diff options
author | Carlo Zancanaro <carlo@pc-4w14-0.cs.usyd.edu.au> | 2012-10-15 17:10:06 +1100 |
---|---|---|
committer | Carlo Zancanaro <carlo@pc-4w14-0.cs.usyd.edu.au> | 2012-10-15 17:10:06 +1100 |
commit | be1de4be954c80875ad4108e0a33e8e131b2f2c0 (patch) | |
tree | 1fbbecf276bf7c7bdcbb4dd446099d6d90eaa516 /clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp | |
parent | c4626a62754862d20b41e8a46a3574264ea80e6d (diff) | |
parent | f1bd2e48c5324d3f7cda4090c87f8a5b6f463ce2 (diff) |
Merge branch 'master' of ssh://bitbucket.org/czan/honours
Diffstat (limited to 'clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp')
-rw-r--r-- | clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp | 1981 |
1 files changed, 1981 insertions, 0 deletions
diff --git a/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp b/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp new file mode 100644 index 0000000..9eb7edf --- /dev/null +++ b/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp @@ -0,0 +1,1981 @@ +//= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This defines CStringChecker, which is an assortment of checks on calls +// to functions in <string.h>. +// +//===----------------------------------------------------------------------===// + +#include "ClangSACheckers.h" +#include "InterCheckerAPI.h" +#include "clang/StaticAnalyzer/Core/Checker.h" +#include "clang/StaticAnalyzer/Core/CheckerManager.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" +#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringSwitch.h" + +using namespace clang; +using namespace ento; + +namespace { +class CStringChecker : public Checker< eval::Call, + check::PreStmt<DeclStmt>, + check::LiveSymbols, + check::DeadSymbols, + check::RegionChanges + > { + mutable OwningPtr<BugType> BT_Null, + BT_Bounds, + BT_Overlap, + BT_NotCString, + BT_AdditionOverflow; + + mutable const char *CurrentFunctionDescription; + +public: + /// The filter is used to filter out the diagnostics which are not enabled by + /// the user. + struct CStringChecksFilter { + DefaultBool CheckCStringNullArg; + DefaultBool CheckCStringOutOfBounds; + DefaultBool CheckCStringBufferOverlap; + DefaultBool CheckCStringNotNullTerm; + }; + + CStringChecksFilter Filter; + + static void *getTag() { static int tag; return &tag; } + + bool evalCall(const CallExpr *CE, CheckerContext &C) const; + void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; + void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; + void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; + bool wantsRegionChangeUpdate(ProgramStateRef state) const; + + ProgramStateRef + checkRegionChanges(ProgramStateRef state, + const StoreManager::InvalidatedSymbols *, + ArrayRef<const MemRegion *> ExplicitRegions, + ArrayRef<const MemRegion *> Regions, + const CallOrObjCMessage *Call) const; + + typedef void (CStringChecker::*FnCheck)(CheckerContext &, + const CallExpr *) const; + + void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; + void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; + void evalMemmove(CheckerContext &C, const CallExpr *CE) const; + void evalBcopy(CheckerContext &C, const CallExpr *CE) const; + void evalCopyCommon(CheckerContext &C, const CallExpr *CE, + ProgramStateRef state, + const Expr *Size, + const Expr *Source, + const Expr *Dest, + bool Restricted = false, + bool IsMempcpy = false) const; + + void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; + + void evalstrLength(CheckerContext &C, const CallExpr *CE) const; + void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; + void evalstrLengthCommon(CheckerContext &C, + const CallExpr *CE, + bool IsStrnlen = false) const; + + void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; + void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; + void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; + void evalStrcpyCommon(CheckerContext &C, + const CallExpr *CE, + bool returnEnd, + bool isBounded, + bool isAppending) const; + + void evalStrcat(CheckerContext &C, const CallExpr *CE) const; + void evalStrncat(CheckerContext &C, const CallExpr *CE) const; + + void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; + void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; + void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; + void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; + void evalStrcmpCommon(CheckerContext &C, + const CallExpr *CE, + bool isBounded = false, + bool ignoreCase = false) const; + + // Utility methods + std::pair<ProgramStateRef , ProgramStateRef > + static assumeZero(CheckerContext &C, + ProgramStateRef state, SVal V, QualType Ty); + + static ProgramStateRef setCStringLength(ProgramStateRef state, + const MemRegion *MR, + SVal strLength); + static SVal getCStringLengthForRegion(CheckerContext &C, + ProgramStateRef &state, + const Expr *Ex, + const MemRegion *MR, + bool hypothetical); + SVal getCStringLength(CheckerContext &C, + ProgramStateRef &state, + const Expr *Ex, + SVal Buf, + bool hypothetical = false) const; + + const StringLiteral *getCStringLiteral(CheckerContext &C, + ProgramStateRef &state, + const Expr *expr, + SVal val) const; + + static ProgramStateRef InvalidateBuffer(CheckerContext &C, + ProgramStateRef state, + const Expr *Ex, SVal V); + + static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, + const MemRegion *MR); + + // Re-usable checks + ProgramStateRef checkNonNull(CheckerContext &C, + ProgramStateRef state, + const Expr *S, + SVal l) const; + ProgramStateRef CheckLocation(CheckerContext &C, + ProgramStateRef state, + const Expr *S, + SVal l, + const char *message = NULL) const; + ProgramStateRef CheckBufferAccess(CheckerContext &C, + ProgramStateRef state, + const Expr *Size, + const Expr *FirstBuf, + const Expr *SecondBuf, + const char *firstMessage = NULL, + const char *secondMessage = NULL, + bool WarnAboutSize = false) const; + + ProgramStateRef CheckBufferAccess(CheckerContext &C, + ProgramStateRef state, + const Expr *Size, + const Expr *Buf, + const char *message = NULL, + bool WarnAboutSize = false) const { + // This is a convenience override. + return CheckBufferAccess(C, state, Size, Buf, NULL, message, NULL, + WarnAboutSize); + } + ProgramStateRef CheckOverlap(CheckerContext &C, + ProgramStateRef state, + const Expr *Size, + const Expr *First, + const Expr *Second) const; + void emitOverlapBug(CheckerContext &C, + ProgramStateRef state, + const Stmt *First, + const Stmt *Second) const; + + ProgramStateRef checkAdditionOverflow(CheckerContext &C, + ProgramStateRef state, + NonLoc left, + NonLoc right) const; +}; + +class CStringLength { +public: + typedef llvm::ImmutableMap<const MemRegion *, SVal> EntryMap; +}; +} //end anonymous namespace + +namespace clang { +namespace ento { + template <> + struct ProgramStateTrait<CStringLength> + : public ProgramStatePartialTrait<CStringLength::EntryMap> { + static void *GDMIndex() { return CStringChecker::getTag(); } + }; +} +} + +//===----------------------------------------------------------------------===// +// Individual checks and utility methods. +//===----------------------------------------------------------------------===// + +std::pair<ProgramStateRef , ProgramStateRef > +CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, + QualType Ty) { + DefinedSVal *val = dyn_cast<DefinedSVal>(&V); + if (!val) + return std::pair<ProgramStateRef , ProgramStateRef >(state, state); + + SValBuilder &svalBuilder = C.getSValBuilder(); + DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); + return state->assume(svalBuilder.evalEQ(state, *val, zero)); +} + +ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, + ProgramStateRef state, + const Expr *S, SVal l) const { + // If a previous check has failed, propagate the failure. + if (!state) + return NULL; + + ProgramStateRef stateNull, stateNonNull; + llvm::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); + + if (stateNull && !stateNonNull) { + if (!Filter.CheckCStringNullArg) + return