (n1) [below of = start,circle,draw,yshift=-8mm]{$b$};
+ \path[ultra thick,->] (null) edge [] node [right] {} (start);
+ \path[ultra thick,->] (start) edge [] node [right,yshift=1mm] {$\stmtone$} (n1);
+ \path[ultra thick,->] (n1) edge [loop right,out=35,in=-35, distance=20mm] node [right] {
+ $\stmttwo$
+ } (n1);
+ \end{tikzpicture}}}\end{matrix}
+ \qquad\quad
+ T
+ =
+ \begin{pmatrix}
+ 1 & 0 \\
+ 0 & 1 \\
+ -1 & 1
+ \end{pmatrix}
+ $
+ \end{center}
+}
+
+\uncover<4->{
+ \vspace*{-5mm}
+ For program point $a$:
+
+ \smallskip
+ $
+ \gamma \left(
+ \begin{pmatrix} \infty \\ \infty \\ \infty \end{pmatrix}
+ \right)
+ =
+ \left\{ 
+ \begin{pmatrix} \vx_1\\\vx_2 \end{pmatrix}
+ \mid
+ \begin{pmatrix}
+ 1 & 0 \\
+ 0 & 1 \\
+ -1 & 1
+ \end{pmatrix}
+ \begin{pmatrix} \vx_1\\\vx_2 \end{pmatrix}
+ \leq
+ \begin{pmatrix} \infty \\ \infty \\ \infty \end{pmatrix}
+ \right\}
+ $
+}
+
+\uncover<5->{
+ \bigskip
+ For program point $b$:
+
+ \smallskip
+ $
+ \gamma \left(
+ \begin{pmatrix} 10 \\ 11 \\ 1 \end{pmatrix}
+ \right)
+ =
+ \left\{ 
+ \begin{pmatrix} \vx_1\\\vx_2 \end{pmatrix}
+ \mid
+ \begin{pmatrix}
+ 1 & 0 \\
+ 0 & 1 \\
+ -1 & 1
+ \end{pmatrix}
+ \begin{pmatrix} \vx_1\\\vx_2 \end{pmatrix}
+ \leq
+ \begin{pmatrix} 10 \\ 11 \\ 1 \end{pmatrix}
+ \right\}
+ $
+}
+\end{frame}
+
+%%%
+
+\begin{frame}{How Can We Compute {\bf Small} Zones?}
+ \begin{enumerate}
+ \item<2->
+ À la \cite{Sagiv01,DBLP:conf/pado/Mine01}
+
+ \smallskip
+ Abstr.\ Interpr.\ / widening / narrowing à la \cite{DBLP:conf/popl/CousotC77}
+
+ \smallskip
+ \uncover<3->{\emph{Properties}:}
+ \begin{itemize}
+ \smallskip\item<4->
+ Abstract transformers can be implemented in \emph{strongly polynomial time}
+ (based on the Floyd-Warshall algorithm)
+ \smallskip\item<5->
+ \emph{Best} abstract transformers only for special classes of affine assignments
+ (like $\vx = \vx + d$ and $\vx = \vy + d$).
+ \smallskip\item<6->
+ Computed zones are \emph{not} necessarily \emph{minimal}
+ \end{itemize}
+ \bigskip\item<7->
+ À la \cite{DBLP:conf/csl/GawlitzaS07}
+
+ \smallskip
+ Abstr.\ Interpr.\ / strategy iteration for \emph{template polyhedra}
+
+ \smallskip
+ \uncover<8->{\emph{Properties}:}
+ \begin{itemize}
+ \smallskip\item<9->
+ Computed the \emph{minimal} zones that are invariant
+ \smallskip\item<10->
+ Arbitrary affine assignments (like $\vx = c_1 \vx_1 + \cdots + c_k \vx_k + d$)
+ \smallskip\item<11->
+ Proves that the corresponding decision problem is in $\mathbf{coNP}$.
+
+ \qquad (it is also at least as hard as mean payoff games)
+ \smallskip\item<12->
+ At most exp. many iterations, each of which can be performed in \emph{weakly polynomial time} through \emph{linear programming}.
