summaryrefslogtreecommitdiff
path: root/lemon/tools/lgf-gen.cc
diff options
context:
space:
mode:
authorCarlo Zancanaro <carlo@pc-4w14-0.cs.usyd.edu.au>2012-07-10 13:44:21 +1000
committerCarlo Zancanaro <carlo@pc-4w14-0.cs.usyd.edu.au>2012-07-10 13:44:21 +1000
commitef4a319984d22b88a9024ff523700d657621124d (patch)
tree2821db78ccd6ce61ca64ad6fc98ba825b060ca6a /lemon/tools/lgf-gen.cc
parentd3f13fdd23e17a8f4bb4083c24fee331a28351eb (diff)
Add the LEMON graph library source to the repo
I'll likely be using it, so this just makes it easier to get to from elsewhere. If I end up not using it then I can just delete it.
Diffstat (limited to 'lemon/tools/lgf-gen.cc')
-rw-r--r--lemon/tools/lgf-gen.cc834
1 files changed, 834 insertions, 0 deletions
diff --git a/lemon/tools/lgf-gen.cc b/lemon/tools/lgf-gen.cc
new file mode 100644
index 0000000..e8bf7cd
--- /dev/null
+++ b/lemon/tools/lgf-gen.cc
@@ -0,0 +1,834 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2009
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+/// \ingroup tools
+/// \file
+/// \brief Special plane graph generator.
+///
+/// Graph generator application for various types of plane graphs.
+///
+/// See
+/// \code
+/// lgf-gen --help
+/// \endcode
+/// for more information on the usage.
+
+#include <algorithm>
+#include <set>
+#include <ctime>
+#include <lemon/list_graph.h>
+#include <lemon/random.h>
+#include <lemon/dim2.h>
+#include <lemon/bfs.h>
+#include <lemon/counter.h>
+#include <lemon/suurballe.h>
+#include <lemon/graph_to_eps.h>
+#include <lemon/lgf_writer.h>
+#include <lemon/arg_parser.h>
+#include <lemon/euler.h>
+#include <lemon/math.h>
+#include <lemon/kruskal.h>
+#include <lemon/time_measure.h>
+
+using namespace lemon;
+
+typedef dim2::Point<double> Point;
+
+GRAPH_TYPEDEFS(ListGraph);
+
+bool progress=true;
+
+int N;
+// int girth;
+
+ListGraph g;
+
+std::vector<Node> nodes;
+ListGraph::NodeMap<Point> coords(g);
+
+
+double totalLen(){
+ double tlen=0;
+ for(EdgeIt e(g);e!=INVALID;++e)
+ tlen+=std::sqrt((coords[g.v(e)]-coords[g.u(e)]).normSquare());
+ return tlen;
+}
+
+int tsp_impr_num=0;
+
+const double EPSILON=1e-8;
+bool tsp_improve(Node u, Node v)
+{
+ double luv=std::sqrt((coords[v]-coords[u]).normSquare());
+ Node u2=u;
+ Node v2=v;
+ do {
+ Node n;
+ for(IncEdgeIt e(g,v2);(n=g.runningNode(e))==u2;++e) { }
+ u2=v2;
+ v2=n;
+ if(luv+std::sqrt((coords[v2]-coords[u2]).normSquare())-EPSILON>
+ std::sqrt((coords[u]-coords[u2]).normSquare())+
+ std::sqrt((coords[v]-coords[v2]).normSquare()))
+ {
+ g.erase(findEdge(g,u,v));
+ g.erase(findEdge(g,u2,v2));
+ g.addEdge(u2,u);
+ g.addEdge(v,v2);
+ tsp_impr_num++;
+ return true;
+ }
+ } while(v2!=u);
+ return false;
+}
+
+bool tsp_improve(Node u)
+{
+ for(IncEdgeIt e(g,u);e!=INVALID;++e)
+ if(tsp_improve(u,g.runningNode(e))) return true;
+ return false;
+}
+
+void tsp_improve()
+{
+ bool b;
+ do {
+ b=false;
+ for(NodeIt n(g);n!=INVALID;++n)
+ if(tsp_improve(n)) b=true;
+ } while(b);
+}
+
+void tsp()
+{
+ for(int i=0;i<N;i++) g.addEdge(nodes[i],nodes[(i+1)%N]);