NULL; + + ExplodedNode *N = C.generateSink(stateNull); + if (!N) + return NULL; + + if (!BT_Null) + BT_Null.reset(new BuiltinBug("Unix API", + "Null pointer argument in call to byte string function")); + + SmallString<80> buf; + llvm::raw_svector_ostream os(buf); + assert(CurrentFunctionDescription); + os << "Null pointer argument in call to " << CurrentFunctionDescription; + + // Generate a report for this bug. + BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get()); + BugReport *report = new BugReport(*BT, os.str(), N); + + report->addRange(S->getSourceRange()); + report->addVisitor(bugreporter::getTrackNullOrUndefValueVisitor(N, S, + report)); + C.EmitReport(report); + return NULL; + } + + // From here on, assume that the value is non-null. + assert(stateNonNull); + return stateNonNull; +} + +// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? +ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, + ProgramStateRef state, + const Expr *S, SVal l, + const char *warningMsg) const { + // If a previous check has failed, propagate the failure. + if (!state) + return NULL; + + // Check for out of bound array element access. + const MemRegion *R = l.getAsRegion(); + if (!R) + return state; + + const ElementRegion *ER = dyn_cast<ElementRegion>(R); + if (!ER) + return state; + + assert(ER->getValueType() == C.getASTContext().CharTy && + "CheckLocation should only be called with char* ElementRegions"); + + // Get the size of the array. + const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); + SValBuilder &svalBuilder = C.getSValBuilder(); + SVal Extent = + svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); + DefinedOrUnknownSVal Size = cast<DefinedOrUnknownSVal>(Extent); + + // Get the index of the accessed element. + DefinedOrUnknownSVal Idx = cast<DefinedOrUnknownSVal>(ER->getIndex()); + + ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); + ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); + if (StOutBound && !StInBound) { + ExplodedNode *N = C.generateSink(StOutBound); + if (!N) + return NULL; + + if (!BT_Bounds) { + BT_Bounds.reset(new BuiltinBug("Out-of-bound array access", + "Byte string function accesses out-of-bound array element")); + } + BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get()); + + // Generate a report for this bug. + BugReport *report; + if (warningMsg) { + report = new BugReport(*BT, warningMsg, N); + } else { + assert(CurrentFunctionDescription); + assert(CurrentFunctionDescription[0] != '\0'); + + SmallString<80> buf; + llvm::raw_svector_ostream os(buf); + os << (char)toupper(CurrentFunctionDescription[0]) + << &CurrentFunctionDescription[1] + << " accesses out-of-bound array element"; + report = new BugReport(*BT, os.str(), N); + } + + // FIXME: It would be nice to eventually make this diagnostic more clear, + // e.g., by referencing the original declaration or by saying *why* this + // reference is outside the range. + + report->addRange(S->getSourceRange()); + C.EmitReport(report); + return NULL; + } + + // Array bound check succeeded. From this point forward the array bound + // should always succeed. + return StInBound; +} + +ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, + ProgramStateRef state, + const Expr *Size, + const Expr *FirstBuf, + const Expr *SecondBuf, + const char *firstMessage, + const char *secondMessage, + bool WarnAboutSize) const { + // If a previous check has failed, propagate the failure. + if (!state) + return NULL; + + SValBuilder &svalBuilder = C.getSValBuilder(); + ASTContext &Ctx = svalBuilder.getContext(); + const LocationContext *LCtx = C.getLocationContext(); + + QualType sizeTy = Size->getType(); + QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); + + // Check that the first buffer is non-null. + SVal BufVal = state->getSVal(FirstBuf, LCtx); + state = checkNonNull(C, state, FirstBuf, BufVal); + if (!state) + return NULL; + + // If out-of-bounds checking is turned off, skip the rest. + if (!Filter.CheckCStringOutOfBounds) + return state; + + // Get the access length and make sure it is known. + // FIXME: This assumes the caller has already checked that the access length + // is positive. And that it's unsigned. + SVal LengthVal = state->getSVal(Size, LCtx); + NonLoc *Length = dyn_cast<NonLoc>(&LengthVal); + if (!Length) + return state; + + // Compute the offset of the last element to be accessed: size-1. + NonLoc One = cast<NonLoc>(svalBuilder.makeIntVal(1, sizeTy)); + NonLoc LastOffset = cast<NonLoc>(svalBuilder.evalBinOpNN(state, BO_Sub, + *Length, One, sizeTy)); + + // Check that the first buffer is sufficiently long. + SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); + if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) { + const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); + + SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, + LastOffset, PtrTy); + state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); + + // If the buffer isn't large enough, abort. + if (!state) + return NULL; + } + + // If there's a second buffer, check it as well. + if (SecondBuf) { + BufVal = state->getSVal(SecondBuf, LCtx); + state = checkNonNull(C, state, SecondBuf, BufVal); + if (!state) + return NULL; + + BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); + if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) { + const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); + + SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, + LastOffset, PtrTy); + state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); + } + } + + // Large enough or not, return this state! + return state; +} + +ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, + ProgramStateRef state, + const Expr *Size, + const Expr *First, + const Expr *Second) const { + if (!Filter.CheckCStringBufferOverlap) + return state; + + // Do a simple check for overlap: if the two arguments are from the same + // buffer, see if the end of the first is greater than the start of the second + // or vice versa. + + // If a previous check has failed, propagate the failure. + if (!state) + return NULL; + + ProgramStateRef stateTrue, stateFalse; + + // Get the buffer values and make sure they're known locations. + const LocationContext *LCtx = C.getLocationContext(); + SVal firstVal = state->getSVal(First, LCtx); + SVal secondVal = state->getSVal(Second, LCtx); + + Loc *firstLoc = dyn_cast<Loc>(&firstVal); + if (!firstLoc) + return state; + + Loc *secondLoc = dyn_cast<Loc>(&secondVal); + if (!secondLoc) + return state; + + // Are the two values the same? + SValBuilder &svalBuilder = C.getSValBuilder(); + llvm::tie(stateTrue, stateFalse) = + state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); + + if (stateTrue && !stateFalse) { + // If the values are known to be equal, that's automatically an overlap. + emitOverlapBug(C, stateTrue, First, Second); + return NULL; + } + + // assume the two expressions are not equal. + assert(stateFalse); + state = stateFalse; + + // Which value comes first? + QualType cmpTy = svalBuilder.getConditionType(); + SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, + *firstLoc, *secondLoc, cmpTy); + DefinedOrUnknownSVal *reverseTest = dyn_cast<DefinedOrUnknownSVal>(&reverse); + if (!reverseTest) + return state; + + llvm::tie(stateTrue, stateFalse) = state->assume(*reverseTest); + if (stateTrue) { + if (stateFalse) { + // If we don't know which one comes first, we can't perform this test. + return state; + } else { + // Switch the values so that firstVal is before secondVal. + Loc *tmpLoc = firstLoc; + firstLoc = secondLoc; + secondLoc = tmpLoc; + + // Switch the Exprs as well, so that they still correspond. + const Expr *tmpExpr = First; + First = Second; + Second = tmpExpr; + } + } + + // Get the length, and make sure it too is known. + SVal LengthVal = state->getSVal(Size, LCtx); + NonLoc *Length = dyn_cast<NonLoc>(&LengthVal); + if (!Length) + return state; + + // Convert the first buffer's start address to