summaryrefslogtreecommitdiff
path: root/clang/lib/Sema/SemaExprCXX.cpp
diff options
context:
space:
mode:
authorZancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au>2012-09-24 09:58:17 +1000
committerZancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au>2012-09-24 09:58:17 +1000
commit222e2a7620e6520ffaf4fc4e69d79c18da31542e (patch)
tree7bfbc05bfa3b41c8f9d2e56d53a0bc3e310df239 /clang/lib/Sema/SemaExprCXX.cpp
parent3d206f03985b50beacae843d880bccdc91a9f424 (diff)
Add the clang library to the repo (with some of my changes, too).
Diffstat (limited to 'clang/lib/Sema/SemaExprCXX.cpp')
-rw-r--r--clang/lib/Sema/SemaExprCXX.cpp5362
1 files changed, 5362 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaExprCXX.cpp b/clang/lib/Sema/SemaExprCXX.cpp
new file mode 100644
index 0000000..af86cb2
--- /dev/null
+++ b/clang/lib/Sema/SemaExprCXX.cpp
@@ -0,0 +1,5362 @@
+//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for C++ expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/TemplateDeduction.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "TypeLocBuilder.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace clang;
+using namespace sema;
+
+ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
+ IdentifierInfo &II,
+ SourceLocation NameLoc,
+ Scope *S, CXXScopeSpec &SS,
+ ParsedType ObjectTypePtr,
+ bool EnteringContext) {
+ // Determine where to perform name lookup.
+
+ // FIXME: This area of the standard is very messy, and the current
+ // wording is rather unclear about which scopes we search for the
+ // destructor name; see core issues 399 and 555. Issue 399 in
+ // particular shows where the current description of destructor name
+ // lookup is completely out of line with existing practice, e.g.,
+ // this appears to be ill-formed:
+ //
+ // namespace N {
+ // template <typename T> struct S {
+ // ~S();
+ // };
+ // }
+ //
+ // void f(N::S<int>* s) {
+ // s->N::S<int>::~S();
+ // }
+ //
+ // See also PR6358 and PR6359.
+ // For this reason, we're currently only doing the C++03 version of this
+ // code; the C++0x version has to wait until we get a proper spec.
+ QualType SearchType;
+ DeclContext *LookupCtx = 0;
+ bool isDependent = false;
+ bool LookInScope = false;
+
+ // If we have an object type, it's because we are in a
+ // pseudo-destructor-expression or a member access expression, and
+ // we know what type we're looking for.
+ if (ObjectTypePtr)
+ SearchType = GetTypeFromParser(ObjectTypePtr);
+
+ if (SS.isSet()) {
+ NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
+
+ bool AlreadySearched = false;
+ bool LookAtPrefix = true;
+ // C++ [basic.lookup.qual]p6:
+ // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
+ // the type-names are looked up as types in the scope designated by the
+ // nested-name-specifier. In a qualified-id of the form:
+ //
+ // ::[opt] nested-name-specifier ~ class-name
+ //
+ // where the nested-name-specifier designates a namespace scope, and in
+ // a qualified-id of the form:
+ //
+ // ::opt nested-name-specifier class-name :: ~ class-name
+ //
+ // the class-names are looked up as types in the scope designated by
+ // the nested-name-specifier.
+ //
+ // Here, we check the first case (completely) and determine whether the
+ // code below is permitted to look at the prefix of the
+ // nested-name-specifier.
+ DeclContext *DC = computeDeclContext(SS, EnteringContext);
+ if (DC && DC->isFileContext()) {
+ AlreadySearched = true;
+ LookupCtx = DC;
+ isDependent = false;
+ } else if (DC && isa<CXXRecordDecl>(DC))
+ LookAtPrefix = false;
+
+ // The second case from the C++03 rules quoted further above.
+ NestedNameSpecifier *Prefix = 0;
+ if (AlreadySearched) {
+ // Nothing left to do.
+ } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
+ CXXScopeSpec PrefixSS;
+ PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
+ LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
+ isDependent = isDependentScopeSpecifier(PrefixSS);
+ } else if (ObjectTypePtr) {
+ LookupCtx = computeDeclContext(SearchType);
+ isDependent = SearchType->isDependentType();
+ } else {
+ LookupCtx = computeDeclContext(SS, EnteringContext);
+ isDependent = LookupCtx && LookupCtx->isDependentContext();
+ }
+
+ LookInScope = false;
+ } else if (ObjectTypePtr) {
+ // C++ [basic.lookup.classref]p3:
+ // If the unqualified-id is ~type-name, the type-name is looked up
+ // in the context of the entire postfix-expression. If the type T
+ // of the object expression is of a class type C, the type-name is
+ // also looked up in the scope of class C. At least one of the
+ // lookups shall find a name that refers to (possibly
+ // cv-qualified) T.
+ LookupCtx = computeDeclContext(SearchType);
+ isDependent = SearchType->isDependentType();
+ assert((isDependent || !SearchType->isIncompleteType()) &&
+ "Caller should have completed object type");
+
+ LookInScope = true;
+ } else {
+ // Perform lookup into the current scope (only).
+ LookInScope = true;
+ }
+
+ TypeDecl *NonMatchingTypeDecl = 0;
+ LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
+ for (unsigned Step = 0; Step != 2; ++Step) {
+ // Look for the name first in the computed lookup context (if we
+ // have one) and, if that fails to find a match, in the scope (if
+ // we're allowed to look there).
+ Found.clear();
+ if (Step == 0 && LookupCtx)
+ LookupQualifiedName(Found, LookupCtx);
+ else if (Step == 1 && LookInScope && S)
+ LookupName(Found, S);
+ else
+ continue;
+
+ // FIXME: Should we be suppressing ambiguities here?
+ if (Found.isAmbiguous())
+ return ParsedType();
+
+ if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
+ QualType T = Context.getTypeDeclType(Type);
+
+ if (SearchType.isNull() || SearchType->isDependentType() ||
+ Context.hasSameUnqualifiedType(T, SearchType)) {
+ // We found our type!
+
+ return ParsedType::make(T);
+ }
+
+ if (!SearchType.isNull())
+ NonMatchingTypeDecl = Type;
+ }
+
+ // If the name that we found is a class template name, and it is
+ // the same name as the template name in the last part of the
+ // nested-name-specifier (if present) or the object type, then
+ // this is the destructor for that class.
+ // FIXME: This is a workaround until we get real drafting for core
+ // issue 399, for which there isn't even an obvious direction.
+ if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
+ QualType MemberOfType;
+ if (SS.isSet()) {
+ if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
+ // Figure out the type of the context, if it has one.
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
+ MemberOfType = Context.getTypeDeclType(Record);
+ }
+ }
+ if (MemberOfType.isNull())
+ MemberOfType = SearchType;
+
+ if (MemberOfType.isNull())
+ continue;
+
+ // We're referring into a class template specialization. If the
+ // class template we found is the same as the template being
+ // specialized, we found what we are looking for.
+ if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
+ if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
+ Template->getCanonicalDecl())
+ return ParsedType::make(MemberOfType);
+ }
+
+ continue;
+ }
+
+ // We're referring to an unresolved class template
+ // specialization. Determine whether we class template we found
+ // is the same as the template being specialized or, if we don't
+ // know which template is being specialized, that it at least
+ // has the same name.
+ if (const TemplateSpecializationType *SpecType
+ = MemberOfType->getAs<TemplateSpecializationType>()) {
+ TemplateName SpecName = SpecType->getTemplateName();
+
+ // The class template we found is the same template being
+ // specialized.
+ if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
+ if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
+ return ParsedType::make(MemberOfType);
+
+ continue;
+ }
+
+ // The class template we found has the same name as the
+ // (dependent) template name being specialized.
+ if (DependentTemplateName *DepTemplate
+ = SpecName.getAsDependentTemplateName()) {
+ if (DepTemplate->isIdentifier() &&
+ DepTemplate->getIdentifier() == Template->getIdentifier())
+ return ParsedType::make(MemberOfType);
+
+ continue;
+ }
+ }
+ }
+ }
+
+ if (isDependent) {
+ // We didn't find our type, but that's okay: it's dependent
+ // anyway.
+
+ // FIXME: What if we have no nested-name-specifier?
+ QualType T = CheckTypenameType(ETK_None, SourceLocation(),
+ SS.getWithLocInContext(Context),
+ II, NameLoc);
+ return ParsedType::make(T);
+ }
+
+ if (NonMatchingTypeDecl) {
+ QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
+ Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
+ << T << SearchType;
+ Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
+ << T;
+ } else if (ObjectTypePtr)
+ Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
+ << &II;
+ else
+ Diag(NameLoc, diag::err_destructor_class_name);
+
+ return ParsedType();
+}
+
+ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
+ if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
+ return ParsedType();
+ assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
+ && "only get destructor types from declspecs");
+ QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
+ QualType SearchType = GetTypeFromParser(ObjectType);
+ if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
+ return ParsedType::make(T);
+ }
+
+ Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
+ << T << SearchType;
+ return ParsedType();
+}
+
+/// \brief Build a C++ typeid expression with a type operand.
+ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ TypeSourceInfo *Operand,
+ SourceLocation RParenLoc) {
+ // C++ [expr.typeid]p4:
+ // The top-level cv-qualifiers of the lvalue expression or the type-id
+ // that is the operand of typeid are always ignored.
+ // If the type of the type-id is a class type or a reference to a class
+ // type, the class shall be completely-defined.
+ Qualifiers Quals;
+ QualType T
+ = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
+ Quals);
+ if (T->getAs<RecordType>() &&
+ RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
+ return ExprError();
+
+ return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
+ Operand,
+ SourceRange(TypeidLoc, RParenLoc)));
+}
+
+/// \brief Build a C++ typeid expression with an expression operand.
+ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ Expr *E,
+ SourceLocation RParenLoc) {
+ if (E && !E->isTypeDependent()) {
+ if (E->getType()->isPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.take();
+ }
+
+ QualType T = E->getType();
+ if (const RecordType *RecordT = T->getAs<RecordType>()) {
+ CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
+ // C++ [expr.typeid]p3:
+ // [...] If the type of the expression is a class type, the class
+ // shall be completely-defined.
+ if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
+ return ExprError();
+
+ // C++ [expr.typeid]p3:
+ // When typeid is applied to an expression other than an glvalue of a
+ // polymorphic class type [...] [the] expression is an unevaluated
+ // operand. [...]
+ if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
+ // The subexpression is potentially evaluated; switch the context
+ // and recheck the subexpression.
+ ExprResult Result = TranformToPotentiallyEvaluated(E);
+ if (Result.isInvalid()) return ExprError();
+ E = Result.take();
+
+ // We require a vtable to query the type at run time.
+ MarkVTableUsed(TypeidLoc, RecordD);
+ }
+ }
+
+ // C++ [expr.typeid]p4:
+ // [...] If the type of the type-id is a reference to a possibly
+ // cv-qualified type, the result of the typeid expression refers to a
+ // std::type_info object representing the cv-unqualified referenced
+ // type.
+ Qualifiers Quals;
+ QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
+ if (!Context.hasSameType(T, UnqualT)) {
+ T = UnqualT;
+ E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
+ }
+ }
+
+ return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
+ E,
+ SourceRange(TypeidLoc, RParenLoc)));
+}
+
+/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
+ExprResult
+Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
+ bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
+ // Find the std::type_info type.
+ if (!getStdNamespace())
+ return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
+
+ if (!CXXTypeInfoDecl) {
+ IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
+ LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
+ LookupQualifiedName(R, getStdNamespace());
+ CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
+ if (!CXXTypeInfoDecl)
+ return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
+ }
+
+ QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
+
+ if (isType) {
+ // The operand is a type; handle it as such.
+ TypeSourceInfo *TInfo = 0;
+ QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
+ &TInfo);
+ if (T.isNull())
+ return ExprError();
+
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
+
+ return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
+ }
+
+ // The operand is an expression.
+ return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
+}
+
+/// Retrieve the UuidAttr associated with QT.
+static UuidAttr *GetUuidAttrOfType(QualType QT) {
+ // Optionally remove one level of pointer, reference or array indirection.
+ const Type *Ty = QT.getTypePtr();;
+ if (QT->isPointerType() || QT->isReferenceType())
+ Ty = QT->getPointeeType().getTypePtr();
+ else if (QT->isArrayType())
+ Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
+
+ // Loop all record redeclaration looking for an uuid attribute.
+ CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
+ for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
+ E = RD->redecls_end(); I != E; ++I) {
+ if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
+ return Uuid;
+ }
+
+ return 0;
+}
+
+/// \brief Build a Microsoft __uuidof expression with a type operand.
+ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ TypeSourceInfo *Operand,
+ SourceLocation RParenLoc) {
+ if (!Operand->getType()->isDependentType()) {
+ if (!GetUuidAttrOfType(Operand->getType()))
+ return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
+ }
+
+ // FIXME: add __uuidof semantic analysis for type operand.
+ return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
+ Operand,
+ SourceRange(TypeidLoc, RParenLoc)));
+}
+
+/// \brief Build a Microsoft __uuidof expression with an expression operand.
+ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
+ SourceLocation TypeidLoc,
+ Expr *E,
+ SourceLocation RParenLoc) {
+ if (!E->getType()->isDependentType()) {
+ if (!GetUuidAttrOfType(E->getType()) &&
+ !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
+ return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
+ }
+ // FIXME: add __uuidof semantic analysis for type operand.
+ return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
+ E,
+ SourceRange(TypeidLoc, RParenLoc)));
+}
+
+/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
+ExprResult
+Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
+ bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
+ // If MSVCGuidDecl has not been cached, do the lookup.
+ if (!MSVCGuidDecl) {
+ IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
+ LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
+ LookupQualifiedName(R, Context.getTranslationUnitDecl());
+ MSVCGuidDecl = R.getAsSingle<RecordDecl>();
+ if (!MSVCGuidDecl)
+ return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
+ }
+
+ QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
+
+ if (isType) {
+ // The operand is a type; handle it as such.
+ TypeSourceInfo *TInfo = 0;
+ QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
+ &TInfo);
+ if (T.isNull())
+ return ExprError();
+
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
+
+ return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
+ }
+
+ // The operand is an expression.
+ return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
+}
+
+/// ActOnCXXBoolLiteral - Parse {true,false} literals.
+ExprResult
+Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
+ assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
+ "Unknown C++ Boolean value!");
+ return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
+ Context.BoolTy, OpLoc));
+}
+
+/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
+ExprResult
+Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
+ return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
+}
+
+/// ActOnCXXThrow - Parse throw expressions.
+ExprResult
+Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
+ bool IsThrownVarInScope = false;
+ if (Ex) {
+ // C++0x [class.copymove]p31:
+ // When certain criteria are met, an implementation is allowed to omit the
+ // copy/move construction of a class object [...]
+ //
+ // - in a throw-expression, when the operand is the name of a
+ // non-volatile automatic object (other than a function or catch-
+ // clause parameter) whose scope does not extend beyond the end of the
+ // innermost enclosing try-block (if there is one), the copy/move
+ // operation from the operand to the exception object (15.1) can be
+ // omitted by constructing the automatic object directly into the
+ // exception object
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
+ if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
+ if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
+ for( ; S; S = S->getParent()) {
+ if (S->isDeclScope(Var)) {
+ IsThrownVarInScope = true;
+ break;
+ }
+
+ if (S->getFlags() &
+ (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
+ Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
+ Scope::TryScope))
+ break;
+ }
+ }
+ }
+ }
+
+ return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
+}
+
+ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
+ bool IsThrownVarInScope) {
+ // Don't report an error if 'throw' is used in system headers.
+ if (!getLangOpts().CXXExceptions &&
+ !getSourceManager().isInSystemHeader(OpLoc))
+ Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
+
+ if (Ex && !Ex->isTypeDependent()) {
+ ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
+ if (ExRes.isInvalid())
+ return ExprError();
+ Ex = ExRes.take();
+ }
+
+ return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
+ IsThrownVarInScope));
+}
+
+/// CheckCXXThrowOperand - Validate the operand of a throw.
+ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
+ bool IsThrownVarInScope) {
+ // C++ [except.throw]p3:
+ // A throw-expression initializes a temporary object, called the exception
+ // object, the type of which is determined by removing any top-level
+ // cv-qualifiers from the static type of the operand of throw and adjusting
+ // the type from "array of T" or "function returning T" to "pointer to T"
+ // or "pointer to function returning T", [...]
+ if (E->getType().hasQualifiers())
+ E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
+ E->getValueKind()).take();
+
+ ExprResult Res = DefaultFunctionArrayConversion(E);
+ if (Res.isInvalid())
+ return ExprError();
+ E = Res.take();
+
+ // If the type of the exception would be an incomplete type or a pointer
+ // to an incomplete type other than (cv) void the program is ill-formed.
+ QualType Ty = E->getType();
+ bool isPointer = false;
+ if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
+ Ty = Ptr->getPointeeType();
+ isPointer = true;
+ }
+ if (!isPointer || !Ty->isVoidType()) {
+ if (RequireCompleteType(ThrowLoc, Ty,
+ PDiag(isPointer ? diag::err_throw_incomplete_ptr
+ : diag::err_throw_incomplete)
+ << E->getSourceRange()))
+ return ExprError();
+
+ if (RequireNonAbstractType(ThrowLoc, E->getType(),
+ PDiag(diag::err_throw_abstract_type)
+ << E->getSourceRange()))
+ return ExprError();
+ }
+
+ // Initialize the exception result. This implicitly weeds out
+ // abstract types or types with inaccessible copy constructors.
+
+ // C++0x [class.copymove]p31:
+ // When certain criteria are met, an implementation is allowed to omit the
+ // copy/move construction of a class object [...]
+ //
+ // - in a throw-expression, when the operand is the name of a
+ // non-volatile automatic object (other than a function or catch-clause
+ // parameter) whose scope does not extend beyond the end of the
+ // innermost enclosing try-block (if there is one), the copy/move
+ // operation from the operand to the exception object (15.1) can be
+ // omitted by constructing the automatic object directly into the
+ // exception object
+ const VarDecl *NRVOVariable = 0;
+ if (IsThrownVarInScope)
+ NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
+
+ InitializedEntity Entity =
+ InitializedEntity::InitializeException(ThrowLoc, E->getType(),
+ /*NRVO=*/NRVOVariable != 0);
+ Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
+ QualType(), E,
+ IsThrownVarInScope);
+ if (Res.isInvalid())
+ return ExprError();
+ E = Res.take();
+
+ // If the exception has class type, we need additional handling.
+ const RecordType *RecordTy = Ty->getAs<RecordType>();
+ if (!RecordTy)
+ return Owned(E);
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
+
+ // If we are throwing a polymorphic class type or pointer thereof,
+ // exception handling will make use of the vtable.
+ MarkVTableUsed(ThrowLoc, RD);
+
+ // If a pointer is thrown, the referenced object will not be destroyed.
+ if (isPointer)
+ return Owned(E);
+
+ // If the class has a destructor, we must be able to call it.
+ if (RD->hasIrrelevantDestructor())
+ return Owned(E);
+
+ CXXDestructorDecl *Destructor = LookupDestructor(RD);
+ if (!Destructor)
+ return Owned(E);
+
+ MarkFunctionReferenced(E->getExprLoc(), Destructor);
+ CheckDestructorAccess(E->getExprLoc(), Destructor,
+ PDiag(diag::err_access_dtor_exception) << Ty);
+ DiagnoseUseOfDecl(Destructor, E->getExprLoc());
+ return Owned(E);
+}
+
+QualType Sema::getCurrentThisType() {
+ DeclContext *DC = getFunctionLevelDeclContext();
+ QualType ThisTy = CXXThisTypeOverride;
+ if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
+ if (method && method->isInstance())
+ ThisTy = method->getThisType(Context);
+ }
+
+ return ThisTy;
+}
+
+Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
+ Decl *ContextDecl,
+ unsigned CXXThisTypeQuals,
+ bool Enabled)
+ : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
+{
+ if (!Enabled || !ContextDecl)
+ return;
+
+ CXXRecordDecl *Record = 0;
+ if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
+ Record = Template->getTemplatedDecl();
+ else
+ Record = cast<CXXRecordDecl>(ContextDecl);
+
+ S.CXXThisTypeOverride
+ = S.Context.getPointerType(
+ S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
+
+ this->Enabled = true;
+}
+
+
+Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
+ if (Enabled) {
+ S.CXXThisTypeOverride = OldCXXThisTypeOverride;
+ }
+}
+
+void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
+ // We don't need to capture this in an unevaluated context.
+ if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
+ return;
+
+ // Otherwise, check that we can capture 'this'.
+ unsigned NumClosures = 0;
+ for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
+ if (CapturingScopeInfo *CSI =
+ dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
+ if (CSI->CXXThisCaptureIndex != 0) {
+ // 'this' is already being captured; there isn't anything more to do.
+ break;
+ }
+
+ if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
+ CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
+ CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
+ Explicit) {
+ // This closure can capture 'this'; continue looking upwards.
+ NumClosures++;
+ Explicit = false;
+ continue;
+ }
+ // This context can't implicitly capture 'this'; fail out.