+ tsp_improve();
+}
+
+class Line
+{
+public:
+ Point a;
+ Point b;
+ Line(Point _a,Point _b) :a(_a),b(_b) {}
+ Line(Node _a,Node _b) : a(coords[_a]),b(coords[_b]) {}
+ Line(const Arc &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {}
+ Line(const Edge &e) : a(coords[g.u(e)]),b(coords[g.v(e)]) {}
+};
+
+inline std::ostream& operator<<(std::ostream &os, const Line &l)
+{
+ os << l.a << "->" << l.b;
+ return os;
+}
+
+bool cross(Line a, Line b)
+{
+ Point ao=rot90(a.b-a.a);
+ Point bo=rot90(b.b-b.a);
+ return (ao*(b.a-a.a))*(ao*(b.b-a.a))<0 &&
+ (bo*(a.a-b.a))*(bo*(a.b-b.a))<0;
+}
+
+struct Parc
+{
+ Node a;
+ Node b;
+ double len;
+};
+
+bool pedgeLess(Parc a,Parc b)
+{
+ return a.len<b.len;
+}
+
+std::vector<Edge> arcs;
+
+namespace _delaunay_bits {
+
+ struct Part {
+ int prev, curr, next;
+
+ Part(int p, int c, int n) : prev(p), curr(c), next(n) {}
+ };
+
+ inline std::ostream& operator<<(std::ostream& os, const Part& part) {
+ os << '(' << part.prev << ',' << part.curr << ',' << part.next << ')';
+ return os;
+ }
+
+ inline double circle_point(const Point& p, const Point& q, const Point& r) {
+ double a = p.x * (q.y - r.y) + q.x * (r.y - p.y) + r.x * (p.y - q.y);
+ if (a == 0) return std::numeric_limits<double>::quiet_NaN();
+
+ double d = (p.x * p.x + p.y * p.y) * (q.y - r.y) +
+ (q.x * q.x + q.y * q.y) * (r.y - p.y) +
+ (r.x * r.x + r.y * r.y) * (p.y - q.y);
+
+ double e = (p.x * p.x + p.y * p.y) * (q.x - r.x) +
+ (q.x * q.x + q.y * q.y) * (r.x - p.x) +
+ (r.x * r.x + r.y * r.y) * (p.x - q.x);
+
+ double f = (p.x * p.x + p.y * p.y) * (q.x * r.y - r.x * q.y) +
+ (q.x * q.x + q.y * q.y) * (r.x * p.y - p.x * r.y) +
+ (r.x * r.x + r.y * r.y) * (p.x * q.y - q.x * p.y);
+
+ return d / (2 * a) + std::sqrt((d * d + e * e) / (4 * a * a) + f / a);
+ }
+
+ inline bool circle_form(const Point& p, const Point& q, const Point& r) {
+ return rot90(q - p) * (r - q) < 0.0;
+ }
+
+ inline double intersection(const Point& p, const Point& q, double sx) {
+ const double epsilon = 1e-8;
+
+ if (p.x == q.x) return (p.y + q.y) / 2.0;
+
+ if (sx < p.x + epsilon) return p.y;
+ if (sx < q.x + epsilon) return q.y;
+
+ double a = q.x - p.x;
+ double b = (q.x - sx) * p.y - (p.x - sx) * q.y;
+ double d = (q.x - sx) * (p.x - sx) * (p - q).normSquare();
+ return (b - std::sqrt(d)) / a;
+ }
+
+ struct YLess {
+
+
+ YLess(const std::vector<Point>& points, double& sweep)
+ : _points(points), _sweep(sweep) {}
+
+ bool operator()(const Part& l, const Part& r) const {
+ const double epsilon = 1e-8;
+
+ // std::cerr << l << " vs " << r << std::endl;
+ double lbx = l.prev != -1 ?
+ intersection(_points[l.prev], _points[l.curr], _sweep) :
+ - std::numeric_limits<double>::infinity();
+ double rbx = r.prev != -1 ?
+ intersection(_points[r.prev], _points[r.curr], _sweep) :
+ - std::numeric_limits<double>::infinity();
+ double lex = l.next != -1 ?
+ intersection(_points[l.curr], _points[l.next], _sweep) :
+ std::numeric_limits<double>::infinity();
+ double rex = r.next != -1 ?