+ \end{itemize}
+ \end{enumerate}
+\end{frame}
+
+%%%
+
+\begin{frame}{Obvious Question}
+ \begin{center}
+ \huge
+ \uncover<2->{Can we do better?}
+ \end{center}
+
+ \begin{center}
+\uncover<3->{
+ \bigskip
+ \Green{\bf\huge Idea}
+
+ \bigskip
+ max-strategy improvement algorithm for \emph{template polyhedra}
+
+ \vspace*{-2mm}
+ \scalebox{2}{\rotatebox{-90}{$\leadsto$}}
+
+ \smallskip
+ max-strategy improvement algorithm for \emph{zones}
+}
+
+\uncover<4->{
+ \bigskip
+ \bigskip
+ \Green{\bf\huge Hope}
+
+ \bigskip
+ improvement step in \emph{weakly} polynomial time
+
+ \vspace*{-2mm}
+ \scalebox{2}{\rotatebox{-90}{$\leadsto$}}
+
+ \smallskip
+ improvement step in \emph{strongly} polynomial time
+}
+ \end{center}
+\end{frame}
+
+%%%
+
+\outline{2}
+
+%%%
+
+\begin{frame}{Abstract Transformers}
+ \uncover<2->{
+ \emph{Statements} %
+ %
+ \begin{align*}
+ T \vx \leq c \; \wedge \; \vx' = A \vx + d
+ \end{align*}
+}
+
+\uncover<3->{
+ \emph{Collecting Semantics} %
+ %
+ \begin{align*}
+ \sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d} (X)
+ =
+ \{ x' \mid x \in X \wedge Tx \leq c \wedge x' = Ax+d \}
+ \end{align*}
+}
+
+\uncover<4->{
+ \emph{Abstract Semantics} %
+ %
+ \begin{align*}
+ \sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d}^\sharp (b)
+ &= \alpha(\sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d} (\gamma( b )))
+ \end{align*}
+}
+\end{frame}
+
+%%%
+
+\begin{frame}{First Step: {\bf Constraint System} over $\CZ$}
+
+ \pos{1,1.0}{
+ $
+ \begin{matrix}\mbox{\scalebox{1}{\begin{tikzpicture}
+ \node (start) [circle,draw] {$a$};
+ \node (null) [coordinate,right of = start] {};
+ \node (n1) [below of = start,circle,draw,yshift=-8mm]{$b$};
+ \uncover<2->{\path[ultra thick,->] (null) edge [] node [right] {} (start);}
+ \uncover<6->{\path[ultra thick,->] (start) edge [] node [right,yshift=1mm] {$\stmtone$} (n1);}
+ \uncover<10->{\path[ultra thick,->] (n1) edge [loop right,out=35,in=-35, distance=20mm] node [right]
+ {$\stmttwo$} (n1);}
+ \end{tikzpicture}}}\end{matrix}
+ \qquad
+ T
+ =
+ \begin{pmatrix}
+ 1 & 0 \\
+ 0 & 1 \\
+ -1 & 1
+ \end{pmatrix}
+ $
+ }
+
+ \pos{0.3,4}{\Green{\bf Least Solution of}}
+
+ \pos{0.3,4.5}{
+ $
+ \begin{array}{@{}r@{}l}
+ \uncover<3->{\vb^a_{1} &\geq \infty \\}
+ \uncover<4->{\vb^a_{2} &\geq \infty \\}
+ \uncover<5->{\vb^a_{3} &\geq \infty}
+ \\[5pt]
+ \uncover<7->{\vb^b_{1} &\geq \pi_{1}(\sem{\stmtone}^\sharp (\vb^a_{1}, \vb^a_{2}, \vb^a_{3})) \\}
+ \uncover<8->{\vb^b_{2} &\geq \pi_{2}(\sem{\stmtone}^\sharp (\vb^a_{1}, \vb^a_{2}, \vb^a_{3})) \\}
+ \uncover<9->{\vb^b_{3} &\geq \pi_{3}(\sem{\stmtone}^\sharp (\vb^a_{1}, \vb^a_{2}, \vb^a_{3}))}
+ \\[5pt]
+ \uncover<11->{\vb^b_{1} &\geq \pi_{1}(\sem{\stmttwo}^\sharp (\vb^b_{1}, \vb^b_{2}, \vb^b_{3})) \\}
+ \uncover<12->{\vb^b_{2} &\geq \pi_{2}(\sem{\stmttwo}^\sharp (\vb^b_{1}, \vb^b_{2}, \vb^b_{3})) \\}
+ \uncover<13->{\vb^b_{3} &\geq \pi_{3}(\sem{\stmttwo}^\sharp (\vb^b_{1}, \vb^b_{2}, \vb^b_{3})) }
+ \end{array}
+ $
+ }
+\end{frame}
+
+%%%
+
+\begin{frame}{Properties of the Abstract Semantics}
+ \Green{\bf Observation}:
+ %
+ \only<1-10>{%
+ \begin{align*}
