summaryrefslogtreecommitdiff
path: root/clang/lib/Sema/SemaDeclAttr.cpp
diff options
context:
space:
mode:
authorCarlo Zancanaro <carlo@pc-4w14-0.cs.usyd.edu.au>2012-10-15 17:10:06 +1100
committerCarlo Zancanaro <carlo@pc-4w14-0.cs.usyd.edu.au>2012-10-15 17:10:06 +1100
commitbe1de4be954c80875ad4108e0a33e8e131b2f2c0 (patch)
tree1fbbecf276bf7c7bdcbb4dd446099d6d90eaa516 /clang/lib/Sema/SemaDeclAttr.cpp
parentc4626a62754862d20b41e8a46a3574264ea80e6d (diff)
parentf1bd2e48c5324d3f7cda4090c87f8a5b6f463ce2 (diff)
Merge branch 'master' of ssh://bitbucket.org/czan/honours
Diffstat (limited to 'clang/lib/Sema/SemaDeclAttr.cpp')
-rw-r--r--clang/lib/Sema/SemaDeclAttr.cpp4171
1 files changed, 4171 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaDeclAttr.cpp b/clang/lib/Sema/SemaDeclAttr.cpp
new file mode 100644
index 0000000..5c6ddd2
--- /dev/null
+++ b/clang/lib/Sema/SemaDeclAttr.cpp
@@ -0,0 +1,4171 @@
+//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements decl-related attribute processing.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "TargetAttributesSema.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/DelayedDiagnostic.h"
+#include "clang/Sema/Lookup.h"
+#include "llvm/ADT/StringExtras.h"
+using namespace clang;
+using namespace sema;
+
+/// These constants match the enumerated choices of
+/// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type.
+enum AttributeDeclKind {
+ ExpectedFunction,
+ ExpectedUnion,
+ ExpectedVariableOrFunction,
+ ExpectedFunctionOrMethod,
+ ExpectedParameter,
+ ExpectedFunctionMethodOrBlock,
+ ExpectedFunctionMethodOrParameter,
+ ExpectedClass,
+ ExpectedVariable,
+ ExpectedMethod,
+ ExpectedVariableFunctionOrLabel,
+ ExpectedFieldOrGlobalVar,
+ ExpectedStruct
+};
+
+//===----------------------------------------------------------------------===//
+// Helper functions
+//===----------------------------------------------------------------------===//
+
+static const FunctionType *getFunctionType(const Decl *D,
+ bool blocksToo = true) {
+ QualType Ty;
+ if (const ValueDecl *decl = dyn_cast<ValueDecl>(D))
+ Ty = decl->getType();
+ else if (const FieldDecl *decl = dyn_cast<FieldDecl>(D))
+ Ty = decl->getType();
+ else if (const TypedefNameDecl* decl = dyn_cast<TypedefNameDecl>(D))
+ Ty = decl->getUnderlyingType();
+ else
+ return 0;
+
+ if (Ty->isFunctionPointerType())
+ Ty = Ty->getAs<PointerType>()->getPointeeType();
+ else if (blocksToo && Ty->isBlockPointerType())
+ Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
+
+ return Ty->getAs<FunctionType>();
+}
+
+// FIXME: We should provide an abstraction around a method or function
+// to provide the following bits of information.
+
+/// isFunction - Return true if the given decl has function
+/// type (function or function-typed variable).
+static bool isFunction(const Decl *D) {
+ return getFunctionType(D, false) != NULL;
+}
+
+/// isFunctionOrMethod - Return true if the given decl has function
+/// type (function or function-typed variable) or an Objective-C
+/// method.
+static bool isFunctionOrMethod(const Decl *D) {
+ return isFunction(D)|| isa<ObjCMethodDecl>(D);
+}
+
+/// isFunctionOrMethodOrBlock - Return true if the given decl has function
+/// type (function or function-typed variable) or an Objective-C
+/// method or a block.
+static bool isFunctionOrMethodOrBlock(const Decl *D) {
+ if (isFunctionOrMethod(D))
+ return true;
+ // check for block is more involved.
+ if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
+ QualType Ty = V->getType();
+ return Ty->isBlockPointerType();
+ }
+ return isa<BlockDecl>(D);
+}
+
+/// Return true if the given decl has a declarator that should have
+/// been processed by Sema::GetTypeForDeclarator.
+static bool hasDeclarator(const Decl *D) {
+ // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
+ return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
+ isa<ObjCPropertyDecl>(D);
+}
+
+/// hasFunctionProto - Return true if the given decl has a argument
+/// information. This decl should have already passed
+/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
+static bool hasFunctionProto(const Decl *D) {
+ if (const FunctionType *FnTy = getFunctionType(D))
+ return isa<FunctionProtoType>(FnTy);
+ else {
+ assert(isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D));
+ return true;
+ }
+}
+
+/// getFunctionOrMethodNumArgs - Return number of function or method
+/// arguments. It is an error to call this on a K&R function (use
+/// hasFunctionProto first).
+static unsigned getFunctionOrMethodNumArgs(const Decl *D) {
+ if (const FunctionType *FnTy = getFunctionType(D))
+ return cast<FunctionProtoType>(FnTy)->getNumArgs();
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
+ return BD->getNumParams();
+ return cast<ObjCMethodDecl>(D)->param_size();
+}
+
+static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) {
+ if (const FunctionType *FnTy = getFunctionType(D))
+ return cast<FunctionProtoType>(FnTy)->getArgType(Idx);
+ if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
+ return BD->getParamDecl(Idx)->getType();
+
+ return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType();
+}
+
+static QualType getFunctionOrMethodResultType(const Decl *D) {
+ if (const FunctionType *FnTy = getFunctionType(D))
+ return cast<FunctionProtoType>(FnTy)->getResultType();
+ return cast<ObjCMethodDecl>(D)->getResultType();
+}
+
+static bool isFunctionOrMethodVariadic(const Decl *D) {
+ if (const FunctionType *FnTy = getFunctionType(D)) {
+ const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
+ return proto->isVariadic();
+ } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
+ return BD->isVariadic();
+ else {
+ return cast<ObjCMethodDecl>(D)->isVariadic();
+ }
+}
+
+static bool isInstanceMethod(const Decl *D) {
+ if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
+ return MethodDecl->isInstance();
+ return false;
+}
+
+static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
+ const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
+ if (!PT)
+ return false;
+
+ ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
+ if (!Cls)
+ return false;
+
+ IdentifierInfo* ClsName = Cls->getIdentifier();
+
+ // FIXME: Should we walk the chain of classes?
+ return ClsName == &Ctx.Idents.get("NSString") ||
+ ClsName == &Ctx.Idents.get("NSMutableString");
+}
+
+static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
+ const PointerType *PT = T->getAs<PointerType>();
+ if (!PT)
+ return false;
+
+ const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
+ if (!RT)
+ return false;
+
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->getTagKind() != TTK_Struct)
+ return false;
+
+ return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
+}
+
+/// \brief Check if the attribute has exactly as many args as Num. May
+/// output an error.
+static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
+ unsigned int Num) {
+ if (Attr.getNumArgs() != Num) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Num;
+ return false;
+ }
+
+ return true;
+}
+
+
+/// \brief Check if the attribute has at least as many args as Num. May
+/// output an error.
+static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
+ unsigned int Num) {
+ if (Attr.getNumArgs() < Num) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) << Num;
+ return false;
+ }
+
+ return true;
+}
+
+///
+/// \brief Check if passed in Decl is a field or potentially shared global var
+/// \return true if the Decl is a field or potentially shared global variable
+///
+static bool mayBeSharedVariable(const Decl *D) {
+ if (isa<FieldDecl>(D))
+ return true;
+ if (const VarDecl *vd = dyn_cast<VarDecl>(D))
+ return (vd->hasGlobalStorage() && !(vd->isThreadSpecified()));
+
+ return false;
+}
+
+/// \brief Check if the passed-in expression is of type int or bool.
+static bool isIntOrBool(Expr *Exp) {
+ QualType QT = Exp->getType();
+ return QT->isBooleanType() || QT->isIntegerType();
+}
+
+///
+/// \brief Check if passed in Decl is a pointer type.
+/// Note that this function may produce an error message.
+/// \return true if the Decl is a pointer type; false otherwise
+///
+static bool checkIsPointer(Sema &S, const Decl *D, const AttributeList &Attr) {
+ if (const ValueDecl *vd = dyn_cast<ValueDecl>(D)) {
+ QualType QT = vd->getType();
+ if (QT->isAnyPointerType())
+ return true;
+ S.Diag(Attr.getLoc(), diag::warn_pointer_attribute_wrong_type)
+ << Attr.getName()->getName() << QT;
+ } else {
+ S.Diag(Attr.getLoc(), diag::err_attribute_can_be_applied_only_to_value_decl)
+ << Attr.getName();
+ }
+ return false;
+}
+
+/// \brief Checks that the passed in QualType either is of RecordType or points
+/// to RecordType. Returns the relevant RecordType, null if it does not exit.
+static const RecordType *getRecordType(QualType QT) {
+ if (const RecordType *RT = QT->getAs<RecordType>())
+ return RT;
+
+ // Now check if we point to record type.
+ if (const PointerType *PT = QT->getAs<PointerType>())
+ return PT->getPointeeType()->getAs<RecordType>();
+
+ return 0;
+}
+
+/// \brief Thread Safety Analysis: Checks that the passed in RecordType
+/// resolves to a lockable object. May flag an error.
+static void checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr,
+ QualType Ty) {
+ const RecordType *RT = getRecordType(Ty);
+
+ // Warn if could not get record type for this argument.
+ if (!RT) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_argument_not_class)
+ << Attr.getName() << Ty.getAsString();
+ return;
+ }
+ // Don't check for lockable if the class hasn't been defined yet.
+ if (RT->isIncompleteType())
+ return;
+ // Warn if the type is not lockable.
+ if (!RT->getDecl()->getAttr<LockableAttr>()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_argument_not_lockable)
+ << Attr.getName() << Ty.getAsString();
+ return;
+ }
+}
+
+/// \brief Thread Safety Analysis: Checks that all attribute arguments, starting
+/// from Sidx, resolve to a lockable object. May flag an error.