+ Diag(Loc, diag::err_this_capture) << Explicit;
+ return;
+ }
+ break;
+ }
+
+ // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
+ // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
+ // contexts.
+ for (unsigned idx = FunctionScopes.size() - 1;
+ NumClosures; --idx, --NumClosures) {
+ CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
+ Expr *ThisExpr = 0;
+ QualType ThisTy = getCurrentThisType();
+ if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
+ // For lambda expressions, build a field and an initializing expression.
+ CXXRecordDecl *Lambda = LSI->Lambda;
+ FieldDecl *Field
+ = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
+ Context.getTrivialTypeSourceInfo(ThisTy, Loc),
+ 0, false, false);
+ Field->setImplicit(true);
+ Field->setAccess(AS_private);
+ Lambda->addDecl(Field);
+ ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
+ }
+ bool isNested = NumClosures > 1;
+ CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
+ }
+}
+
+ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
+ /// C++ 9.3.2: In the body of a non-static member function, the keyword this
+ /// is a non-lvalue expression whose value is the address of the object for
+ /// which the function is called.
+
+ QualType ThisTy = getCurrentThisType();
+ if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
+
+ CheckCXXThisCapture(Loc);
+ return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
+}
+
+bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
+ // If we're outside the body of a member function, then we'll have a specified
+ // type for 'this'.
+ if (CXXThisTypeOverride.isNull())
+ return false;
+
+ // Determine whether we're looking into a class that's currently being
+ // defined.
+ CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
+ return Class && Class->isBeingDefined();
+}
+
+ExprResult
+Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
+ SourceLocation LParenLoc,
+ MultiExprArg exprs,
+ SourceLocation RParenLoc) {
+ if (!TypeRep)
+ return ExprError();
+
+ TypeSourceInfo *TInfo;
+ QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
+
+ return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
+}
+
+/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
+/// Can be interpreted either as function-style casting ("int(x)")
+/// or class type construction ("ClassType(x,y,z)")
+/// or creation of a value-initialized type ("int()").
+ExprResult
+Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
+ SourceLocation LParenLoc,
+ MultiExprArg exprs,
+ SourceLocation RParenLoc) {
+ QualType Ty = TInfo->getType();
+ unsigned NumExprs = exprs.size();
+ Expr **Exprs = (Expr**)exprs.get();
+ SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
+
+ if (Ty->isDependentType() ||
+ CallExpr::hasAnyTypeDependentArguments(
+ llvm::makeArrayRef(Exprs, NumExprs))) {
+ exprs.release();
+
+ return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
+ LParenLoc,
+ Exprs, NumExprs,
+ RParenLoc));
+ }
+
+ bool ListInitialization = LParenLoc.isInvalid();
+ assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
+ && "List initialization must have initializer list as expression.");
+ SourceRange FullRange = SourceRange(TyBeginLoc,
+ ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
+
+ // C++ [expr.type.conv]p1:
+ // If the expression list is a single expression, the type conversion
+ // expression is equivalent (in definedness, and if defined in meaning) to the
+ // corresponding cast expression.
+ if (NumExprs == 1 && !ListInitialization) {
+ Expr *Arg = Exprs[0];
+ exprs.release();
+ return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
+ }
+
+ QualType ElemTy = Ty;
+ if (Ty->isArrayType()) {
+ if (!ListInitialization)
+ return ExprError(Diag(TyBeginLoc,
+ diag::err_value_init_for_array_type) << FullRange);
+ ElemTy = Context.getBaseElementType(Ty);
+ }
+
+ if (!Ty->isVoidType() &&
+ RequireCompleteType(TyBeginLoc, ElemTy,
+ PDiag(diag::err_invalid_incomplete_type_use)
+ << FullRange))
+ return ExprError();
+
+ if (RequireNonAbstractType(TyBeginLoc, Ty,
+ diag::err_allocation_of_abstract_type))
+ return ExprError();
+
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
+ InitializationKind Kind
+ = NumExprs ? ListInitialization
+ ? InitializationKind::CreateDirectList(TyBeginLoc)
+ : InitializationKind::CreateDirect(TyBeginLoc,
+ LParenLoc, RParenLoc)
+ : InitializationKind::CreateValue(TyBeginLoc,
+ LParenLoc, RParenLoc);
+ InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
+
+ if (!Result.isInvalid() && ListInitialization &&
+ isa<InitListExpr>(Result.get())) {
+ // If the list-initialization doesn't involve a constructor call, we'll get
+ // the initializer-list (with corrected type) back, but that's not what we
+ // want, since it will be treated as an initializer list in further
+ // processing. Explicitly insert a cast here.
+ InitListExpr *List = cast<InitListExpr>(Result.take());
+ Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
+ Expr::getValueKindForType(TInfo->getType()),
+ TInfo, TyBeginLoc, CK_NoOp,
+ List, /*Path=*/0, RParenLoc));
+ }
+
+ // FIXME: Improve AST representation?
+ return move(Result);
+}
+
+/// doesUsualArrayDeleteWantSize - Answers whether the usual
+/// operator delete[] for the given type has a size_t parameter.
+static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
+ QualType allocType) {
+ const RecordType *record =
+ allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
+ if (!record) return false;
+
+ // Try to find an operator delete[] in class scope.
+
+ DeclarationName deleteName =
+ S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
+ LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
+ S.LookupQualifiedName(ops, record->getDecl());
+
+ // We're just doing this for information.
+ ops.suppressDiagnostics();
+
+ // Very likely: there's no operator delete[].
+ if (ops.empty()) return false;
+
+ // If it's ambiguous, it should be illegal to call operator delete[]
+ // on this thing, so it doesn't matter if we allocate extra space or not.
+ if (ops.isAmbiguous()) return false;
+
+ LookupResult::Filter filter = ops.makeFilter();
+ while (filter.hasNext()) {
+ NamedDecl *del = filter.next()->getUnderlyingDecl();
+
+ // C++0x [basic.stc.dynamic.deallocation]p2:
+ // A template instance is never a usual deallocation function,
+ // regardless of its signature.
+ if (isa<FunctionTemplateDecl>(del)) {
+ filter.erase();
+ continue;
+ }
+
+ // C++0x [basic.stc.dynamic.deallocation]p2:
+ // If class T does not declare [an operator delete[] with one
+ // parameter] but does declare a member deallocation function
+ // named operator delete[] with exactly two parameters, the
+ // second of which has type std::size_t, then this function
+ // is a usual deallocation function.
+ if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
+ filter.erase();
+ continue;
+ }
+ }
+ filter.done();
+
+ if (!ops.isSingleResult()) return false;
+
+ const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
+ return (del->getNumParams() == 2);
+}
+
+/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
+
+/// E.g.:
+/// @code new (memory) int[size][4] @endcode
+/// or
+/// @code ::new Foo(23, "hello") @endcode
+///
+/// \param StartLoc The first location of the expression.
+/// \param UseGlobal True if 'new' was prefixed with '::'.
+/// \param PlacementLParen Opening paren of the placement arguments.
+/// \param PlacementArgs Placement new arguments.
+/// \param PlacementRParen Closing paren of the placement arguments.
+/// \param TypeIdParens If the type is in parens, the source range.
+/// \param D The type to be allocated, as well as array dimensions.
+/// \param ConstructorLParen Opening paren of the constructor args, empty if
+/// initializer-list syntax is used.
+/// \param ConstructorArgs Constructor/initialization arguments.
+/// \param ConstructorRParen Closing paren of the constructor args.
+ExprResult
+Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
+ SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
+ SourceLocation PlacementRParen, SourceRange TypeIdParens,
+ Declarator &D, Expr *Initializer) {
+ bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
+
+ Expr *ArraySize = 0;
+ // If the specified type is an array, unwrap it and save the expression.
+ if (D.getNumTypeObjects() > 0 &&
+ D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
+ DeclaratorChunk &Chunk = D.getTypeObject(0);
+ if (TypeContainsAuto)
+ return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
+ << D.getSourceRange());
+ if (Chunk.Arr.hasStatic)
+ return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
+ << D.getSourceRange());
+ if (!Chunk.Arr.NumElts)
+ return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
+ << D.getSourceRange());
+
+ ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
+ D.DropFirstTypeObject();
+ }
+
+ // Every dimension shall be of constant size.
+ if (ArraySize) {
+ for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
+ if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
+ break;
+
+ DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
+ if (Expr *NumElts = (Expr *)Array.NumElts) {
+ if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
+ Array.NumElts = VerifyIntegerConstantExpression(NumElts, 0,
+ PDiag(diag::err_new_array_nonconst)).take();
+ if (!Array.NumElts)
+ return ExprError();
+ }
+ }
+ }
+ }
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
+ QualType AllocType = TInfo->getType();
+ if (D.isInvalidType())
+ return ExprError();
+
+ SourceRange DirectInitRange;
+ if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
+ DirectInitRange = List->getSourceRange();
+
+ return BuildCXXNew(StartLoc, UseGlobal,
+ PlacementLParen,
+ move(PlacementArgs),
+ PlacementRParen,
+ TypeIdParens,
+ AllocType,
+ TInfo,
+ ArraySize,
+ DirectInitRange,
+ Initializer,
+ TypeContainsAuto);
+}
+
+static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
+ Expr *Init) {
+ if (!Init)
+ return true;
+ if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
+ return PLE->getNumExprs() == 0;
+ if (isa<ImplicitValueInitExpr>(Init))
+ return true;
+ else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
+ return !CCE->isListInitialization() &&
+ CCE->getConstructor()->isDefaultConstructor();
+ else if (Style == CXXNewExpr::ListInit) {
+ assert(isa<InitListExpr>(Init) &&
+ "Shouldn't create list CXXConstructExprs for arrays.");
+ return true;
+ }
+ return false;
+}
+
+ExprResult
+Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
+ SourceLocation PlacementLParen,
+ MultiExprArg PlacementArgs,
+ SourceLocation PlacementRParen,
+ SourceRange TypeIdParens,
+ QualType AllocType,
+ TypeSourceInfo *AllocTypeInfo,
+ Expr *ArraySize,
+ SourceRange DirectInitRange,
+ Expr *Initializer,
+ bool TypeMayContainAuto) {
+ SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
+
+ CXXNewExpr::InitializationStyle initStyle;
+ if (DirectInitRange.isValid()) {
+ assert(Initializer && "Have parens but no initializer.");
+ initStyle = CXXNewExpr::CallInit;
+ } else if (Initializer && isa<InitListExpr>(Initializer))
+ initStyle = CXXNewExpr::ListInit;
+ else {
+ // In template instantiation, the initializer could be a CXXDefaultArgExpr
+ // unwrapped from a CXXConstructExpr that was implicitly built. There is no
+ // particularly sane way we can handle this (especially since it can even
+ // occur for array new), so we throw the initializer away and have it be
+ // rebuilt.
+ if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
+ Initializer = 0;
+ assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
+ isa<CXXConstructExpr>(Initializer)) &&
+ "Initializer expression that cannot have been implicitly created.");
+ initStyle = CXXNewExpr::NoInit;
+ }
+
+ Expr **Inits = &Initializer;
+ unsigned NumInits = Initializer ? 1 : 0;
+ if (initStyle == CXXNewExpr::CallInit) {
+ if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
+ Inits = List->getExprs();
+ NumInits = List->getNumExprs();
+ } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
+ if (!isa<CXXTemporaryObjectExpr>(CCE)) {
+ // Can happen in template instantiation. Since this is just an implicit
+ // construction, we just take it apart and rebuild it.
+ Inits = CCE->getArgs();
+ NumInits = CCE->getNumArgs();
+ }
+ }
+ }
+
+ // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
+ if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
+ if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
+ return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
+ << AllocType << TypeRange);
+ if (initStyle == CXXNewExpr::ListInit)
+ return ExprError(Diag(Inits[0]->getLocStart(),
+ diag::err_auto_new_requires_parens)
+ << AllocType << TypeRange);
+ if (NumInits > 1) {
+ Expr *FirstBad = Inits[1];
+ return ExprError(Diag(FirstBad->getLocStart(),
+ diag::err_auto_new_ctor_multiple_expressions)
+ << AllocType << TypeRange);
+ }
+ Expr *Deduce = Inits[0];
+ TypeSourceInfo *DeducedType = 0;
+ if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) ==
+ DAR_Failed)
+ return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
+ << AllocType << Deduce->getType()
+ << TypeRange << Deduce->getSourceRange());
+ if (!DeducedType)
+ return ExprError();
+
+ AllocTypeInfo = DeducedType;
+ AllocType = AllocTypeInfo->getType();
+ }
+
+ // Per C++0x [expr.new]p5, the type being constructed may be a
+ // typedef of an array type.
+ if (!ArraySize) {
+ if (const ConstantArrayType *Array
+ = Context.getAsConstantArrayType(AllocType)) {
+ ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
+ Context.getSizeType(),
+ TypeRange.getEnd());
+ AllocType = Array->getElementType();
+ }
+ }
+
+ if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
+ return ExprError();
+
+ if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
+ Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
+ diag::warn_dangling_std_initializer_list)
+ << /*at end of FE*/0 << Inits[0]->getSourceRange();
+ }
+
+ // In ARC, infer 'retaining' for the allocated
+ if (getLangOpts().ObjCAutoRefCount &&
+ AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
+ AllocType->isObjCLifetimeType()) {
+ AllocType = Context.getLifetimeQualifiedType(AllocType,
+ AllocType->getObjCARCImplicitLifetime());
+ }
+
+ QualType ResultType = Context.getPointerType(AllocType);
+
+ // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
+ // integral or enumeration type with a non-negative value."
+ // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
+ // enumeration type, or a class type for which a single non-explicit
+ // conversion function to integral or unscoped enumeration type exists.
+ if (ArraySize && !ArraySize->isTypeDependent()) {
+ ExprResult ConvertedSize = ConvertToIntegralOrEnumerationType(
+ StartLoc, ArraySize,
+ PDiag(diag::err_array_size_not_integral) << getLangOpts().CPlusPlus0x,
+ PDiag(diag::err_array_size_incomplete_type)
+ << ArraySize->getSourceRange(),
+ PDiag(diag::err_array_size_explicit_conversion),
+ PDiag(diag::note_array_size_conversion),
+ PDiag(diag::err_array_size_ambiguous_conversion),
+ PDiag(diag::note_array_size_conversion),
+ PDiag(getLangOpts().CPlusPlus0x ?
+ diag::warn_cxx98_compat_array_size_conversion :
+ diag::ext_array_size_conversion),
+ /*AllowScopedEnumerations*/ false);
+ if (ConvertedSize.isInvalid())
+ return ExprError();
+
+ ArraySize = ConvertedSize.take();
+ QualType SizeType = ArraySize->getType();
+ if (!SizeType->isIntegralOrUnscopedEnumerationType())
+ return ExprError();
+
+ // C++98 [expr.new]p7:
+ // The expression in a direct-new-declarator shall have integral type
+ // with a non-negative value.
+ //
+ // Let's see if this is a constant < 0. If so, we reject it out of
+ // hand. Otherwise, if it's not a constant, we must have an unparenthesized
+ // array type.
+ //
+ // Note: such a construct has well-defined semantics in C++11: it throws
+ // std::bad_array_new_length.
+ if (!ArraySize->isValueDependent()) {
+ llvm::APSInt Value;
+ // We've already performed any required implicit conversion to integer or
+ // unscoped enumeration type.
+ if (ArraySize->isIntegerConstantExpr(Value, Context)) {
+ if (Value < llvm::APSInt(
+ llvm::APInt::getNullValue(Value.getBitWidth()),
+ Value.isUnsigned())) {
+ if (getLangOpts().CPlusPlus0x)
+ Diag(ArraySize->getLocStart(),
+ diag::warn_typecheck_negative_array_new_size)
+ << ArraySize->getSourceRange();
+ else
+ return ExprError(Diag(ArraySize->getLocStart(),
+ diag::err_typecheck_negative_array_size)
+ << ArraySize->getSourceRange());
+ } else if (!AllocType->isDependentType()) {
+ unsigned ActiveSizeBits =
+ ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
+ if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
+ if (getLangOpts().CPlusPlus0x)
+ Diag(ArraySize->getLocStart(),
+ diag::warn_array_new_too_large)
+ << Value.toString(10)
+ << ArraySize->getSourceRange();
+ else
+ return ExprError(Diag(ArraySize->getLocStart(),
+ diag::err_array_too_large)
+ << Value.toString(10)
+ << ArraySize->getSourceRange());
+ }
+ }
+ } else if (TypeIdParens.isValid()) {
+ // Can't have dynamic array size when the type-id is in parentheses.
+ Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
+ << ArraySize->getSourceRange()
+ << FixItHint::CreateRemoval(TypeIdParens.getBegin())
+ << FixItHint::CreateRemoval(TypeIdParens.getEnd());
+
+ TypeIdParens = SourceRange();
+ }
+ }
+
+ // ARC: warn about ABI issues.
+ if (getLangOpts().ObjCAutoRefCount) {
+ QualType BaseAllocType = Context.getBaseElementType(AllocType);
+ if (BaseAllocType.hasStrongOrWeakObjCLifetime())
+ Diag(StartLoc, diag::warn_err_new_delete_object_array)
+ << 0 << BaseAllocType;
+ }
+
+ // Note that we do *not* convert the argument in any way. It can
+ // be signed, larger than size_t, whatever.
+ }
+
+ FunctionDecl *OperatorNew = 0;
+ FunctionDecl *OperatorDelete = 0;
+ Expr **PlaceArgs = (Expr**)PlacementArgs.get();
+ unsigned NumPlaceArgs = PlacementArgs.size();
+
+ if (!AllocType->isDependentType() &&
+ !Expr::hasAnyTypeDependentArguments(
+ llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
+ FindAllocationFunctions(StartLoc,
+ SourceRange(PlacementLParen, PlacementRParen),
+ UseGlobal, AllocType, ArraySize, PlaceArgs,
+ NumPlaceArgs, OperatorNew, OperatorDelete))
+ return ExprError();
+
+ // If this is an array allocation, compute whether the usual array
+ // deallocation function for the type has a size_t parameter.
+ bool UsualArrayDeleteWantsSize = false;
+ if (ArraySize && !AllocType->isDependentType())
+ UsualArrayDeleteWantsSize
+ = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
+
+ SmallVector<Expr *, 8> AllPlaceArgs;
+ if (OperatorNew) {
+ // Add default arguments, if any.
+ const FunctionProtoType *Proto =
+ OperatorNew->getType()->getAs<FunctionProtoType>();
+ VariadicCallType CallType =
+ Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
+
+ if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
+ Proto, 1, PlaceArgs, NumPlaceArgs,
+ AllPlaceArgs, CallType))
+ return ExprError();
+
+ NumPlaceArgs = AllPlaceArgs.size();
+ if (NumPlaceArgs > 0)
+ PlaceArgs = &AllPlaceArgs[0];
+
+ DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
+ PlaceArgs, NumPlaceArgs);
+
+ // FIXME: Missing call to CheckFunctionCall or equivalent
+ }
+
+ // Warn if the type is over-aligned and is being allocated by global operator
+ // new.
+ if (NumPlaceArgs == 0 && OperatorNew &&
+ (OperatorNew->isImplicit() ||
+ getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
+ if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
+ unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
+ if (Align > SuitableAlign)
+ Diag(StartLoc, diag::warn_overaligned_type)
+ << AllocType
+ << unsigned(Align / Context.getCharWidth())
+ << unsigned(SuitableAlign / Context.getCharWidth());
+ }
+ }
+
+ QualType InitType = AllocType;
+ // Array 'new' can't have any initializers except empty parentheses.
+ // Initializer lists are also allowed, in C++11. Rely on the parser for the
+ // dialect distinction.
+ if (ResultType->isArrayType() || ArraySize) {
+ if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
+ SourceRange InitRange(Inits[0]->getLocStart(),
+ Inits[NumInits - 1]->getLocEnd());
+ Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
+ return ExprError();
+ }
+ if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
+ // We do the initialization typechecking against the array type
+ // corresponding to the number of initializers + 1 (to also check
+ // default-initialization).
+ unsigned NumElements = ILE->getNumInits() + 1;
+ InitType = Context.getConstantArrayType(AllocType,
+ llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
+ ArrayType::Normal, 0);
+ }
+ }
+
+ if (!AllocType->isDependentType() &&
+ !Expr::hasAnyTypeDependentArguments(
+ llvm::makeArrayRef(Inits, NumInits))) {
+ // C++11 [expr.new]p15:
+ // A new-expression that creates an object of type T initializes that
+ // object as follows:
+ InitializationKind Kind
+ // - If the new-initializer is omitted, the object is default-
+ // initialized (8.5); if no initialization is performed,
+ // the object has indeterminate value
+ = initStyle == CXXNewExpr::NoInit
+ ? InitializationKind::CreateDefault(TypeRange.getBegin())
+ // - Otherwise, the new-initializer is interpreted according to the
+ // initialization rules of 8.5 for direct-initialization.