+ &\pi_{k}(\sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d}^\sharp (b)) \\
+ \uncover<2->{=\;& \pi_{k}( \alpha(\sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d} (\gamma( b ))) ) \\}
+ \uncover<3->{=\;& \pi_{k}( \alpha(\sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d} ( \{ \vx \in \Z^n \mid T\vx \leq b \} )) ) \\}
+ \uncover<4->{=\;& \pi_{k}( \alpha( \{ \vx' \mid \vx, \vx' \in \Z^n \;\wedge\; T \vx \leq b, c \; \wedge \; \vx' = A \vx + d \} ) ) \\}
+ \uncover<5->{=\;& \pi_{k}( \alpha( \{ A \vx + d \mid \vx \in \Z^n \;\wedge\; T \vx \leq \min(b, c) \} ) ) \\}
+ \uncover<6->{=\;& \sup \; \{ T_k(A \vx + d) \mid \vx \in \Z^n \;\wedge\; T \vx \leq \min(b, c) \} \\}
+ \uncover<7->{=\;& T_k d + \sup \; \{ T_k A \vx \mid \vx \in \Z^n \;\wedge\; T \vx \leq \min ( b, c ) \} \\}
+ \uncover<8->{=\;& T_k d + \sup \; \{ T_k A \vx \mid \vx \in \R^n \;\wedge\; T \vx \leq \min ( b, c ) \} \\}
+ \uncover<9->{=\;& T_k d + \inf \; \{ (\min( b, c ))^\top \vy \mid \vy \in \R_{\geq 0}^n \wedge T^\top \vy = (T_1A)^\top \vy \} \\}
+ \uncover<10->{=\;& T_k d + \inf \; \{ (\min( b, c ))^\top \vy \mid \vy \in \Z_{\geq 0}^n \wedge T^\top \vy = (T_1A)^\top \vy \} \\}
+ \end{align*}%
+ }%
+ \only<11->{%
+ \begin{align*}
+ &\pi_{k}(\sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d}^\sharp (b)) \\
+ \uncover<10->{=\;& T_k d + \inf \; \{ (\min( b, c ))^\top \vy \mid \vy \in \Z_{\geq 0}^n \wedge T^\top \vy = (T_1A)^\top \vy \} \\}
+ \end{align*}
+ }%
+
+ \uncover<12->{
+ \Green{\bf Consequences}:
+
+ \bigskip
+ $\pi_k \circ \sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d}^\sharp : \CZ^m \to \CZ$
+ \begin{enumerate}
+ \smallskip\item<13->
+ is a point-wise \emph{minimum} of finitely many \emph{monotone} and \emph{affine} functions from the set $\CZ^M \to \CZ$.
+ \smallskip\item<14->
+ can be evaluated in \emph{strongly polynomial time}.
+
+ \smallskip
+ \qquad$\leadsto$ minimum cost flow network problem
+
+ \qquad$\leadsto$ $\mathcal{O}( m \cdot \log m \cdot ( n + m \cdot \log m ))$
+ \end{enumerate}
+ }
+
+% \uncover<15>{
+% \bigskip
+% \Green{\bf So What?}
+% }
+\end{frame}
+
+%%%
+
+\begin{frame}{Minimum Cost Flow Network Problem}
+ \begin{align*}
+ \min \;\; b^\top \begin{pmatrix} \vy_1 \\ \vy_2 \\ \vy_3 \end{pmatrix}
+ \qquad\qquad
+ \\[10pt]
+ %
+ \begin{pmatrix}
+ 1 & 0 & -1 \\
+ 0 & 1 & 1\\
+ -1 & -1 & 0
+ \end{pmatrix}
+ \begin{pmatrix} \vy_1 \\ \vy_2 \\ \vy_3 \end{pmatrix}
+ &=
+ \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}
+ &
+ \begin{pmatrix} \vy_1 \\ \vy_2 \\ \vy_3 \end{pmatrix}
+ &\geq
+ 0
+ \end{align*}
+
+ \bigskip
+
+ \begin{center}
+ $
+ \begin{matrix}\mbox{\scalebox{1}{\begin{tikzpicture}
+ \node (c1) [circle,draw] {$c_1$};
+ \node (c2) [circle,draw,right of = c1, xshift=10mm] {$c_2$};
+ \node (c3) [below of = c2,circle,draw,yshift=-8mm]{$c_3$};
+ \uncover{\path[ultra thick,->] (c1) edge [] node [left] {$\vy_1$} (c3);}
+ \uncover{\path[ultra thick,->] (c2) edge [] node [right] {$\vy_2$} (c3);}
+ \uncover{\path[ultra thick,->] (c1) edge [] node [above] {$\vy_3$} (c2);}
+ \end{tikzpicture}}}\end{matrix}
+ $
+ \end{center}
+
+\end{frame}
+
+%%%
+
+\begin{frame}{}
+\vfill
+ \begin{center}
+ \huge\bf And now?