+/// \param Sidx The attribute argument index to start checking with.
+/// \param ParamIdxOk Whether an argument can be indexing into a function
+/// parameter list.
+static bool checkAttrArgsAreLockableObjs(Sema &S, Decl *D,
+ const AttributeList &Attr,
+ SmallVectorImpl<Expr*> &Args,
+ int Sidx = 0,
+ bool ParamIdxOk = false) {
+ for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
+ Expr *ArgExp = Attr.getArg(Idx);
+
+ if (ArgExp->isTypeDependent()) {
+ // FIXME -- need to processs this again on template instantiation
+ Args.push_back(ArgExp);
+ continue;
+ }
+
+ QualType ArgTy = ArgExp->getType();
+
+ // First see if we can just cast to record type, or point to record type.
+ const RecordType *RT = getRecordType(ArgTy);
+
+ // Now check if we index into a record type function param.
+ if(!RT && ParamIdxOk) {
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+ IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
+ if(FD && IL) {
+ unsigned int NumParams = FD->getNumParams();
+ llvm::APInt ArgValue = IL->getValue();
+ uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
+ uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
+ if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
+ << Attr.getName() << Idx + 1 << NumParams;
+ return false;
+ }
+ ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
+ }
+ }
+
+ checkForLockableRecord(S, D, Attr, ArgTy);
+
+ Args.push_back(ArgExp);
+ }
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Attribute Implementations
+//===----------------------------------------------------------------------===//
+
+// FIXME: All this manual attribute parsing code is gross. At the
+// least add some helper functions to check most argument patterns (#
+// and types of args).
+
+static void handleGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr,
+ bool pointer = false) {
+ assert(!Attr.isInvalid());
+
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ // D must be either a member field or global (potentially shared) variable.
+ if (!mayBeSharedVariable(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFieldOrGlobalVar;
+ return;
+ }
+
+ if (pointer && !checkIsPointer(S, D, Attr))
+ return;
+
+ if (pointer)
+ D->addAttr(::new (S.Context) PtGuardedVarAttr(Attr.getRange(), S.Context));
+ else
+ D->addAttr(::new (S.Context) GuardedVarAttr(Attr.getRange(), S.Context));
+}
+
+static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr,
+ bool pointer = false) {
+ assert(!Attr.isInvalid());
+
+ if (!checkAttributeNumArgs(S, Attr, 1))
+ return;
+
+ Expr *Arg = Attr.getArg(0);
+
+ // D must be either a member field or global (potentially shared) variable.
+ if (!mayBeSharedVariable(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFieldOrGlobalVar;
+ return;
+ }
+
+ if (pointer && !checkIsPointer(S, D, Attr))
+ return;
+
+ if (!Arg->isTypeDependent()) {
+ checkForLockableRecord(S, D, Attr, Arg->getType());
+ }
+
+ if (pointer)
+ D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
+ S.Context, Arg));
+ else
+ D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg));
+}
+
+
+static void handleLockableAttr(Sema &S, Decl *D, const AttributeList &Attr,
+ bool scoped = false) {
+ assert(!Attr.isInvalid());
+
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ // FIXME: Lockable structs for C code.
+ if (!isa<CXXRecordDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedClass;
+ return;
+ }
+
+ if (scoped)
+ D->addAttr(::new (S.Context) ScopedLockableAttr(Attr.getRange(), S.Context));
+ else
+ D->addAttr(::new (S.Context) LockableAttr(Attr.getRange(), S.Context));
+}
+
+static void handleNoThreadSafetyAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ assert(!Attr.isInvalid());
+
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) NoThreadSafetyAnalysisAttr(Attr.getRange(),
+ S.Context));
+}
+
+static void handleNoAddressSafetyAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ assert(!Attr.isInvalid());
+
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) NoAddressSafetyAnalysisAttr(Attr.getRange(),
+ S.Context));
+}
+
+static void handleAcquireOrderAttr(Sema &S, Decl *D, const AttributeList &Attr,
+ bool before) {
+ assert(!Attr.isInvalid());
+
+ if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
+ return;
+
+ // D must be either a member field or global (potentially shared) variable.
+ ValueDecl *VD = dyn_cast<ValueDecl>(D);
+ if (!VD || !mayBeSharedVariable(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFieldOrGlobalVar;
+ return;
+ }
+
+ // Check that this attribute only applies to lockable types
+ QualType QT = VD->getType();
+ if (!QT->isDependentType()) {
+ const RecordType *RT = getRecordType(QT);
+ if (!RT || !RT->getDecl()->getAttr<LockableAttr>()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_decl_not_lockable)
+ << Attr.getName();
+ return;
+ }
+ }
+
+ SmallVector<Expr*, 1> Args;
+ // check that all arguments are lockable objects
+ if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args))
+ return;
+
+ unsigned Size = Args.size();
+ assert(Size == Attr.getNumArgs());
+ Expr **StartArg = Size == 0 ? 0 : &Args[0];
+
+ if (before)
+ D->addAttr(::new (S.Context) AcquiredBeforeAttr(Attr.getRange(), S.Context,
+ StartArg, Size));
+ else
+ D->addAttr(::new (S.Context) AcquiredAfterAttr(Attr.getRange(), S.Context,
+ StartArg, Size));
+}
+
+static void handleLockFunAttr(Sema &S, Decl *D, const AttributeList &Attr,
+ bool exclusive = false) {
+ assert(!Attr.isInvalid());
+
+ // zero or more arguments ok
+
+ // check that the attribute is applied to a function
+ if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ // check that all arguments are lockable objects
+ SmallVector<Expr*, 1> Args;
+ if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true))
+ return;
+
+ unsigned Size = Args.size();
+ assert(Size == Attr.getNumArgs());
+ Expr **StartArg = Size == 0 ? 0 : &Args[0];
+
+ if (exclusive)
+ D->addAttr(::new (S.Context) ExclusiveLockFunctionAttr(Attr.getRange(),
+ S.Context, StartArg,
+ Size));
+ else
+ D->addAttr(::new (S.Context) SharedLockFunctionAttr(Attr.getRange(),
+ S.Context, StartArg,
+ Size));
+}
+
+static void handleTrylockFunAttr(Sema &S, Decl *D, const AttributeList &Attr,
+ bool exclusive = false) {
+ assert(!Attr.isInvalid());
+
+ if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
+ return;
+
+
+ if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ if (!isIntOrBool(Attr.getArg(0))) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_first_argument_not_int_or_bool)
+ << Attr.getName();
+ return;
+ }
+
+ SmallVector<Expr*, 2> Args;
+ // check that all arguments are lockable objects
+ if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1))
+ return;
+
+ unsigned Size = Args.size();
+ Expr **StartArg = Size == 0 ? 0 : &Args[0];
+
+ if (exclusive)
+ D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(Attr.getRange(),
+ S.Context,
+ Attr.getArg(0),
+ StartArg, Size));
+ else
+ D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(Attr.getRange(),
+ S.Context,
+ Attr.getArg(0),
+ StartArg, Size));
+}
+
+static void handleLocksRequiredAttr(Sema &S, Decl *D, const AttributeList &Attr,
+ bool exclusive = false) {
+ assert(!Attr.isInvalid());
+
+ if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
+ return;
+
+ if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ // check that all arguments are lockable objects
+ SmallVector<Expr*, 1> Args;
+ if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args))
+ return;
+
+ unsigned Size = Args.size();
+ assert(Size == Attr.getNumArgs());
+ Expr **StartArg = Size == 0 ? 0 : &Args[0];
+
+ if (exclusive)
+ D->addAttr(::new (S.Context) ExclusiveLocksRequiredAttr(Attr.getRange(),
+ S.Context, StartArg,
+ Size));
+ else
+ D->addAttr(::new (S.Context) SharedLocksRequiredAttr(Attr.getRange(),
+ S.Context, StartArg,
+ Size));
+}
+
+static void handleUnlockFunAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ assert(!Attr.isInvalid());
+
+ // zero or more arguments ok
+
+ if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ // check that all arguments are lockable objects
+ SmallVector<Expr*, 1> Args;
+ if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true))
+ return;
+
+ unsigned Size = Args.size();
+ assert(Size == Attr.getNumArgs());
+ Expr **StartArg = Size == 0 ? 0 : &Args[0];
+
+ D->addAttr(::new (S.Context) UnlockFunctionAttr(Attr.getRange(), S.Context,
+ StartArg, Size));
+}
+
+static void handleLockReturnedAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ assert(!Attr.isInvalid());
+
+ if (!checkAttributeNumArgs(S, Attr, 1))
+ return;
+ Expr *Arg = Attr.getArg(0);
+
+ if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ if (Arg->isTypeDependent())
+ return;
+
+ // check that the argument is lockable object
+ checkForLockableRecord(S, D, Attr, Arg->getType());
+
+ D->addAttr(::new (S.Context) LockReturnedAttr(Attr.getRange(), S.Context, Arg));
+}
+
+static void handleLocksExcludedAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ assert(!Attr.isInvalid());
+
+ if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
+ return;
+
+ if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ // check that all arguments are lockable objects
+ SmallVector<Expr*, 1> Args;
+ if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args))
+ return;
+
+ unsigned Size = Args.size();
+ assert(Size == Attr.getNumArgs());
+ Expr **StartArg = Size == 0 ? 0 : &Args[0];
+
+ D->addAttr(::new (S.Context) LocksExcludedAttr(Attr.getRange(), S.Context,
+ StartArg, Size));
+}
+
+
+static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
+ const AttributeList &Attr) {
+ TypedefNameDecl *tDecl = dyn_cast<TypedefNameDecl>(D);
+ if (tDecl == 0) {
+ S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
+ return;
+ }
+
+ QualType curType = tDecl->getUnderlyingType();
+
+ Expr *sizeExpr;
+
+ // Special case where the argument is a template id.