+ intersection(_points[r.curr], _points[r.next], _sweep) :
+ std::numeric_limits<double>::infinity();
+
+ if (lbx > lex) std::swap(lbx, lex);
+ if (rbx > rex) std::swap(rbx, rex);
+
+ if (lex < epsilon + rex && lbx + epsilon < rex) return true;
+ if (rex < epsilon + lex && rbx + epsilon < lex) return false;
+ return lex < rex;
+ }
+
+ const std::vector<Point>& _points;
+ double& _sweep;
+ };
+
+ struct BeachIt;
+
+ typedef std::multimap<double, BeachIt> SpikeHeap;
+
+ typedef std::multimap<Part, SpikeHeap::iterator, YLess> Beach;
+
+ struct BeachIt {
+ Beach::iterator it;
+
+ BeachIt(Beach::iterator iter) : it(iter) {}
+ };
+
+}
+
+inline void delaunay() {
+ Counter cnt("Number of arcs added: ");
+
+ using namespace _delaunay_bits;
+
+ typedef _delaunay_bits::Part Part;
+ typedef std::vector<std::pair<double, int> > SiteHeap;
+
+
+ std::vector<Point> points;
+ std::vector<Node> nodes;
+
+ for (NodeIt it(g); it != INVALID; ++it) {
+ nodes.push_back(it);
+ points.push_back(coords[it]);
+ }
+
+ SiteHeap siteheap(points.size());
+
+ double sweep;
+
+
+ for (int i = 0; i < int(siteheap.size()); ++i) {
+ siteheap[i] = std::make_pair(points[i].x, i);
+ }
+
+ std::sort(siteheap.begin(), siteheap.end());
+ sweep = siteheap.front().first;
+
+ YLess yless(points, sweep);
+ Beach beach(yless);
+
+ SpikeHeap spikeheap;
+
+ std::set<std::pair<int, int> > arcs;
+
+ int siteindex = 0;
+ {
+ SiteHeap front;
+
+ while (siteindex < int(siteheap.size()) &&
+ siteheap[0].first == siteheap[siteindex].first) {
+ front.push_back(std::make_pair(points[siteheap[siteindex].second].y,
+ siteheap[siteindex].second));
+ ++siteindex;
+ }
+
+ std::sort(front.begin(), front.end());
+
+ for (int i = 0; i < int(front.size()); ++i) {
+ int prev = (i == 0 ? -1 : front[i - 1].second);
+ int curr = front[i].second;
+ int next = (i + 1 == int(front.size()) ? -1 : front[i + 1].second);
+
+ beach.insert(std::make_pair(Part(prev, curr, next),
+ spikeheap.end()));
+ }
+ }
+
+ while (siteindex < int(points.size()) || !spikeheap.empty()) {
+
+ SpikeHeap::iterator spit = spikeheap.begin();
+
+ if (siteindex < int(points.size()) &&
+ (spit == spikeheap.end() || siteheap[siteindex].first < spit->first)) {
+ int site = siteheap[siteindex].second;
+ sweep = siteheap[siteindex].first;
+
+ Beach::iterator bit = beach.upper_bound(Part(site, site, site));
+
+ if (bit->second != spikeheap.end()) {
+ spikeheap.erase(bit->second);
+ }
+
+ int prev = bit->first.prev;
+ int curr = bit->first.curr;
+ int next = bit->first.next;
+
+ beach.erase(bit);
+
+ SpikeHeap::iterator pit = spikeheap.end();
+ if (prev != -1 &&
+ circle_form(points[prev], points[curr], points[site])) {
+ double x = circle_point(points[prev], points[curr], points[site]);
+ pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
+ pit->second.it =
+ beach.insert(std::make_pair(Part(prev, curr, site), pit));
+ } else {
+ beach.insert(std::make_pair(Part(prev, curr, site), pit));
+ }
+
+ beach.insert(std::make_pair(Part(curr, site, curr), spikeheap.end()));
+
+ SpikeHeap::iterator nit = spikeheap.end();
+ if (next != -1 &&
+ circle_form(points[site], points[curr],points[next])) {
+ double x = circle_point(points[site], points[curr], points[next]);
+ nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
+ nit->second.it =
+ beach.insert(std::make_pair(Part(site, curr, next), nit));
+ } else {
+ beach.insert(std::make_pair(Part(site, curr, next), nit));
+ }
+
+ ++siteindex;
+ } else {
+ sweep = spit->first;
+
+ Beach::iterator bit = spit->second.it;
+
+ int prev = bit->first.prev;
+ int curr = bit->first.curr;
+ int next = bit->first.next;
+
+ {
+ std::pair<int, int> arc;
+
+ arc = prev < curr ?