+ \end{center}
+ \vfill
+\end{frame}
+
+%%%
+
+\begin{frame}{A Simple Example}
+\pos{0,1.3}{
+ $
+ \begin{array}{@{}p{8mm}@{\quad}r@{\,}l@{\qquad}r@{\,}l@{\quad}r@{\,}l@{\quad}}
+ \centering $\Rot{\only<4-6>\neginfty\only<7-19>0\only<20->{42}}$
+ & \uncover<1->{\vx_1^+ &\geq \neginfty & \vx_1^+ &\geq 0 \qquad \vx_1^+ \geq \vx_3^+ + 1 } \\[0.2mm]
+ \centering $\Rot{\only<4-6>\neginfty\only<7->0}$
+ & \uncover<1->{\vx_1^- &\geq \neginfty & \vx_1^- &\geq 0 \qquad \vx_1^- \geq \vx_3^- + (-1)} \\[0.2mm]
+ \centering $\Rot{\only<4-10>\neginfty\only<11-19>0\only<20->{41}}$
+ & \uncover<1->{\vx_2^+ &\geq \neginfty & \vx_2^+ &\geq (\vx_1^- \geq -41) \;?\; \min \{ \vx_1^+, 41 \} } \\[0.2mm]
+ \centering $\Rot{\only<4-10>\neginfty\only<11->0}$
+ & \uncover<1->{\vx_2^- &\geq \neginfty & \vx_2^- &\geq (\vx_1^- \geq -41) \;?\; \vx_1^-} \\[0.2mm]
+ \centering $\Rot{\only<4-15>\neginfty\only<16-19>0\only<20->{41}}$
+ & \uncover<1->{\vx_3^+ &\geq \neginfty & \vx_3^+ &\geq (\vx_2^- \geq -41 \;\&\; \vx_2^+ \geq 0 ) \;?\; \min \{ \vx_2^+, 41 \}} \\[0.2mm]
+ \centering $\Rot{\only<4-15>\neginfty\only<16->0}$
+ & \uncover<1->{\vx_3^- &\geq \neginfty & \vx_3^- &\geq (\vx_2^- \geq -41 \;\&\; \vx_2^+ \geq 0 ) \;?\; \min \{ \vx_2^-, 0 \} }
+ \end{array}
+ $}
+\pos{1,4.8}{\emph{Greatest Fixpoint Iteration:}}
+\pos{1,5.4}{
+ $
+ \begin{array}{|r||p{10mm}|p{10mm}|p{10mm}|p{10mm}|p{10mm}|p{10mm}|p{10mm}|@{}l@{}}
+ & \centering 0
+ & \centering 1
+ & \centering 2
+ & \centering 3
+ & \centering 4
+ & \centering 5
+ & \centering 6
+ & \\
+ \hline
+ \hline
+ \vx_1^+
+ & \centering $\infty$
+ & \centering $\only<3>\neginfty\only<6,9-10,13-15>0\only<18-19>\infty$
+ & \centering $\only<10,14-15>0\only<19>{42}$
+ & \centering $\only<15>0$
+ & \centering
+ & \centering
+ & \centering
+ &\\[0mm]\hline
+ \vx_1^-
+ & \centering $\infty$
+ & \centering $\only<3>\neginfty\only<6,9-10,13-15,18-19>0$
+ & \centering $\only<10,14-15,19>0$
+ & \centering $\only<15>0$
+ & \centering
+ & \centering
+ & \centering
+ &\\[0mm]\hline
+ \vx_2^+
+ & \centering $\infty$
+ & \centering $\only<3,6>\neginfty\only<9-10,13-15,18-19>{41}$
+ & \centering $\only<10,14-15>0\only<19>{41}$
+ & \centering $\only<15>0$
+ & \centering
+ & \centering
+ & \centering
+ &\\[0mm]\hline
+ \vx_2^-
+ & \centering $\infty$
+ & \centering $\only<3,6>\neginfty\only<9-10,13-15,18-19>\infty$
+ & \centering $\only<10,14-15,19>0$
+ & \centering $\only<15>0$
+ & \centering
+ & \centering
+ & \centering
+ &\\[0mm]\hline
+ \vx_3^+
+ & \centering $\infty$
+ & \centering $\only<3,6,9-10>\neginfty\only<13-15,18-19>{41}$
+ & \centering $\only<10>\neginfty\only<14-15,19>{41}$