+ if (Attr.getParameterName()) {
+ CXXScopeSpec SS;
+ SourceLocation TemplateKWLoc;
+ UnqualifiedId id;
+ id.setIdentifier(Attr.getParameterName(), Attr.getLoc());
+
+ ExprResult Size = S.ActOnIdExpression(scope, SS, TemplateKWLoc, id,
+ false, false);
+ if (Size.isInvalid())
+ return;
+
+ sizeExpr = Size.get();
+ } else {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 1))
+ return;
+
+ sizeExpr = Attr.getArg(0);
+ }
+
+ // Instantiate/Install the vector type, and let Sema build the type for us.
+ // This will run the reguired checks.
+ QualType T = S.BuildExtVectorType(curType, sizeExpr, Attr.getLoc());
+ if (!T.isNull()) {
+ // FIXME: preserve the old source info.
+ tDecl->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(T));
+
+ // Remember this typedef decl, we will need it later for diagnostics.
+ S.ExtVectorDecls.push_back(tDecl);
+ }
+}
+
+static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ if (TagDecl *TD = dyn_cast<TagDecl>(D))
+ TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
+ else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
+ // If the alignment is less than or equal to 8 bits, the packed attribute
+ // has no effect.
+ if (!FD->getType()->isIncompleteType() &&
+ S.Context.getTypeAlign(FD->getType()) <= 8)
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
+ << Attr.getName() << FD->getType();
+ else
+ FD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
+ } else
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
+}
+
+static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (TagDecl *TD = dyn_cast<TagDecl>(D))
+ TD->addAttr(::new (S.Context) MsStructAttr(Attr.getRange(), S.Context));
+ else
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
+}
+
+static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ // The IBAction attributes only apply to instance methods.
+ if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
+ if (MD->isInstanceMethod()) {
+ D->addAttr(::new (S.Context) IBActionAttr(Attr.getRange(), S.Context));
+ return;
+ }
+
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName();
+}
+
+static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
+ // The IBOutlet/IBOutletCollection attributes only apply to instance
+ // variables or properties of Objective-C classes. The outlet must also
+ // have an object reference type.
+ if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
+ if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
+ S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
+ << Attr.getName() << VD->getType() << 0;
+ return false;
+ }
+ }
+ else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
+ if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
+ S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
+ << Attr.getName() << PD->getType() << 1;
+ return false;
+ }
+ }
+ else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
+ return false;
+ }
+
+ return true;
+}
+
+static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ if (!checkIBOutletCommon(S, D, Attr))
+ return;
+
+ D->addAttr(::new (S.Context) IBOutletAttr(Attr.getRange(), S.Context));
+}
+
+static void handleIBOutletCollection(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+
+ // The iboutletcollection attribute can have zero or one arguments.
+ if (Attr.getParameterName() && Attr.getNumArgs() > 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ return;
+ }
+
+ if (!checkIBOutletCommon(S, D, Attr))
+ return;
+
+ IdentifierInfo *II = Attr.getParameterName();
+ if (!II)
+ II = &S.Context.Idents.get("NSObject");
+
+ ParsedType TypeRep = S.getTypeName(*II, Attr.getLoc(),
+ S.getScopeForContext(D->getDeclContext()->getParent()));
+ if (!TypeRep) {
+ S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
+ return;
+ }
+ QualType QT = TypeRep.get();
+ // Diagnose use of non-object type in iboutletcollection attribute.
+ // FIXME. Gnu attribute extension ignores use of builtin types in
+ // attributes. So, __attribute__((iboutletcollection(char))) will be
+ // treated as __attribute__((iboutletcollection())).
+ if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
+ S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
+ return;
+ }
+ D->addAttr(::new (S.Context) IBOutletCollectionAttr(Attr.getRange(),S.Context,
+ QT, Attr.getParameterLoc()));
+}
+
+static void possibleTransparentUnionPointerType(QualType &T) {
+ if (const RecordType *UT = T->getAsUnionType())
+ if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
+ RecordDecl *UD = UT->getDecl();
+ for (RecordDecl::field_iterator it = UD->field_begin(),
+ itend = UD->field_end(); it != itend; ++it) {
+ QualType QT = it->getType();
+ if (QT->isAnyPointerType() || QT->isBlockPointerType()) {
+ T = QT;
+ return;
+ }
+ }
+ }
+}
+
+static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // GCC ignores the nonnull attribute on K&R style function prototypes, so we
+ // ignore it as well
+ if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ // In C++ the implicit 'this' function parameter also counts, and they are
+ // counted from one.
+ bool HasImplicitThisParam = isInstanceMethod(D);
+ unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
+
+ // The nonnull attribute only applies to pointers.
+ SmallVector<unsigned, 10> NonNullArgs;
+
+ for (AttributeList::arg_iterator I=Attr.arg_begin(),
+ E=Attr.arg_end(); I!=E; ++I) {
+
+
+ // The argument must be an integer constant expression.
+ Expr *Ex = *I;
+ llvm::APSInt ArgNum(32);
+ if (Ex->isTypeDependent() || Ex->isValueDependent() ||
+ !Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
+ << "nonnull" << Ex->getSourceRange();
+ return;
+ }
+
+ unsigned x = (unsigned) ArgNum.getZExtValue();
+
+ if (x < 1 || x > NumArgs) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
+ << "nonnull" << I.getArgNum() << Ex->getSourceRange();
+ return;
+ }
+
+ --x;
+ if (HasImplicitThisParam) {
+ if (x == 0) {
+ S.Diag(Attr.getLoc(),
+ diag::err_attribute_invalid_implicit_this_argument)
+ << "nonnull" << Ex->getSourceRange();
+ return;
+ }
+ --x;
+ }
+
+ // Is the function argument a pointer type?
+ QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType();
+ possibleTransparentUnionPointerType(T);
+
+ if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
+ // FIXME: Should also highlight argument in decl.
+ S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only)
+ << "nonnull" << Ex->getSourceRange();
+ continue;
+ }
+
+ NonNullArgs.push_back(x);
+ }
+
+ // If no arguments were specified to __attribute__((nonnull)) then all pointer
+ // arguments have a nonnull attribute.
+ if (NonNullArgs.empty()) {
+ for (unsigned I = 0, E = getFunctionOrMethodNumArgs(D); I != E; ++I) {
+ QualType T = getFunctionOrMethodArgType(D, I).getNonReferenceType();
+ possibleTransparentUnionPointerType(T);
+ if (T->isAnyPointerType() || T->isBlockPointerType())
+ NonNullArgs.push_back(I);
+ }
+
+ // No pointer arguments?
+ if (NonNullArgs.empty()) {
+ // Warn the trivial case only if attribute is not coming from a
+ // macro instantiation.
+ if (Attr.getLoc().isFileID())
+ S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
+ return;
+ }
+ }
+
+ unsigned* start = &NonNullArgs[0];
+ unsigned size = NonNullArgs.size();
+ llvm::array_pod_sort(start, start + size);
+ D->addAttr(::new (S.Context) NonNullAttr(Attr.getRange(), S.Context, start,
+ size));
+}
+
+static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
+ // This attribute must be applied to a function declaration.
+ // The first argument to the attribute must be a string,
+ // the name of the resource, for example "malloc".
+ // The following arguments must be argument indexes, the arguments must be
+ // of integer type for Returns, otherwise of pointer type.
+ // The difference between Holds and Takes is that a pointer may still be used
+ // after being held. free() should be __attribute((ownership_takes)), whereas
+ // a list append function may well be __attribute((ownership_holds)).
+
+ if (!AL.getParameterName()) {
+ S.Diag(AL.getLoc(), diag::err_attribute_argument_n_not_string)
+ << AL.getName()->getName() << 1;
+ return;
+ }
+ // Figure out our Kind, and check arguments while we're at it.
+ OwnershipAttr::OwnershipKind K;
+ switch (AL.getKind()) {
+ case AttributeList::AT_ownership_takes:
+ K = OwnershipAttr::Takes;
+ if (AL.getNumArgs() < 1) {
+ S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
+ return;
+ }
+ break;
+ case AttributeList::AT_ownership_holds:
+ K = OwnershipAttr::Holds;
+ if (AL.getNumArgs() < 1) {
+ S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
+ return;
+ }
+ break;
+ case AttributeList::AT_ownership_returns:
+ K = OwnershipAttr::Returns;
+ if (AL.getNumArgs() > 1) {
+ S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
+ << AL.getNumArgs() + 1;
+ return;
+ }
+ break;
+ default:
+ // This should never happen given how we are called.
+ llvm_unreachable("Unknown ownership attribute");
+ }
+
+ if (!isFunction(D) || !hasFunctionProto(D)) {
+ S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << AL.getName() << ExpectedFunction;
+ return;
+ }
+
+ // In C++ the implicit 'this' function parameter also counts, and they are
+ // counted from one.
+ bool HasImplicitThisParam = isInstanceMethod(D);
+ unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
+
+ StringRef Module = AL.getParameterName()->getName();
+
+ // Normalize the argument, __foo__ becomes foo.
+ if (Module.startswith("__") && Module.endswith("__"))
+ Module = Module.substr(2, Module.size() - 4);
+
+ SmallVector<unsigned, 10> OwnershipArgs;
+
+ for (AttributeList::arg_iterator I = AL.arg_begin(), E = AL.arg_end(); I != E;
+ ++I) {
+
+ Expr *IdxExpr = *I;
+ llvm::APSInt ArgNum(32);
+ if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
+ || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
+ S.Diag(AL.getLoc(), diag::err_attribute_argument_not_int)
+ << AL.getName()->getName() << IdxExpr->getSourceRange();
+ continue;
+ }
+
+ unsigned x = (unsigned) ArgNum.getZExtValue();
+
+ if (x > NumArgs || x < 1) {
+ S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
+ << AL.getName()->getName() << x << IdxExpr->getSourceRange();
+ continue;
+ }
+ --x;
+ if (HasImplicitThisParam) {
+ if (x == 0) {
+ S.Diag(AL.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
+ << "ownership" << IdxExpr->getSourceRange();
+ return;
+ }
+ --x;
+ }
+
+ switch (K) {
+ case OwnershipAttr::Takes:
+ case OwnershipAttr::Holds: {
+ // Is the function argument a pointer type?