+ std::make_pair(prev, curr) : std::make_pair(curr, prev);
+
+ if (arcs.find(arc) == arcs.end()) {
+ arcs.insert(arc);
+ g.addEdge(nodes[prev], nodes[curr]);
+ ++cnt;
+ }
+
+ arc = curr < next ?
+ std::make_pair(curr, next) : std::make_pair(next, curr);
+
+ if (arcs.find(arc) == arcs.end()) {
+ arcs.insert(arc);
+ g.addEdge(nodes[curr], nodes[next]);
+ ++cnt;
+ }
+ }
+
+ Beach::iterator pbit = bit; --pbit;
+ int ppv = pbit->first.prev;
+ Beach::iterator nbit = bit; ++nbit;
+ int nnt = nbit->first.next;
+
+ if (bit->second != spikeheap.end()) spikeheap.erase(bit->second);
+ if (pbit->second != spikeheap.end()) spikeheap.erase(pbit->second);
+ if (nbit->second != spikeheap.end()) spikeheap.erase(nbit->second);
+
+ beach.erase(nbit);
+ beach.erase(bit);
+ beach.erase(pbit);
+
+ SpikeHeap::iterator pit = spikeheap.end();
+ if (ppv != -1 && ppv != next &&
+ circle_form(points[ppv], points[prev], points[next])) {
+ double x = circle_point(points[ppv], points[prev], points[next]);
+ if (x < sweep) x = sweep;
+ pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
+ pit->second.it =
+ beach.insert(std::make_pair(Part(ppv, prev, next), pit));
+ } else {
+ beach.insert(std::make_pair(Part(ppv, prev, next), pit));
+ }
+
+ SpikeHeap::iterator nit = spikeheap.end();
+ if (nnt != -1 && prev != nnt &&
+ circle_form(points[prev], points[next], points[nnt])) {
+ double x = circle_point(points[prev], points[next], points[nnt]);
+ if (x < sweep) x = sweep;
+ nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
+ nit->second.it =
+ beach.insert(std::make_pair(Part(prev, next, nnt), nit));
+ } else {
+ beach.insert(std::make_pair(Part(prev, next, nnt), nit));
+ }
+
+ }
+ }
+
+ for (Beach::iterator it = beach.begin(); it != beach.end(); ++it) {
+ int curr = it->first.curr;
+ int next = it->first.next;
+
+ if (next == -1) continue;
+
+ std::pair<int, int> arc;
+
+ arc = curr < next ?
+ std::make_pair(curr, next) : std::make_pair(next, curr);
+
+ if (arcs.find(arc) == arcs.end()) {
+ arcs.insert(arc);
+ g.addEdge(nodes[curr], nodes[next]);
+ ++cnt;
+ }
+ }
+}
+
+void sparse(int d)
+{
+ Counter cnt("Number of arcs removed: ");
+ Bfs<ListGraph> bfs(g);
+ for(std::vector<Edge>::reverse_iterator ei=arcs.rbegin();
+ ei!=arcs.rend();++ei)
+ {
+ Node a=g.u(*ei);
+ Node b=g.v(*ei);
+ g.erase(*ei);
+ bfs.run(a,b);
+ if(bfs.predArc(b)==INVALID || bfs.dist(b)>d)
+ g.addEdge(a,b);
+ else cnt++;
+ }
+}
+
+void sparse2(int d)
+{
+ Counter cnt("Number of arcs removed: ");
+ for(std::vector<Edge>::reverse_iterator ei=arcs.rbegin();
+ ei!=arcs.rend();++ei)
+ {
+ Node a=g.u(*ei);
+ Node b=g.v(*ei);
+ g.erase(*ei);
+ ConstMap<Arc,int> cegy(1);
+ Suurballe<ListGraph,ConstMap<Arc,int> > sur(g,cegy);
+ int k=sur.run(a,b,2);
+ if(k<2 || sur.totalLength()>d)
+ g.addEdge(a,b);
+ else cnt++;
+// else std::cout << "Remove arc " << g.id(a) << "-" << g.id(b) << '\n';
+ }
+}
+
+void sparseTriangle(int d)
+{
+ Counter cnt("Number of arcs added: ");