char*. + // Bail out if the cast fails. + ASTContext &Ctx = svalBuilder.getContext(); + QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); + SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, + First->getType()); + Loc *FirstStartLoc = dyn_cast<Loc>(&FirstStart); + if (!FirstStartLoc) + return state; + + // Compute the end of the first buffer. Bail out if THAT fails. + SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, + *FirstStartLoc, *Length, CharPtrTy); + Loc *FirstEndLoc = dyn_cast<Loc>(&FirstEnd); + if (!FirstEndLoc) + return state; + + // Is the end of the first buffer past the start of the second buffer? + SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, + *FirstEndLoc, *secondLoc, cmpTy); + DefinedOrUnknownSVal *OverlapTest = dyn_cast<DefinedOrUnknownSVal>(&Overlap); + if (!OverlapTest) + return state; + + llvm::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); + + if (stateTrue && !stateFalse) { + // Overlap! + emitOverlapBug(C, stateTrue, First, Second); + return NULL; + } + + // assume the two expressions don't overlap. + assert(stateFalse); + return stateFalse; +} + +void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, + const Stmt *First, const Stmt *Second) const { + ExplodedNode *N = C.generateSink(state); + if (!N) + return; + + if (!BT_Overlap) + BT_Overlap.reset(new BugType("Unix API", "Improper arguments")); + + // Generate a report for this bug. + BugReport *report = + new BugReport(*BT_Overlap, + "Arguments must not be overlapping buffers", N); + report->addRange(First->getSourceRange()); + report->addRange(Second->getSourceRange()); + + C.EmitReport(report); +} + +ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, + ProgramStateRef state, + NonLoc left, + NonLoc right) const { + // If out-of-bounds checking is turned off, skip the rest. + if (!Filter.CheckCStringOutOfBounds) + return state; + + // If a previous check has failed, propagate the failure. + if (!state) + return NULL; + + SValBuilder &svalBuilder = C.getSValBuilder(); + BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); + + QualType sizeTy = svalBuilder.getContext().getSizeType(); + const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); + NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); + + SVal maxMinusRight; + if (isa<nonloc::ConcreteInt>(right)) { + maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, + sizeTy); + } else { + // Try switching the operands. (The order of these two assignments is + // important!) + maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, + sizeTy); + left = right; + } + + if (NonLoc *maxMinusRightNL = dyn_cast<NonLoc>(&maxMinusRight)) { + QualType cmpTy = svalBuilder.getConditionType(); + // If left > max - right, we have an overflow. + SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, + *maxMinusRightNL, cmpTy); + + ProgramStateRef stateOverflow, stateOkay; + llvm::tie(stateOverflow, stateOkay) = + state->assume(cast<DefinedOrUnknownSVal>(willOverflow)); + + if (stateOverflow && !stateOkay) { + // We have an overflow. Emit a bug report. + ExplodedNode *N = C.generateSink(stateOverflow); + if (!N) + return NULL; + + if (!BT_AdditionOverflow) + BT_AdditionOverflow.reset(new BuiltinBug("API", + "Sum of expressions causes overflow")); + + // This isn't a great error message, but this should never occur in real + // code anyway -- you'd have to create a buffer longer than a size_t can + // represent, which is sort of a contradiction. + const char *warning = + "This expression will create a string whose length is too big to " + "be represented as a size_t"; + + // Generate a report for this bug. + BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N); + C.EmitReport(report); + + return NULL; + } + + // From now on, assume an overflow didn't occur. + assert(stateOkay); + state = stateOkay; + } + + return state; +} + +ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, + const MemRegion *MR, + SVal strLength) { + assert(!strLength.isUndef() && "Attempt to set an undefined string length"); + + MR = MR->StripCasts(); + + switch (MR->getKind()) { + case MemRegion::StringRegionKind: + // FIXME: This can happen if we strcpy() into a string region. This is + // undefined [C99 6.4.5p6], but we should still warn about it. + return state; + + case MemRegion::SymbolicRegionKind: + case MemRegion::AllocaRegionKind: + case MemRegion::VarRegionKind: + case MemRegion::FieldRegionKind: + case MemRegion::ObjCIvarRegionKind: + // These are the types we can currently track string lengths for. + break; + + case MemRegion::ElementRegionKind: + // FIXME: Handle element regions by upper-bounding the parent region's + // string length. + return state; + + default: + // Other regions (mostly non-data) can't have a reliable C string length. + // For now, just ignore the change. + // FIXME: These are rare but not impossible. We should output some kind of + // warning for things like strcpy((char[]){'a', 0}, "b"); + return state; + } + + if (strLength.isUnknown()) + return state->remove<CStringLength>(MR); + + return state->set<CStringLength>(MR, strLength); +} + +SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, + ProgramStateRef &state, + const Expr *Ex, + const MemRegion *MR, + bool hypothetical) { + if (!hypothetical) { + // If there's a recorded length, go ahead and return it. + const SVal *Recorded = state->get<CStringLength>(MR); + if (Recorded) + return *Recorded; + } + + // Otherwise, get a new symbol and update the state. + unsigned Count = C.getCurrentBlockCount(); + SValBuilder &svalBuilder = C.getSValBuilder(); + QualType sizeTy = svalBuilder.getContext().getSizeType(); + SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), + MR, Ex, sizeTy, Count); + + if (!hypothetical) + state = state->set<CStringLength>(MR, strLength); + + return strLength; +} + +SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, + const Expr *Ex, SVal Buf, + bool hypothetical) const { + const MemRegion *MR = Buf.getAsRegion(); + if (!MR) { + // If we can't get a region, see if it's something we /know/ isn't a + // C string. In the context of locations, the only time we can issue such + // a warning is for labels. + if (loc::GotoLabel *Label = dyn_cast<loc::GotoLabel>(&Buf)) { + if (!Filter.CheckCStringNotNullTerm) + return UndefinedVal(); + + if (ExplodedNode *N = C.addTransition(state)) { + if (!BT_NotCString) + BT_NotCString.reset(new BuiltinBug("Unix API", + "Argument is not a null-terminated string.")); + + SmallString<120> buf; + llvm::raw_svector_ostream os(buf); + assert(CurrentFunctionDescription); + os << "Argument to " << CurrentFunctionDescription + << " is the address of the label '" << Label->getLabel()->getName() + << "', which is not a null-terminated string"; + + // Generate a report for this bug. + BugReport *report = new BugReport(*BT_NotCString, + os.str(), N); + + report->addRange(Ex->getSourceRange()); + C.EmitReport(report); + } + return UndefinedVal(); + + } + + // If it's not a region and not a label, give up. + return UnknownVal(); + } + + // If we have a region, strip casts from it and see if we can figure out + // its length. For anything we can't figure out, just return UnknownVal. + MR = MR->StripCasts(); + + switch (MR->getKind()) { + case MemRegion::StringRegionKind: { + // Modifying the contents of string regions is undefined [C99 6.4.5p6], + // so we can assume that the byte length is the correct C string length. + SValBuilder &svalBuilder = C.getSValBuilder(); + QualType sizeTy = svalBuilder.getContext().getSizeType(); + const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); + return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); + } + case MemRegion::SymbolicRegionKind: + case MemRegion::AllocaRegionKind: + case MemRegion::VarRegionKind: + case MemRegion::FieldRegionKind: + case MemRegion::ObjCIvarRegionKind: + return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); + case MemRegion::CompoundLiteralRegionKind: + // FIXME: Can we track this? Is it