+ QualType T = getFunctionOrMethodArgType(D, x);
+ if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
+ // FIXME: Should also highlight argument in decl.
+ S.Diag(AL.getLoc(), diag::err_ownership_type)
+ << ((K==OwnershipAttr::Takes)?"ownership_takes":"ownership_holds")
+ << "pointer"
+ << IdxExpr->getSourceRange();
+ continue;
+ }
+ break;
+ }
+ case OwnershipAttr::Returns: {
+ if (AL.getNumArgs() > 1) {
+ // Is the function argument an integer type?
+ Expr *IdxExpr = AL.getArg(0);
+ llvm::APSInt ArgNum(32);
+ if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
+ || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
+ S.Diag(AL.getLoc(), diag::err_ownership_type)
+ << "ownership_returns" << "integer"
+ << IdxExpr->getSourceRange();
+ return;
+ }
+ }
+ break;
+ }
+ } // switch
+
+ // Check we don't have a conflict with another ownership attribute.
+ for (specific_attr_iterator<OwnershipAttr>
+ i = D->specific_attr_begin<OwnershipAttr>(),
+ e = D->specific_attr_end<OwnershipAttr>();
+ i != e; ++i) {
+ if ((*i)->getOwnKind() != K) {
+ for (const unsigned *I = (*i)->args_begin(), *E = (*i)->args_end();
+ I!=E; ++I) {
+ if (x == *I) {
+ S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
+ << AL.getName()->getName() << "ownership_*";
+ }
+ }
+ }
+ }
+ OwnershipArgs.push_back(x);
+ }
+
+ unsigned* start = OwnershipArgs.data();
+ unsigned size = OwnershipArgs.size();
+ llvm::array_pod_sort(start, start + size);
+
+ if (K != OwnershipAttr::Returns && OwnershipArgs.empty()) {
+ S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) OwnershipAttr(AL.getLoc(), S.Context, K, Module,
+ start, size));
+}
+
+/// Whether this declaration has internal linkage for the purposes of
+/// things that want to complain about things not have internal linkage.
+static bool hasEffectivelyInternalLinkage(NamedDecl *D) {
+ switch (D->getLinkage()) {
+ case NoLinkage:
+ case InternalLinkage:
+ return true;
+
+ // Template instantiations that go from external to unique-external
+ // shouldn't get diagnosed.
+ case UniqueExternalLinkage:
+ return true;
+
+ case ExternalLinkage:
+ return false;
+ }
+ llvm_unreachable("unknown linkage kind!");
+}
+
+static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // Check the attribute arguments.
+ if (Attr.getNumArgs() > 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ return;
+ }
+
+ if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariableOrFunction;
+ return;
+ }
+
+ NamedDecl *nd = cast<NamedDecl>(D);
+
+ // gcc rejects
+ // class c {
+ // static int a __attribute__((weakref ("v2")));
+ // static int b() __attribute__((weakref ("f3")));
+ // };
+ // and ignores the attributes of
+ // void f(void) {
+ // static int a __attribute__((weakref ("v2")));
+ // }
+ // we reject them
+ const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
+ if (!Ctx->isFileContext()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) <<
+ nd->getNameAsString();
+ return;
+ }
+
+ // The GCC manual says
+ //
+ // At present, a declaration to which `weakref' is attached can only
+ // be `static'.
+ //
+ // It also says
+ //
+ // Without a TARGET,
+ // given as an argument to `weakref' or to `alias', `weakref' is
+ // equivalent to `weak'.
+ //
+ // gcc 4.4.1 will accept
+ // int a7 __attribute__((weakref));
+ // as
+ // int a7 __attribute__((weak));
+ // This looks like a bug in gcc. We reject that for now. We should revisit
+ // it if this behaviour is actually used.
+
+ if (!hasEffectivelyInternalLinkage(nd)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_static);
+ return;
+ }
+
+ // GCC rejects
+ // static ((alias ("y"), weakref)).
+ // Should we? How to check that weakref is before or after alias?
+
+ if (Attr.getNumArgs() == 1) {
+ Expr *Arg = Attr.getArg(0);
+ Arg = Arg->IgnoreParenCasts();
+ StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
+
+ if (!Str || !Str->isAscii()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
+ << "weakref" << 1;
+ return;
+ }
+ // GCC will accept anything as the argument of weakref. Should we
+ // check for an existing decl?
+ D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
+ Str->getString()));
+ }
+
+ D->addAttr(::new (S.Context) WeakRefAttr(Attr.getRange(), S.Context));
+}
+
+static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (Attr.getNumArgs() != 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ return;
+ }
+
+ Expr *Arg = Attr.getArg(0);
+ Arg = Arg->IgnoreParenCasts();
+ StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
+
+ if (!Str || !Str->isAscii()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
+ << "alias" << 1;
+ return;
+ }
+
+ if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
+ S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
+ return;
+ }
+
+ // FIXME: check if target symbol exists in current file
+
+ D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
+ Str->getString()));
+}
+
+static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // Check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ if (!isa<FunctionDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) NakedAttr(Attr.getRange(), S.Context));
+}
+
+static void handleAlwaysInlineAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ // Check the attribute arguments.
+ if (Attr.hasParameterOrArguments()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ return;
+ }
+
+ if (!isa<FunctionDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) AlwaysInlineAttr(Attr.getRange(), S.Context));
+}
+
+static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // Check the attribute arguments.
+ if (Attr.hasParameterOrArguments()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ return;
+ }
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ QualType RetTy = FD->getResultType();
+ if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
+ D->addAttr(::new (S.Context) MallocAttr(Attr.getRange(), S.Context));
+ return;
+ }
+ }
+
+ S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
+}
+
+static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ D->addAttr(::new (S.Context) MayAliasAttr(Attr.getRange(), S.Context));
+}
+
+static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ assert(!Attr.isInvalid());
+ if (isa<VarDecl>(D))
+ D->addAttr(::new (S.Context) NoCommonAttr(Attr.getRange(), S.Context));
+ else
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariable;
+}
+
+static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ assert(!Attr.isInvalid());
+ if (isa<VarDecl>(D))
+ D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context));
+ else
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariable;
+}
+
+static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
+ if (hasDeclarator(D)) return;
+
+ if (S.CheckNoReturnAttr(attr)) return;
+
+ if (!isa<ObjCMethodDecl>(D)) {
+ S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) NoReturnAttr(attr.getRange(), S.Context));
+}
+
+bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
+ if (attr.hasParameterOrArguments()) {
+ Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ attr.setInvalid();
+ return true;
+ }
+
+ return false;
+}
+
+static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+
+ // The checking path for 'noreturn' and 'analyzer_noreturn' are different
+ // because 'analyzer_noreturn' does not impact the type.
+
+ if(!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
+ ValueDecl *VD = dyn_cast<ValueDecl>(D);
+ if (VD == 0 || (!VD->getType()->isBlockPointerType()
+ && !VD->getType()->isFunctionPointerType())) {
+ S.Diag(Attr.getLoc(),
+ Attr.isCXX0XAttribute() ? diag::err_attribute_wrong_decl_type
+ : diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionMethodOrBlock;
+ return;
+ }
+ }
+
+ D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(Attr.getRange(), S.Context));
+}
+
+// PS3 PPU-specific.
+static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+/*
+ Returning a Vector Class in Registers
+
+ According to the PPU ABI specifications, a class with a single member of
+ vector type is returned in memory when used as the return value of a function.
+ This results in inefficient code when implementing vector classes. To return
+ the value in a single vector register, add the vecreturn attribute to the
+ class definition. This attribute is also applicable to struct types.
+
+ Example:
+
+ struct Vector
+ {
+ __vector float xyzw;
+ } __attribute__((vecreturn));
+
+ Vector Add(Vector lhs, Vector rhs)
+ {
+ Vector result;
+ result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
+ return result; // This will be returned in a register
+ }
+*/
+ if (!isa<RecordDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedClass;
+ return;
+ }
+
+ if (D->getAttr<VecReturnAttr>()) {
+ S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn";
+ return;
+ }
+
+ RecordDecl *record = cast<RecordDecl>(D);
+ int count = 0;
+
+ if (!isa<CXXRecordDecl>(record)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
+ return;
+ }
+
+ if (!cast<CXXRecordDecl>(record)->isPOD()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
+ return;
+ }
+
+ for (RecordDecl::field_iterator iter = record->field_begin();
+ iter != record->field_end(); iter++) {
+ if ((count == 1) || !iter->getType()->isVectorType()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
+ return;
+ }
+ count++;
+ }
+
+ D->addAttr(::new (S.Context) VecReturnAttr(Attr.getRange(), S.Context));
+}
+
+static void handleDependencyAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (!isFunctionOrMethod(D) && !isa<ParmVarDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionMethodOrParameter;
+ return;
+ }
+ // FIXME: Actually store the attribute on the declaration
+}
+
+static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (Attr.hasParameterOrArguments()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ return;
+ }
+
+ if (!isa<VarDecl>(D) && !isa<ObjCIvarDecl>(D) && !isFunctionOrMethod(D) &&
+ !isa<TypeDecl>(D) && !isa<LabelDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariableFunctionOrLabel;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) UnusedAttr(Attr.getRange(), S.Context));
+}
+
+static void handleReturnsTwiceAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (Attr.hasParameterOrArguments()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ return;
+ }
+
+ if (!isa<FunctionDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) ReturnsTwiceAttr(Attr.getRange(), S.Context));
+}
+
+static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (Attr.hasParameterOrArguments()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ return;
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->hasLocalStorage() || VD->hasExternalStorage()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used";
+ return;
+ }
+ } else if (!isFunctionOrMethod(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariableOrFunction;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) UsedAttr(Attr.getRange(), S.Context));
+}
+
+static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (Attr.getNumArgs() > 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
+ return;
+ }
+
+ int priority = 65535; // FIXME: Do not hardcode such constants.