+ std::vector<Parc> pedges;
+ for(NodeIt n(g);n!=INVALID;++n)
+ for(NodeIt m=++(NodeIt(n));m!=INVALID;++m)
+ {
+ Parc p;
+ p.a=n;
+ p.b=m;
+ p.len=(coords[m]-coords[n]).normSquare();
+ pedges.push_back(p);
+ }
+ std::sort(pedges.begin(),pedges.end(),pedgeLess);
+ for(std::vector<Parc>::iterator pi=pedges.begin();pi!=pedges.end();++pi)
+ {
+ Line li(pi->a,pi->b);
+ EdgeIt e(g);
+ for(;e!=INVALID && !cross(e,li);++e) ;
+ Edge ne;
+ if(e==INVALID) {
+ ConstMap<Arc,int> cegy(1);
+ Suurballe<ListGraph,ConstMap<Arc,int> > sur(g,cegy);
+ int k=sur.run(pi->a,pi->b,2);
+ if(k<2 || sur.totalLength()>d)
+ {
+ ne=g.addEdge(pi->a,pi->b);
+ arcs.push_back(ne);
+ cnt++;
+ }
+ }
+ }
+}
+
+template <typename Graph, typename CoordMap>
+class LengthSquareMap {
+public:
+ typedef typename Graph::Edge Key;
+ typedef typename CoordMap::Value::Value Value;
+
+ LengthSquareMap(const Graph& graph, const CoordMap& coords)
+ : _graph(graph), _coords(coords) {}
+
+ Value operator[](const Key& key) const {
+ return (_coords[_graph.v(key)] -
+ _coords[_graph.u(key)]).normSquare();
+ }
+
+private:
+
+ const Graph& _graph;
+ const CoordMap& _coords;
+};
+
+void minTree() {
+ std::vector<Parc> pedges;
+ Timer T;
+ std::cout << T.realTime() << "s: Creating delaunay triangulation...\n";
+ delaunay();
+ std::cout << T.realTime() << "s: Calculating spanning tree...\n";
+ LengthSquareMap<ListGraph, ListGraph::NodeMap<Point> > ls(g, coords);
+ ListGraph::EdgeMap<bool> tree(g);
+ kruskal(g, ls, tree);
+ std::cout << T.realTime() << "s: Removing non tree arcs...\n";
+ std::vector<Edge> remove;
+ for (EdgeIt e(g); e != INVALID; ++e) {
+ if (!tree[e]) remove.push_back(e);
+ }
+ for(int i = 0; i < int(remove.size()); ++i) {
+ g.erase(remove[i]);
+ }
+ std::cout << T.realTime() << "s: Done\n";
+}
+
+void tsp2()
+{
+ std::cout << "Find a tree..." << std::endl;
+
+ minTree();
+
+ std::cout << "Total arc length (tree) : " << totalLen() << std::endl;
+
+ std::cout << "Make it Euler..." << std::endl;
+
+ {
+ std::vector<Node> leafs;
+ for(NodeIt n(g);n!=INVALID;++n)
+ if(countIncEdges(g,n)%2==1) leafs.push_back(n);
+
+// for(unsigned int i=0;i<leafs.size();i+=2)
+// g.addArc(leafs[i],leafs[i+1]);
+
+ std::vector<Parc> pedges;
+ for(unsigned int i=0;i<leafs.size()-1;i++)
+ for(unsigned int j=i+1;j<leafs.size();j++)
+ {
+ Node n=leafs[i];
+ Node m=leafs[j];
+ Parc p;
+ p.a=n;
+ p.b=m;
+ p.len=(coords[m]-coords[n]).normSquare();
+ pedges.push_back(p);
+ }
+ std::sort(pedges.begin(),pedges.end(),pedgeLess);
+ for(unsigned int i=0;i<pedges.size();i++)
+ if(countIncEdges(g,pedges[i].a)%2 &&
+ countIncEdges(g,pedges[i].b)%2)
+ g.addEdge(pedges[i].a,pedges[i].b);
+ }
+
+ for(NodeIt n(g);n!=INVALID;++n)
+ if(countIncEdges(g,n)%2 || countIncEdges(g,n)==0 )
+ std::cout << "GEBASZ!!!" << std::endl;
+
+ for(EdgeIt e(g);e!=INVALID;++e)
+ if(g.u(e)==g.v(e))
+ std::cout << "LOOP GEBASZ!!!" << std::endl;
+
+ std::cout << "Number of arcs : " << countEdges(g) << std::endl;
+