+ : initStyle == CXXNewExpr::ListInit
+ ? InitializationKind::CreateDirectList(TypeRange.getBegin())
+ : InitializationKind::CreateDirect(TypeRange.getBegin(),
+ DirectInitRange.getBegin(),
+ DirectInitRange.getEnd());
+
+ InitializedEntity Entity
+ = InitializedEntity::InitializeNew(StartLoc, InitType);
+ InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
+ ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
+ MultiExprArg(Inits, NumInits));
+ if (FullInit.isInvalid())
+ return ExprError();
+
+ // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
+ // we don't want the initialized object to be destructed.
+ if (CXXBindTemporaryExpr *Binder =
+ dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
+ FullInit = Owned(Binder->getSubExpr());
+
+ Initializer = FullInit.take();
+ }
+
+ // Mark the new and delete operators as referenced.
+ if (OperatorNew)
+ MarkFunctionReferenced(StartLoc, OperatorNew);
+ if (OperatorDelete)
+ MarkFunctionReferenced(StartLoc, OperatorDelete);
+
+ // C++0x [expr.new]p17:
+ // If the new expression creates an array of objects of class type,
+ // access and ambiguity control are done for the destructor.
+ QualType BaseAllocType = Context.getBaseElementType(AllocType);
+ if (ArraySize && !BaseAllocType->isDependentType()) {
+ if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
+ if (CXXDestructorDecl *dtor = LookupDestructor(
+ cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
+ MarkFunctionReferenced(StartLoc, dtor);
+ CheckDestructorAccess(StartLoc, dtor,
+ PDiag(diag::err_access_dtor)
+ << BaseAllocType);
+ DiagnoseUseOfDecl(dtor, StartLoc);
+ }
+ }
+ }
+
+ PlacementArgs.release();
+
+ return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
+ OperatorDelete,
+ UsualArrayDeleteWantsSize,
+ PlaceArgs, NumPlaceArgs, TypeIdParens,
+ ArraySize, initStyle, Initializer,
+ ResultType, AllocTypeInfo,
+ StartLoc, DirectInitRange));
+}
+
+/// \brief Checks that a type is suitable as the allocated type
+/// in a new-expression.
+bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
+ SourceRange R) {
+ // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
+ // abstract class type or array thereof.
+ if (AllocType->isFunctionType())
+ return Diag(Loc, diag::err_bad_new_type)
+ << AllocType << 0 << R;
+ else if (AllocType->isReferenceType())
+ return Diag(Loc, diag::err_bad_new_type)
+ << AllocType << 1 << R;
+ else if (!AllocType->isDependentType() &&
+ RequireCompleteType(Loc, AllocType,
+ PDiag(diag::err_new_incomplete_type)
+ << R))
+ return true;
+ else if (RequireNonAbstractType(Loc, AllocType,
+ diag::err_allocation_of_abstract_type))
+ return true;
+ else if (AllocType->isVariablyModifiedType())
+ return Diag(Loc, diag::err_variably_modified_new_type)
+ << AllocType;
+ else if (unsigned AddressSpace = AllocType.getAddressSpace())
+ return Diag(Loc, diag::err_address_space_qualified_new)
+ << AllocType.getUnqualifiedType() << AddressSpace;
+ else if (getLangOpts().ObjCAutoRefCount) {
+ if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
+ QualType BaseAllocType = Context.getBaseElementType(AT);
+ if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
+ BaseAllocType->isObjCLifetimeType())
+ return Diag(Loc, diag::err_arc_new_array_without_ownership)
+ << BaseAllocType;
+ }
+ }
+
+ return false;
+}
+
+/// \brief Determine whether the given function is a non-placement
+/// deallocation function.
+static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
+ if (FD->isInvalidDecl())
+ return false;
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
+ return Method->isUsualDeallocationFunction();
+
+ return ((FD->getOverloadedOperator() == OO_Delete ||
+ FD->getOverloadedOperator() == OO_Array_Delete) &&
+ FD->getNumParams() == 1);
+}
+
+/// FindAllocationFunctions - Finds the overloads of operator new and delete
+/// that are appropriate for the allocation.
+bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
+ bool UseGlobal, QualType AllocType,
+ bool IsArray, Expr **PlaceArgs,
+ unsigned NumPlaceArgs,
+ FunctionDecl *&OperatorNew,
+ FunctionDecl *&OperatorDelete) {
+ // --- Choosing an allocation function ---
+ // C++ 5.3.4p8 - 14 & 18
+ // 1) If UseGlobal is true, only look in the global scope. Else, also look
+ // in the scope of the allocated class.
+ // 2) If an array size is given, look for operator new[], else look for
+ // operator new.
+ // 3) The first argument is always size_t. Append the arguments from the
+ // placement form.
+
+ SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
+ // We don't care about the actual value of this argument.
+ // FIXME: Should the Sema create the expression and embed it in the syntax
+ // tree? Or should the consumer just recalculate the value?
+ IntegerLiteral Size(Context, llvm::APInt::getNullValue(
+ Context.getTargetInfo().getPointerWidth(0)),
+ Context.getSizeType(),
+ SourceLocation());
+ AllocArgs[0] = &Size;
+ std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
+
+ // C++ [expr.new]p8:
+ // If the allocated type is a non-array type, the allocation
+ // function's name is operator new and the deallocation function's
+ // name is operator delete. If the allocated type is an array
+ // type, the allocation function's name is operator new[] and the
+ // deallocation function's name is operator delete[].
+ DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
+ IsArray ? OO_Array_New : OO_New);
+ DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
+ IsArray ? OO_Array_Delete : OO_Delete);
+
+ QualType AllocElemType = Context.getBaseElementType(AllocType);
+
+ if (AllocElemType->isRecordType() && !UseGlobal) {
+ CXXRecordDecl *Record
+ = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
+ if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
+ AllocArgs.size(), Record, /*AllowMissing=*/true,
+ OperatorNew))
+ return true;
+ }
+ if (!OperatorNew) {
+ // Didn't find a member overload. Look for a global one.
+ DeclareGlobalNewDelete();
+ DeclContext *TUDecl = Context.getTranslationUnitDecl();
+ if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
+ AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
+ OperatorNew))
+ return true;
+ }
+
+ // We don't need an operator delete if we're running under
+ // -fno-exceptions.
+ if (!getLangOpts().Exceptions) {
+ OperatorDelete = 0;
+ return false;
+ }
+
+ // FindAllocationOverload can change the passed in arguments, so we need to
+ // copy them back.
+ if (NumPlaceArgs > 0)
+ std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
+
+ // C++ [expr.new]p19:
+ //
+ // If the new-expression begins with a unary :: operator, the
+ // deallocation function's name is looked up in the global
+ // scope. Otherwise, if the allocated type is a class type T or an
+ // array thereof, the deallocation function's name is looked up in
+ // the scope of T. If this lookup fails to find the name, or if
+ // the allocated type is not a class type or array thereof, the
+ // deallocation function's name is looked up in the global scope.
+ LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
+ if (AllocElemType->isRecordType() && !UseGlobal) {
+ CXXRecordDecl *RD
+ = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
+ LookupQualifiedName(FoundDelete, RD);
+ }
+ if (FoundDelete.isAmbiguous())
+ return true; // FIXME: clean up expressions?
+
+ if (FoundDelete.empty()) {
+ DeclareGlobalNewDelete();
+ LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
+ }
+
+ FoundDelete.suppressDiagnostics();
+
+ SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
+
+ // Whether we're looking for a placement operator delete is dictated
+ // by whether we selected a placement operator new, not by whether
+ // we had explicit placement arguments. This matters for things like
+ // struct A { void *operator new(size_t, int = 0); ... };
+ // A *a = new A()
+ bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
+
+ if (isPlacementNew) {
+ // C++ [expr.new]p20:
+ // A declaration of a placement deallocation function matches the
+ // declaration of a placement allocation function if it has the
+ // same number of parameters and, after parameter transformations
+ // (8.3.5), all parameter types except the first are
+ // identical. [...]
+ //
+ // To perform this comparison, we compute the function type that
+ // the deallocation function should have, and use that type both
+ // for template argument deduction and for comparison purposes.
+ //
+ // FIXME: this comparison should ignore CC and the like.
+ QualType ExpectedFunctionType;
+ {
+ const FunctionProtoType *Proto
+ = OperatorNew->getType()->getAs<FunctionProtoType>();
+
+ SmallVector<QualType, 4> ArgTypes;
+ ArgTypes.push_back(Context.VoidPtrTy);
+ for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
+ ArgTypes.push_back(Proto->getArgType(I));
+
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.Variadic = Proto->isVariadic();
+
+ ExpectedFunctionType
+ = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
+ ArgTypes.size(), EPI);
+ }
+
+ for (LookupResult::iterator D = FoundDelete.begin(),
+ DEnd = FoundDelete.end();
+ D != DEnd; ++D) {
+ FunctionDecl *Fn = 0;
+ if (FunctionTemplateDecl *FnTmpl
+ = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
+ // Perform template argument deduction to try to match the
+ // expected function type.
+ TemplateDeductionInfo Info(Context, StartLoc);
+ if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
+ continue;
+ } else
+ Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
+
+ if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
+ Matches.push_back(std::make_pair(D.getPair(), Fn));
+ }
+ } else {
+ // C++ [expr.new]p20:
+ // [...] Any non-placement deallocation function matches a
+ // non-placement allocation function. [...]
+ for (LookupResult::iterator D = FoundDelete.begin(),
+ DEnd = FoundDelete.end();
+ D != DEnd; ++D) {
+ if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
+ if (isNonPlacementDeallocationFunction(Fn))
+ Matches.push_back(std::make_pair(D.getPair(), Fn));
+ }
+ }
+
+ // C++ [expr.new]p20:
+ // [...] If the lookup finds a single matching deallocation
+ // function, that function will be called; otherwise, no
+ // deallocation function will be called.
+ if (Matches.size() == 1) {
+ OperatorDelete = Matches[0].second;
+
+ // C++0x [expr.new]p20:
+ // If the lookup finds the two-parameter form of a usual
+ // deallocation function (3.7.4.2) and that function, considered
+ // as a placement deallocation function, would have been
+ // selected as a match for the allocation function, the program
+ // is ill-formed.
+ if (NumPlaceArgs && getLangOpts().CPlusPlus0x &&
+ isNonPlacementDeallocationFunction(OperatorDelete)) {
+ Diag(StartLoc, diag::err_placement_new_non_placement_delete)
+ << SourceRange(PlaceArgs[0]->getLocStart(),
+ PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
+ Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
+ << DeleteName;
+ } else {
+ CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
+ Matches[0].first);
+ }
+ }
+
+ return false;
+}
+
+/// FindAllocationOverload - Find an fitting overload for the allocation
+/// function in the specified scope.
+bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
+ DeclarationName Name, Expr** Args,
+ unsigned NumArgs, DeclContext *Ctx,
+ bool AllowMissing, FunctionDecl *&Operator,
+ bool Diagnose) {
+ LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
+ LookupQualifiedName(R, Ctx);
+ if (R.empty()) {
+ if (AllowMissing || !Diagnose)
+ return false;
+ return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
+ << Name << Range;
+ }
+
+ if (R.isAmbiguous())
+ return true;
+
+ R.suppressDiagnostics();
+
+ OverloadCandidateSet Candidates(StartLoc);
+ for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
+ Alloc != AllocEnd; ++Alloc) {
+ // Even member operator new/delete are implicitly treated as
+ // static, so don't use AddMemberCandidate.
+ NamedDecl *D = (*Alloc)->getUnderlyingDecl();
+
+ if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
+ AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
+ /*ExplicitTemplateArgs=*/0,
+ llvm::makeArrayRef(Args, NumArgs),
+ Candidates,
+ /*SuppressUserConversions=*/false);
+ continue;
+ }
+
+ FunctionDecl *Fn = cast<FunctionDecl>(D);
+ AddOverloadCandidate(Fn, Alloc.getPair(),
+ llvm::makeArrayRef(Args, NumArgs), Candidates,
+ /*SuppressUserConversions=*/false);
+ }
+
+ // Do the resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
+ case OR_Success: {
+ // Got one!
+ FunctionDecl *FnDecl = Best->Function;
+ MarkFunctionReferenced(StartLoc, FnDecl);
+ // The first argument is size_t, and the first parameter must be size_t,
+ // too. This is checked on declaration and can be assumed. (It can't be
+ // asserted on, though, since invalid decls are left in there.)
+ // Watch out for variadic allocator function.
+ unsigned NumArgsInFnDecl = FnDecl->getNumParams();
+ for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
+ InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
+ FnDecl->getParamDecl(i));
+
+ if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
+ return true;
+
+ ExprResult Result
+ = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
+ if (Result.isInvalid())
+ return true;
+
+ Args[i] = Result.takeAs<Expr>();
+ }
+
+ Operator = FnDecl;
+
+ if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
+ Best->FoundDecl, Diagnose) == AR_inaccessible)
+ return true;
+
+ return false;
+ }
+
+ case OR_No_Viable_Function:
+ if (Diagnose) {
+ Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
+ << Name << Range;
+ Candidates.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+ }
+ return true;
+
+ case OR_Ambiguous:
+ if (Diagnose) {
+ Diag(StartLoc, diag::err_ovl_ambiguous_call)
+ << Name << Range;
+ Candidates.NoteCandidates(*this, OCD_ViableCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+ }
+ return true;
+
+ case OR_Deleted: {
+ if (Diagnose) {
+ Diag(StartLoc, diag::err_ovl_deleted_call)
+ << Best->Function->isDeleted()
+ << Name
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Range;
+ Candidates.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+ }
+ return true;
+ }
+ }
+ llvm_unreachable("Unreachable, bad result from BestViableFunction");
+}
+
+
+/// DeclareGlobalNewDelete - Declare the global forms of operator new and
+/// delete. These are:
+/// @code
+/// // C++03:
+/// void* operator new(std::size_t) throw(std::bad_alloc);
+/// void* operator new[](std::size_t) throw(std::bad_alloc);
+/// void operator delete(void *) throw();
+/// void operator delete[](void *) throw();
+/// // C++0x:
+/// void* operator new(std::size_t);
+/// void* operator new[](std::size_t);
+/// void operator delete(void *);
+/// void operator delete[](void *);
+/// @endcode
+/// C++0x operator delete is implicitly noexcept.
+/// Note that the placement and nothrow forms of new are *not* implicitly
+/// declared. Their use requires including \<new\>.
+void Sema::DeclareGlobalNewDelete() {
+ if (GlobalNewDeleteDeclared)
+ return;
+
+ // C++ [basic.std.dynamic]p2:
+ // [...] The following allocation and deallocation functions (18.4) are
+ // implicitly declared in global scope in each translation unit of a
+ // program
+ //
+ // C++03:
+ // void* operator new(std::size_t) throw(std::bad_alloc);
+ // void* operator new[](std::size_t) throw(std::bad_alloc);
+ // void operator delete(void*) throw();
+ // void operator delete[](void*) throw();
+ // C++0x:
+ // void* operator new(std::size_t);
+ // void* operator new[](std::size_t);
+ // void operator delete(void*);
+ // void operator delete[](void*);
+ //
+ // These implicit declarations introduce only the function names operator
+ // new, operator new[], operator delete, operator delete[].
+ //
+ // Here, we need to refer to std::bad_alloc, so we will implicitly declare
+ // "std" or "bad_alloc" as necessary to form the exception specification.
+ // However, we do not make these implicit declarations visible to name
+ // lookup.
+ // Note that the C++0x versions of operator delete are deallocation functions,
+ // and thus are implicitly noexcept.
+ if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) {
+ // The "std::bad_alloc" class has not yet been declared, so build it
+ // implicitly.
+ StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
+ getOrCreateStdNamespace(),
+ SourceLocation(), SourceLocation(),
+ &PP.getIdentifierTable().get("bad_alloc"),
+ 0);
+ getStdBadAlloc()->setImplicit(true);
+ }
+
+ GlobalNewDeleteDeclared = true;
+
+ QualType VoidPtr = Context.getPointerType(Context.VoidTy);
+ QualType SizeT = Context.getSizeType();
+ bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
+
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_New),
+ VoidPtr, SizeT, AssumeSaneOperatorNew);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
+ VoidPtr, SizeT, AssumeSaneOperatorNew);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Delete),
+ Context.VoidTy, VoidPtr);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
+ Context.VoidTy, VoidPtr);
+}
+
+/// DeclareGlobalAllocationFunction - Declares a single implicit global
+/// allocation function if it doesn't already exist.
+void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
+ QualType Return, QualType Argument,
+ bool AddMallocAttr) {
+ DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
+
+ // Check if this function is already declared.
+ {
+ DeclContext::lookup_iterator Alloc, AllocEnd;
+ for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
+ Alloc != AllocEnd; ++Alloc) {
+ // Only look at non-template functions, as it is the predefined,
+ // non-templated allocation function we are trying to declare here.
+ if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
+ QualType InitialParamType =
+ Context.getCanonicalType(
+ Func->getParamDecl(0)->getType().getUnqualifiedType());
+ // FIXME: Do we need to check for default arguments here?
+ if (Func->getNumParams() == 1 && InitialParamType == Argument) {
+ if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
+ Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
+ return;
+ }
+ }
+ }
+ }
+
+ QualType BadAllocType;
+ bool HasBadAllocExceptionSpec
+ = (Name.getCXXOverloadedOperator() == OO_New ||
+ Name.getCXXOverloadedOperator() == OO_Array_New);
+ if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) {
+ assert(StdBadAlloc && "Must have std::bad_alloc declared");
+ BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
+ }
+
+ FunctionProtoType::ExtProtoInfo EPI;
+ if (HasBadAllocExceptionSpec) {
+ if (!getLangOpts().CPlusPlus0x) {
+ EPI.ExceptionSpecType = EST_Dynamic;
+ EPI.NumExceptions = 1;
+ EPI.Exceptions = &BadAllocType;
+ }
+ } else {
+ EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ?
+ EST_BasicNoexcept : EST_DynamicNone;
+ }
+
+ QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
+ FunctionDecl *Alloc =
+ FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
+ SourceLocation(), Name,
+ FnType, /*TInfo=*/0, SC_None,
+ SC_None, false, true);
+ Alloc->setImplicit();
+
+ if (AddMallocAttr)
+ Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
+
+ ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
+ SourceLocation(), 0,
+ Argument, /*TInfo=*/0,
+ SC_None, SC_None, 0);
+ Alloc->setParams(Param);
+
+ // FIXME: Also add this declaration to the IdentifierResolver, but
+ // make sure it is at the end of the chain to coincide with the
+ // global scope.
+ Context.getTranslationUnitDecl()->addDecl(Alloc);
+}
+
+bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
+ DeclarationName Name,
+ FunctionDecl* &Operator, bool Diagnose) {
+ LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
+ // Try to find operator delete/operator delete[] in class scope.
+ LookupQualifiedName(Found, RD);
+
+ if (Found.isAmbiguous())
+ return true;
+
+ Found.suppressDiagnostics();
+
+ SmallVector<DeclAccessPair,4> Matches;
+ for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
+ F != FEnd; ++F) {
+ NamedDecl *ND = (*F)->getUnderlyingDecl();
+
+ // Ignore template operator delete members from the check for a usual
+ // deallocation function.
+ if (isa<FunctionTemplateDecl>(ND))
+ continue;
+
+ if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
+ Matches.push_back(F.getPair());
+ }
+
+ // There's exactly one suitable operator; pick it.
+ if (Matches.size() == 1) {
+ Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
+
+ if (Operator->isDeleted()) {
+ if (Diagnose) {
+ Diag(StartLoc, diag::err_deleted_function_use);
+ NoteDeletedFunction(Operator);
+ }
+ return true;
+ }
+
+ if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
+ Matches[0], Diagnose) == AR_inaccessible)
+ return true;
+
+ return false;
+
+ // We found multiple suitable operators; complain about the ambiguity.
+ } else if (!Matches.empty()) {
+ if (Diagnose) {
+ Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
+ << Name << RD;
+
+ for (SmallVectorImpl<DeclAccessPair>::iterator
+ F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
+ Diag((*F)->getUnderlyingDecl()->getLocation(),
+ diag::note_member_declared_here) << Name;
+ }
+ return true;
+ }
+
+ // We did find operator delete/operator delete[] declarations, but
+ // none of them were suitable.
+ if (!Found.empty()) {
+ if (Diagnose) {
+ Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
+ << Name << RD;
+
+ for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
+ F != FEnd; ++F)
+ Diag((*F)->getUnderlyingDecl()->getLocation(),
+ diag::note_member_declared_here) << Name;
+ }
+ return true;
+ }
+
+ // Look for a global declaration.
+ DeclareGlobalNewDelete();
+ DeclContext *TUDecl = Context.getTranslationUnitDecl();
+
+ CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
+ Expr* DeallocArgs[1];
+ DeallocArgs[0] = &Null;
+ if (FindAllocationOverload(StartLoc, SourceRange(), Name,
+ DeallocArgs, 1, TUDecl, !Diagnose,
+ Operator, Diagnose))
+ return true;
+
+ assert(Operator && "Did not find a deallocation function!");
+ return false;
+}
+
+/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
+/// @code ::delete ptr; @endcode
+/// or
+/// @code delete [] ptr; @endcode
+ExprResult
+Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
+ bool ArrayForm, Expr *ExE) {
+ // C++ [expr.delete]p1:
+ // The operand shall have a pointer type, or a class type having a single
+ // conversion function to a pointer type. The result has type void.