+ if (Attr.getNumArgs() > 0) {
+ Expr *E = Attr.getArg(0);
+ llvm::APSInt Idx(32);
+ if (E->isTypeDependent() || E->isValueDependent() ||
+ !E->isIntegerConstantExpr(Idx, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
+ << "constructor" << 1 << E->getSourceRange();
+ return;
+ }
+ priority = Idx.getZExtValue();
+ }
+
+ if (!isa<FunctionDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) ConstructorAttr(Attr.getRange(), S.Context,
+ priority));
+}
+
+static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (Attr.getNumArgs() > 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
+ return;
+ }
+
+ int priority = 65535; // FIXME: Do not hardcode such constants.
+ if (Attr.getNumArgs() > 0) {
+ Expr *E = Attr.getArg(0);
+ llvm::APSInt Idx(32);
+ if (E->isTypeDependent() || E->isValueDependent() ||
+ !E->isIntegerConstantExpr(Idx, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
+ << "destructor" << 1 << E->getSourceRange();
+ return;
+ }
+ priority = Idx.getZExtValue();
+ }
+
+ if (!isa<FunctionDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) DestructorAttr(Attr.getRange(), S.Context,
+ priority));
+}
+
+static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ unsigned NumArgs = Attr.getNumArgs();
+ if (NumArgs > 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
+ return;
+ }
+
+ // Handle the case where deprecated attribute has a text message.
+ StringRef Str;
+ if (NumArgs == 1) {
+ StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
+ if (!SE) {
+ S.Diag(Attr.getArg(0)->getLocStart(), diag::err_attribute_not_string)
+ << "deprecated";
+ return;
+ }
+ Str = SE->getString();
+ }
+
+ D->addAttr(::new (S.Context) DeprecatedAttr(Attr.getRange(), S.Context, Str));
+}
+
+static void handleUnavailableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ unsigned NumArgs = Attr.getNumArgs();
+ if (NumArgs > 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
+ return;
+ }
+
+ // Handle the case where unavailable attribute has a text message.
+ StringRef Str;
+ if (NumArgs == 1) {
+ StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
+ if (!SE) {
+ S.Diag(Attr.getArg(0)->getLocStart(),
+ diag::err_attribute_not_string) << "unavailable";
+ return;
+ }
+ Str = SE->getString();
+ }
+ D->addAttr(::new (S.Context) UnavailableAttr(Attr.getRange(), S.Context, Str));
+}
+
+static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ unsigned NumArgs = Attr.getNumArgs();
+ if (NumArgs > 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) ArcWeakrefUnavailableAttr(
+ Attr.getRange(), S.Context));
+}
+
+static void handleObjCRootClassAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!isa<ObjCInterfaceDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
+ return;
+ }
+
+ unsigned NumArgs = Attr.getNumArgs();
+ if (NumArgs > 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) ObjCRootClassAttr(Attr.getRange(), S.Context));
+}
+
+static void handleObjCRequiresPropertyDefsAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!isa<ObjCInterfaceDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::err_suppress_autosynthesis);
+ return;
+ }
+
+ unsigned NumArgs = Attr.getNumArgs();
+ if (NumArgs > 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) ObjCRequiresPropertyDefsAttr(
+ Attr.getRange(), S.Context));
+}
+
+static void handleAvailabilityAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ IdentifierInfo *Platform = Attr.getParameterName();
+ SourceLocation PlatformLoc = Attr.getParameterLoc();
+
+ StringRef PlatformName
+ = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
+ if (PlatformName.empty()) {
+ S.Diag(PlatformLoc, diag::warn_availability_unknown_platform)
+ << Platform;
+
+ PlatformName = Platform->getName();
+ }
+
+ AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
+ AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
+ AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
+ bool IsUnavailable = Attr.getUnavailableLoc().isValid();
+
+ // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
+ // of these steps are needed).
+ if (Introduced.isValid() && Deprecated.isValid() &&
+ !(Introduced.Version <= Deprecated.Version)) {
+ S.Diag(Introduced.KeywordLoc, diag::warn_availability_version_ordering)
+ << 1 << PlatformName << Deprecated.Version.getAsString()
+ << 0 << Introduced.Version.getAsString();
+ return;
+ }
+
+ if (Introduced.isValid() && Obsoleted.isValid() &&
+ !(Introduced.Version <= Obsoleted.Version)) {
+ S.Diag(Introduced.KeywordLoc, diag::warn_availability_version_ordering)
+ << 2 << PlatformName << Obsoleted.Version.getAsString()
+ << 0 << Introduced.Version.getAsString();
+ return;
+ }
+
+ if (Deprecated.isValid() && Obsoleted.isValid() &&
+ !(Deprecated.Version <= Obsoleted.Version)) {
+ S.Diag(Deprecated.KeywordLoc, diag::warn_availability_version_ordering)
+ << 2 << PlatformName << Obsoleted.Version.getAsString()
+ << 1 << Deprecated.Version.getAsString();
+ return;
+ }
+
+ StringRef Str;
+ const StringLiteral *SE =
+ dyn_cast_or_null<const StringLiteral>(Attr.getMessageExpr());
+ if (SE)
+ Str = SE->getString();
+
+ D->addAttr(::new (S.Context) AvailabilityAttr(Attr.getRange(), S.Context,
+ Platform,
+ Introduced.Version,
+ Deprecated.Version,
+ Obsoleted.Version,
+ IsUnavailable,
+ Str));
+}
+
+static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if(!checkAttributeNumArgs(S, Attr, 1))
+ return;
+
+ Expr *Arg = Attr.getArg(0);
+ Arg = Arg->IgnoreParenCasts();
+ StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
+
+ if (!Str || !Str->isAscii()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
+ << "visibility" << 1;
+ return;
+ }
+
+ StringRef TypeStr = Str->getString();
+ VisibilityAttr::VisibilityType type;
+
+ if (TypeStr == "default")
+ type = VisibilityAttr::Default;
+ else if (TypeStr == "hidden")
+ type = VisibilityAttr::Hidden;
+ else if (TypeStr == "internal")
+ type = VisibilityAttr::Hidden; // FIXME
+ else if (TypeStr == "protected") {
+ // Complain about attempts to use protected visibility on targets
+ // (like Darwin) that don't support it.
+ if (!S.Context.getTargetInfo().hasProtectedVisibility()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
+ type = VisibilityAttr::Default;
+ } else {
+ type = VisibilityAttr::Protected;
+ }
+ } else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) VisibilityAttr(Attr.getRange(), S.Context, type));
+}
+
+static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
+ const AttributeList &Attr) {
+ ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(decl);
+ if (!method) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
+ << ExpectedMethod;
+ return;
+ }
+
+ if (Attr.getNumArgs() != 0 || !Attr.getParameterName()) {
+ if (!Attr.getParameterName() && Attr.getNumArgs() == 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
+ << "objc_method_family" << 1;
+ } else {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ }
+ Attr.setInvalid();
+ return;
+ }
+
+ StringRef param = Attr.getParameterName()->getName();
+ ObjCMethodFamilyAttr::FamilyKind family;
+ if (param == "none")
+ family = ObjCMethodFamilyAttr::OMF_None;
+ else if (param == "alloc")
+ family = ObjCMethodFamilyAttr::OMF_alloc;
+ else if (param == "copy")
+ family = ObjCMethodFamilyAttr::OMF_copy;
+ else if (param == "init")
+ family = ObjCMethodFamilyAttr::OMF_init;
+ else if (param == "mutableCopy")
+ family = ObjCMethodFamilyAttr::OMF_mutableCopy;
+ else if (param == "new")
+ family = ObjCMethodFamilyAttr::OMF_new;
+ else {
+ // Just warn and ignore it. This is future-proof against new
+ // families being used in system headers.
+ S.Diag(Attr.getParameterLoc(), diag::warn_unknown_method_family);
+ return;
+ }
+
+ if (family == ObjCMethodFamilyAttr::OMF_init &&
+ !method->getResultType()->isObjCObjectPointerType()) {
+ S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
+ << method->getResultType();
+ // Ignore the attribute.
+ return;
+ }
+
+ method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
+ S.Context, family));
+}
+
+static void handleObjCExceptionAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D);
+ if (OCI == 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
+ return;
+ }
+
+ D->addAttr(::new (S.Context) ObjCExceptionAttr(Attr.getRange(), S.Context));
+}
+
+static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (Attr.getNumArgs() != 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ return;
+ }
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
+ QualType T = TD->getUnderlyingType();
+ if (!T->isPointerType() ||
+ !T->getAs<PointerType>()->getPointeeType()->isRecordType()) {
+ S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
+ return;
+ }
+ }
+ else if (!isa<ObjCPropertyDecl>(D)) {
+ // It is okay to include this attribute on properties, e.g.:
+ //
+ // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
+ //
+ // In this case it follows tradition and suppresses an error in the above
+ // case.
+ S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
+ }
+ D->addAttr(::new (S.Context) ObjCNSObjectAttr(Attr.getRange(), S.Context));
+}
+
+static void
+handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (Attr.getNumArgs() != 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ return;
+ }
+
+ if (!isa<FunctionDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function);
+ return;
+ }
+
+ D->addAttr(::new (S.Context) OverloadableAttr(Attr.getRange(), S.Context));
+}
+
+static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (!Attr.getParameterName()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
+ << "blocks" << 1;
+ return;
+ }
+
+ if (Attr.getNumArgs() != 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ return;
+ }
+
+ BlocksAttr::BlockType type;
+ if (Attr.getParameterName()->isStr("byref"))
+ type = BlocksAttr::ByRef;
+ else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
+ << "blocks" << Attr.getParameterName();
+ return;
+ }
+
+ D->addAttr(::new (S.Context) BlocksAttr(Attr.getRange(), S.Context, type));
+}
+
+static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (Attr.getNumArgs() > 2) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
+ return;
+ }
+
+ unsigned sentinel = 0;
+ if (Attr.getNumArgs() > 0) {
+ Expr *E = Attr.getArg(0);
+ llvm::APSInt Idx(32);
+ if (E->isTypeDependent() || E->isValueDependent() ||
+ !E->isIntegerConstantExpr(Idx, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
+ << "sentinel" << 1 << E->getSourceRange();
+ return;
+ }
+
+ if (Idx.isSigned() && Idx.isNegative()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
+ << E->getSourceRange();
+ return;
+ }
+
+ sentinel = Idx.getZExtValue();
+ }
+
+ unsigned nullPos = 0;
+ if (Attr.getNumArgs() > 1) {
+ Expr *E = Attr.getArg(1);
+ llvm::APSInt Idx(32);
+ if (E->isTypeDependent() || E->isValueDependent() ||
+ !E->isIntegerConstantExpr(Idx, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
+ << "sentinel" << 2 << E->getSourceRange();
+ return;
+ }
+ nullPos = Idx.getZExtValue();
+
+ if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
+ // FIXME: This error message could be improved, it would be nice
+ // to say what the bounds actually are.