necessary? + return UnknownVal(); + case MemRegion::ElementRegionKind: + // FIXME: How can we handle this? It's not good enough to subtract the + // offset from the base string length; consider "123\x00567" and &a[5]. + return UnknownVal(); + default: + // Other regions (mostly non-data) can't have a reliable C string length. + // In this case, an error is emitted and UndefinedVal is returned. + // The caller should always be prepared to handle this case. + if (!Filter.CheckCStringNotNullTerm) + return UndefinedVal(); + + if (ExplodedNode *N = C.addTransition(state)) { + if (!BT_NotCString) + BT_NotCString.reset(new BuiltinBug("Unix API", + "Argument is not a null-terminated string.")); + + SmallString<120> buf; + llvm::raw_svector_ostream os(buf); + + assert(CurrentFunctionDescription); + os << "Argument to " << CurrentFunctionDescription << " is "; + + if (SummarizeRegion(os, C.getASTContext(), MR)) + os << ", which is not a null-terminated string"; + else + os << "not a null-terminated string"; + + // Generate a report for this bug. + BugReport *report = new BugReport(*BT_NotCString, + os.str(), N); + + report->addRange(Ex->getSourceRange()); + C.EmitReport(report); + } + + return UndefinedVal(); + } +} + +const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, + ProgramStateRef &state, const Expr *expr, SVal val) const { + + // Get the memory region pointed to by the val. + const MemRegion *bufRegion = val.getAsRegion(); + if (!bufRegion) + return NULL; + + // Strip casts off the memory region. + bufRegion = bufRegion->StripCasts(); + + // Cast the memory region to a string region. + const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); + if (!strRegion) + return NULL; + + // Return the actual string in the string region. + return strRegion->getStringLiteral(); +} + +ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, + ProgramStateRef state, + const Expr *E, SVal V) { + Loc *L = dyn_cast<Loc>(&V); + if (!L) + return state; + + // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes + // some assumptions about the value that CFRefCount can't. Even so, it should + // probably be refactored. + if (loc::MemRegionVal* MR = dyn_cast<loc::MemRegionVal>(L)) { + const MemRegion *R = MR->getRegion()->StripCasts(); + + // Are we dealing with an ElementRegion? If so, we should be invalidating + // the super-region. + if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { + R = ER->getSuperRegion(); + // FIXME: What about layers of ElementRegions? + } + + // Invalidate this region. + unsigned Count = C.getCurrentBlockCount(); + const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); + return state->invalidateRegions(R, E, Count, LCtx); + } + + // If we have a non-region value by chance, just remove the binding. + // FIXME: is this necessary or correct? This handles the non-Region + // cases. Is it ever valid to store to these? + return state->unbindLoc(*L); +} + +bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, + const MemRegion *MR) { + const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); + + switch (MR->getKind()) { + case MemRegion::FunctionTextRegionKind: { + const FunctionDecl *FD = cast<FunctionTextRegion>(MR)->getDecl(); + if (FD) + os << "the address of the function '" << *FD << '\''; + else + os << "the address of a function"; + return true; + } + case MemRegion::BlockTextRegionKind: + os << "block text"; + return true; + case MemRegion::BlockDataRegionKind: + os << "a block"; + return true; + case MemRegion::CXXThisRegionKind: + case MemRegion::CXXTempObjectRegionKind: + os << "a C++ temp object of type " << TVR->getValueType().getAsString(); + return true; + case MemRegion::VarRegionKind: + os << "a variable of type" << TVR->getValueType().getAsString(); + return true; + case MemRegion::FieldRegionKind: + os << "a field of type " << TVR->getValueType().getAsString(); + return true; + case MemRegion::ObjCIvarRegionKind: + os << "an instance variable of type " << TVR->getValueType().getAsString(); + return true; + default: + return false; + } +} + +//===----------------------------------------------------------------------===// +// evaluation of individual function calls. +//===----------------------------------------------------------------------===// + +void CStringChecker::evalCopyCommon(CheckerContext &C, + const CallExpr *CE, + ProgramStateRef state, + const Expr *Size, const Expr *Dest, + const Expr *Source, bool Restricted, + bool IsMempcpy) const { + CurrentFunctionDescription = "memory copy function"; + + // See if the size argument is zero. + const LocationContext *LCtx = C.getLocationContext(); + SVal sizeVal = state->getSVal(Size, LCtx); + QualType sizeTy = Size->getType(); + + ProgramStateRef stateZeroSize, stateNonZeroSize; + llvm::tie(stateZeroSize, stateNonZeroSize) = + assumeZero(C, state, sizeVal, sizeTy); + + // Get the value of the Dest. + SVal destVal = state->getSVal(Dest, LCtx); + + // If the size is zero, there won't be any actual memory access, so + // just bind the return value to the destination buffer and return. + if (stateZeroSize) { + stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); + C.addTransition(stateZeroSize); + } + + // If the size can be nonzero, we have to check the other arguments. + if (stateNonZeroSize) { + state = stateNonZeroSize; + + // Ensure the destination is not null. If it is NULL there will be a + // NULL pointer dereference. + state = checkNonNull(C, state, Dest, destVal); + if (!state) + return; + + // Get the value of the Src. + SVal srcVal = state->getSVal(Source, LCtx); + + // Ensure the source is not null. If it is NULL there will be a + // NULL pointer dereference. + state = checkNonNull(C, state, Source, srcVal); + if (!state) + return; + + // Ensure the accesses are valid and that the buffers do not overlap. + const char * const writeWarning = + "Memory copy function overflows destination buffer"; + state = CheckBufferAccess(C, state, Size, Dest, Source, + writeWarning, /* sourceWarning = */ NULL); + if (Restricted) + state = CheckOverlap(C, state, Size, Dest, Source); + + if (!state) + return; + + // If this is mempcpy, get the byte after the last byte copied and + // bind the expr. + if (IsMempcpy) { + loc::MemRegionVal *destRegVal = dyn_cast<loc::MemRegionVal>(&destVal); + assert(destRegVal && "Destination should be a known MemRegionVal here"); + + // Get the length to copy. + NonLoc *lenValNonLoc = dyn_cast<NonLoc>(&sizeVal); + + if (lenValNonLoc) { + // Get the byte after the last byte copied. + SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add, + *destRegVal, + *lenValNonLoc, + Dest->getType()); + + // The byte after the last byte copied is the return value. + state = state->BindExpr(CE, LCtx, lastElement); + } else { + // If we don't know how much we copied, we can at least + // conjure a return value for later. + unsigned Count = C.getCurrentBlockCount(); + SVal result = + C.getSValBuilder().getConjuredSymbolVal(NULL, CE, LCtx, Count); + state = state->BindExpr(CE, LCtx, result); + } + + } else { + // All other copies return the destination buffer. + // (Well, bcopy() has a void return type, but this won't hurt.) + state = state->BindExpr(CE, LCtx, destVal); + } + + // Invalidate the destination. + // FIXME: Even if we can't perfectly model the copy, we should see if we + // can use LazyCompoundVals to copy the source values into the destination. + // This would probably remove any existing bindings past the end of the + // copied region, but that's still an improvement over blank invalidation. + state = InvalidateBuffer(C, state, Dest, + state->getSVal(Dest, C.getLocationContext())); + C.addTransition(state); + } +} + + +void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { + if (CE->getNumArgs() < 3) + return; + + // void *memcpy(void *restrict dst, const void *restrict src, size_t n); + // The return value is the address of the destination buffer. + const Expr *Dest = CE->getArg(0); + ProgramStateRef state = C.getState(); + + evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); +} + +void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { + if (CE->getNumArgs() < 3) + return; + + // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); + // The return value is a pointer to the byte following the last written byte. + const Expr *Dest = CE->getArg(0); + ProgramStateRef state = C.getState(); + + evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); +} + +void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { + if (CE->getNumArgs() < 3) + return; + + // void *memmove(void *dst, const void *src, size_t n); + // The return value is the address of the destination buffer. + const Expr *Dest = CE->getArg(0); + ProgramStateRef state = C.getState(); + + evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); +} + +void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { + if (CE->getNumArgs() < 3) + return; + + // void bcopy(const void *src, void *dst, size_t n); + evalCopyCommon(C, CE, C.getState(), + CE->getArg(2), CE->getArg(1), CE->getArg(0)); +} + +void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { + if (CE->getNumArgs() < 3) + return; + + // int memcmp(const void *s1, const void *s2, size_t n); + CurrentFunctionDescription = "memory comparison function"; + + const Expr *Left = CE->getArg(0); + const Expr *Right = CE->getArg(1); + const Expr *Size = CE->getArg(2); + + ProgramStateRef state = C.getState(); + SValBuilder &svalBuilder = C.getSValBuilder(); + + // See if the size argument is zero. + const LocationContext *LCtx = C.getLocationContext(); + SVal sizeVal = state->getSVal(Size, LCtx); + QualType sizeTy = Size->getType(); + + ProgramStateRef stateZeroSize, stateNonZeroSize; + llvm::tie(stateZeroSize, stateNonZeroSize) = + assumeZero(C, state, sizeVal, sizeTy); + + // If the size can be zero, the result will be 0 in that case, and we don't + // have to check either of the buffers. + if (stateZeroSize) { + state = stateZeroSize; + state = state->BindExpr(CE, LCtx, + svalBuilder.makeZeroVal(CE->getType())); + C.addTransition(state); + } + + // If the size can be nonzero, we have to check the other arguments. + if (stateNonZeroSize) { + state = stateNonZeroSize; + // If we know the two buffers are the same, we know the result is 0. + // First, get the two buffers' addresses. Another checker will have already + // made sure they're not undefined. + DefinedOrUnknownSVal LV = + cast<DefinedOrUnknownSVal>(state->getSVal(Left, LCtx)); + DefinedOrUnknownSVal RV = + cast<DefinedOrUnknownSVal>(state->getSVal(Right, LCtx)); + + // See if they are the same. + DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); + ProgramStateRef StSameBuf, StNotSameBuf; + llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); + + // If the two arguments might be the same buffer, we know the result is 0, + // and we only need to check one size. + if (StSameBuf) { + state = StSameBuf; + state = CheckBufferAccess(C, state, Size, Left); + if (state) { + state = StSameBuf->BindExpr(CE, LCtx, + svalBuilder.makeZeroVal(CE->getType())); + C.addTransition(state); + } + } + + // If the two arguments might be different buffers, we have to check the + // size of both of them. + if (StNotSameBuf) { + state = StNotSameBuf; + state = CheckBufferAccess(C, state, Size, Left, Right); + if (state) { + // The return value is the comparison result, which we don't know. + unsigned Count = C.getCurrentBlockCount(); + SVal CmpV = svalBuilder.getConjuredSymbolVal(NULL, CE, LCtx, Count); + state = state->BindExpr(CE, LCtx, CmpV); + C.addTransition(state); + } + } + } +} + +void CStringChecker::evalstrLength(CheckerContext &C, + const CallExpr *CE) const { + if (CE->getNumArgs() < 1) + return; + + // size_t strlen(const char *s); + evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); +} + +void CStringChecker::evalstrnLength(CheckerContext &C, + const CallExpr *CE) const { + if (CE->getNumArgs() < 2) + return; + + // size_t strnlen(const char *s, size_t maxlen); + evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); +} + +void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, + bool IsStrnlen) const { + CurrentFunctionDescription = "string length function"; + ProgramStateRef state = C.getState(); + const LocationContext *LCtx = C.getLocationContext(); + + if (IsStrnlen) { + const Expr *maxlenExpr = CE->getArg(1); + SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); + + ProgramStateRef stateZeroSize, stateNonZeroSize; + llvm::tie(stateZeroSize, stateNonZeroSize) = + assumeZero(C, state, maxlenVal, maxlenExpr->getType()); + + // If the size can be zero, the result will be 0 in that case, and we don't + // have to check the string itself. + if (stateZeroSize) { + SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); + stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); + C.addTransition(stateZeroSize); + } + + // If the size is GUARANTEED to be zero, we're done! + if (!stateNonZeroSize) + return; + + // Otherwise, record the assumption that the size is nonzero. + state = stateNonZeroSize; + } + + // Check that the string argument is non-null. + const Expr *Arg = CE->getArg(0); + SVal ArgVal = state->getSVal(Arg, LCtx); + + state = checkNonNull(C, state, Arg, ArgVal); + + if (!state) + return; + + SVal strLength = getCStringLength(C, state, Arg, ArgVal); + + // If the argument isn't a valid C string, there's no valid state to + // transition to. + if (strLength.isUndef()) + return; + + DefinedOrUnknownSVal result = UnknownVal(); + + // If the check is for strnlen() then bind the return value to no more than + // the maxlen value. + if (IsStrnlen) { + QualType cmpTy = C.getSValBuilder().getConditionType(); + + // It's a little unfortunate to be getting this again, + // but it's not that expensive... + const Expr *maxlenExpr = CE->getArg(1); + SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); + + NonLoc *strLengthNL = dyn_cast<NonLoc>(&strLength); + NonLoc *maxlenValNL = dyn_cast<NonLoc>(&maxlenVal); + + if (strLengthNL && maxlenValNL) { + ProgramStateRef stateStringTooLong, stateStringNotTooLong; + + // Check if the strLength is greater than the maxlen. + llvm::tie(stateStringTooLong, stateStringNotTooLong) = + state->assume(cast<DefinedOrUnknownSVal> + (C.getSValBuilder().evalBinOpNN(state, BO_GT, + *strLengthNL, + *maxlenValNL, + cmpTy))); + + if (stateStringTooLong && !stateStringNotTooLong) { + // If the string is longer than maxlen, return maxlen. + result = *maxlenValNL; + } else if (stateStringNotTooLong && !stateStringTooLong) { + // If the string is shorter than maxlen, return its length. + result = *strLengthNL; + } + } + + if (result.isUnknown()) { + // If we don't have enough information for a comparison, there's + // no guarantee the full string length will actually be returned. + // All we know is the return value is the min of the string length + // and the limit. This is better than nothing. + unsigned Count = C.getCurrentBlockCount(); + result = C.getSValBuilder().getConjuredSymbolVal(NULL, CE, LCtx, Count); + NonLoc *resultNL = cast<NonLoc>(&result); + + if (strLengthNL) { + state = state->assume(cast<DefinedOrUnknownSVal> + (C.getSValBuilder().evalBinOpNN(state, BO_LE, + *resultNL, + *strLengthNL, + cmpTy)), true); + } + + if (maxlenValNL) { + state = state->assume(cast<DefinedOrUnknownSVal> + (C.getSValBuilder().evalBinOpNN(state, BO_LE, + *resultNL, + *maxlenValNL, + cmpTy)), true); + } + } + + } else { + // This is a plain strlen(), not strnlen(). + result = cast<DefinedOrUnknownSVal>(strLength); + + // If we don't know the length of the string, conjure a return + // value, so it can be used in constraints, at least. + if (result.isUnknown()) { + unsigned Count = C.getCurrentBlockCount(); + result = C.getSValBuilder().getConjuredSymbolVal(NULL, CE, LCtx, Count); + } + } + + // Bind the return value. + assert(!result.isUnknown() && "Should have conjured a value by now"); + state = state->BindExpr(CE, LCtx, result); + C.addTransition(state); +} + +void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { + if (CE->getNumArgs() < 2) + return; + + // char *strcpy(char *restrict dst, const char *restrict src); + evalStrcpyCommon(C, CE, + /* returnEnd = */ false, + /* isBounded = */ false, + /* isAppending = */ false); +} + +void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { + if (CE->getNumArgs() < 3) + return; + + // char *strncpy(char *restrict dst, const char *restrict src, size_t n); + evalStrcpyCommon(C, CE, + /* returnEnd = */ false, + /* isBounded = */ true, + /* isAppending = */ false); +} + +void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { + if (CE->getNumArgs() < 2) + return; + + // char *stpcpy(char *restrict dst, const char *restrict src); + evalStrcpyCommon(C, CE, + /* returnEnd = */ true, + /* isBounded = */ false, + /* isAppending = */ false); +} + +void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { + if (CE->getNumArgs() < 2) + return; + + //char *strcat(char *restrict s1, const char *restrict s2); + evalStrcpyCommon(C, CE, + /* returnEnd = */ false, + /* isBounded = */ false, + /* isAppending = */ true); +} + +void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { + if (CE->getNumArgs() < 3) + return; + + //char *strncat(char *restrict s1, const char *restrict s2, size_t n); + evalStrcpyCommon(C, CE, + /* returnEnd = */ false, + /* isBounded = */ true, + /* isAppending = */ true); +} + +void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, + bool returnEnd, bool isBounded, + bool isAppending) const { + CurrentFunctionDescription = "string copy function"; + ProgramStateRef state = C.getState(); + const LocationContext *LCtx = C.getLocationContext(); + + // Check that the destination is non-null. + const Expr *Dst = CE->getArg(0); + SVal DstVal = state->getSVal(Dst, LCtx); + + state = checkNonNull(C, state, Dst, DstVal); + if (!state) + return; + + // Check that the source is non-null. + const Expr *srcExpr = CE->getArg(1); + SVal srcVal = state->getSVal(srcExpr, LCtx); + state = checkNonNull(C, state, srcExpr, srcVal); + if (!state) + return; + + // Get the string length of the source. + SVal strLength = getCStringLength(C, state, srcExpr, srcVal); + + // If the source isn't a valid C string, give up. + if (strLength.isUndef()) + return; + + SValBuilder &svalBuilder = C.getSValBuilder(); + QualType cmpTy = svalBuilder.getConditionType(); + QualType sizeTy = svalBuilder.getContext().getSizeType(); + + // These two values allow checking two kinds of errors: + // - actual overflows caused by a source that doesn't fit in the destination + // - potential overflows caused by a bound that could exceed the destination + SVal amountCopied = UnknownVal(); + SVal maxLastElementIndex = UnknownVal(); + const char *boundWarning = NULL; + + // If the function is strncpy, strncat, etc... it is bounded. + if (isBounded) { + // Get the max number of characters to copy. + const Expr *lenExpr = CE->getArg(2); + SVal lenVal = state->getSVal(lenExpr, LCtx); + + // Protect against misdeclared strncpy(). + lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); + + NonLoc *strLengthNL = dyn_cast<NonLoc>(&strLength); + NonLoc *lenValNL = dyn_cast<NonLoc>(&lenVal); + + // If we know both values, we might be able to figure out how much + // we're copying. + if (strLengthNL && lenValNL) { + ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; + + // Check if the max number to copy is less than the length of the src. + // If the bound is equal to the source length, strncpy won't null- + // terminate the result! + llvm::tie(stateSourceTooLong, stateSourceNotTooLong) = + state->assume(cast<DefinedOrUnknownSVal> + (svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, + *lenValNL, cmpTy))); + + if (stateSourceTooLong && !stateSourceNotTooLong) { + // Max number to copy is less than the length of the src, so the actual + // strLength copied is the max number arg. + state = stateSourceTooLong; + amountCopied = lenVal; + + } else if (!stateSourceTooLong && stateSourceNotTooLong) { + // The source buffer entirely fits in the bound. + state = stateSourceNotTooLong; + amountCopied = strLength; + } + } + + // We still want to know if the bound is known to be too large. + if (lenValNL) { + if (isAppending) { + // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) + + // Get the string length of the destination. If the destination is + // memory that can't have a string length, we shouldn't be copying + // into it anyway. + SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); + if (dstStrLength.isUndef()) + return; + + if (NonLoc *dstStrLengthNL = dyn_cast<NonLoc>(&dstStrLength)) { + maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, + *lenValNL, + *dstStrLengthNL, + sizeTy); + boundWarning = "Size argument is greater than the free space in the " + "destination buffer"; + } + + } else { + // For strncpy, this is just checking that lenVal <= sizeof(dst) + // (Yes, strncpy and strncat differ in how they treat termination. + // strncat ALWAYS terminates, but strncpy doesn't.) + NonLoc one = cast<NonLoc>(svalBuilder.makeIntVal(1, sizeTy)); + maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, + one, sizeTy); + boundWarning = "Size argument is greater than the length of the " + "destination buffer"; + } + } + + // If we couldn't pin down the copy length, at least bound it. + // FIXME: We should actually run this code path for append as well, but + // right now it creates problems with constraints (since we can end up + // trying to pass constraints from symbol to symbol). + if (amountCopied.isUnknown() && !isAppending) { + // Try to get a "hypothetical" string length symbol, which we can later + // set as a real value if that turns out to be the case. + amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); + assert(!amountCopied.isUndef()); + + if (NonLoc *amountCopiedNL = dyn_cast<NonLoc>(&amountCopied)) { + if (lenValNL) { + // amountCopied <= lenVal + SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, + *amountCopiedNL, + *lenValNL, + cmpTy); + state = state->assume(cast<DefinedOrUnknownSVal>(copiedLessThanBound), + true); + if (!state) + return; + } + + if (strLengthNL) { + // amountCopied <= strlen(source) + SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, + *amountCopiedNL, + *strLengthNL, + cmpTy); + state = state->assume(cast<DefinedOrUnknownSVal>(copiedLessThanSrc), + true); + if (!state) + return; + } + } + } + + } else { + // The function isn't bounded. The amount copied should match the length + // of the source buffer. + amountCopied = strLength; + } + + assert(state); + + // This represents the number of characters copied into the destination + // buffer. (It may not actually be the strlen if the destination buffer + // is not terminated.) + SVal finalStrLength = UnknownVal(); + + // If this is an appending function (strcat, strncat...) then set the + // string length to strlen(src) + strlen(dst) since the buffer will + // ultimately contain both. + if (isAppending) { + // Get the string length of the destination. If the destination is memory + // that can't have a string length, we shouldn't be copying into it anyway. + SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); + if (dstStrLength.isUndef()) + return; + + NonLoc *srcStrLengthNL = dyn_cast<NonLoc>(&amountCopied); + NonLoc *dstStrLengthNL = dyn_cast<NonLoc>(&dstStrLength); + + // If we know both string lengths, we might know the final string length. + if (srcStrLengthNL && dstStrLengthNL) { + // Make sure the two lengths together don't overflow a size_t. + state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); + if (!state) + return; + + finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, + *dstStrLengthNL, sizeTy); + } + + // If we couldn't get a single value for the final string length, + // we can at least bound it by the individual lengths. + if (finalStrLength.isUnknown()) { + // Try to get a "hypothetical" string length symbol, which we can later + // set as a real value if that turns out