+ //
+ // DR599 amends "pointer type" to "pointer to object type" in both cases.
+
+ ExprResult Ex = Owned(ExE);
+ FunctionDecl *OperatorDelete = 0;
+ bool ArrayFormAsWritten = ArrayForm;
+ bool UsualArrayDeleteWantsSize = false;
+
+ if (!Ex.get()->isTypeDependent()) {
+ // Perform lvalue-to-rvalue cast, if needed.
+ Ex = DefaultLvalueConversion(Ex.take());
+
+ QualType Type = Ex.get()->getType();
+
+ if (const RecordType *Record = Type->getAs<RecordType>()) {
+ if (RequireCompleteType(StartLoc, Type,
+ PDiag(diag::err_delete_incomplete_class_type)))
+ return ExprError();
+
+ SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
+
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
+ const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ NamedDecl *D = I.getDecl();
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+
+ // Skip over templated conversion functions; they aren't considered.
+ if (isa<FunctionTemplateDecl>(D))
+ continue;
+
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
+
+ QualType ConvType = Conv->getConversionType().getNonReferenceType();
+ if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
+ if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
+ ObjectPtrConversions.push_back(Conv);
+ }
+ if (ObjectPtrConversions.size() == 1) {
+ // We have a single conversion to a pointer-to-object type. Perform
+ // that conversion.
+ // TODO: don't redo the conversion calculation.
+ ExprResult Res =
+ PerformImplicitConversion(Ex.get(),
+ ObjectPtrConversions.front()->getConversionType(),
+ AA_Converting);
+ if (Res.isUsable()) {
+ Ex = move(Res);
+ Type = Ex.get()->getType();
+ }
+ }
+ else if (ObjectPtrConversions.size() > 1) {
+ Diag(StartLoc, diag::err_ambiguous_delete_operand)
+ << Type << Ex.get()->getSourceRange();
+ for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
+ NoteOverloadCandidate(ObjectPtrConversions[i]);
+ return ExprError();
+ }
+ }
+
+ if (!Type->isPointerType())
+ return ExprError(Diag(StartLoc, diag::err_delete_operand)
+ << Type << Ex.get()->getSourceRange());
+
+ QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
+ QualType PointeeElem = Context.getBaseElementType(Pointee);
+
+ if (unsigned AddressSpace = Pointee.getAddressSpace())
+ return Diag(Ex.get()->getLocStart(),
+ diag::err_address_space_qualified_delete)
+ << Pointee.getUnqualifiedType() << AddressSpace;
+
+ CXXRecordDecl *PointeeRD = 0;
+ if (Pointee->isVoidType() && !isSFINAEContext()) {
+ // The C++ standard bans deleting a pointer to a non-object type, which
+ // effectively bans deletion of "void*". However, most compilers support
+ // this, so we treat it as a warning unless we're in a SFINAE context.
+ Diag(StartLoc, diag::ext_delete_void_ptr_operand)
+ << Type << Ex.get()->getSourceRange();
+ } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
+ return ExprError(Diag(StartLoc, diag::err_delete_operand)
+ << Type << Ex.get()->getSourceRange());
+ } else if (!Pointee->isDependentType()) {
+ if (!RequireCompleteType(StartLoc, Pointee,
+ PDiag(diag::warn_delete_incomplete)
+ << Ex.get()->getSourceRange())) {
+ if (const RecordType *RT = PointeeElem->getAs<RecordType>())
+ PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
+ }
+ }
+
+ // C++ [expr.delete]p2:
+ // [Note: a pointer to a const type can be the operand of a
+ // delete-expression; it is not necessary to cast away the constness
+ // (5.2.11) of the pointer expression before it is used as the operand
+ // of the delete-expression. ]
+ if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
+ Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
+ CK_BitCast, Ex.take(), 0, VK_RValue));
+
+ if (Pointee->isArrayType() && !ArrayForm) {
+ Diag(StartLoc, diag::warn_delete_array_type)
+ << Type << Ex.get()->getSourceRange()
+ << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
+ ArrayForm = true;
+ }
+
+ DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
+ ArrayForm ? OO_Array_Delete : OO_Delete);
+
+ if (PointeeRD) {
+ if (!UseGlobal &&
+ FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
+ OperatorDelete))
+ return ExprError();
+
+ // If we're allocating an array of records, check whether the
+ // usual operator delete[] has a size_t parameter.
+ if (ArrayForm) {
+ // If the user specifically asked to use the global allocator,
+ // we'll need to do the lookup into the class.
+ if (UseGlobal)
+ UsualArrayDeleteWantsSize =
+ doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
+
+ // Otherwise, the usual operator delete[] should be the
+ // function we just found.
+ else if (isa<CXXMethodDecl>(OperatorDelete))
+ UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
+ }
+
+ if (!PointeeRD->hasIrrelevantDestructor())
+ if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
+ MarkFunctionReferenced(StartLoc,
+ const_cast<CXXDestructorDecl*>(Dtor));
+ DiagnoseUseOfDecl(Dtor, StartLoc);
+ }
+
+ // C++ [expr.delete]p3:
+ // In the first alternative (delete object), if the static type of the
+ // object to be deleted is different from its dynamic type, the static
+ // type shall be a base class of the dynamic type of the object to be
+ // deleted and the static type shall have a virtual destructor or the
+ // behavior is undefined.
+ //
+ // Note: a final class cannot be derived from, no issue there
+ if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
+ CXXDestructorDecl *dtor = PointeeRD->getDestructor();
+ if (dtor && !dtor->isVirtual()) {
+ if (PointeeRD->isAbstract()) {
+ // If the class is abstract, we warn by default, because we're
+ // sure the code has undefined behavior.
+ Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
+ << PointeeElem;
+ } else if (!ArrayForm) {
+ // Otherwise, if this is not an array delete, it's a bit suspect,
+ // but not necessarily wrong.
+ Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
+ }
+ }
+ }
+
+ } else if (getLangOpts().ObjCAutoRefCount &&
+ PointeeElem->isObjCLifetimeType() &&
+ (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
+ PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
+ ArrayForm) {
+ Diag(StartLoc, diag::warn_err_new_delete_object_array)
+ << 1 << PointeeElem;
+ }
+
+ if (!OperatorDelete) {
+ // Look for a global declaration.
+ DeclareGlobalNewDelete();
+ DeclContext *TUDecl = Context.getTranslationUnitDecl();
+ Expr *Arg = Ex.get();
+ if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
+ &Arg, 1, TUDecl, /*AllowMissing=*/false,
+ OperatorDelete))
+ return ExprError();
+ }
+
+ MarkFunctionReferenced(StartLoc, OperatorDelete);
+
+ // Check access and ambiguity of operator delete and destructor.
+ if (PointeeRD) {
+ if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
+ CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
+ PDiag(diag::err_access_dtor) << PointeeElem);
+ }
+ }
+
+ }
+
+ return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
+ ArrayFormAsWritten,
+ UsualArrayDeleteWantsSize,
+ OperatorDelete, Ex.take(), StartLoc));
+}
+
+/// \brief Check the use of the given variable as a C++ condition in an if,
+/// while, do-while, or switch statement.
+ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
+ SourceLocation StmtLoc,
+ bool ConvertToBoolean) {
+ QualType T = ConditionVar->getType();
+
+ // C++ [stmt.select]p2:
+ // The declarator shall not specify a function or an array.
+ if (T->isFunctionType())
+ return ExprError(Diag(ConditionVar->getLocation(),
+ diag::err_invalid_use_of_function_type)
+ << ConditionVar->getSourceRange());
+ else if (T->isArrayType())
+ return ExprError(Diag(ConditionVar->getLocation(),
+ diag::err_invalid_use_of_array_type)
+ << ConditionVar->getSourceRange());
+
+ ExprResult Condition =
+ Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
+ SourceLocation(),
+ ConditionVar,
+ /*enclosing*/ false,
+ ConditionVar->getLocation(),
+ ConditionVar->getType().getNonReferenceType(),
+ VK_LValue));
+
+ MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
+
+ if (ConvertToBoolean) {
+ Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
+ if (Condition.isInvalid())
+ return ExprError();
+ }
+
+ return move(Condition);
+}
+
+/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
+ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
+ // C++ 6.4p4:
+ // The value of a condition that is an initialized declaration in a statement
+ // other than a switch statement is the value of the declared variable
+ // implicitly converted to type bool. If that conversion is ill-formed, the
+ // program is ill-formed.
+ // The value of a condition that is an expression is the value of the
+ // expression, implicitly converted to bool.
+ //
+ return PerformContextuallyConvertToBool(CondExpr);
+}
+
+/// Helper function to determine whether this is the (deprecated) C++
+/// conversion from a string literal to a pointer to non-const char or
+/// non-const wchar_t (for narrow and wide string literals,
+/// respectively).
+bool
+Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
+ // Look inside the implicit cast, if it exists.
+ if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
+ From = Cast->getSubExpr();
+
+ // A string literal (2.13.4) that is not a wide string literal can
+ // be converted to an rvalue of type "pointer to char"; a wide
+ // string literal can be converted to an rvalue of type "pointer
+ // to wchar_t" (C++ 4.2p2).
+ if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
+ if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
+ if (const BuiltinType *ToPointeeType
+ = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
+ // This conversion is considered only when there is an
+ // explicit appropriate pointer target type (C++ 4.2p2).
+ if (!ToPtrType->getPointeeType().hasQualifiers()) {
+ switch (StrLit->getKind()) {
+ case StringLiteral::UTF8:
+ case StringLiteral::UTF16:
+ case StringLiteral::UTF32:
+ // We don't allow UTF literals to be implicitly converted
+ break;
+ case StringLiteral::Ascii:
+ return (ToPointeeType->getKind() == BuiltinType::Char_U ||
+ ToPointeeType->getKind() == BuiltinType::Char_S);
+ case StringLiteral::Wide:
+ return ToPointeeType->isWideCharType();
+ }
+ }
+ }
+
+ return false;
+}
+
+static ExprResult BuildCXXCastArgument(Sema &S,
+ SourceLocation CastLoc,
+ QualType Ty,
+ CastKind Kind,
+ CXXMethodDecl *Method,
+ DeclAccessPair FoundDecl,
+ bool HadMultipleCandidates,
+ Expr *From) {
+ switch (Kind) {
+ default: llvm_unreachable("Unhandled cast kind!");
+ case CK_ConstructorConversion: {
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
+ ASTOwningVector<Expr*> ConstructorArgs(S);
+
+ if (S.CompleteConstructorCall(Constructor,
+ MultiExprArg(&From, 1),
+ CastLoc, ConstructorArgs))
+ return ExprError();
+
+ S.CheckConstructorAccess(CastLoc, Constructor,
+ InitializedEntity::InitializeTemporary(Ty),
+ Constructor->getAccess());
+
+ ExprResult Result
+ = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
+ move_arg(ConstructorArgs),
+ HadMultipleCandidates, /*ZeroInit*/ false,
+ CXXConstructExpr::CK_Complete, SourceRange());
+ if (Result.isInvalid())
+ return ExprError();
+
+ return S.MaybeBindToTemporary(Result.takeAs<Expr>());
+ }
+
+ case CK_UserDefinedConversion: {
+ assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
+
+ // Create an implicit call expr that calls it.
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
+ ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
+ HadMultipleCandidates);
+ if (Result.isInvalid())
+ return ExprError();
+ // Record usage of conversion in an implicit cast.
+ Result = S.Owned(ImplicitCastExpr::Create(S.Context,
+ Result.get()->getType(),
+ CK_UserDefinedConversion,
+ Result.get(), 0,
+ Result.get()->getValueKind()));
+
+ S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
+
+ return S.MaybeBindToTemporary(Result.get());
+ }
+ }
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType using the pre-computed implicit
+/// conversion sequence ICS. Returns the converted
+/// expression. Action is the kind of conversion we're performing,
+/// used in the error message.
+ExprResult
+Sema::PerformImplicitConversion(Expr *From, QualType ToType,
+ const ImplicitConversionSequence &ICS,
+ AssignmentAction Action,
+ CheckedConversionKind CCK) {
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::StandardConversion: {
+ ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
+ Action, CCK);
+ if (Res.isInvalid())
+ return ExprError();
+ From = Res.take();
+ break;
+ }
+
+ case ImplicitConversionSequence::UserDefinedConversion: {
+
+ FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
+ CastKind CastKind;
+ QualType BeforeToType;
+ assert(FD && "FIXME: aggregate initialization from init list");
+ if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
+ CastKind = CK_UserDefinedConversion;
+
+ // If the user-defined conversion is specified by a conversion function,
+ // the initial standard conversion sequence converts the source type to
+ // the implicit object parameter of the conversion function.
+ BeforeToType = Context.getTagDeclType(Conv->getParent());
+ } else {
+ const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
+ CastKind = CK_ConstructorConversion;
+ // Do no conversion if dealing with ... for the first conversion.
+ if (!ICS.UserDefined.EllipsisConversion) {
+ // If the user-defined conversion is specified by a constructor, the
+ // initial standard conversion sequence converts the source type to the
+ // type required by the argument of the constructor
+ BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
+ }
+ }
+ // Watch out for elipsis conversion.
+ if (!ICS.UserDefined.EllipsisConversion) {
+ ExprResult Res =
+ PerformImplicitConversion(From, BeforeToType,
+ ICS.UserDefined.Before, AA_Converting,
+ CCK);
+ if (Res.isInvalid())
+ return ExprError();
+ From = Res.take();
+ }
+
+ ExprResult CastArg
+ = BuildCXXCastArgument(*this,
+ From->getLocStart(),
+ ToType.getNonReferenceType(),
+ CastKind, cast<CXXMethodDecl>(FD),
+ ICS.UserDefined.FoundConversionFunction,
+ ICS.UserDefined.HadMultipleCandidates,
+ From);
+
+ if (CastArg.isInvalid())
+ return ExprError();
+
+ From = CastArg.take();
+
+ return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
+ AA_Converting, CCK);
+ }
+
+ case ImplicitConversionSequence::AmbiguousConversion:
+ ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
+ PDiag(diag::err_typecheck_ambiguous_condition)
+ << From->getSourceRange());
+ return ExprError();
+
+ case ImplicitConversionSequence::EllipsisConversion:
+ llvm_unreachable("Cannot perform an ellipsis conversion");
+
+ case ImplicitConversionSequence::BadConversion:
+ return ExprError();
+ }
+
+ // Everything went well.
+ return Owned(From);
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType by following the standard
+/// conversion sequence SCS. Returns the converted
+/// expression. Flavor is the context in which we're performing this
+/// conversion, for use in error messages.
+ExprResult
+Sema::PerformImplicitConversion(Expr *From, QualType ToType,
+ const StandardConversionSequence& SCS,
+ AssignmentAction Action,
+ CheckedConversionKind CCK) {
+ bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
+
+ // Overall FIXME: we are recomputing too many types here and doing far too
+ // much extra work. What this means is that we need to keep track of more
+ // information that is computed when we try the implicit conversion initially,
+ // so that we don't need to recompute anything here.
+ QualType FromType = From->getType();
+
+ if (SCS.CopyConstructor) {
+ // FIXME: When can ToType be a reference type?
+ assert(!ToType->isReferenceType());
+ if (SCS.Second == ICK_Derived_To_Base) {
+ ASTOwningVector<Expr*> ConstructorArgs(*this);
+ if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
+ MultiExprArg(*this, &From, 1),
+ /*FIXME:ConstructLoc*/SourceLocation(),
+ ConstructorArgs))
+ return ExprError();
+ return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
+ ToType, SCS.CopyConstructor,
+ move_arg(ConstructorArgs),
+ /*HadMultipleCandidates*/ false,
+ /*ZeroInit*/ false,
+ CXXConstructExpr::CK_Complete,
+ SourceRange());
+ }
+ return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
+ ToType, SCS.CopyConstructor,
+ MultiExprArg(*this, &From, 1),
+ /*HadMultipleCandidates*/ false,
+ /*ZeroInit*/ false,
+ CXXConstructExpr::CK_Complete,
+ SourceRange());
+ }
+
+ // Resolve overloaded function references.
+ if (Context.hasSameType(FromType, Context.OverloadTy)) {
+ DeclAccessPair Found;
+ FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
+ true, Found);
+ if (!Fn)
+ return ExprError();
+
+ if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
+ return ExprError();
+
+ From = FixOverloadedFunctionReference(From, Found, Fn);
+ FromType = From->getType();
+ }
+
+ // Perform the first implicit conversion.
+ switch (SCS.First) {
+ case ICK_Identity:
+ // Nothing to do.
+ break;
+
+ case ICK_Lvalue_To_Rvalue: {
+ assert(From->getObjectKind() != OK_ObjCProperty);
+ FromType = FromType.getUnqualifiedType();
+ ExprResult FromRes = DefaultLvalueConversion(From);
+ assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
+ From = FromRes.take();
+ break;
+ }
+
+ case ICK_Array_To_Pointer:
+ FromType = Context.getArrayDecayedType(FromType);
+ From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ break;
+
+ case ICK_Function_To_Pointer:
+ FromType = Context.getPointerType(FromType);
+ From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ break;
+
+ default:
+ llvm_unreachable("Improper first standard conversion");
+ }
+
+ // Perform the second implicit conversion
+ switch (SCS.Second) {
+ case ICK_Identity:
+ // If both sides are functions (or pointers/references to them), there could
+ // be incompatible exception declarations.
+ if (CheckExceptionSpecCompatibility(From, ToType))
+ return ExprError();
+ // Nothing else to do.
+ break;
+
+ case ICK_NoReturn_Adjustment:
+ // If both sides are functions (or pointers/references to them), there could
+ // be incompatible exception declarations.
+ if (CheckExceptionSpecCompatibility(From, ToType))
+ return ExprError();
+
+ From = ImpCastExprToType(From, ToType, CK_NoOp,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ break;
+
+ case ICK_Integral_Promotion:
+ case ICK_Integral_Conversion:
+ From = ImpCastExprToType(From, ToType, CK_IntegralCast,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ break;
+
+ case ICK_Floating_Promotion:
+ case ICK_Floating_Conversion:
+ From = ImpCastExprToType(From, ToType, CK_FloatingCast,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ break;
+
+ case ICK_Complex_Promotion:
+ case ICK_Complex_Conversion: {
+ QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
+ QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
+ CastKind CK;
+ if (FromEl->isRealFloatingType()) {
+ if (ToEl->isRealFloatingType())
+ CK = CK_FloatingComplexCast;
+ else
+ CK = CK_FloatingComplexToIntegralComplex;
+ } else if (ToEl->isRealFloatingType()) {
+ CK = CK_IntegralComplexToFloatingComplex;
+ } else {
+ CK = CK_IntegralComplexCast;
+ }
+ From = ImpCastExprToType(From, ToType, CK,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ break;
+ }
+
+ case ICK_Floating_Integral:
+ if (ToType->isRealFloatingType())
+ From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ else
+ From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ break;
+
+ case ICK_Compatible_Conversion:
+ From = ImpCastExprToType(From, ToType, CK_NoOp,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ break;
+
+ case ICK_Writeback_Conversion:
+ case ICK_Pointer_Conversion: {
+ if (SCS.IncompatibleObjC && Action != AA_Casting) {
+ // Diagnose incompatible Objective-C conversions
+ if (Action == AA_Initializing || Action == AA_Assigning)
+ Diag(From->getLocStart(),
+ diag::ext_typecheck_convert_incompatible_pointer)
+ << ToType << From->getType() << Action
+ << From->getSourceRange() << 0;
+ else
+ Diag(From->getLocStart(),
+ diag::ext_typecheck_convert_incompatible_pointer)
+ << From->getType() << ToType << Action
+ << From->getSourceRange() << 0;
+
+ if (From->getType()->isObjCObjectPointerType() &&
+ ToType->isObjCObjectPointerType())
+ EmitRelatedResultTypeNote(From);
+ }
+ else if (getLangOpts().ObjCAutoRefCount &&
+ !CheckObjCARCUnavailableWeakConversion(ToType,
+ From->getType())) {
+ if (Action == AA_Initializing)
+ Diag(From->getLocStart(),
+ diag::err_arc_weak_unavailable_assign);
+ else
+ Diag(From->getLocStart(),
+ diag::err_arc_convesion_of_weak_unavailable)
+ << (Action == AA_Casting) << From->getType() << ToType
+ << From->getSourceRange();
+ }
+
+ CastKind Kind = CK_Invalid;
+ CXXCastPath BasePath;
+ if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
+ return ExprError();
+
+ // Make sure we extend blocks if necessary.
+ // FIXME: doing this here is really ugly.