+ S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
+ << E->getSourceRange();
+ return;
+ }
+ }
+
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ const FunctionType *FT = FD->getType()->castAs<FunctionType>();
+ if (isa<FunctionNoProtoType>(FT)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
+ return;
+ }
+
+ if (!cast<FunctionProtoType>(FT)->isVariadic()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
+ return;
+ }
+ } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ if (!MD->isVariadic()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
+ return;
+ }
+ } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
+ if (!BD->isVariadic()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
+ return;
+ }
+ } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
+ QualType Ty = V->getType();
+ if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
+ const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D)
+ : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
+ if (!cast<FunctionProtoType>(FT)->isVariadic()) {
+ int m = Ty->isFunctionPointerType() ? 0 : 1;
+ S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
+ return;
+ }
+ } else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionMethodOrBlock;
+ return;
+ }
+ } else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionMethodOrBlock;
+ return;
+ }
+ D->addAttr(::new (S.Context) SentinelAttr(Attr.getRange(), S.Context, sentinel,
+ nullPos));
+}
+
+static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ if (!isFunction(D) && !isa<ObjCMethodDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
+ << Attr.getName() << 0;
+ return;
+ }
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
+ if (MD->getResultType()->isVoidType()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
+ << Attr.getName() << 1;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) WarnUnusedResultAttr(Attr.getRange(), S.Context));
+}
+
+static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (Attr.hasParameterOrArguments()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ return;
+ }
+
+ if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
+ if (isa<CXXRecordDecl>(D)) {
+ D->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
+ return;
+ }
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariableOrFunction;
+ return;
+ }
+
+ NamedDecl *nd = cast<NamedDecl>(D);
+
+ // 'weak' only applies to declarations with external linkage.
+ if (hasEffectivelyInternalLinkage(nd)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_weak_static);
+ return;
+ }
+
+ nd->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
+}
+
+static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+
+ // weak_import only applies to variable & function declarations.
+ bool isDef = false;
+ if (!D->canBeWeakImported(isDef)) {
+ if (isDef)
+ S.Diag(Attr.getLoc(),
+ diag::warn_attribute_weak_import_invalid_on_definition)
+ << "weak_import" << 2 /*variable and function*/;
+ else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
+ (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
+ (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
+ // Nothing to warn about here.
+ } else
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariableOrFunction;
+
+ return;
+ }
+
+ D->addAttr(::new (S.Context) WeakImportAttr(Attr.getRange(), S.Context));
+}
+
+static void handleReqdWorkGroupSize(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ // Attribute has 3 arguments.
+ if (!checkAttributeNumArgs(S, Attr, 3))
+ return;
+
+ unsigned WGSize[3];
+ for (unsigned i = 0; i < 3; ++i) {
+ Expr *E = Attr.getArg(i);
+ llvm::APSInt ArgNum(32);
+ if (E->isTypeDependent() || E->isValueDependent() ||
+ !E->isIntegerConstantExpr(ArgNum, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
+ << "reqd_work_group_size" << E->getSourceRange();
+ return;
+ }
+ WGSize[i] = (unsigned) ArgNum.getZExtValue();
+ }
+ D->addAttr(::new (S.Context) ReqdWorkGroupSizeAttr(Attr.getRange(), S.Context,
+ WGSize[0], WGSize[1],
+ WGSize[2]));
+}
+
+static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // Attribute has no arguments.
+ if (!checkAttributeNumArgs(S, Attr, 1))
+ return;
+
+ // Make sure that there is a string literal as the sections's single
+ // argument.
+ Expr *ArgExpr = Attr.getArg(0);
+ StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
+ if (!SE) {
+ S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) << "section";
+ return;
+ }
+
+ // If the target wants to validate the section specifier, make it happen.
+ std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(SE->getString());
+ if (!Error.empty()) {
+ S.Diag(SE->getLocStart(), diag::err_attribute_section_invalid_for_target)
+ << Error;
+ return;
+ }
+
+ // This attribute cannot be applied to local variables.
+ if (isa<VarDecl>(D) && cast<VarDecl>(D)->hasLocalStorage()) {
+ S.Diag(SE->getLocStart(), diag::err_attribute_section_local_variable);
+ return;
+ }
+
+ D->addAttr(::new (S.Context) SectionAttr(Attr.getRange(), S.Context,
+ SE->getString()));
+}
+
+
+static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (Attr.hasParameterOrArguments()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ return;
+ }
+
+ if (NoThrowAttr *Existing = D->getAttr<NoThrowAttr>()) {
+ if (Existing->getLocation().isInvalid())
+ Existing->setRange(Attr.getRange());
+ } else {
+ D->addAttr(::new (S.Context) NoThrowAttr(Attr.getRange(), S.Context));
+ }
+}
+
+static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (Attr.hasParameterOrArguments()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ return;
+ }
+
+ if (ConstAttr *Existing = D->getAttr<ConstAttr>()) {
+ if (Existing->getLocation().isInvalid())
+ Existing->setRange(Attr.getRange());
+ } else {
+ D->addAttr(::new (S.Context) ConstAttr(Attr.getRange(), S.Context));
+ }
+}
+
+static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ D->addAttr(::new (S.Context) PureAttr(Attr.getRange(), S.Context));
+}
+
+static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (!Attr.getParameterName()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ return;
+ }
+
+ if (Attr.getNumArgs() != 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ return;
+ }
+
+ VarDecl *VD = dyn_cast<VarDecl>(D);
+
+ if (!VD || !VD->hasLocalStorage()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup";
+ return;
+ }
+
+ // Look up the function
+ // FIXME: Lookup probably isn't looking in the right place
+ NamedDecl *CleanupDecl
+ = S.LookupSingleName(S.TUScope, Attr.getParameterName(),
+ Attr.getParameterLoc(), Sema::LookupOrdinaryName);
+ if (!CleanupDecl) {
+ S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_arg_not_found) <<
+ Attr.getParameterName();
+ return;
+ }
+
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl);
+ if (!FD) {
+ S.Diag(Attr.getParameterLoc(),
+ diag::err_attribute_cleanup_arg_not_function)
+ << Attr.getParameterName();
+ return;
+ }
+
+ if (FD->getNumParams() != 1) {
+ S.Diag(Attr.getParameterLoc(),
+ diag::err_attribute_cleanup_func_must_take_one_arg)
+ << Attr.getParameterName();
+ return;
+ }
+
+ // We're currently more strict than GCC about what function types we accept.
+ // If this ever proves to be a problem it should be easy to fix.
+ QualType Ty = S.Context.getPointerType(VD->getType());
+ QualType ParamTy = FD->getParamDecl(0)->getType();
+ if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
+ ParamTy, Ty) != Sema::Compatible) {
+ S.Diag(Attr.getParameterLoc(),
+ diag::err_attribute_cleanup_func_arg_incompatible_type) <<
+ Attr.getParameterName() << ParamTy << Ty;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) CleanupAttr(Attr.getRange(), S.Context, FD));
+ S.MarkFunctionReferenced(Attr.getParameterLoc(), FD);
+}
+
+/// Handle __attribute__((format_arg((idx)))) attribute based on
+/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
+static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (!checkAttributeNumArgs(S, Attr, 1))
+ return;
+
+ if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ // In C++ the implicit 'this' function parameter also counts, and they are
+ // counted from one.
+ bool HasImplicitThisParam = isInstanceMethod(D);
+ unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
+ unsigned FirstIdx = 1;
+
+ // checks for the 2nd argument
+ Expr *IdxExpr = Attr.getArg(0);
+ llvm::APSInt Idx(32);
+ if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
+ !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
+ << "format" << 2 << IdxExpr->getSourceRange();
+ return;
+ }
+
+ if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
+ << "format" << 2 << IdxExpr->getSourceRange();
+ return;
+ }
+
+ unsigned ArgIdx = Idx.getZExtValue() - 1;
+
+ if (HasImplicitThisParam) {
+ if (ArgIdx == 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_invalid_implicit_this_argument)
+ << "format_arg" << IdxExpr->getSourceRange();
+ return;
+ }
+ ArgIdx--;
+ }
+
+ // make sure the format string is really a string
+ QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
+
+ bool not_nsstring_type = !isNSStringType(Ty, S.Context);
+ if (not_nsstring_type &&
+ !isCFStringType(Ty, S.Context) &&
+ (!Ty->isPointerType() ||
+ !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
+ // FIXME: Should highlight the actual expression that has the wrong type.
+ S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
+ << (not_nsstring_type ? "a string type" : "an NSString")
+ << IdxExpr->getSourceRange();
+ return;
+ }
+ Ty = getFunctionOrMethodResultType(D);
+ if (!isNSStringType(Ty, S.Context) &&
+ !isCFStringType(Ty, S.Context) &&
+ (!Ty->isPointerType() ||
+ !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
+ // FIXME: Should highlight the actual expression that has the wrong type.
+ S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
+ << (not_nsstring_type ? "string type" : "NSString")
+ << IdxExpr->getSourceRange();
+ return;
+ }
+
+ D->addAttr(::new (S.Context) FormatArgAttr(Attr.getRange(), S.Context,
+ Idx.getZExtValue()));
+}
+
+enum FormatAttrKind {
+ CFStringFormat,
+ NSStringFormat,
+ StrftimeFormat,
+ SupportedFormat,
+ IgnoredFormat,
+ InvalidFormat
+};
+
+/// getFormatAttrKind - Map from format attribute names to supported format
+/// types.