to be the case. + finalStrLength = getCStringLength(C, state, CE, DstVal, true); + assert(!finalStrLength.isUndef()); + + if (NonLoc *finalStrLengthNL = dyn_cast<NonLoc>(&finalStrLength)) { + if (srcStrLengthNL) { + // finalStrLength >= srcStrLength + SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, + *finalStrLengthNL, + *srcStrLengthNL, + cmpTy); + state = state->assume(cast<DefinedOrUnknownSVal>(sourceInResult), + true); + if (!state) + return; + } + + if (dstStrLengthNL) { + // finalStrLength >= dstStrLength + SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, + *finalStrLengthNL, + *dstStrLengthNL, + cmpTy); + state = state->assume(cast<DefinedOrUnknownSVal>(destInResult), + true); + if (!state) + return; + } + } + } + + } else { + // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and + // the final string length will match the input string length. + finalStrLength = amountCopied; + } + + // The final result of the function will either be a pointer past the last + // copied element, or a pointer to the start of the destination buffer. + SVal Result = (returnEnd ? UnknownVal() : DstVal); + + assert(state); + + // If the destination is a MemRegion, try to check for a buffer overflow and + // record the new string length. + if (loc::MemRegionVal *dstRegVal = dyn_cast<loc::MemRegionVal>(&DstVal)) { + QualType ptrTy = Dst->getType(); + + // If we have an exact value on a bounded copy, use that to check for + // overflows, rather than our estimate about how much is actually copied. + if (boundWarning) { + if (NonLoc *maxLastNL = dyn_cast<NonLoc>(&maxLastElementIndex)) { + SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, + *maxLastNL, ptrTy); + state = CheckLocation(C, state, CE->getArg(2), maxLastElement, + boundWarning); + if (!state) + return; + } + } + + // Then, if the final length is known... + if (NonLoc *knownStrLength = dyn_cast<NonLoc>(&finalStrLength)) { + SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, + *knownStrLength, ptrTy); + + // ...and we haven't checked the bound, we'll check the actual copy. + if (!boundWarning) { + const char * const warningMsg = + "String copy function overflows destination buffer"; + state = CheckLocation(C, state, Dst, lastElement, warningMsg); + if (!state) + return; + } + + // If this is a stpcpy-style copy, the last element is the return value. + if (returnEnd) + Result = lastElement; + } + + // Invalidate the destination. This must happen before we set the C string + // length because invalidation will clear the length. + // FIXME: Even if we can't perfectly model the copy, we should see if we + // can use LazyCompoundVals to copy the source values into the destination. + // This would probably remove any existing bindings past the end of the + // string, but that's still an improvement over blank invalidation. + state = InvalidateBuffer(C, state, Dst, *dstRegVal); + + // Set the C string length of the destination, if we know it. + if (isBounded && !isAppending) { + // strncpy is annoying in that it doesn't guarantee to null-terminate + // the result string. If the original string didn't fit entirely inside + // the bound (including the null-terminator), we don't know how long the + // result is. + if (amountCopied != strLength) + finalStrLength = UnknownVal(); + } + state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); + } + + assert(state); + + // If this is a stpcpy-style copy, but we were unable to check for a buffer + // overflow, we still need a result. Conjure a return value. + if (returnEnd && Result.isUnknown()) { + unsigned Count = C.getCurrentBlockCount(); + Result = svalBuilder.getConjuredSymbolVal(NULL, CE, LCtx, Count); + } + + // Set the return value. + state = state->BindExpr(CE, LCtx, Result); + C.addTransition(state); +} + +void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { + if (CE->getNumArgs() < 2) + return; + + //int strcmp(const char *s1, const char *s2); + evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); +} + +void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { + if (CE->getNumArgs() < 3) + return; + + //int strncmp(const char *s1, const char *s2, size_t n); + evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); +} + +void CStringChecker::evalStrcasecmp(CheckerContext &C, + const CallExpr *CE) const { + if (CE->getNumArgs() < 2) + return; + + //int strcasecmp(const char *s1, const char *s2); + evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); +} + +void CStringChecker::evalStrncasecmp(CheckerContext &C, + const CallExpr *CE) const { + if (CE->getNumArgs() < 3) + return; + + //int strncasecmp(const char *s1, const char *s2, size_t n); + evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); +} + +void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, + bool isBounded, bool ignoreCase) const { + CurrentFunctionDescription = "string comparison function"; + ProgramStateRef state = C.getState(); + const LocationContext *LCtx = C.getLocationContext(); + + // Check that the first string is non-null + const Expr *s1 = CE->getArg(0); + SVal s1Val = state->getSVal(s1, LCtx); + state = checkNonNull(C, state, s1, s1Val); + if (!state) + return; + + // Check that the second string is non-null. + const Expr *s2 = CE->getArg(1); + SVal s2Val = state->getSVal(s2, LCtx); + state = checkNonNull(C, state, s2, s2Val); + if (!state) + return; + + // Get the string length of the first string or give up. + SVal s1Length = getCStringLength(C, state, s1, s1Val); + if (s1Length.isUndef()) + return; + + // Get the string length of the second string or give up. + SVal s2Length = getCStringLength(C, state, s2, s2Val); + if (s2Length.isUndef()) + return; + + // If we know the two buffers are the same, we know the result is 0. + // First, get the two buffers' addresses. Another checker will have already + // made sure they're not undefined. + DefinedOrUnknownSVal LV = cast<DefinedOrUnknownSVal>(s1Val); + DefinedOrUnknownSVal RV = cast<DefinedOrUnknownSVal>(s2Val); + + // See if they are the same. + SValBuilder &svalBuilder = C.getSValBuilder(); + DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); + ProgramStateRef StSameBuf, StNotSameBuf; + llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); + + // If the two arguments might be the same buffer, we know the result is 0, + // and we only need to check one size. + if (StSameBuf) { + StSameBuf = StSameBuf->BindExpr(CE, LCtx, + svalBuilder.makeZeroVal(CE->getType())); + C.addTransition(StSameBuf); + + // If the two arguments are GUARANTEED to be the same, we're done! + if (!StNotSameBuf) + return; + } + + assert(StNotSameBuf); + state = StNotSameBuf; + + // At this point we can go about comparing the two buffers. + // For now, we only do this if they're both known string literals. + + // Attempt to extract string literals from both expressions. + const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); + const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); + bool canComputeResult = false; + + if (s1StrLiteral && s2StrLiteral) { + StringRef s1StrRef = s1StrLiteral->getString(); + StringRef s2StrRef = s2StrLiteral->getString(); + + if (isBounded) { + // Get the max number of characters to compare. + const Expr *lenExpr = CE->getArg(2); + SVal lenVal = state->getSVal(lenExpr, LCtx); + + // If the length is known, we can get the right substrings. + if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { + // Create substrings of each to compare the prefix. + s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); + s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); + canComputeResult = true; + } + } else { + // This is a normal, unbounded strcmp. + canComputeResult = true; + } + + if (canComputeResult) { + // Real strcmp stops at null characters. + size_t s1Term = s1StrRef.find('\0'); + if (s1Term != StringRef::npos) + s1StrRef = s1StrRef.substr(0, s1Term); + + size_t s2Term = s2StrRef.find('\0'); + if (s2Term != StringRef::npos) + s2StrRef = s2StrRef.substr(0, s2Term); + + // Use