+ if (Kind == CK_BlockPointerToObjCPointerCast) {
+ ExprResult E = From;
+ (void) PrepareCastToObjCObjectPointer(E);
+ From = E.take();
+ }
+
+ From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
+ .take();
+ break;
+ }
+
+ case ICK_Pointer_Member: {
+ CastKind Kind = CK_Invalid;
+ CXXCastPath BasePath;
+ if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
+ return ExprError();
+ if (CheckExceptionSpecCompatibility(From, ToType))
+ return ExprError();
+ From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
+ .take();
+ break;
+ }
+
+ case ICK_Boolean_Conversion:
+ // Perform half-to-boolean conversion via float.
+ if (From->getType()->isHalfType()) {
+ From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
+ FromType = Context.FloatTy;
+ }
+
+ From = ImpCastExprToType(From, Context.BoolTy,
+ ScalarTypeToBooleanCastKind(FromType),
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ break;
+
+ case ICK_Derived_To_Base: {
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(From->getType(),
+ ToType.getNonReferenceType(),
+ From->getLocStart(),
+ From->getSourceRange(),
+ &BasePath,
+ CStyle))
+ return ExprError();
+
+ From = ImpCastExprToType(From, ToType.getNonReferenceType(),
+ CK_DerivedToBase, From->getValueKind(),
+ &BasePath, CCK).take();
+ break;
+ }
+
+ case ICK_Vector_Conversion:
+ From = ImpCastExprToType(From, ToType, CK_BitCast,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ break;
+
+ case ICK_Vector_Splat:
+ From = ImpCastExprToType(From, ToType, CK_VectorSplat,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ break;
+
+ case ICK_Complex_Real:
+ // Case 1. x -> _Complex y
+ if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
+ QualType ElType = ToComplex->getElementType();
+ bool isFloatingComplex = ElType->isRealFloatingType();
+
+ // x -> y
+ if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
+ // do nothing
+ } else if (From->getType()->isRealFloatingType()) {
+ From = ImpCastExprToType(From, ElType,
+ isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
+ } else {
+ assert(From->getType()->isIntegerType());
+ From = ImpCastExprToType(From, ElType,
+ isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
+ }
+ // y -> _Complex y
+ From = ImpCastExprToType(From, ToType,
+ isFloatingComplex ? CK_FloatingRealToComplex
+ : CK_IntegralRealToComplex).take();
+
+ // Case 2. _Complex x -> y
+ } else {
+ const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
+ assert(FromComplex);
+
+ QualType ElType = FromComplex->getElementType();
+ bool isFloatingComplex = ElType->isRealFloatingType();
+
+ // _Complex x -> x
+ From = ImpCastExprToType(From, ElType,
+ isFloatingComplex ? CK_FloatingComplexToReal
+ : CK_IntegralComplexToReal,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+
+ // x -> y
+ if (Context.hasSameUnqualifiedType(ElType, ToType)) {
+ // do nothing
+ } else if (ToType->isRealFloatingType()) {
+ From = ImpCastExprToType(From, ToType,
+ isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ } else {
+ assert(ToType->isIntegerType());
+ From = ImpCastExprToType(From, ToType,
+ isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ }
+ }
+ break;
+
+ case ICK_Block_Pointer_Conversion: {
+ From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
+ VK_RValue, /*BasePath=*/0, CCK).take();
+ break;
+ }
+
+ case ICK_TransparentUnionConversion: {
+ ExprResult FromRes = Owned(From);
+ Sema::AssignConvertType ConvTy =
+ CheckTransparentUnionArgumentConstraints(ToType, FromRes);
+ if (FromRes.isInvalid())
+ return ExprError();
+ From = FromRes.take();
+ assert ((ConvTy == Sema::Compatible) &&
+ "Improper transparent union conversion");
+ (void)ConvTy;
+ break;
+ }
+
+ case ICK_Lvalue_To_Rvalue:
+ case ICK_Array_To_Pointer:
+ case ICK_Function_To_Pointer:
+ case ICK_Qualification:
+ case ICK_Num_Conversion_Kinds:
+ llvm_unreachable("Improper second standard conversion");
+ }
+
+ switch (SCS.Third) {
+ case ICK_Identity:
+ // Nothing to do.
+ break;
+
+ case ICK_Qualification: {
+ // The qualification keeps the category of the inner expression, unless the
+ // target type isn't a reference.
+ ExprValueKind VK = ToType->isReferenceType() ?
+ From->getValueKind() : VK_RValue;
+ From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
+ CK_NoOp, VK, /*BasePath=*/0, CCK).take();
+
+ if (SCS.DeprecatedStringLiteralToCharPtr &&
+ !getLangOpts().WritableStrings)
+ Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
+ << ToType.getNonReferenceType();
+
+ break;
+ }
+
+ default:
+ llvm_unreachable("Improper third standard conversion");
+ }
+
+ // If this conversion sequence involved a scalar -> atomic conversion, perform
+ // that conversion now.
+ if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
+ if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
+ From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
+ CCK).take();
+
+ return Owned(From);
+}
+
+ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
+ SourceLocation KWLoc,
+ ParsedType Ty,
+ SourceLocation RParen) {
+ TypeSourceInfo *TSInfo;
+ QualType T = GetTypeFromParser(Ty, &TSInfo);
+
+ if (!TSInfo)
+ TSInfo = Context.getTrivialTypeSourceInfo(T);
+ return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
+}
+
+/// \brief Check the completeness of a type in a unary type trait.
+///
+/// If the particular type trait requires a complete type, tries to complete
+/// it. If completing the type fails, a diagnostic is emitted and false
+/// returned. If completing the type succeeds or no completion was required,
+/// returns true.
+static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
+ UnaryTypeTrait UTT,
+ SourceLocation Loc,
+ QualType ArgTy) {
+ // C++0x [meta.unary.prop]p3:
+ // For all of the class templates X declared in this Clause, instantiating
+ // that template with a template argument that is a class template
+ // specialization may result in the implicit instantiation of the template
+ // argument if and only if the semantics of X require that the argument
+ // must be a complete type.
+ // We apply this rule to all the type trait expressions used to implement
+ // these class templates. We also try to follow any GCC documented behavior
+ // in these expressions to ensure portability of standard libraries.
+ switch (UTT) {
+ // is_complete_type somewhat obviously cannot require a complete type.
+ case UTT_IsCompleteType:
+ // Fall-through
+
+ // These traits are modeled on the type predicates in C++0x
+ // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
+ // requiring a complete type, as whether or not they return true cannot be
+ // impacted by the completeness of the type.
+ case UTT_IsVoid:
+ case UTT_IsIntegral:
+ case UTT_IsFloatingPoint:
+ case UTT_IsArray:
+ case UTT_IsPointer:
+ case UTT_IsLvalueReference:
+ case UTT_IsRvalueReference:
+ case UTT_IsMemberFunctionPointer:
+ case UTT_IsMemberObjectPointer:
+ case UTT_IsEnum:
+ case UTT_IsUnion:
+ case UTT_IsClass:
+ case UTT_IsFunction:
+ case UTT_IsReference:
+ case UTT_IsArithmetic:
+ case UTT_IsFundamental:
+ case UTT_IsObject:
+ case UTT_IsScalar:
+ case UTT_IsCompound:
+ case UTT_IsMemberPointer:
+ // Fall-through
+
+ // These traits are modeled on type predicates in C++0x [meta.unary.prop]
+ // which requires some of its traits to have the complete type. However,
+ // the completeness of the type cannot impact these traits' semantics, and
+ // so they don't require it. This matches the comments on these traits in
+ // Table 49.
+ case UTT_IsConst:
+ case UTT_IsVolatile:
+ case UTT_IsSigned:
+ case UTT_IsUnsigned:
+ return true;
+
+ // C++0x [meta.unary.prop] Table 49 requires the following traits to be
+ // applied to a complete type.
+ case UTT_IsTrivial:
+ case UTT_IsTriviallyCopyable:
+ case UTT_IsStandardLayout:
+ case UTT_IsPOD:
+ case UTT_IsLiteral:
+ case UTT_IsEmpty:
+ case UTT_IsPolymorphic:
+ case UTT_IsAbstract:
+ // Fall-through
+
+ // These traits require a complete type.
+ case UTT_IsFinal:
+
+ // These trait expressions are designed to help implement predicates in
+ // [meta.unary.prop] despite not being named the same. They are specified
+ // by both GCC and the Embarcadero C++ compiler, and require the complete
+ // type due to the overarching C++0x type predicates being implemented
+ // requiring the complete type.
+ case UTT_HasNothrowAssign:
+ case UTT_HasNothrowConstructor:
+ case UTT_HasNothrowCopy:
+ case UTT_HasTrivialAssign:
+ case UTT_HasTrivialDefaultConstructor:
+ case UTT_HasTrivialCopy:
+ case UTT_HasTrivialDestructor:
+ case UTT_HasVirtualDestructor:
+ // Arrays of unknown bound are expressly allowed.
+ QualType ElTy = ArgTy;
+ if (ArgTy->isIncompleteArrayType())
+ ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
+
+ // The void type is expressly allowed.
+ if (ElTy->isVoidType())
+ return true;
+
+ return !S.RequireCompleteType(
+ Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
+ }
+ llvm_unreachable("Type trait not handled by switch");
+}
+
+static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
+ SourceLocation KeyLoc, QualType T) {
+ assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
+
+ ASTContext &C = Self.Context;
+ switch(UTT) {
+ // Type trait expressions corresponding to the primary type category
+ // predicates in C++0x [meta.unary.cat].
+ case UTT_IsVoid:
+ return T->isVoidType();
+ case UTT_IsIntegral:
+ return T->isIntegralType(C);
+ case UTT_IsFloatingPoint:
+ return T->isFloatingType();
+ case UTT_IsArray:
+ return T->isArrayType();
+ case UTT_IsPointer:
+ return T->isPointerType();
+ case UTT_IsLvalueReference:
+ return T->isLValueReferenceType();
+ case UTT_IsRvalueReference:
+ return T->isRValueReferenceType();
+ case UTT_IsMemberFunctionPointer:
+ return T->isMemberFunctionPointerType();
+ case UTT_IsMemberObjectPointer:
+ return T->isMemberDataPointerType();
+ case UTT_IsEnum:
+ return T->isEnumeralType();
+ case UTT_IsUnion:
+ return T->isUnionType();
+ case UTT_IsClass:
+ return T->isClassType() || T->isStructureType();
+ case UTT_IsFunction:
+ return T->isFunctionType();
+
+ // Type trait expressions which correspond to the convenient composition
+ // predicates in C++0x [meta.unary.comp].
+ case UTT_IsReference:
+ return T->isReferenceType();
+ case UTT_IsArithmetic:
+ return T->isArithmeticType() && !T->isEnumeralType();
+ case UTT_IsFundamental:
+ return T->isFundamentalType();
+ case UTT_IsObject:
+ return T->isObjectType();
+ case UTT_IsScalar:
+ // Note: semantic analysis depends on Objective-C lifetime types to be
+ // considered scalar types. However, such types do not actually behave
+ // like scalar types at run time (since they may require retain/release
+ // operations), so we report them as non-scalar.
+ if (T->isObjCLifetimeType()) {
+ switch (T.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ return true;
+
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Weak:
+ case Qualifiers::OCL_Autoreleasing:
+ return false;
+ }
+ }
+
+ return T->isScalarType();
+ case UTT_IsCompound:
+ return T->isCompoundType();
+ case UTT_IsMemberPointer:
+ return T->isMemberPointerType();
+
+ // Type trait expressions which correspond to the type property predicates
+ // in C++0x [meta.unary.prop].
+ case UTT_IsConst:
+ return T.isConstQualified();
+ case UTT_IsVolatile:
+ return T.isVolatileQualified();
+ case UTT_IsTrivial:
+ return T.isTrivialType(Self.Context);
+ case UTT_IsTriviallyCopyable:
+ return T.isTriviallyCopyableType(Self.Context);
+ case UTT_IsStandardLayout:
+ return T->isStandardLayoutType();
+ case UTT_IsPOD:
+ return T.isPODType(Self.Context);
+ case UTT_IsLiteral:
+ return T->isLiteralType();
+ case UTT_IsEmpty:
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return !RD->isUnion() && RD->isEmpty();
+ return false;
+ case UTT_IsPolymorphic:
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return RD->isPolymorphic();
+ return false;
+ case UTT_IsAbstract:
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return RD->isAbstract();
+ return false;
+ case UTT_IsFinal:
+ if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
+ return RD->hasAttr<FinalAttr>();
+ return false;
+ case UTT_IsSigned:
+ return T->isSignedIntegerType();
+ case UTT_IsUnsigned:
+ return T->isUnsignedIntegerType();
+
+ // Type trait expressions which query classes regarding their construction,
+ // destruction, and copying. Rather than being based directly on the
+ // related type predicates in the standard, they are specified by both
+ // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
+ // specifications.
+ //
+ // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
+ // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
+ case UTT_HasTrivialDefaultConstructor:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If __is_pod (type) is true then the trait is true, else if type is
+ // a cv class or union type (or array thereof) with a trivial default
+ // constructor ([class.ctor]) then the trait is true, else it is false.
+ if (T.isPODType(Self.Context))
+ return true;
+ if (const RecordType *RT =
+ C.getBaseElementType(T)->getAs<RecordType>())
+ return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
+ return false;
+ case UTT_HasTrivialCopy:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If __is_pod (type) is true or type is a reference type then
+ // the trait is true, else if type is a cv class or union type
+ // with a trivial copy constructor ([class.copy]) then the trait
+ // is true, else it is false.
+ if (T.isPODType(Self.Context) || T->isReferenceType())
+ return true;
+ if (const RecordType *RT = T->getAs<RecordType>())
+ return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
+ return false;
+ case UTT_HasTrivialAssign:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If type is const qualified or is a reference type then the
+ // trait is false. Otherwise if __is_pod (type) is true then the
+ // trait is true, else if type is a cv class or union type with
+ // a trivial copy assignment ([class.copy]) then the trait is
+ // true, else it is false.
+ // Note: the const and reference restrictions are interesting,
+ // given that const and reference members don't prevent a class
+ // from having a trivial copy assignment operator (but do cause
+ // errors if the copy assignment operator is actually used, q.v.
+ // [class.copy]p12).
+
+ if (C.getBaseElementType(T).isConstQualified())
+ return false;
+ if (T.isPODType(Self.Context))
+ return true;
+ if (const RecordType *RT = T->getAs<RecordType>())
+ return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
+ return false;
+ case UTT_HasTrivialDestructor:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If __is_pod (type) is true or type is a reference type
+ // then the trait is true, else if type is a cv class or union
+ // type (or array thereof) with a trivial destructor
+ // ([class.dtor]) then the trait is true, else it is
+ // false.
+ if (T.isPODType(Self.Context) || T->isReferenceType())
+ return true;
+
+ // Objective-C++ ARC: autorelease types don't require destruction.
+ if (T->isObjCLifetimeType() &&
+ T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
+ return true;
+
+ if (const RecordType *RT =
+ C.getBaseElementType(T)->getAs<RecordType>())
+ return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
+ return false;
+ // TODO: Propagate nothrowness for implicitly declared special members.
+ case UTT_HasNothrowAssign:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If type is const qualified or is a reference type then the
+ // trait is false. Otherwise if __has_trivial_assign (type)
+ // is true then the trait is true, else if type is a cv class
+ // or union type with copy assignment operators that are known
+ // not to throw an exception then the trait is true, else it is
+ // false.
+ if (C.getBaseElementType(T).isConstQualified())
+ return false;
+ if (T->isReferenceType())
+ return false;
+ if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
+ return true;
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->hasTrivialCopyAssignment())
+ return true;
+
+ bool FoundAssign = false;
+ DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
+ LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
+ Sema::LookupOrdinaryName);
+ if (Self.LookupQualifiedName(Res, RD)) {
+ Res.suppressDiagnostics();
+ for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
+ Op != OpEnd; ++Op) {
+ if (isa<FunctionTemplateDecl>(*Op))
+ continue;
+
+ CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
+ if (Operator->isCopyAssignmentOperator()) {
+ FoundAssign = true;
+ const FunctionProtoType *CPT
+ = Operator->getType()->getAs<FunctionProtoType>();
+ CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
+ if (!CPT)
+ return false;
+ if (CPT->getExceptionSpecType() == EST_Delayed)
+ return false;
+ if (!CPT->isNothrow(Self.Context))
+ return false;
+ }
+ }
+ }
+
+ return FoundAssign;
+ }
+ return false;
+ case UTT_HasNothrowCopy:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If __has_trivial_copy (type) is true then the trait is true, else
+ // if type is a cv class or union type with copy constructors that are
+ // known not to throw an exception then the trait is true, else it is
+ // false.
+ if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
+ return true;
+ if (const RecordType *RT = T->getAs<RecordType>()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->hasTrivialCopyConstructor())
+ return true;
+
+ bool FoundConstructor = false;
+ unsigned FoundTQs;
+ DeclContext::lookup_const_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
+ Con != ConEnd; ++Con) {
+ // A template constructor is never a copy constructor.
+ // FIXME: However, it may actually be selected at the actual overload
+ // resolution point.
+ if (isa<FunctionTemplateDecl>(*Con))
+ continue;
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
+ if (Constructor->isCopyConstructor(FoundTQs)) {
+ FoundConstructor = true;
+ const FunctionProtoType *CPT
+ = Constructor->getType()->getAs<FunctionProtoType>();
+ CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
+ if (!CPT)
+ return false;
+ if (CPT->getExceptionSpecType() == EST_Delayed)
+ return false;
+ // FIXME: check whether evaluating default arguments can throw.
+ // For now, we'll be conservative and assume that they can throw.
+ if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
+ return false;
+ }
+ }
+
+ return FoundConstructor;
+ }
+ return false;
+ case UTT_HasNothrowConstructor:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If __has_trivial_constructor (type) is true then the trait is
+ // true, else if type is a cv class or union type (or array
+ // thereof) with a default constructor that is known not to
+ // throw an exception then the trait is true, else it is false.
+ if (T.isPODType(C) || T->isObjCLifetimeType())
+ return true;
+ if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->hasTrivialDefaultConstructor())
+ return true;
+
+ DeclContext::lookup_const_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
+ Con != ConEnd; ++Con) {
+ // FIXME: In C++0x, a constructor template can be a default constructor.
+ if (isa<FunctionTemplateDecl>(*Con))
+ continue;
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
+ if (Constructor->isDefaultConstructor()) {
+ const FunctionProtoType *CPT
+ = Constructor->getType()->getAs<FunctionProtoType>();
+ CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
+ if (!CPT)
+ return false;
+ if (CPT->getExceptionSpecType() == EST_Delayed)
+ return false;
+ // TODO: check whether evaluating default arguments can throw.
+ // For now, we'll be conservative and assume that they can throw.
+ return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
+ }
+ }
+ }
+ return false;
+ case UTT_HasVirtualDestructor:
+ // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
+ // If type is a class type with a virtual destructor ([class.dtor])
+ // then the trait is true, else it is false.
+ if (const RecordType *Record = T->getAs<RecordType>()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
+ if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
+ return Destructor->isVirtual();
+ }
+ return false;
+
+ // These type trait expressions are modeled on the specifications for the
+ // Embarcadero C++0x type trait functions:
+ // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
+ case UTT_IsCompleteType:
+ // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
+ // Returns True if and only if T is a complete type at the point of the
+ // function call.
+ return !T->isIncompleteType();
+ }
+ llvm_unreachable("Type trait not covered by switch");
+}
+
+ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
+ SourceLocation KWLoc,
+ TypeSourceInfo *TSInfo,
+ SourceLocation RParen) {
+ QualType T = TSInfo->getType();
+ if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
+ return ExprError();
+
+ bool Value = false;
+ if (!T->isDependentType())
+ Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
+
+ return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
+ RParen, Context.BoolTy));
+}
+
+ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
+ SourceLocation KWLoc,
+ ParsedType LhsTy,
+ ParsedType RhsTy,
+ SourceLocation RParen) {
+ TypeSourceInfo *LhsTSInfo;
+ QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
+ if (!LhsTSInfo)
+ LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
+
+ TypeSourceInfo *RhsTSInfo;
+ QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
+ if (!RhsTSInfo)
+ RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
+
+ return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
+}
+
+static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
+ ArrayRef<TypeSourceInfo *> Args,
+ SourceLocation RParenLoc) {
+ switch (Kind) {
+ case clang::TT_IsTriviallyConstructible: {
+ // C++11 [meta.unary.prop]:
+ // is_trivially_constructible is defined as:
+ //
+ // is_constructible<T, Args...>::value is true and the variable
+ // definition for is_constructible, as defined below, is known to call no
+ // operation that is not trivial.
+ //
+ // The predicate condition for a template specialization
+ // is_constructible<T, Args...> shall be satisfied if and only if the
+ // following variable definition would be well-formed for some invented
+ // variable t:
+ //
+ // T t(create<Args>()...);
+ if (Args.empty()) {
+ S.Diag(KWLoc, diag::err_type_trait_arity)
+ << 1 << 1 << 1 << (int)Args.size();
+ return false;
+ }
+
+ bool SawVoid = false;
+ for (unsigned I = 0, N = Args.size(); I != N; ++I) {
+ if (Args[I]->getType()->isVoidType()) {
+ SawVoid = true;
+ continue;
+ }
+
+ if (!Args[I]->getType()->isIncompleteType() &&
+ S.RequireCompleteType(KWLoc, Args[I]->getType(),
+ diag::err_incomplete_type_used_in_type_trait_expr))
+ return false;
+ }
+
+ // If any argument was 'void', of course it won't type-check.