+static FormatAttrKind getFormatAttrKind(StringRef Format) {
+ // Check for formats that get handled specially.
+ if (Format == "NSString")
+ return NSStringFormat;
+ if (Format == "CFString")
+ return CFStringFormat;
+ if (Format == "strftime")
+ return StrftimeFormat;
+
+ // Otherwise, check for supported formats.
+ if (Format == "scanf" || Format == "printf" || Format == "printf0" ||
+ Format == "strfmon" || Format == "cmn_err" || Format == "vcmn_err" ||
+ Format == "zcmn_err" ||
+ Format == "kprintf") // OpenBSD.
+ return SupportedFormat;
+
+ if (Format == "gcc_diag" || Format == "gcc_cdiag" ||
+ Format == "gcc_cxxdiag" || Format == "gcc_tdiag")
+ return IgnoredFormat;
+
+ return InvalidFormat;
+}
+
+/// Handle __attribute__((init_priority(priority))) attributes based on
+/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
+static void handleInitPriorityAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!S.getLangOpts().CPlusPlus) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
+ return;
+ }
+
+ if (!isa<VarDecl>(D) || S.getCurFunctionOrMethodDecl()) {
+ S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
+ Attr.setInvalid();
+ return;
+ }
+ QualType T = dyn_cast<VarDecl>(D)->getType();
+ if (S.Context.getAsArrayType(T))
+ T = S.Context.getBaseElementType(T);
+ if (!T->getAs<RecordType>()) {
+ S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
+ Attr.setInvalid();
+ return;
+ }
+
+ if (Attr.getNumArgs() != 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ Attr.setInvalid();
+ return;
+ }
+ Expr *priorityExpr = Attr.getArg(0);
+
+ llvm::APSInt priority(32);
+ if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() ||
+ !priorityExpr->isIntegerConstantExpr(priority, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
+ << "init_priority" << priorityExpr->getSourceRange();
+ Attr.setInvalid();
+ return;
+ }
+ unsigned prioritynum = priority.getZExtValue();
+ if (prioritynum < 101 || prioritynum > 65535) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
+ << priorityExpr->getSourceRange();
+ Attr.setInvalid();
+ return;
+ }
+ D->addAttr(::new (S.Context) InitPriorityAttr(Attr.getRange(), S.Context,
+ prioritynum));
+}
+
+/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
+/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
+static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+
+ if (!Attr.getParameterName()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
+ << "format" << 1;
+ return;
+ }
+
+ if (Attr.getNumArgs() != 2) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3;
+ return;
+ }
+
+ if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ // In C++ the implicit 'this' function parameter also counts, and they are
+ // counted from one.
+ bool HasImplicitThisParam = isInstanceMethod(D);
+ unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
+ unsigned FirstIdx = 1;
+
+ StringRef Format = Attr.getParameterName()->getName();
+
+ // Normalize the argument, __foo__ becomes foo.
+ if (Format.startswith("__") && Format.endswith("__"))
+ Format = Format.substr(2, Format.size() - 4);
+
+ // Check for supported formats.
+ FormatAttrKind Kind = getFormatAttrKind(Format);
+
+ if (Kind == IgnoredFormat)
+ return;
+
+ if (Kind == InvalidFormat) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
+ << "format" << Attr.getParameterName()->getName();
+ return;
+ }
+
+ // checks for the 2nd argument
+ Expr *IdxExpr = Attr.getArg(0);
+ llvm::APSInt Idx(32);
+ if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
+ !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
+ << "format" << 2 << IdxExpr->getSourceRange();
+ return;
+ }
+
+ if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
+ << "format" << 2 << IdxExpr->getSourceRange();
+ return;
+ }
+
+ // FIXME: Do we need to bounds check?
+ unsigned ArgIdx = Idx.getZExtValue() - 1;
+
+ if (HasImplicitThisParam) {
+ if (ArgIdx == 0) {
+ S.Diag(Attr.getLoc(),
+ diag::err_format_attribute_implicit_this_format_string)
+ << IdxExpr->getSourceRange();
+ return;
+ }
+ ArgIdx--;
+ }
+
+ // make sure the format string is really a string
+ QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
+
+ if (Kind == CFStringFormat) {
+ if (!isCFStringType(Ty, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
+ << "a CFString" << IdxExpr->getSourceRange();
+ return;
+ }
+ } else if (Kind == NSStringFormat) {
+ // FIXME: do we need to check if the type is NSString*? What are the
+ // semantics?
+ if (!isNSStringType(Ty, S.Context)) {
+ // FIXME: Should highlight the actual expression that has the wrong type.
+ S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
+ << "an NSString" << IdxExpr->getSourceRange();
+ return;
+ }
+ } else if (!Ty->isPointerType() ||
+ !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
+ // FIXME: Should highlight the actual expression that has the wrong type.
+ S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
+ << "a string type" << IdxExpr->getSourceRange();
+ return;
+ }
+
+ // check the 3rd argument
+ Expr *FirstArgExpr = Attr.getArg(1);
+ llvm::APSInt FirstArg(32);
+ if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() ||
+ !FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
+ << "format" << 3 << FirstArgExpr->getSourceRange();
+ return;
+ }
+
+ // check if the function is variadic if the 3rd argument non-zero
+ if (FirstArg != 0) {
+ if (isFunctionOrMethodVariadic(D)) {
+ ++NumArgs; // +1 for ...
+ } else {
+ S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
+ return;
+ }
+ }
+
+ // strftime requires FirstArg to be 0 because it doesn't read from any
+ // variable the input is just the current time + the format string.
+ if (Kind == StrftimeFormat) {
+ if (FirstArg != 0) {
+ S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
+ << FirstArgExpr->getSourceRange();
+ return;
+ }
+ // if 0 it disables parameter checking (to use with e.g. va_list)
+ } else if (FirstArg != 0 && FirstArg != NumArgs) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
+ << "format" << 3 << FirstArgExpr->getSourceRange();
+ return;
+ }
+
+ // Check whether we already have an equivalent format attribute.
+ for (specific_attr_iterator<FormatAttr>
+ i = D->specific_attr_begin<FormatAttr>(),
+ e = D->specific_attr_end<FormatAttr>();
+ i != e ; ++i) {
+ FormatAttr *f = *i;
+ if (f->getType() == Format &&
+ f->getFormatIdx() == (int)Idx.getZExtValue() &&
+ f->getFirstArg() == (int)FirstArg.getZExtValue()) {
+ // If we don't have a valid location for this attribute, adopt the
+ // location.
+ if (f->getLocation().isInvalid())
+ f->setRange(Attr.getRange());
+ return;
+ }
+ }
+
+ D->addAttr(::new (S.Context) FormatAttr(Attr.getRange(), S.Context, Format,
+ Idx.getZExtValue(),
+ FirstArg.getZExtValue()));
+}
+
+static void handleTransparentUnionAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+
+ // Try to find the underlying union declaration.
+ RecordDecl *RD = 0;
+ TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
+ if (TD && TD->getUnderlyingType()->isUnionType())
+ RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
+ else
+ RD = dyn_cast<RecordDecl>(D);
+
+ if (!RD || !RD->isUnion()) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedUnion;
+ return;
+ }
+
+ if (!RD->isCompleteDefinition()) {
+ S.Diag(Attr.getLoc(),
+ diag::warn_transparent_union_attribute_not_definition);
+ return;
+ }
+
+ RecordDecl::field_iterator Field = RD->field_begin(),
+ FieldEnd = RD->field_end();
+ if (Field == FieldEnd) {
+ S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
+ return;
+ }
+
+ FieldDecl *FirstField = *Field;
+ QualType FirstType = FirstField->getType();
+ if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
+ S.Diag(FirstField->getLocation(),
+ diag::warn_transparent_union_attribute_floating)
+ << FirstType->isVectorType() << FirstType;
+ return;
+ }
+
+ uint64_t FirstSize = S.Context.getTypeSize(FirstType);
+ uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
+ for (; Field != FieldEnd; ++Field) {
+ QualType FieldType = Field->getType();
+ if (S.Context.getTypeSize(FieldType) != FirstSize ||
+ S.Context.getTypeAlign(FieldType) != FirstAlign) {
+ // Warn if we drop the attribute.
+ bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
+ unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
+ : S.Context.getTypeAlign(FieldType);
+ S.Diag(Field->getLocation(),
+ diag::warn_transparent_union_attribute_field_size_align)
+ << isSize << Field->getDeclName() << FieldBits;
+ unsigned FirstBits = isSize? FirstSize : FirstAlign;
+ S.Diag(FirstField->getLocation(),
+ diag::note_transparent_union_first_field_size_align)
+ << isSize << FirstBits;
+ return;
+ }
+ }
+
+ RD->addAttr(::new (S.Context) TransparentUnionAttr(Attr.getRange(), S.Context));
+}
+
+static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 1))
+ return;
+
+ Expr *ArgExpr = Attr.getArg(0);
+ StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
+
+ // Make sure that there is a string literal as the annotation's single
+ // argument.
+ if (!SE) {
+ S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) <<"annotate";
+ return;
+ }
+
+ // Don't duplicate annotations that are already set.
+ for (specific_attr_iterator<AnnotateAttr>
+ i = D->specific_attr_begin<AnnotateAttr>(),
+ e = D->specific_attr_end<AnnotateAttr>(); i != e; ++i) {
+ if ((*i)->getAnnotation() == SE->getString())
+ return;
+ }
+ D->addAttr(::new (S.Context) AnnotateAttr(Attr.getRange(), S.Context,
+ SE->getString()));
+}
+
+static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (Attr.getNumArgs() > 1) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ return;
+ }
+
+ //FIXME: The C++0x version of this attribute has more limited applicabilty
+ // than GNU's, and should error out when it is used to specify a
+ // weaker alignment, rather than being silently ignored.