+ & \centering $\only<15>0$
+ & \centering
+ & \centering
+ & \centering
+ &\\[0mm]\hline
+ \vx_3^-
+ & \centering $\infty$
+ & \centering $\only<3,6,9-10>\neginfty\only<13-15,18-19>0$
+ & \centering $\only<10>\neginfty\only<14-15,19>0$
+ & \centering $\only<15>0$
+ & \centering
+ & \centering
+ & \centering
+ &\\[0mm]\hline
+ \end{array}
+ $}
+
+ \pos{1,1.3}{\uncover<2-4>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2,0.5);\end{tikzpicture}}}
+ \pos{3.4,1.3}{\uncover<5-16>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (1.6,0.5);\end{tikzpicture}}}
+ \pos{5.3,1.3}{\uncover<17->{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2.5,0.5);\end{tikzpicture}}}
+ %
+ \pos{1,1.8}{\uncover<2-4>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2,0.5);\end{tikzpicture}}}
+ \pos{3.4,1.8}{\uncover<5->{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (1.6,0.5);\end{tikzpicture}}}
+ %
+ \pos{1,2.3}{\uncover<2-7>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2,0.5);\end{tikzpicture}}}
+ \pos{3.4,2.3}{\uncover<8->{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (6.0,0.5);\end{tikzpicture}}}
+ %
+ \pos{1,2.8}{\uncover<2-7>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2,0.5);\end{tikzpicture}}}
+ \pos{3.4,2.8}{\uncover<8->{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (6,0.5);\end{tikzpicture}}}
+ %
+ \pos{1,3.3}{\uncover<2-11>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2,0.5);\end{tikzpicture}}}
+ \pos{3.4,3.3}{\uncover<12->{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (7.5,0.5);\end{tikzpicture}}}
+ %
+ \pos{1,3.8}{\uncover<2-11>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2,0.5);\end{tikzpicture}}}
+ \pos{3.4,3.8}{\uncover<12->{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (7.5,0.5);\end{tikzpicture}}}
+
+ \only<21,22>{\brighten\brighten}
+
+ \only<21>{\pos{1,1}{{\bf\huge
+ \hspace*{1.1cm}\scalebox{2}[3]{\Rot{No further}}
+
+ \bigskip
+ \scalebox{2}[3]{\Rot{Improvement}}
+
+ \bigskip
+ \hspace*{1.2cm}\scalebox{2}[3]{\Rot{possible!}}
+ }}}
+ \only<22>{\pos{0.3,1.5}{{\bf\huge
+ \bigskip
+ \scalebox{2}[3.5]{\Rot{Least Solution}}
+
+ \bigskip
+ \bigskip
+ \hspace*{3.5cm}\scalebox{2}[3.5]{\Rot{FOUND!}}
+ }}}
+\end{frame}
+
+\frame{\frametitle{Theorem}
+ \begin{itemize}
+ \item<2->
+ Our \emph{strategy improvement algorithm}
+ computes \emph{least solutions}. %of certain fixpoint equation systems over $\mathbb{Z} \cup \{ \neginfty, \infty \}$.
+ \bigskip
+ \item<3->
+ It can be used for performing \emph{precise zone analysis}.
+ % i.e., no widening.
+ \bigskip
+ \item<4->
+ The number of \emph{strategy improvement steps} is at most exponential.