+ if (SawVoid)
+ return false;
+
+ llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
+ llvm::SmallVector<Expr *, 2> ArgExprs;
+ ArgExprs.reserve(Args.size() - 1);
+ for (unsigned I = 1, N = Args.size(); I != N; ++I) {
+ QualType T = Args[I]->getType();
+ if (T->isObjectType() || T->isFunctionType())
+ T = S.Context.getRValueReferenceType(T);
+ OpaqueArgExprs.push_back(
+ OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
+ T.getNonLValueExprType(S.Context),
+ Expr::getValueKindForType(T)));
+ ArgExprs.push_back(&OpaqueArgExprs.back());
+ }
+
+ // Perform the initialization in an unevaluated context within a SFINAE
+ // trap at translation unit scope.
+ EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
+ Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
+ Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
+ InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
+ InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
+ RParenLoc));
+ InitializationSequence Init(S, To, InitKind,
+ ArgExprs.begin(), ArgExprs.size());
+ if (Init.Failed())
+ return false;
+
+ ExprResult Result = Init.Perform(S, To, InitKind,
+ MultiExprArg(ArgExprs.data(),
+ ArgExprs.size()));
+ if (Result.isInvalid() || SFINAE.hasErrorOccurred())
+ return false;
+
+ // The initialization succeeded; not make sure there are no non-trivial
+ // calls.
+ return !Result.get()->hasNonTrivialCall(S.Context);
+ }
+ }
+
+ return false;
+}
+
+ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
+ ArrayRef<TypeSourceInfo *> Args,
+ SourceLocation RParenLoc) {
+ bool Dependent = false;
+ for (unsigned I = 0, N = Args.size(); I != N; ++I) {
+ if (Args[I]->getType()->isDependentType()) {
+ Dependent = true;
+ break;
+ }
+ }
+
+ bool Value = false;
+ if (!Dependent)
+ Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
+
+ return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
+ Args, RParenLoc, Value);
+}
+
+ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
+ ArrayRef<ParsedType> Args,
+ SourceLocation RParenLoc) {
+ llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
+ ConvertedArgs.reserve(Args.size());
+
+ for (unsigned I = 0, N = Args.size(); I != N; ++I) {
+ TypeSourceInfo *TInfo;
+ QualType T = GetTypeFromParser(Args[I], &TInfo);
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
+
+ ConvertedArgs.push_back(TInfo);
+ }
+
+ return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
+}
+
+static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
+ QualType LhsT, QualType RhsT,
+ SourceLocation KeyLoc) {
+ assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
+ "Cannot evaluate traits of dependent types");
+
+ switch(BTT) {
+ case BTT_IsBaseOf: {
+ // C++0x [meta.rel]p2
+ // Base is a base class of Derived without regard to cv-qualifiers or
+ // Base and Derived are not unions and name the same class type without
+ // regard to cv-qualifiers.
+
+ const RecordType *lhsRecord = LhsT->getAs<RecordType>();
+ if (!lhsRecord) return false;
+
+ const RecordType *rhsRecord = RhsT->getAs<RecordType>();
+ if (!rhsRecord) return false;
+
+ assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
+ == (lhsRecord == rhsRecord));
+
+ if (lhsRecord == rhsRecord)
+ return !lhsRecord->getDecl()->isUnion();
+
+ // C++0x [meta.rel]p2:
+ // If Base and Derived are class types and are different types
+ // (ignoring possible cv-qualifiers) then Derived shall be a
+ // complete type.
+ if (Self.RequireCompleteType(KeyLoc, RhsT,
+ diag::err_incomplete_type_used_in_type_trait_expr))
+ return false;
+
+ return cast<CXXRecordDecl>(rhsRecord->getDecl())
+ ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
+ }
+ case BTT_IsSame:
+ return Self.Context.hasSameType(LhsT, RhsT);
+ case BTT_TypeCompatible:
+ return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
+ RhsT.getUnqualifiedType());
+ case BTT_IsConvertible:
+ case BTT_IsConvertibleTo: {
+ // C++0x [meta.rel]p4:
+ // Given the following function prototype:
+ //
+ // template <class T>
+ // typename add_rvalue_reference<T>::type create();
+ //
+ // the predicate condition for a template specialization
+ // is_convertible<From, To> shall be satisfied if and only if
+ // the return expression in the following code would be
+ // well-formed, including any implicit conversions to the return
+ // type of the function:
+ //
+ // To test() {
+ // return create<From>();
+ // }
+ //
+ // Access checking is performed as if in a context unrelated to To and
+ // From. Only the validity of the immediate context of the expression
+ // of the return-statement (including conversions to the return type)
+ // is considered.
+ //
+ // We model the initialization as a copy-initialization of a temporary
+ // of the appropriate type, which for this expression is identical to the
+ // return statement (since NRVO doesn't apply).
+ if (LhsT->isObjectType() || LhsT->isFunctionType())
+ LhsT = Self.Context.getRValueReferenceType(LhsT);
+
+ InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
+ OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
+ Expr::getValueKindForType(LhsT));
+ Expr *FromPtr = &From;
+ InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
+ SourceLocation()));
+
+ // Perform the initialization in an unevaluated context within a SFINAE
+ // trap at translation unit scope.
+ EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
+ Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
+ Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
+ InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
+ if (Init.Failed())
+ return false;
+
+ ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
+ return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
+ }
+
+ case BTT_IsTriviallyAssignable: {
+ // C++11 [meta.unary.prop]p3:
+ // is_trivially_assignable is defined as:
+ // is_assignable<T, U>::value is true and the assignment, as defined by
+ // is_assignable, is known to call no operation that is not trivial
+ //
+ // is_assignable is defined as:
+ // The expression declval<T>() = declval<U>() is well-formed when
+ // treated as an unevaluated operand (Clause 5).
+ //
+ // For both, T and U shall be complete types, (possibly cv-qualified)
+ // void, or arrays of unknown bound.
+ if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
+ Self.RequireCompleteType(KeyLoc, LhsT,
+ diag::err_incomplete_type_used_in_type_trait_expr))
+ return false;
+ if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
+ Self.RequireCompleteType(KeyLoc, RhsT,
+ diag::err_incomplete_type_used_in_type_trait_expr))
+ return false;
+
+ // cv void is never assignable.
+ if (LhsT->isVoidType() || RhsT->isVoidType())
+ return false;
+
+ // Build expressions that emulate the effect of declval<T>() and
+ // declval<U>().
+ if (LhsT->isObjectType() || LhsT->isFunctionType())
+ LhsT = Self.Context.getRValueReferenceType(LhsT);
+ if (RhsT->isObjectType() || RhsT->isFunctionType())
+ RhsT = Self.Context.getRValueReferenceType(RhsT);
+ OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
+ Expr::getValueKindForType(LhsT));
+ OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
+ Expr::getValueKindForType(RhsT));
+
+ // Attempt the assignment in an unevaluated context within a SFINAE
+ // trap at translation unit scope.
+ EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
+ Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
+ Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
+ ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
+ if (Result.isInvalid() || SFINAE.hasErrorOccurred())
+ return false;
+
+ return !Result.get()->hasNonTrivialCall(Self.Context);
+ }
+ }
+ llvm_unreachable("Unknown type trait or not implemented");
+}
+
+ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
+ SourceLocation KWLoc,
+ TypeSourceInfo *LhsTSInfo,
+ TypeSourceInfo *RhsTSInfo,
+ SourceLocation RParen) {
+ QualType LhsT = LhsTSInfo->getType();
+ QualType RhsT = RhsTSInfo->getType();
+
+ if (BTT == BTT_TypeCompatible) {
+ if (getLangOpts().CPlusPlus) {
+ Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
+ << SourceRange(KWLoc, RParen);
+ return ExprError();
+ }
+ }
+
+ bool Value = false;
+ if (!LhsT->isDependentType() && !RhsT->isDependentType())
+ Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
+
+ // Select trait result type.
+ QualType ResultType;
+ switch (BTT) {
+ case BTT_IsBaseOf: ResultType = Context.BoolTy; break;
+ case BTT_IsConvertible: ResultType = Context.BoolTy; break;
+ case BTT_IsSame: ResultType = Context.BoolTy; break;
+ case BTT_TypeCompatible: ResultType = Context.IntTy; break;
+ case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
+ case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
+ }
+
+ return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
+ RhsTSInfo, Value, RParen,
+ ResultType));
+}
+
+ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
+ SourceLocation KWLoc,
+ ParsedType Ty,
+ Expr* DimExpr,
+ SourceLocation RParen) {
+ TypeSourceInfo *TSInfo;
+ QualType T = GetTypeFromParser(Ty, &TSInfo);
+ if (!TSInfo)
+ TSInfo = Context.getTrivialTypeSourceInfo(T);
+
+ return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
+}
+
+static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
+ QualType T, Expr *DimExpr,
+ SourceLocation KeyLoc) {
+ assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
+
+ switch(ATT) {
+ case ATT_ArrayRank:
+ if (T->isArrayType()) {
+ unsigned Dim = 0;
+ while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
+ ++Dim;
+ T = AT->getElementType();
+ }
+ return Dim;
+ }
+ return 0;
+
+ case ATT_ArrayExtent: {
+ llvm::APSInt Value;
+ uint64_t Dim;
+ if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
+ Self.PDiag(diag::err_dimension_expr_not_constant_integer),
+ false).isInvalid())
+ return 0;
+ if (Value.isSigned() && Value.isNegative()) {
+ Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
+ << DimExpr->getSourceRange();
+ return 0;
+ }
+ Dim = Value.getLimitedValue();
+
+ if (T->isArrayType()) {
+ unsigned D = 0;
+ bool Matched = false;
+ while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
+ if (Dim == D) {
+ Matched = true;
+ break;
+ }
+ ++D;
+ T = AT->getElementType();
+ }
+
+ if (Matched && T->isArrayType()) {
+ if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
+ return CAT->getSize().getLimitedValue();
+ }
+ }
+ return 0;
+ }
+ }
+ llvm_unreachable("Unknown type trait or not implemented");
+}
+
+ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
+ SourceLocation KWLoc,
+ TypeSourceInfo *TSInfo,
+ Expr* DimExpr,
+ SourceLocation RParen) {
+ QualType T = TSInfo->getType();
+
+ // FIXME: This should likely be tracked as an APInt to remove any host
+ // assumptions about the width of size_t on the target.
+ uint64_t Value = 0;
+ if (!T->isDependentType())
+ Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
+
+ // While the specification for these traits from the Embarcadero C++
+ // compiler's documentation says the return type is 'unsigned int', Clang
+ // returns 'size_t'. On Windows, the primary platform for the Embarcadero
+ // compiler, there is no difference. On several other platforms this is an
+ // important distinction.
+ return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
+ DimExpr, RParen,
+ Context.getSizeType()));
+}
+
+ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
+ SourceLocation KWLoc,
+ Expr *Queried,
+ SourceLocation RParen) {
+ // If error parsing the expression, ignore.
+ if (!Queried)
+ return ExprError();
+
+ ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
+
+ return move(Result);
+}
+
+static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
+ switch (ET) {
+ case ET_IsLValueExpr: return E->isLValue();
+ case ET_IsRValueExpr: return E->isRValue();
+ }
+ llvm_unreachable("Expression trait not covered by switch");
+}
+
+ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
+ SourceLocation KWLoc,
+ Expr *Queried,
+ SourceLocation RParen) {
+ if (Queried->isTypeDependent()) {
+ // Delay type-checking for type-dependent expressions.
+ } else if (Queried->getType()->isPlaceholderType()) {
+ ExprResult PE = CheckPlaceholderExpr(Queried);
+ if (PE.isInvalid()) return ExprError();
+ return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
+ }
+
+ bool Value = EvaluateExpressionTrait(ET, Queried);
+
+ return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
+ RParen, Context.BoolTy));
+}
+
+QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
+ ExprValueKind &VK,
+ SourceLocation Loc,
+ bool isIndirect) {
+ assert(!LHS.get()->getType()->isPlaceholderType() &&
+ !RHS.get()->getType()->isPlaceholderType() &&
+ "placeholders should have been weeded out by now");
+
+ // The LHS undergoes lvalue conversions if this is ->*.
+ if (isIndirect) {
+ LHS = DefaultLvalueConversion(LHS.take());
+ if (LHS.isInvalid()) return QualType();
+ }
+
+ // The RHS always undergoes lvalue conversions.
+ RHS = DefaultLvalueConversion(RHS.take());
+ if (RHS.isInvalid()) return QualType();
+
+ const char *OpSpelling = isIndirect ? "->*" : ".*";
+ // C++ 5.5p2
+ // The binary operator .* [p3: ->*] binds its second operand, which shall
+ // be of type "pointer to member of T" (where T is a completely-defined
+ // class type) [...]
+ QualType RHSType = RHS.get()->getType();
+ const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
+ if (!MemPtr) {
+ Diag(Loc, diag::err_bad_memptr_rhs)
+ << OpSpelling << RHSType << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ QualType Class(MemPtr->getClass(), 0);
+
+ // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
+ // member pointer points must be completely-defined. However, there is no
+ // reason for this semantic distinction, and the rule is not enforced by
+ // other compilers. Therefore, we do not check this property, as it is
+ // likely to be considered a defect.
+
+ // C++ 5.5p2
+ // [...] to its first operand, which shall be of class T or of a class of
+ // which T is an unambiguous and accessible base class. [p3: a pointer to
+ // such a class]
+ QualType LHSType = LHS.get()->getType();
+ if (isIndirect) {
+ if (const PointerType *Ptr = LHSType->getAs<PointerType>())
+ LHSType = Ptr->getPointeeType();
+ else {
+ Diag(Loc, diag::err_bad_memptr_lhs)
+ << OpSpelling << 1 << LHSType
+ << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
+ return QualType();
+ }
+ }
+
+ if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
+ // If we want to check the hierarchy, we need a complete type.
+ if (RequireCompleteType(Loc, LHSType, PDiag(diag::err_bad_memptr_lhs)
+ << OpSpelling << (int)isIndirect)) {
+ return QualType();
+ }
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
+ /*DetectVirtual=*/false);
+ // FIXME: Would it be useful to print full ambiguity paths, or is that
+ // overkill?
+ if (!IsDerivedFrom(LHSType, Class, Paths) ||
+ Paths.isAmbiguous(Context.getCanonicalType(Class))) {
+ Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
+ << (int)isIndirect << LHS.get()->getType();
+ return QualType();
+ }
+ // Cast LHS to type of use.
+ QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
+ ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
+
+ CXXCastPath BasePath;
+ BuildBasePathArray(Paths, BasePath);
+ LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
+ &BasePath);
+ }
+
+ if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
+ // Diagnose use of pointer-to-member type which when used as
+ // the functional cast in a pointer-to-member expression.
+ Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
+ return QualType();
+ }
+
+ // C++ 5.5p2
+ // The result is an object or a function of the type specified by the
+ // second operand.
+ // The cv qualifiers are the union of those in the pointer and the left side,
+ // in accordance with 5.5p5 and 5.2.5.
+ QualType Result = MemPtr->getPointeeType();
+ Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
+
+ // C++0x [expr.mptr.oper]p6:
+ // In a .* expression whose object expression is an rvalue, the program is
+ // ill-formed if the second operand is a pointer to member function with
+ // ref-qualifier &. In a ->* expression or in a .* expression whose object
+ // expression is an lvalue, the program is ill-formed if the second operand
+ // is a pointer to member function with ref-qualifier &&.
+ if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
+ switch (Proto->getRefQualifier()) {
+ case RQ_None:
+ // Do nothing
+ break;
+
+ case RQ_LValue:
+ if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
+ Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
+ << RHSType << 1 << LHS.get()->getSourceRange();
+ break;
+
+ case RQ_RValue:
+ if (isIndirect || !LHS.get()->Classify(Context).isRValue())
+ Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
+ << RHSType << 0 << LHS.get()->getSourceRange();
+ break;
+ }
+ }
+
+ // C++ [expr.mptr.oper]p6:
+ // The result of a .* expression whose second operand is a pointer
+ // to a data member is of the same value category as its
+ // first operand. The result of a .* expression whose second
+ // operand is a pointer to a member function is a prvalue. The
+ // result of an ->* expression is an lvalue if its second operand
+ // is a pointer to data member and a prvalue otherwise.
+ if (Result->isFunctionType()) {
+ VK = VK_RValue;
+ return Context.BoundMemberTy;
+ } else if (isIndirect) {
+ VK = VK_LValue;
+ } else {
+ VK = LHS.get()->getValueKind();
+ }
+
+ return Result;
+}
+
+/// \brief Try to convert a type to another according to C++0x 5.16p3.
+///
+/// This is part of the parameter validation for the ? operator. If either
+/// value operand is a class type, the two operands are attempted to be
+/// converted to each other. This function does the conversion in one direction.
+/// It returns true if the program is ill-formed and has already been diagnosed
+/// as such.
+static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
+ SourceLocation QuestionLoc,
+ bool &HaveConversion,
+ QualType &ToType) {
+ HaveConversion = false;
+ ToType = To->getType();
+
+ InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
+ SourceLocation());
+ // C++0x 5.16p3
+ // The process for determining whether an operand expression E1 of type T1
+ // can be converted to match an operand expression E2 of type T2 is defined
+ // as follows:
+ // -- If E2 is an lvalue:
+ bool ToIsLvalue = To->isLValue();
+ if (ToIsLvalue) {
+ // E1 can be converted to match E2 if E1 can be implicitly converted to
+ // type "lvalue reference to T2", subject to the constraint that in the
+ // conversion the reference must bind directly to E1.
+ QualType T = Self.Context.getLValueReferenceType(ToType);
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
+
+ InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
+ if (InitSeq.isDirectReferenceBinding()) {
+ ToType = T;
+ HaveConversion = true;
+ return false;
+ }
+
+ if (InitSeq.isAmbiguous())
+ return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
+ }
+
+ // -- If E2 is an rvalue, or if the conversion above cannot be done:
+ // -- if E1 and E2 have class type, and the underlying class types are
+ // the same or one is a base class of the other:
+ QualType FTy = From->getType();
+ QualType TTy = To->getType();
+ const RecordType *FRec = FTy->getAs<RecordType>();
+ const RecordType *TRec = TTy->getAs<RecordType>();
+ bool FDerivedFromT = FRec && TRec && FRec != TRec &&
+ Self.IsDerivedFrom(FTy, TTy);
+ if (FRec && TRec &&
+ (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
+ // E1 can be converted to match E2 if the class of T2 is the
+ // same type as, or a base class of, the class of T1, and
+ // [cv2 > cv1].
+ if (FRec == TRec || FDerivedFromT) {
+ if (TTy.isAtLeastAsQualifiedAs(FTy)) {
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
+ InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
+ if (InitSeq) {
+ HaveConversion = true;
+ return false;
+ }
+
+ if (InitSeq.isAmbiguous())
+ return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
+ }
+ }
+
+ return false;
+ }
+
+ // -- Otherwise: E1 can be converted to match E2 if E1 can be
+ // implicitly converted to the type that expression E2 would have
+ // if E2 were converted to an rvalue (or the type it has, if E2 is
+ // an rvalue).
+ //
+ // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
+ // to the array-to-pointer or function-to-pointer conversions.
+ if (!TTy->getAs<TagType>())
+ TTy = TTy.getUnqualifiedType();
+
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
+ InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
+ HaveConversion = !InitSeq.Failed();
+ ToType = TTy;
+ if (InitSeq.isAmbiguous())
+ return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
+
+ return false;
+}
+
+/// \brief Try to find a common type for two according to C++0x 5.16p5.
+///
+/// This is part of the parameter validation for the ? operator. If either
+/// value operand is a class type, overload resolution is used to find a
+/// conversion to a common type.
+static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation QuestionLoc) {
+ Expr *Args[2] = { LHS.get(), RHS.get() };
+ OverloadCandidateSet CandidateSet(QuestionLoc);
+ Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
+ CandidateSet);
+
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
+ case OR_Success: {
+ // We found a match. Perform the conversions on the arguments and move on.
+ ExprResult LHSRes =
+ Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], Sema::AA_Converting);
+ if (LHSRes.isInvalid())
+ break;
+ LHS = move(LHSRes);
+
+ ExprResult RHSRes =
+ Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
+ Best->Conversions[1], Sema::AA_Converting);
+ if (RHSRes.isInvalid())
+ break;
+ RHS = move(RHSRes);
+ if (Best->Function)
+ Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
+ return false;
+ }
+
+ case OR_No_Viable_Function:
+
+ // Emit a better diagnostic if one of the expressions is a null pointer
+ // constant and the other is a pointer type. In this case, the user most
+ // likely forgot to take the address of the other expression.
+ if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
+ return true;
+
+ Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return true;
+
+ case OR_Ambiguous:
+ Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ // FIXME: Print the possible common types by printing the return types of
+ // the viable candidates.