+ std::cout << "Total arc length (euler) : " << totalLen() << std::endl;
+
+ ListGraph::EdgeMap<Arc> enext(g);
+ {
+ EulerIt<ListGraph> e(g);
+ Arc eo=e;
+ Arc ef=e;
+// std::cout << "Tour arc: " << g.id(Edge(e)) << std::endl;
+ for(++e;e!=INVALID;++e)
+ {
+// std::cout << "Tour arc: " << g.id(Edge(e)) << std::endl;
+ enext[eo]=e;
+ eo=e;
+ }
+ enext[eo]=ef;
+ }
+
+ std::cout << "Creating a tour from that..." << std::endl;
+
+ int nnum = countNodes(g);
+ int ednum = countEdges(g);
+
+ for(Arc p=enext[EdgeIt(g)];ednum>nnum;p=enext[p])
+ {
+// std::cout << "Checking arc " << g.id(p) << std::endl;
+ Arc e=enext[p];
+ Arc f=enext[e];
+ Node n2=g.source(f);
+ Node n1=g.oppositeNode(n2,e);
+ Node n3=g.oppositeNode(n2,f);
+ if(countIncEdges(g,n2)>2)
+ {
+// std::cout << "Remove an Arc" << std::endl;
+ Arc ff=enext[f];
+ g.erase(e);
+ g.erase(f);
+ if(n1!=n3)
+ {
+ Arc ne=g.direct(g.addEdge(n1,n3),n1);
+ enext[p]=ne;
+ enext[ne]=ff;
+ ednum--;
+ }
+ else {
+ enext[p]=ff;
+ ednum-=2;
+ }
+ }
+ }
+
+ std::cout << "Total arc length (tour) : " << totalLen() << std::endl;
+
+ std::cout << "2-opt the tour..." << std::endl;
+
+ tsp_improve();
+
+ std::cout << "Total arc length (2-opt tour) : " << totalLen() << std::endl;
+}
+
+
+int main(int argc,const char **argv)
+{
+ ArgParser ap(argc,argv);
+
+// bool eps;
+ bool disc_d, square_d, gauss_d;
+// bool tsp_a,two_a,tree_a;
+ int num_of_cities=1;
+ double area=1;
+ N=100;
+// girth=10;
+ std::string ndist("disc");
+ ap.refOption("n", "Number of nodes (default is 100)", N)
+ .intOption("g", "Girth parameter (default is 10)", 10)
+ .refOption("cities", "Number of cities (default is 1)", num_of_cities)
+ .refOption("area", "Full relative area of the cities (default is 1)", area)
+ .refOption("disc", "Nodes are evenly distributed on a unit disc (default)",
+ disc_d)
+ .optionGroup("dist", "disc")
+ .refOption("square", "Nodes are evenly distributed on a unit square",
+ square_d)
+ .optionGroup("dist", "square")
+ .refOption("gauss", "Nodes are located according to a two-dim Gauss "
+ "distribution", gauss_d)
+ .optionGroup("dist", "gauss")
+ .onlyOneGroup("dist")
+ .boolOption("eps", "Also generate .eps output (<prefix>.eps)")
+ .boolOption("nonodes", "Draw only the edges in the generated .eps output")
+ .boolOption("dir", "Directed graph is generated (each edge is replaced by "
+ "two directed arcs)")
+ .boolOption("2con", "Create a two connected planar graph")
+ .optionGroup("alg","2con")
+ .boolOption("tree", "Create a min. cost spanning tree")
+ .optionGroup("alg","tree")
+ .boolOption("tsp", "Create a TSP tour")
+ .optionGroup("alg","tsp")
+ .boolOption("tsp2", "Create a TSP tour (tree based)")
+ .optionGroup("alg","tsp2")
+ .boolOption("dela", "Delaunay triangulation graph")
+ .optionGroup("alg","dela")
+ .onlyOneGroup("alg")
+ .boolOption("rand", "Use time seed for random number generator")
+ .optionGroup("rand", "rand")
+ .intOption("seed", "Random seed", -1)
+ .optionGroup("rand", "seed")