+ \bigskip
+ \item<5->
+ Each \emph{strategy improvement step} can be carried out by \emph{ordinary greatest fixpoint iteration}.
+ \bigskip
+ \item<6->
+ The greatest fixpoint iterations can be performed in \emph{strongly polynomial time}
+ using a reduction
+ to the \emph{minimum cost flow network problem}.
+ \end{itemize}
+}
+
+%%%
+
+\outline{3}
+
+%%%
+
+\begin{frame}{Conclusion}
+ \begin{itemize}
+ \pause\item
+ \emph{Strategy iteration} is an interesting alternative to valued-based Approaches.
+ \pause\bigskip\item
+ Computes \emph{minimal zones} instead of some small \emph{zones}.
+ \pause\bigskip\item
+ Extensions:
+ \begin{itemize}
+ \medskip
+ \item[$\bullet$]
+ \emph{Template-based} analysis:
+
+ \emph{Linear}:
+ \includegraphics[height=6mm]{figs/region_convex_poly}, i.e., $\vx + 2\vy \leq b_1 \wedge -\vy \leq b_2$
+ (ESOP'07)
+
+ \emph{Quadratic}:
+ \includegraphics[height=6mm]{figs/region_convex}
+ \;
+ \includegraphics[height=6mm]{figs/region_general}, i.e.,
+ $\vx^2 + 2\vx\vy \leq b_1 \wedge \vy^2 \leq b_2$
+ (SAS'10)
+ \bigskip
+ \item[$\bullet$]
+ Strategy Iteration + \emph{SMT solving} (ESOP'11)
+
+ \smallskip
+ \quad From \;
+%
+ $\begin{matrix}\text{
+ \scalebox{0.3}{
+ \begin{tikzpicture}
+ \node (n1) [coordinate]{};
+ \node (n2) [coordinate,below of = n1,yshift=-10mm]{};
+ \node (n3) [coordinate,below of = n2,yshift=-10mm]{};
+ \path[-,ultra thick] (n1) edge [bend right] node [left,xshift=-2mm] {\huge $\mathbf{abstr.} (s_{1})$} (n2);
+ \path[-,ultra thick] (n1) edge [bend left] node [right,xshift=2mm] {\huge $\mathbf{abstr.} (s_{1}')$} (n2);
+ \path[->,ultra thick] (n2) edge [bend right] node [left,xshift=-2mm] {\huge $\mathbf{abstr.} (s_{2})$} (n3);
+ \path[->,ultra thick] (n2) edge [bend left] node [right,xshift=2mm] {\huge $\mathbf{abstr.} (s_{2}')$} (n3);
+ \end{tikzpicture}
+ }}\end{matrix}$
+%
+ \; to \;
+%
+ $\mathbf{abstr.} \begin{pmatrix}\text{
+ \scalebox{0.3}{
+ \begin{tikzpicture}
+ \node (n1) [coordinate]{};
+ \node (n2) [coordinate,below of = n1,yshift=-10mm]{};
+ \node (n3) [coordinate,below of = n2,yshift=-10mm]{};
+ \path[-,ultra thick] (n1) edge [bend right] node [left,xshift=-2mm] {\huge $s_{1}$} (n2);
+ \path[-,ultra thick] (n1) edge [bend left] node [right,xshift=2mm] {\huge $s_{1}'$} (n2);
+ \path[->,ultra thick] (n2) edge [bend right] node [left,xshift=-2mm] {\huge $s_{2}$} (n3);
+ \path[->,ultra thick] (n2) edge [bend left] node [right,xshift=2mm] {\huge $s_{2}'$} (n3);
+ \end{tikzpicture}
+ }}\end{pmatrix}$
+%
+
+ \medskip\item[$\bullet$]
+ \emph{Unbounded Time} Verification
+ for \emph{Cyber-Physical Systems}
+ through Abstract Interpretation (ATVA'11, APLAS'11, Current Work)
+ \end{itemize}
+ \end{itemize}
+
+ \vspace*{-2mm}
+ \begin{center}
+ \Large\bf
+ \pause Thanks for Your Attention! \pause Questions?
+ \end{center}
+\end{frame}
+
+%%%
+
+\begin{frame}[allowframebreaks]{References}
+ \bibliographystyle{apalike2}
+ \bibliography{bib}
+\end{frame}