+ break;
+
+ case OR_Deleted:
+ llvm_unreachable("Conditional operator has only built-in overloads");
+ }
+ return true;
+}
+
+/// \brief Perform an "extended" implicit conversion as returned by
+/// TryClassUnification.
+static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
+ InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
+ SourceLocation());
+ Expr *Arg = E.take();
+ InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
+ ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
+ if (Result.isInvalid())
+ return true;
+
+ E = Result;
+ return false;
+}
+
+/// \brief Check the operands of ?: under C++ semantics.
+///
+/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
+/// extension. In this case, LHS == Cond. (But they're not aliases.)
+QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
+ ExprValueKind &VK, ExprObjectKind &OK,
+ SourceLocation QuestionLoc) {
+ // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
+ // interface pointers.
+
+ // C++0x 5.16p1
+ // The first expression is contextually converted to bool.
+ if (!Cond.get()->isTypeDependent()) {
+ ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
+ if (CondRes.isInvalid())
+ return QualType();
+ Cond = move(CondRes);
+ }
+
+ // Assume r-value.
+ VK = VK_RValue;
+ OK = OK_Ordinary;
+
+ // Either of the arguments dependent?
+ if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
+ return Context.DependentTy;
+
+ // C++0x 5.16p2
+ // If either the second or the third operand has type (cv) void, ...
+ QualType LTy = LHS.get()->getType();
+ QualType RTy = RHS.get()->getType();
+ bool LVoid = LTy->isVoidType();
+ bool RVoid = RTy->isVoidType();
+ if (LVoid || RVoid) {
+ // ... then the [l2r] conversions are performed on the second and third
+ // operands ...
+ LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ LTy = LHS.get()->getType();
+ RTy = RHS.get()->getType();
+
+ // ... and one of the following shall hold:
+ // -- The second or the third operand (but not both) is a throw-
+ // expression; the result is of the type of the other and is an rvalue.
+ bool LThrow = isa<CXXThrowExpr>(LHS.get());
+ bool RThrow = isa<CXXThrowExpr>(RHS.get());
+ if (LThrow && !RThrow)
+ return RTy;
+ if (RThrow && !LThrow)
+ return LTy;
+
+ // -- Both the second and third operands have type void; the result is of
+ // type void and is an rvalue.
+ if (LVoid && RVoid)
+ return Context.VoidTy;
+
+ // Neither holds, error.
+ Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
+ << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // Neither is void.
+
+ // C++0x 5.16p3
+ // Otherwise, if the second and third operand have different types, and
+ // either has (cv) class type, and attempt is made to convert each of those
+ // operands to the other.
+ if (!Context.hasSameType(LTy, RTy) &&
+ (LTy->isRecordType() || RTy->isRecordType())) {
+ ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
+ // These return true if a single direction is already ambiguous.
+ QualType L2RType, R2LType;
+ bool HaveL2R, HaveR2L;
+ if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
+ return QualType();
+ if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
+ return QualType();
+
+ // If both can be converted, [...] the program is ill-formed.
+ if (HaveL2R && HaveR2L) {
+ Diag(QuestionLoc, diag::err_conditional_ambiguous)
+ << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // If exactly one conversion is possible, that conversion is applied to
+ // the chosen operand and the converted operands are used in place of the
+ // original operands for the remainder of this section.
+ if (HaveL2R) {
+ if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
+ return QualType();
+ LTy = LHS.get()->getType();
+ } else if (HaveR2L) {
+ if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
+ return QualType();
+ RTy = RHS.get()->getType();
+ }
+ }
+
+ // C++0x 5.16p4
+ // If the second and third operands are glvalues of the same value
+ // category and have the same type, the result is of that type and
+ // value category and it is a bit-field if the second or the third
+ // operand is a bit-field, or if both are bit-fields.
+ // We only extend this to bitfields, not to the crazy other kinds of
+ // l-values.
+ bool Same = Context.hasSameType(LTy, RTy);
+ if (Same &&
+ LHS.get()->isGLValue() &&
+ LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
+ LHS.get()->isOrdinaryOrBitFieldObject() &&
+ RHS.get()->isOrdinaryOrBitFieldObject()) {
+ VK = LHS.get()->getValueKind();
+ if (LHS.get()->getObjectKind() == OK_BitField ||
+ RHS.get()->getObjectKind() == OK_BitField)
+ OK = OK_BitField;
+ return LTy;
+ }
+
+ // C++0x 5.16p5
+ // Otherwise, the result is an rvalue. If the second and third operands
+ // do not have the same type, and either has (cv) class type, ...
+ if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
+ // ... overload resolution is used to determine the conversions (if any)
+ // to be applied to the operands. If the overload resolution fails, the
+ // program is ill-formed.
+ if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
+ return QualType();
+ }
+
+ // C++0x 5.16p6
+ // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
+ // conversions are performed on the second and third operands.
+ LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ LTy = LHS.get()->getType();
+ RTy = RHS.get()->getType();
+
+ // After those conversions, one of the following shall hold:
+ // -- The second and third operands have the same type; the result
+ // is of that type. If the operands have class type, the result
+ // is a prvalue temporary of the result type, which is
+ // copy-initialized from either the second operand or the third
+ // operand depending on the value of the first operand.
+ if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
+ if (LTy->isRecordType()) {
+ // The operands have class type. Make a temporary copy.
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
+ ExprResult LHSCopy = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ LHS);
+ if (LHSCopy.isInvalid())
+ return QualType();
+
+ ExprResult RHSCopy = PerformCopyInitialization(Entity,
+ SourceLocation(),
+ RHS);
+ if (RHSCopy.isInvalid())
+ return QualType();
+
+ LHS = LHSCopy;
+ RHS = RHSCopy;
+ }
+
+ return LTy;
+ }
+
+ // Extension: conditional operator involving vector types.
+ if (LTy->isVectorType() || RTy->isVectorType())
+ return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
+
+ // -- The second and third operands have arithmetic or enumeration type;
+ // the usual arithmetic conversions are performed to bring them to a
+ // common type, and the result is of that type.
+ if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
+ UsualArithmeticConversions(LHS, RHS);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ return LHS.get()->getType();
+ }
+
+ // -- The second and third operands have pointer type, or one has pointer
+ // type and the other is a null pointer constant; pointer conversions
+ // and qualification conversions are performed to bring them to their
+ // composite pointer type. The result is of the composite pointer type.
+ // -- The second and third operands have pointer to member type, or one has
+ // pointer to member type and the other is a null pointer constant;
+ // pointer to member conversions and qualification conversions are
+ // performed to bring them to a common type, whose cv-qualification
+ // shall match the cv-qualification of either the second or the third
+ // operand. The result is of the common type.
+ bool NonStandardCompositeType = false;
+ QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
+ isSFINAEContext()? 0 : &NonStandardCompositeType);
+ if (!Composite.isNull()) {
+ if (NonStandardCompositeType)
+ Diag(QuestionLoc,
+ diag::ext_typecheck_cond_incompatible_operands_nonstandard)
+ << LTy << RTy << Composite
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+
+ return Composite;
+ }
+
+ // Similarly, attempt to find composite type of two objective-c pointers.
+ Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
+ if (!Composite.isNull())
+ return Composite;
+
+ // Check if we are using a null with a non-pointer type.
+ if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
+ return QualType();
+
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+}
+
+/// \brief Find a merged pointer type and convert the two expressions to it.
+///
+/// This finds the composite pointer type (or member pointer type) for @p E1
+/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
+/// type and returns it.
+/// It does not emit diagnostics.
+///
+/// \param Loc The location of the operator requiring these two expressions to
+/// be converted to the composite pointer type.
+///
+/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
+/// a non-standard (but still sane) composite type to which both expressions
+/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
+/// will be set true.
+QualType Sema::FindCompositePointerType(SourceLocation Loc,
+ Expr *&E1, Expr *&E2,
+ bool *NonStandardCompositeType) {
+ if (NonStandardCompositeType)
+ *NonStandardCompositeType = false;
+
+ assert(getLangOpts().CPlusPlus && "This function assumes C++");
+ QualType T1 = E1->getType(), T2 = E2->getType();
+
+ if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
+ !T2->isAnyPointerType() && !T2->isMemberPointerType())
+ return QualType();
+
+ // C++0x 5.9p2
+ // Pointer conversions and qualification conversions are performed on
+ // pointer operands to bring them to their composite pointer type. If
+ // one operand is a null pointer constant, the composite pointer type is
+ // the type of the other operand.
+ if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ if (T2->isMemberPointerType())
+ E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
+ else
+ E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
+ return T2;
+ }
+ if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ if (T1->isMemberPointerType())
+ E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
+ else
+ E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
+ return T1;
+ }
+
+ // Now both have to be pointers or member pointers.
+ if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
+ (!T2->isPointerType() && !T2->isMemberPointerType()))
+ return QualType();
+
+ // Otherwise, of one of the operands has type "pointer to cv1 void," then
+ // the other has type "pointer to cv2 T" and the composite pointer type is
+ // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
+ // Otherwise, the composite pointer type is a pointer type similar to the
+ // type of one of the operands, with a cv-qualification signature that is
+ // the union of the cv-qualification signatures of the operand types.
+ // In practice, the first part here is redundant; it's subsumed by the second.
+ // What we do here is, we build the two possible composite types, and try the
+ // conversions in both directions. If only one works, or if the two composite
+ // types are the same, we have succeeded.
+ // FIXME: extended qualifiers?
+ typedef SmallVector<unsigned, 4> QualifierVector;
+ QualifierVector QualifierUnion;
+ typedef SmallVector<std::pair<const Type *, const Type *>, 4>
+ ContainingClassVector;
+ ContainingClassVector MemberOfClass;
+ QualType Composite1 = Context.getCanonicalType(T1),
+ Composite2 = Context.getCanonicalType(T2);
+ unsigned NeedConstBefore = 0;
+ do {
+ const PointerType *Ptr1, *Ptr2;
+ if ((Ptr1 = Composite1->getAs<PointerType>()) &&
+ (Ptr2 = Composite2->getAs<PointerType>())) {
+ Composite1 = Ptr1->getPointeeType();
+ Composite2 = Ptr2->getPointeeType();
+
+ // If we're allowed to create a non-standard composite type, keep track
+ // of where we need to fill in additional 'const' qualifiers.
+ if (NonStandardCompositeType &&
+ Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
+ NeedConstBefore = QualifierUnion.size();
+
+ QualifierUnion.push_back(
+ Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
+ MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
+ continue;
+ }
+
+ const MemberPointerType *MemPtr1, *MemPtr2;
+ if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
+ (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
+ Composite1 = MemPtr1->getPointeeType();
+ Composite2 = MemPtr2->getPointeeType();
+
+ // If we're allowed to create a non-standard composite type, keep track
+ // of where we need to fill in additional 'const' qualifiers.
+ if (NonStandardCompositeType &&
+ Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
+ NeedConstBefore = QualifierUnion.size();
+
+ QualifierUnion.push_back(
+ Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
+ MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
+ MemPtr2->getClass()));
+ continue;
+ }
+
+ // FIXME: block pointer types?
+
+ // Cannot unwrap any more types.
+ break;
+ } while (true);
+
+ if (NeedConstBefore && NonStandardCompositeType) {
+ // Extension: Add 'const' to qualifiers that come before the first qualifier
+ // mismatch, so that our (non-standard!) composite type meets the
+ // requirements of C++ [conv.qual]p4 bullet 3.
+ for (unsigned I = 0; I != NeedConstBefore; ++I) {
+ if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
+ QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
+ *NonStandardCompositeType = true;
+ }
+ }
+ }
+
+ // Rewrap the composites as pointers or member pointers with the union CVRs.
+ ContainingClassVector::reverse_iterator MOC
+ = MemberOfClass.rbegin();
+ for (QualifierVector::reverse_iterator
+ I = QualifierUnion.rbegin(),
+ E = QualifierUnion.rend();
+ I != E; (void)++I, ++MOC) {
+ Qualifiers Quals = Qualifiers::fromCVRMask(*I);
+ if (MOC->first && MOC->second) {
+ // Rebuild member pointer type
+ Composite1 = Context.getMemberPointerType(
+ Context.getQualifiedType(Composite1, Quals),
+ MOC->first);
+ Composite2 = Context.getMemberPointerType(
+ Context.getQualifiedType(Composite2, Quals),
+ MOC->second);
+ } else {
+ // Rebuild pointer type
+ Composite1
+ = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
+ Composite2
+ = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
+ }
+ }
+
+ // Try to convert to the first composite pointer type.
+ InitializedEntity Entity1
+ = InitializedEntity::InitializeTemporary(Composite1);
+ InitializationKind Kind
+ = InitializationKind::CreateCopy(Loc, SourceLocation());
+ InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
+ InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
+
+ if (E1ToC1 && E2ToC1) {
+ // Conversion to Composite1 is viable.
+ if (!Context.hasSameType(Composite1, Composite2)) {
+ // Composite2 is a different type from Composite1. Check whether
+ // Composite2 is also viable.
+ InitializedEntity Entity2
+ = InitializedEntity::InitializeTemporary(Composite2);
+ InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
+ InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
+ if (E1ToC2 && E2ToC2) {
+ // Both Composite1 and Composite2 are viable and are different;
+ // this is an ambiguity.
+ return QualType();
+ }
+ }
+
+ // Convert E1 to Composite1
+ ExprResult E1Result
+ = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
+ if (E1Result.isInvalid())
+ return QualType();
+ E1 = E1Result.takeAs<Expr>();
+
+ // Convert E2 to Composite1
+ ExprResult E2Result
+ = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
+ if (E2Result.isInvalid())
+ return QualType();
+ E2 = E2Result.takeAs<Expr>();
+
+ return Composite1;
+ }
+
+ // Check whether Composite2 is viable.
+ InitializedEntity Entity2
+ = InitializedEntity::InitializeTemporary(Composite2);
+ InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
+ InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
+ if (!E1ToC2 || !E2ToC2)
+ return QualType();
+
+ // Convert E1 to Composite2
+ ExprResult E1Result
+ = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
+ if (E1Result.isInvalid())
+ return QualType();
+ E1 = E1Result.takeAs<Expr>();
+
+ // Convert E2 to Composite2
+ ExprResult E2Result
+ = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
+ if (E2Result.isInvalid())
+ return QualType();
+ E2 = E2Result.takeAs<Expr>();
+
+ return Composite2;
+}
+
+ExprResult Sema::MaybeBindToTemporary(Expr *E) {
+ if (!E)
+ return ExprError();
+
+ assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
+
+ // If the result is a glvalue, we shouldn't bind it.
+ if (!E->isRValue())
+ return Owned(E);
+
+ // In ARC, calls that return a retainable type can return retained,
+ // in which case we have to insert a consuming cast.
+ if (getLangOpts().ObjCAutoRefCount &&
+ E->getType()->isObjCRetainableType()) {
+
+ bool ReturnsRetained;
+
+ // For actual calls, we compute this by examining the type of the
+ // called value.
+ if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
+ Expr *Callee = Call->getCallee()->IgnoreParens();
+ QualType T = Callee->getType();
+
+ if (T == Context.BoundMemberTy) {
+ // Handle pointer-to-members.
+ if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
+ T = BinOp->getRHS()->getType();
+ else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
+ T = Mem->getMemberDecl()->getType();
+ }
+
+ if (const PointerType *Ptr = T->getAs<PointerType>())
+ T = Ptr->getPointeeType();
+ else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
+ T = Ptr->getPointeeType();
+ else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
+ T = MemPtr->getPointeeType();
+
+ const FunctionType *FTy = T->getAs<FunctionType>();
+ assert(FTy && "call to value not of function type?");
+ ReturnsRetained = FTy->getExtInfo().getProducesResult();
+
+ // ActOnStmtExpr arranges things so that StmtExprs of retainable
+ // type always produce a +1 object.
+ } else if (isa<StmtExpr>(E)) {
+ ReturnsRetained = true;
+
+ // We hit this case with the lambda conversion-to-block optimization;
+ // we don't want any extra casts here.
+ } else if (isa<CastExpr>(E) &&
+ isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
+ return Owned(E);
+
+ // For message sends and property references, we try to find an
+ // actual method. FIXME: we should infer retention by selector in
+ // cases where we don't have an actual method.
+ } else {
+ ObjCMethodDecl *D = 0;
+ if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
+ D = Send->getMethodDecl();
+ } else if (ObjCNumericLiteral *NumLit = dyn_cast<ObjCNumericLiteral>(E)) {
+ D = NumLit->getObjCNumericLiteralMethod();
+ } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
+ D = ArrayLit->getArrayWithObjectsMethod();
+ } else if (ObjCDictionaryLiteral *DictLit
+ = dyn_cast<ObjCDictionaryLiteral>(E)) {
+ D = DictLit->getDictWithObjectsMethod();
+ }
+
+ ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
+
+ // Don't do reclaims on performSelector calls; despite their
+ // return type, the invoked method doesn't necessarily actually
+ // return an object.
+ if (!ReturnsRetained &&
+ D && D->getMethodFamily() == OMF_performSelector)
+ return Owned(E);
+ }
+
+ // Don't reclaim an object of Class type.
+ if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
+ return Owned(E);
+
+ ExprNeedsCleanups = true;
+
+ CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
+ : CK_ARCReclaimReturnedObject);
+ return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
+ VK_RValue));
+ }
+
+ if (!getLangOpts().CPlusPlus)
+ return Owned(E);
+
+ // Search for the base element type (cf. ASTContext::getBaseElementType) with
+ // a fast path for the common case that the type is directly a RecordType.
+ const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
+ const RecordType *RT = 0;
+ while (!RT) {
+ switch (T->getTypeClass()) {
+ case Type::Record:
+ RT = cast<RecordType>(T);
+ break;
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::DependentSizedArray:
+ T = cast<ArrayType>(T)->getElementType().getTypePtr();
+ break;
+ default:
+ return Owned(E);
+ }
+ }
+
+ // That should be enough to guarantee that this type is complete, if we're
+ // not processing a decltype expression.
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->isInvalidDecl() || RD->isDependentContext())
+ return Owned(E);
+
+ bool IsDecltype = ExprEvalContexts.back().IsDecltype;
+ CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
+
+ if (Destructor) {
+ MarkFunctionReferenced(E->getExprLoc(), Destructor);
+ CheckDestructorAccess(E->getExprLoc(), Destructor,
+ PDiag(diag::err_access_dtor_temp)
+ << E->getType());
+ DiagnoseUseOfDecl(Destructor, E->getExprLoc());
+
+ // If destructor is trivial, we can avoid the extra copy.
+ if (Destructor->isTrivial())
+ return Owned(E);
+
+ // We need a cleanup, but we don't need to remember the temporary.
+ ExprNeedsCleanups = true;
+ }
+
+ CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
+ CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
+
+ if (IsDecltype)
+ ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
+
+ return Owned(Bind);
+}
+
+ExprResult
+Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
+}
+
+Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
+ assert(SubExpr && "sub expression can't be null!");
+
+ CleanupVarDeclMarking();
+
+ unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
+ assert(ExprCleanupObjects.size() >= FirstCleanup);
+ assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
+ if (!ExprNeedsCleanups)
+ return SubExpr;
+
+ ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
+ = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
+ ExprCleanupObjects.size() - FirstCleanup);
+
+ Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
+ DiscardCleanupsInEvaluationContext();
+
+ return E;
+}
+
+Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
+ assert(SubStmt && "sub statement can't be null!");
+
+ CleanupVarDeclMarking();
+
+ if (!ExprNeedsCleanups)
+ return SubStmt;
+
+ // FIXME: In order to attach the temporaries, wrap the statement into
+ // a StmtExpr; currently this is only used for asm statements.
+ // This is hacky, either create a new CXXStmtWithTemporaries statement or
+ // a new AsmStmtWithTemporaries.
+ CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
+ SourceLocation(),
+ SourceLocation());
+ Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
+ SourceLocation());
+ return MaybeCreateExprWithCleanups(E);
+}
+
+/// Process the expression contained within a decltype. For such expressions,
+/// certain semantic checks on temporaries are delayed until this point, and
+/// are omitted for the 'topmost' call in the decltype expression. If the
+/// topmost call bound a temporary, strip that temporary off the expression.
+ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
+ ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back();
+ assert(Rec.IsDecltype && "not in a decltype expression");
+
+ // C++11 [expr.call]p11:
+ // If a function call is a prvalue of object type,
+ // -- if the function call is either
+ // -- the operand of a decltype-specifier, or
+ // -- the right operand of a comma operator that is the operand of a
+ // decltype-specifier,
+ // a temporary object is not introduced for the prvalue.
+
+ // Recursively rebuild ParenExprs and comma expressions to strip out the
+ // outermost CXXBindTemporaryExpr, if any.