+ .onlyOneGroup("rand")
+ .other("[prefix]","Prefix of the output files. Default is 'lgf-gen-out'")
+ .run();
+
+ if (ap["rand"]) {
+ int seed = int(time(0));
+ std::cout << "Random number seed: " << seed << std::endl;
+ rnd = Random(seed);
+ }
+ if (ap.given("seed")) {
+ int seed = ap["seed"];
+ std::cout << "Random number seed: " << seed << std::endl;
+ rnd = Random(seed);
+ }
+
+ std::string prefix;
+ switch(ap.files().size())
+ {
+ case 0:
+ prefix="lgf-gen-out";
+ break;
+ case 1:
+ prefix=ap.files()[0];
+ break;
+ default:
+ std::cerr << "\nAt most one prefix can be given\n\n";
+ exit(1);
+ }
+
+ double sum_sizes=0;
+ std::vector<double> sizes;
+ std::vector<double> cum_sizes;
+ for(int s=0;s<num_of_cities;s++)
+ {
+ // sum_sizes+=rnd.exponential();
+ double d=rnd();
+ sum_sizes+=d;
+ sizes.push_back(d);
+ cum_sizes.push_back(sum_sizes);
+ }
+ int i=0;
+ for(int s=0;s<num_of_cities;s++)
+ {
+ Point center=(num_of_cities==1?Point(0,0):rnd.disc());
+ if(gauss_d)
+ for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
+ Node n=g.addNode();
+ nodes.push_back(n);
+ coords[n]=center+rnd.gauss2()*area*
+ std::sqrt(sizes[s]/sum_sizes);
+ }
+ else if(square_d)
+ for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
+ Node n=g.addNode();
+ nodes.push_back(n);
+ coords[n]=center+Point(rnd()*2-1,rnd()*2-1)*area*
+ std::sqrt(sizes[s]/sum_sizes);
+ }
+ else if(disc_d || true)
+ for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
+ Node n=g.addNode();
+ nodes.push_back(n);
+ coords[n]=center+rnd.disc()*area*
+ std::sqrt(sizes[s]/sum_sizes);
+ }
+ }
+
+// for (ListGraph::NodeIt n(g); n != INVALID; ++n) {
+// std::cerr << coords[n] << std::endl;
+// }
+
+ if(ap["tsp"]) {
+ tsp();
+ std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl;
+ }
+ if(ap["tsp2"]) {
+ tsp2();
+ std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl;
+ }
+ else if(ap["2con"]) {
+ std::cout << "Make triangles\n";
+ // triangle();
+ sparseTriangle(ap["g"]);
+ std::cout << "Make it sparser\n";
+ sparse2(ap["g"]);
+ }
+ else if(ap["tree"]) {
+ minTree();
+ }
+ else if(ap["dela"]) {
+ delaunay();
+ }
+
+
+ std::cout << "Number of nodes : " << countNodes(g) << std::endl;
+ std::cout << "Number of arcs : " << countEdges(g) << std::endl;
+ double tlen=0;
+ for(EdgeIt e(g);e!=INVALID;++e)
+ tlen+=std::sqrt((coords[g.v(e)]-coords[g.u(e)]).normSquare());
+ std::cout << "Total arc length : " << tlen << std::endl;
+
+ if(ap["eps"])
+ graphToEps(g,prefix+".eps").scaleToA4().
+ scale(600).nodeScale(.005).arcWidthScale(.001).preScale(false).
+ coords(coords).hideNodes(ap.given("nonodes")).run();
+
+ if(ap["dir"])
+ DigraphWriter<ListGraph>(g,prefix+".lgf").
+ nodeMap("coordinates_x",scaleMap(xMap(coords),600)).
+ nodeMap("coordinates_y",scaleMap(yMap(coords),600)).
+ run();
+ else GraphWriter<ListGraph>(g,prefix+".lgf").
+ nodeMap("coordinates_x",scaleMap(xMap(coords),600)).
+ nodeMap("coordinates_y",scaleMap(yMap(coords),600)).
+ run();
+}
+