StringRef's comparison methods to compute the actual result. + int result; + + if (ignoreCase) { + // Compare string 1 to string 2 the same way strcasecmp() does. + result = s1StrRef.compare_lower(s2StrRef); + } else { + // Compare string 1 to string 2 the same way strcmp() does. + result = s1StrRef.compare(s2StrRef); + } + + // Build the SVal of the comparison and bind the return value. + SVal resultVal = svalBuilder.makeIntVal(result, CE->getType()); + state = state->BindExpr(CE, LCtx, resultVal); + } + } + + if (!canComputeResult) { + // Conjure a symbolic value. It's the best we can do. + unsigned Count = C.getCurrentBlockCount(); + SVal resultVal = svalBuilder.getConjuredSymbolVal(NULL, CE, LCtx, Count); + state = state->BindExpr(CE, LCtx, resultVal); + } + + // Record this as a possible path. + C.addTransition(state); +} + +//===----------------------------------------------------------------------===// +// The driver method, and other Checker callbacks. +//===----------------------------------------------------------------------===// + +bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const { + const FunctionDecl *FDecl = C.getCalleeDecl(CE); + + if (!FDecl) + return false; + + FnCheck evalFunction = 0; + if (C.isCLibraryFunction(FDecl, "memcpy")) + evalFunction = &CStringChecker::evalMemcpy; + else if (C.isCLibraryFunction(FDecl, "mempcpy")) + evalFunction = &CStringChecker::evalMempcpy; + else if (C.isCLibraryFunction(FDecl, "memcmp")) + evalFunction = &CStringChecker::evalMemcmp; + else if (C.isCLibraryFunction(FDecl, "memmove")) + evalFunction = &CStringChecker::evalMemmove; + else if (C.isCLibraryFunction(FDecl, "strcpy")) + evalFunction = &CStringChecker::evalStrcpy; + else if (C.isCLibraryFunction(FDecl, "strncpy")) + evalFunction = &CStringChecker::evalStrncpy; + else if (C.isCLibraryFunction(FDecl, "stpcpy")) + evalFunction = &CStringChecker::evalStpcpy; + else if (C.isCLibraryFunction(FDecl, "strcat")) + evalFunction = &CStringChecker::evalStrcat; + else if (C.isCLibraryFunction(FDecl, "strncat")) + evalFunction = &CStringChecker::evalStrncat; + else if (C.isCLibraryFunction(FDecl, "strlen")) + evalFunction = &CStringChecker::evalstrLength; + else if (C.isCLibraryFunction(FDecl, "strnlen")) + evalFunction = &CStringChecker::evalstrnLength; + else if (C.isCLibraryFunction(FDecl, "strcmp")) + evalFunction = &CStringChecker::evalStrcmp; + else if (C.isCLibraryFunction(FDecl, "strncmp")) + evalFunction = &CStringChecker::evalStrncmp; + else if (C.isCLibraryFunction(FDecl, "strcasecmp")) + evalFunction = &CStringChecker::evalStrcasecmp; + else if (C.isCLibraryFunction(FDecl, "strncasecmp")) + evalFunction = &CStringChecker::evalStrncasecmp; + else if (C.isCLibraryFunction(FDecl, "bcopy")) + evalFunction = &CStringChecker::evalBcopy; + else if (C.isCLibraryFunction(FDecl, "bcmp")) + evalFunction = &CStringChecker::evalMemcmp; + + // If the callee isn't a string function, let another checker handle it. + if (!evalFunction) + return false; + + // Make sure each function sets its own description. + // (But don't bother in a release build.) + assert(!(CurrentFunctionDescription = NULL)); + + // Check and evaluate the call. + (this->*evalFunction)(C, CE); + + // If the evaluate call resulted in no change, chain to the next eval call + // handler. + // Note, the custom CString evaluation calls assume that basic safety + // properties are held. However, if the user chooses to turn off some of these + // checks, we ignore the issues and leave the call evaluation to a generic + // handler. + if (!C.isDifferent()) + return false; + + return true; +} + +void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { + // Record string length for char a[] = "abc"; + ProgramStateRef state = C.getState(); + + for (DeclStmt::const_decl_iterator I = DS->decl_begin(), E = DS->decl_end(); + I != E; ++I) { + const VarDecl *D = dyn_cast<VarDecl>(*I); + if (!D) + continue; + + // FIXME: Handle array fields of structs. + if (!D->getType()->isArrayType()) + continue; + + const Expr *Init = D->getInit(); + if (!Init) + continue; + if (!isa<StringLiteral>(Init)) + continue; + + Loc VarLoc = state->getLValue(D, C.getLocationContext()); + const MemRegion *MR = VarLoc.getAsRegion(); + if (!MR) + continue; + + SVal StrVal = state->getSVal(Init, C.getLocationContext()); + assert(StrVal.isValid() && "Initializer string is unknown or undefined"); + DefinedOrUnknownSVal strLength + = cast<DefinedOrUnknownSVal>(getCStringLength(C, state, Init, StrVal)); + + state = state->set<CStringLength>(MR, strLength); + } + + C.addTransition(state); +} + +bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const { + CStringLength::EntryMap Entries = state->get<CStringLength>(); + return !Entries.isEmpty(); +} + +ProgramStateRef +CStringChecker::checkRegionChanges(ProgramStateRef state, + const StoreManager::InvalidatedSymbols *, + ArrayRef<const MemRegion *> ExplicitRegions, + ArrayRef<const MemRegion *> Regions, + const CallOrObjCMessage *Call) const { + CStringLength::EntryMap Entries = state->get<CStringLength>(); + if (Entries.isEmpty()) + return state; + + llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; + llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; + + // First build sets for the changed regions and their super-regions. + for (ArrayRef<const MemRegion *>::iterator + I = Regions.begin(), E = Regions.end(); I != E; ++I) { + const MemRegion *MR = *I; + Invalidated.insert(MR); + + SuperRegions.insert(MR); + while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { + MR = SR->getSuperRegion(); + SuperRegions.insert(MR); + } + } + + CStringLength::EntryMap::Factory &F = state->get_context<CStringLength>(); + + // Then loop over the entries in the current state. + for (CStringLength::EntryMap::iterator I = Entries.begin(), + E = Entries.end(); I != E; ++I) { + const MemRegion *MR = I.getKey(); + + // Is this entry for a super-region of a changed region? + if (SuperRegions.count(MR)) { + Entries = F.remove(Entries, MR); + continue; + } + + // Is this entry for a sub-region of a changed region? + const MemRegion *Super = MR; + while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { + Super = SR->getSuperRegion(); + if (Invalidated.count(Super)) { + Entries = F.remove(Entries, MR); + break; + } + } + } + + return state->set<CStringLength>(Entries); +} + +void CStringChecker::checkLiveSymbols(ProgramStateRef state, + SymbolReaper &SR) const { + // Mark all symbols in our string length map as valid. + CStringLength::EntryMap Entries = state->get<CStringLength>(); + + for (CStringLength::EntryMap::iterator I = Entries.begin(), E = Entries.end(); + I != E; ++I) { + SVal Len = I.getData(); + + for (SymExpr::symbol_iterator si = Len.symbol_begin(), + se = Len.symbol_end(); si != se; ++si) + SR.markInUse(*si); + } +} + +void CStringChecker::checkDeadSymbols(SymbolReaper &SR, + CheckerContext &C) const { + if (!SR.hasDeadSymbols()) + return; + + ProgramStateRef state = C.getState(); + CStringLength::EntryMap Entries = state->get<CStringLength>(); + if (Entries.isEmpty()) + return; + + CStringLength::EntryMap::Factory &F = state->get_context<CStringLength>(); + for (CStringLength::EntryMap::iterator I = Entries.begin(), E = Entries.end(); + I != E; ++I) { + SVal Len = I.getData(); + if (SymbolRef Sym = Len.getAsSymbol()) { + if (SR.isDead(Sym)) + Entries = F.remove(Entries, I.getKey()); + } + } + + state = state->set<CStringLength>(Entries); + C.addTransition(state); +} + +#define REGISTER_CHECKER(name) \ +void ento::register##name(CheckerManager &mgr) {\ + static CStringChecker *TheChecker = 0; \ + if (TheChecker == 0) \ + TheChecker = mgr.registerChecker<CStringChecker>(); \ + TheChecker->Filter.Check##name = true; \ +} + +REGISTER_CHECKER(CStringNullArg) +REGISTER_CHECKER(CStringOutOfBounds) +REGISTER_CHECKER(CStringBufferOverlap) +REGISTER_CHECKER(CStringNotNullTerm) + +void ento::registerCStringCheckerBasic(CheckerManager &Mgr) { + registerCStringNullArg(Mgr); +} |