+ if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
+ ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
+ if (SubExpr.isInvalid())
+ return ExprError();
+ if (SubExpr.get() == PE->getSubExpr())
+ return Owned(E);
+ return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
+ }
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Comma) {
+ ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
+ if (RHS.isInvalid())
+ return ExprError();
+ if (RHS.get() == BO->getRHS())
+ return Owned(E);
+ return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
+ BO_Comma, BO->getType(),
+ BO->getValueKind(),
+ BO->getObjectKind(),
+ BO->getOperatorLoc()));
+ }
+ }
+
+ CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
+ if (TopBind)
+ E = TopBind->getSubExpr();
+
+ // Disable the special decltype handling now.
+ Rec.IsDecltype = false;
+
+ // Perform the semantic checks we delayed until this point.
+ CallExpr *TopCall = dyn_cast<CallExpr>(E);
+ for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) {
+ CallExpr *Call = Rec.DelayedDecltypeCalls[I];
+ if (Call == TopCall)
+ continue;
+
+ if (CheckCallReturnType(Call->getCallReturnType(),
+ Call->getLocStart(),
+ Call, Call->getDirectCallee()))
+ return ExprError();
+ }
+
+ // Now all relevant types are complete, check the destructors are accessible
+ // and non-deleted, and annotate them on the temporaries.
+ for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) {
+ CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I];
+ if (Bind == TopBind)
+ continue;
+
+ CXXTemporary *Temp = Bind->getTemporary();
+
+ CXXRecordDecl *RD =
+ Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ CXXDestructorDecl *Destructor = LookupDestructor(RD);
+ Temp->setDestructor(Destructor);
+
+ MarkFunctionReferenced(E->getExprLoc(), Destructor);
+ CheckDestructorAccess(E->getExprLoc(), Destructor,
+ PDiag(diag::err_access_dtor_temp)
+ << E->getType());
+ DiagnoseUseOfDecl(Destructor, E->getExprLoc());
+
+ // We need a cleanup, but we don't need to remember the temporary.
+ ExprNeedsCleanups = true;
+ }
+
+ // Possibly strip off the top CXXBindTemporaryExpr.
+ return Owned(E);
+}
+
+ExprResult
+Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
+ tok::TokenKind OpKind, ParsedType &ObjectType,
+ bool &MayBePseudoDestructor) {
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
+ if (Result.isInvalid()) return ExprError();
+ Base = Result.get();
+
+ Result = CheckPlaceholderExpr(Base);
+ if (Result.isInvalid()) return ExprError();
+ Base = Result.take();
+
+ QualType BaseType = Base->getType();
+ MayBePseudoDestructor = false;
+ if (BaseType->isDependentType()) {
+ // If we have a pointer to a dependent type and are using the -> operator,
+ // the object type is the type that the pointer points to. We might still
+ // have enough information about that type to do something useful.
+ if (OpKind == tok::arrow)
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>())
+ BaseType = Ptr->getPointeeType();
+
+ ObjectType = ParsedType::make(BaseType);
+ MayBePseudoDestructor = true;
+ return Owned(Base);
+ }
+
+ // C++ [over.match.oper]p8:
+ // [...] When operator->returns, the operator-> is applied to the value
+ // returned, with the original second operand.
+ if (OpKind == tok::arrow) {
+ // The set of types we've considered so far.
+ llvm::SmallPtrSet<CanQualType,8> CTypes;
+ SmallVector<SourceLocation, 8> Locations;
+ CTypes.insert(Context.getCanonicalType(BaseType));
+
+ while (BaseType->isRecordType()) {
+ Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
+ if (Result.isInvalid())
+ return ExprError();
+ Base = Result.get();
+ if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
+ Locations.push_back(OpCall->getDirectCallee()->getLocation());
+ BaseType = Base->getType();
+ CanQualType CBaseType = Context.getCanonicalType(BaseType);
+ if (!CTypes.insert(CBaseType)) {
+ Diag(OpLoc, diag::err_operator_arrow_circular);
+ for (unsigned i = 0; i < Locations.size(); i++)
+ Diag(Locations[i], diag::note_declared_at);
+ return ExprError();
+ }
+ }
+
+ if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
+ BaseType = BaseType->getPointeeType();
+ }
+
+ // Objective-C properties allow "." access on Objective-C pointer types,
+ // so adjust the base type to the object type itself.
+ if (BaseType->isObjCObjectPointerType())
+ BaseType = BaseType->getPointeeType();
+
+ // C++ [basic.lookup.classref]p2:
+ // [...] If the type of the object expression is of pointer to scalar
+ // type, the unqualified-id is looked up in the context of the complete
+ // postfix-expression.
+ //
+ // This also indicates that we could be parsing a pseudo-destructor-name.
+ // Note that Objective-C class and object types can be pseudo-destructor
+ // expressions or normal member (ivar or property) access expressions.
+ if (BaseType->isObjCObjectOrInterfaceType()) {
+ MayBePseudoDestructor = true;
+ } else if (!BaseType->isRecordType()) {
+ ObjectType = ParsedType();
+ MayBePseudoDestructor = true;
+ return Owned(Base);
+ }
+
+ // The object type must be complete (or dependent), or
+ // C++11 [expr.prim.general]p3:
+ // Unlike the object expression in other contexts, *this is not required to
+ // be of complete type for purposes of class member access (5.2.5) outside
+ // the member function body.
+ if (!BaseType->isDependentType() &&
+ !isThisOutsideMemberFunctionBody(BaseType) &&
+ RequireCompleteType(OpLoc, BaseType,
+ PDiag(diag::err_incomplete_member_access)))
+ return ExprError();
+
+ // C++ [basic.lookup.classref]p2:
+ // If the id-expression in a class member access (5.2.5) is an
+ // unqualified-id, and the type of the object expression is of a class
+ // type C (or of pointer to a class type C), the unqualified-id is looked
+ // up in the scope of class C. [...]
+ ObjectType = ParsedType::make(BaseType);
+ return move(Base);
+}
+
+ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
+ Expr *MemExpr) {
+ SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
+ Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
+ << isa<CXXPseudoDestructorExpr>(MemExpr)
+ << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
+
+ return ActOnCallExpr(/*Scope*/ 0,
+ MemExpr,
+ /*LPLoc*/ ExpectedLParenLoc,
+ MultiExprArg(),
+ /*RPLoc*/ ExpectedLParenLoc);
+}
+
+static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
+ tok::TokenKind& OpKind, SourceLocation OpLoc) {
+ if (Base->hasPlaceholderType()) {
+ ExprResult result = S.CheckPlaceholderExpr(Base);
+ if (result.isInvalid()) return true;
+ Base = result.take();
+ }
+ ObjectType = Base->getType();
+
+ // C++ [expr.pseudo]p2:
+ // The left-hand side of the dot operator shall be of scalar type. The
+ // left-hand side of the arrow operator shall be of pointer to scalar type.
+ // This scalar type is the object type.
+ // Note that this is rather different from the normal handling for the
+ // arrow operator.
+ if (OpKind == tok::arrow) {
+ if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
+ ObjectType = Ptr->getPointeeType();
+ } else if (!Base->isTypeDependent()) {
+ // The user wrote "p->" when she probably meant "p."; fix it.
+ S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+ << ObjectType << true
+ << FixItHint::CreateReplacement(OpLoc, ".");
+ if (S.isSFINAEContext())
+ return true;
+
+ OpKind = tok::period;
+ }
+ }
+
+ return false;
+}
+
+ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ const CXXScopeSpec &SS,
+ TypeSourceInfo *ScopeTypeInfo,
+ SourceLocation CCLoc,
+ SourceLocation TildeLoc,
+ PseudoDestructorTypeStorage Destructed,
+ bool HasTrailingLParen) {
+ TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
+
+ QualType ObjectType;
+ if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
+ return ExprError();
+
+ if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
+ if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
+ Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
+ else
+ Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
+ << ObjectType << Base->getSourceRange();
+ return ExprError();
+ }
+
+ // C++ [expr.pseudo]p2:
+ // [...] The cv-unqualified versions of the object type and of the type
+ // designated by the pseudo-destructor-name shall be the same type.
+ if (DestructedTypeInfo) {
+ QualType DestructedType = DestructedTypeInfo->getType();
+ SourceLocation DestructedTypeStart
+ = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
+ if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
+ if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
+ Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
+ << ObjectType << DestructedType << Base->getSourceRange()
+ << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
+
+ // Recover by setting the destructed type to the object type.
+ DestructedType = ObjectType;
+ DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
+ DestructedTypeStart);
+ Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
+ } else if (DestructedType.getObjCLifetime() !=
+ ObjectType.getObjCLifetime()) {
+
+ if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
+ // Okay: just pretend that the user provided the correctly-qualified
+ // type.
+ } else {
+ Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
+ << ObjectType << DestructedType << Base->getSourceRange()
+ << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
+ }
+
+ // Recover by setting the destructed type to the object type.
+ DestructedType = ObjectType;
+ DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
+ DestructedTypeStart);
+ Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
+ }
+ }
+ }
+
+ // C++ [expr.pseudo]p2:
+ // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
+ // form
+ //
+ // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
+ //
+ // shall designate the same scalar type.
+ if (ScopeTypeInfo) {
+ QualType ScopeType = ScopeTypeInfo->getType();
+ if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
+ !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
+
+ Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
+ diag::err_pseudo_dtor_type_mismatch)
+ << ObjectType << ScopeType << Base->getSourceRange()
+ << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
+
+ ScopeType = QualType();
+ ScopeTypeInfo = 0;
+ }
+ }
+
+ Expr *Result
+ = new (Context) CXXPseudoDestructorExpr(Context, Base,
+ OpKind == tok::arrow, OpLoc,
+ SS.getWithLocInContext(Context),
+ ScopeTypeInfo,
+ CCLoc,
+ TildeLoc,
+ Destructed);
+
+ if (HasTrailingLParen)
+ return Owned(Result);
+
+ return DiagnoseDtorReference(Destructed.getLocation(), Result);
+}
+
+ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ CXXScopeSpec &SS,
+ UnqualifiedId &FirstTypeName,
+ SourceLocation CCLoc,
+ SourceLocation TildeLoc,
+ UnqualifiedId &SecondTypeName,
+ bool HasTrailingLParen) {
+ assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
+ FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
+ "Invalid first type name in pseudo-destructor");
+ assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
+ SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
+ "Invalid second type name in pseudo-destructor");
+
+ QualType ObjectType;
+ if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
+ return ExprError();
+
+ // Compute the object type that we should use for name lookup purposes. Only
+ // record types and dependent types matter.
+ ParsedType ObjectTypePtrForLookup;
+ if (!SS.isSet()) {
+ if (ObjectType->isRecordType())
+ ObjectTypePtrForLookup = ParsedType::make(ObjectType);
+ else if (ObjectType->isDependentType())
+ ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
+ }
+
+ // Convert the name of the type being destructed (following the ~) into a
+ // type (with source-location information).
+ QualType DestructedType;
+ TypeSourceInfo *DestructedTypeInfo = 0;
+ PseudoDestructorTypeStorage Destructed;
+ if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
+ ParsedType T = getTypeName(*SecondTypeName.Identifier,
+ SecondTypeName.StartLocation,
+ S, &SS, true, false, ObjectTypePtrForLookup);
+ if (!T &&
+ ((SS.isSet() && !computeDeclContext(SS, false)) ||
+ (!SS.isSet() && ObjectType->isDependentType()))) {
+ // The name of the type being destroyed is a dependent name, and we
+ // couldn't find anything useful in scope. Just store the identifier and
+ // it's location, and we'll perform (qualified) name lookup again at
+ // template instantiation time.
+ Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
+ SecondTypeName.StartLocation);
+ } else if (!T) {
+ Diag(SecondTypeName.StartLocation,
+ diag::err_pseudo_dtor_destructor_non_type)
+ << SecondTypeName.Identifier << ObjectType;
+ if (isSFINAEContext())
+ return ExprError();
+
+ // Recover by assuming we had the right type all along.
+ DestructedType = ObjectType;
+ } else
+ DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
+ } else {
+ // Resolve the template-id to a type.
+ TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
+ ASTTemplateArgsPtr TemplateArgsPtr(*this,
+ TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+ TypeResult T = ActOnTemplateIdType(TemplateId->SS,
+ TemplateId->TemplateKWLoc,
+ TemplateId->Template,
+ TemplateId->TemplateNameLoc,
+ TemplateId->LAngleLoc,
+ TemplateArgsPtr,
+ TemplateId->RAngleLoc);
+ if (T.isInvalid() || !T.get()) {
+ // Recover by assuming we had the right type all along.
+ DestructedType = ObjectType;
+ } else
+ DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
+ }
+
+ // If we've performed some kind of recovery, (re-)build the type source
+ // information.
+ if (!DestructedType.isNull()) {
+ if (!DestructedTypeInfo)
+ DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
+ SecondTypeName.StartLocation);
+ Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
+ }
+
+ // Convert the name of the scope type (the type prior to '::') into a type.
+ TypeSourceInfo *ScopeTypeInfo = 0;
+ QualType ScopeType;
+ if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
+ FirstTypeName.Identifier) {
+ if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
+ ParsedType T = getTypeName(*FirstTypeName.Identifier,
+ FirstTypeName.StartLocation,
+ S, &SS, true, false, ObjectTypePtrForLookup);
+ if (!T) {
+ Diag(FirstTypeName.StartLocation,
+ diag::err_pseudo_dtor_destructor_non_type)
+ << FirstTypeName.Identifier << ObjectType;
+
+ if (isSFINAEContext())
+ return ExprError();
+
+ // Just drop this type. It's unnecessary anyway.
+ ScopeType = QualType();
+ } else
+ ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
+ } else {
+ // Resolve the template-id to a type.
+ TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
+ ASTTemplateArgsPtr TemplateArgsPtr(*this,
+ TemplateId->getTemplateArgs(),
+ TemplateId->NumArgs);
+ TypeResult T = ActOnTemplateIdType(TemplateId->SS,
+ TemplateId->TemplateKWLoc,
+ TemplateId->Template,
+ TemplateId->TemplateNameLoc,
+ TemplateId->LAngleLoc,
+ TemplateArgsPtr,
+ TemplateId->RAngleLoc);
+ if (T.isInvalid() || !T.get()) {
+ // Recover by dropping this type.
+ ScopeType = QualType();
+ } else
+ ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
+ }
+ }
+
+ if (!ScopeType.isNull() && !ScopeTypeInfo)
+ ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
+ FirstTypeName.StartLocation);
+
+
+ return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
+ ScopeTypeInfo, CCLoc, TildeLoc,
+ Destructed, HasTrailingLParen);
+}
+
+ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
+ SourceLocation OpLoc,
+ tok::TokenKind OpKind,
+ SourceLocation TildeLoc,
+ const DeclSpec& DS,
+ bool HasTrailingLParen) {
+ QualType ObjectType;
+ if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
+ return ExprError();
+
+ QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
+
+ TypeLocBuilder TLB;
+ DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
+ DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
+ TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
+ PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
+
+ return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
+ 0, SourceLocation(), TildeLoc,
+ Destructed, HasTrailingLParen);
+}
+
+ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
+ CXXConversionDecl *Method,
+ bool HadMultipleCandidates) {
+ if (Method->getParent()->isLambda() &&
+ Method->getConversionType()->isBlockPointerType()) {
+ // This is a lambda coversion to block pointer; check if the argument
+ // is a LambdaExpr.
+ Expr *SubE = E;
+ CastExpr *CE = dyn_cast<CastExpr>(SubE);
+ if (CE && CE->getCastKind() == CK_NoOp)
+ SubE = CE->getSubExpr();
+ SubE = SubE->IgnoreParens();
+ if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
+ SubE = BE->getSubExpr();
+ if (isa<LambdaExpr>(SubE)) {
+ // For the conversion to block pointer on a lambda expression, we
+ // construct a special BlockLiteral instead; this doesn't really make
+ // a difference in ARC, but outside of ARC the resulting block literal
+ // follows the normal lifetime rules for block literals instead of being
+ // autoreleased.
+ DiagnosticErrorTrap Trap(Diags);
+ ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
+ E->getExprLoc(),
+ Method, E);
+ if (Exp.isInvalid())
+ Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
+ return Exp;
+ }
+ }
+
+
+ ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
+ FoundDecl, Method);
+ if (Exp.isInvalid())
+ return true;
+
+ MemberExpr *ME =
+ new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
+ SourceLocation(), Context.BoundMemberTy,
+ VK_RValue, OK_Ordinary);
+ if (HadMultipleCandidates)
+ ME->setHadMultipleCandidates(true);
+
+ QualType ResultType = Method->getResultType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultType);
+ ResultType = ResultType.getNonLValueExprType(Context);
+
+ MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
+ CXXMemberCallExpr *CE =
+ new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
+ Exp.get()->getLocEnd());
+ return CE;
+}
+
+ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
+ SourceLocation RParen) {
+ CanThrowResult CanThrow = canThrow(Operand);
+ return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
+ CanThrow, KeyLoc, RParen));
+}
+
+ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
+ Expr *Operand, SourceLocation RParen) {
+ return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
+}
+
+/// Perform the conversions required for an expression used in a
+/// context that ignores the result.
+ExprResult Sema::IgnoredValueConversions(Expr *E) {
+ if (E->hasPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return Owned(E);
+ E = result.take();
+ }
+
+ // C99 6.3.2.1:
+ // [Except in specific positions,] an lvalue that does not have
+ // array type is converted to the value stored in the
+ // designated object (and is no longer an lvalue).
+ if (E->isRValue()) {
+ // In C, function designators (i.e. expressions of function type)
+ // are r-values, but we still want to do function-to-pointer decay
+ // on them. This is both technically correct and convenient for
+ // some clients.
+ if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
+ return DefaultFunctionArrayConversion(E);
+
+ return Owned(E);
+ }
+
+ // Otherwise, this rule does not apply in C++, at least not for the moment.
+ if (getLangOpts().CPlusPlus) return Owned(E);
+
+ // GCC seems to also exclude expressions of incomplete enum type.
+ if (const EnumType *T = E->getType()->getAs<EnumType>()) {
+ if (!T->getDecl()->isComplete()) {
+ // FIXME: stupid workaround for a codegen bug!
+ E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
+ return Owned(E);
+ }
+ }
+
+ ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
+ if (Res.isInvalid())
+ return Owned(E);
+ E = Res.take();
+
+ if (!E->getType()->isVoidType())
+ RequireCompleteType(E->getExprLoc(), E->getType(),
+ diag::err_incomplete_type);
+ return Owned(E);
+}
+
+ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
+ ExprResult FullExpr = Owned(FE);
+
+ if (!FullExpr.get())
+ return ExprError();
+
+ if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
+ return ExprError();
+
+ // Top-level message sends default to 'id' when we're in a debugger.
+ if (getLangOpts().DebuggerCastResultToId &&
+ FullExpr.get()->getType() == Context.UnknownAnyTy &&
+ isa<ObjCMessageExpr>(FullExpr.get())) {
+ FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
+ if (FullExpr.isInvalid())
+ return ExprError();
+ }
+
+ FullExpr = CheckPlaceholderExpr(FullExpr.take());
+ if (FullExpr.isInvalid())
+ return ExprError();
+
+ FullExpr = IgnoredValueConversions(FullExpr.take());
+ if (FullExpr.isInvalid())
+ return ExprError();
+
+ CheckImplicitConversions(FullExpr.get(), FullExpr.get()->getExprLoc());
+ return MaybeCreateExprWithCleanups(FullExpr);
+}
+
+StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
+ if (!FullStmt) return StmtError();
+
+ return MaybeCreateStmtWithCleanups(FullStmt);
+}
+
+Sema::IfExistsResult
+Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
+ CXXScopeSpec &SS,
+ const DeclarationNameInfo &TargetNameInfo) {
+ DeclarationName TargetName = TargetNameInfo.getName();
+ if (!TargetName)
+ return IER_DoesNotExist;
+
+ // If the name itself is dependent, then the result is dependent.
+ if (TargetName.isDependentName())
+ return IER_Dependent;
+
+ // Do the redeclaration lookup in the current scope.
+ LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
+ Sema::NotForRedeclaration);
+ LookupParsedName(R, S, &SS);
+ R.suppressDiagnostics();
+
+ switch (R.getResultKind()) {
+ case LookupResult::Found:
+ case LookupResult::FoundOverloaded:
+ case LookupResult::FoundUnresolvedValue:
+ case LookupResult::Ambiguous:
+ return IER_Exists;
+
+ case LookupResult::NotFound:
+ return IER_DoesNotExist;
+
+ case LookupResult::NotFoundInCurrentInstantiation:
+ return IER_Dependent;
+ }
+
+ llvm_unreachable("Invalid LookupResult Kind!");
+}
+
+Sema::IfExistsResult
+Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
+ bool IsIfExists, CXXScopeSpec &SS,
+ UnqualifiedId &Name) {
+ DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
+
+ // Check for unexpanded parameter packs.
+ SmallVector<UnexpandedParameterPack, 4> Unexpanded;
+ collectUnexpandedParameterPacks(SS, Unexpanded);
+ collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
+ if (!Unexpanded.empty()) {
+ DiagnoseUnexpandedParameterPacks(KeywordLoc,
+ IsIfExists? UPPC_IfExists
+ : UPPC_IfNotExists,
+ Unexpanded);
+ return IER_Error;
+ }
+
+ return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
+}