+
+ if (Attr.getNumArgs() == 0) {
+ D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context, true, 0));
+ return;
+ }
+
+ S.AddAlignedAttr(Attr.getRange(), D, Attr.getArg(0));
+}
+
+void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E) {
+ // FIXME: Handle pack-expansions here.
+ if (DiagnoseUnexpandedParameterPack(E))
+ return;
+
+ if (E->isTypeDependent() || E->isValueDependent()) {
+ // Save dependent expressions in the AST to be instantiated.
+ D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, E));
+ return;
+ }
+
+ SourceLocation AttrLoc = AttrRange.getBegin();
+ // FIXME: Cache the number on the Attr object?
+ llvm::APSInt Alignment(32);
+ ExprResult ICE =
+ VerifyIntegerConstantExpression(E, &Alignment,
+ PDiag(diag::err_attribute_argument_not_int) << "aligned",
+ /*AllowFold*/ false);
+ if (ICE.isInvalid())
+ return;
+ if (!llvm::isPowerOf2_64(Alignment.getZExtValue())) {
+ Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two)
+ << E->getSourceRange();
+ return;
+ }
+
+ D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, ICE.take()));
+}
+
+void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS) {
+ // FIXME: Cache the number on the Attr object if non-dependent?
+ // FIXME: Perform checking of type validity
+ D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, false, TS));
+ return;
+}
+
+/// handleModeAttr - This attribute modifies the width of a decl with primitive
+/// type.
+///
+/// Despite what would be logical, the mode attribute is a decl attribute, not a
+/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
+/// HImode, not an intermediate pointer.
+static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // This attribute isn't documented, but glibc uses it. It changes
+ // the width of an int or unsigned int to the specified size.
+
+ // Check that there aren't any arguments
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+
+ IdentifierInfo *Name = Attr.getParameterName();
+ if (!Name) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name);
+ return;
+ }
+
+ StringRef Str = Attr.getParameterName()->getName();
+
+ // Normalize the attribute name, __foo__ becomes foo.
+ if (Str.startswith("__") && Str.endswith("__"))
+ Str = Str.substr(2, Str.size() - 4);
+
+ unsigned DestWidth = 0;
+ bool IntegerMode = true;
+ bool ComplexMode = false;
+ switch (Str.size()) {
+ case 2:
+ switch (Str[0]) {
+ case 'Q': DestWidth = 8; break;
+ case 'H': DestWidth = 16; break;
+ case 'S': DestWidth = 32; break;
+ case 'D': DestWidth = 64; break;
+ case 'X': DestWidth = 96; break;
+ case 'T': DestWidth = 128; break;
+ }
+ if (Str[1] == 'F') {
+ IntegerMode = false;
+ } else if (Str[1] == 'C') {
+ IntegerMode = false;
+ ComplexMode = true;
+ } else if (Str[1] != 'I') {
+ DestWidth = 0;
+ }
+ break;
+ case 4:
+ // FIXME: glibc uses 'word' to define register_t; this is narrower than a
+ // pointer on PIC16 and other embedded platforms.
+ if (Str == "word")
+ DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
+ else if (Str == "byte")
+ DestWidth = S.Context.getTargetInfo().getCharWidth();
+ break;
+ case 7:
+ if (Str == "pointer")
+ DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
+ break;
+ }
+
+ QualType OldTy;
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
+ OldTy = TD->getUnderlyingType();
+ else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
+ OldTy = VD->getType();
+ else {
+ S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
+ << "mode" << Attr.getRange();
+ return;
+ }
+
+ if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
+ S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
+ else if (IntegerMode) {
+ if (!OldTy->isIntegralOrEnumerationType())
+ S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
+ } else if (ComplexMode) {
+ if (!OldTy->isComplexType())
+ S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
+ } else {
+ if (!OldTy->isFloatingType())
+ S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
+ }
+
+ // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
+ // and friends, at least with glibc.
+ // FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong
+ // width on unusual platforms.
+ // FIXME: Make sure floating-point mappings are accurate
+ // FIXME: Support XF and TF types
+ QualType NewTy;
+ switch (DestWidth) {
+ case 0:
+ S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name;
+ return;
+ default:
+ S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
+ return;
+ case 8:
+ if (!IntegerMode) {
+ S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
+ return;
+ }
+ if (OldTy->isSignedIntegerType())
+ NewTy = S.Context.SignedCharTy;
+ else
+ NewTy = S.Context.UnsignedCharTy;
+ break;
+ case 16:
+ if (!IntegerMode) {
+ S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
+ return;
+ }
+ if (OldTy->isSignedIntegerType())
+ NewTy = S.Context.ShortTy;
+ else
+ NewTy = S.Context.UnsignedShortTy;
+ break;
+ case 32:
+ if (!IntegerMode)
+ NewTy = S.Context.FloatTy;
+ else if (OldTy->isSignedIntegerType())
+ NewTy = S.Context.IntTy;
+ else
+ NewTy = S.Context.UnsignedIntTy;
+ break;
+ case 64:
+ if (!IntegerMode)
+ NewTy = S.Context.DoubleTy;
+ else if (OldTy->isSignedIntegerType())
+ if (S.Context.getTargetInfo().getLongWidth() == 64)
+ NewTy = S.Context.LongTy;
+ else
+ NewTy = S.Context.LongLongTy;
+ else
+ if (S.Context.getTargetInfo().getLongWidth() == 64)
+ NewTy = S.Context.UnsignedLongTy;
+ else
+ NewTy = S.Context.UnsignedLongLongTy;
+ break;
+ case 96:
+ NewTy = S.Context.LongDoubleTy;
+ break;
+ case 128:
+ if (!IntegerMode) {
+ S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
+ return;
+ }
+ if (OldTy->isSignedIntegerType())
+ NewTy = S.Context.Int128Ty;
+ else
+ NewTy = S.Context.UnsignedInt128Ty;
+ break;
+ }
+
+ if (ComplexMode) {
+ NewTy = S.Context.getComplexType(NewTy);
+ }
+
+ // Install the new type.
+ if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
+ // FIXME: preserve existing source info.
+ TD->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(NewTy));
+ } else
+ cast<ValueDecl>(D)->setType(NewTy);
+}
+
+static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ if (!isFunctionOrMethod(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) NoDebugAttr(Attr.getRange(), S.Context));
+}
+
+static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+
+ if (!isa<FunctionDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) NoInlineAttr(Attr.getRange(), S.Context));
+}
+
+static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+
+ if (!isa<FunctionDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) NoInstrumentFunctionAttr(Attr.getRange(),
+ S.Context));
+}
+
+static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (S.LangOpts.CUDA) {
+ // check the attribute arguments.
+ if (Attr.hasParameterOrArguments()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ return;
+ }
+
+ if (!isa<VarDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariable;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) CUDAConstantAttr(Attr.getRange(), S.Context));
+ } else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant";
+ }
+}
+
+static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (S.LangOpts.CUDA) {
+ // check the attribute arguments.
+ if (Attr.getNumArgs() != 0) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ return;
+ }
+
+ if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariableOrFunction;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) CUDADeviceAttr(Attr.getRange(), S.Context));
+ } else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device";
+ }
+}
+
+static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (S.LangOpts.CUDA) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ if (!isa<FunctionDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ FunctionDecl *FD = cast<FunctionDecl>(D);
+ if (!FD->getResultType()->isVoidType()) {
+ TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
+ if (FunctionTypeLoc* FTL = dyn_cast<FunctionTypeLoc>(&TL)) {
+ S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
+ << FD->getType()
+ << FixItHint::CreateReplacement(FTL->getResultLoc().getSourceRange(),
+ "void");
+ } else {
+ S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
+ << FD->getType();
+ }
+ return;
+ }
+
+ D->addAttr(::new (S.Context) CUDAGlobalAttr(Attr.getRange(), S.Context));
+ } else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global";
+ }
+}
+
+static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (S.LangOpts.CUDA) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+
+ if (!isa<FunctionDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) CUDAHostAttr(Attr.getRange(), S.Context));
+ } else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host";
+ }
+}
+
+static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (S.LangOpts.CUDA) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+
+ if (!isa<VarDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedVariable;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) CUDASharedAttr(Attr.getRange(), S.Context));
+ } else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared";
+ }
+}
+
+static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 0))
+ return;
+
+ FunctionDecl *Fn = dyn_cast<FunctionDecl>(D);
+ if (Fn == 0) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunction;
+ return;
+ }
+
+ if (!Fn->isInlineSpecified()) {
+ S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
+ return;
+ }
+
+ D->addAttr(::new (S.Context) GNUInlineAttr(Attr.getRange(), S.Context));
+}
+
+static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (hasDeclarator(D)) return;
+
+ // Diagnostic is emitted elsewhere: here we store the (valid) Attr
+ // in the Decl node for syntactic reasoning, e.g., pretty-printing.
+ CallingConv CC;
+ if (S.CheckCallingConvAttr(Attr, CC))
+ return;
+
+ if (!isa<ObjCMethodDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ switch (Attr.getKind()) {
+ case AttributeList::AT_fastcall:
+ D->addAttr(::new (S.Context) FastCallAttr(Attr.getRange(), S.Context));
+ return;
+ case AttributeList::AT_stdcall:
+ D->addAttr(::new (S.Context) StdCallAttr(Attr.getRange(), S.Context));
+ return;
+ case AttributeList::AT_thiscall:
+ D->addAttr(::new (S.Context) ThisCallAttr(Attr.getRange(), S.Context));
+ return;
+ case AttributeList::AT_cdecl:
+ D->addAttr(::new (S.Context) CDeclAttr(Attr.getRange(), S.Context));
+ return;
+ case AttributeList::AT_pascal:
+ D->addAttr(::new (S.Context) PascalAttr(Attr.getRange(), S.Context));
+ return;
+ case AttributeList::AT_pcs: {
+ Expr *Arg = Attr.getArg(0);
+ StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
+ if (!Str || !Str->isAscii()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
+ << "pcs" << 1;
+ Attr.setInvalid();
+ return;
+ }
+
+ StringRef StrRef = Str->getString();
+ PcsAttr::PCSType PCS;
+ if (StrRef == "aapcs")
+ PCS = PcsAttr::AAPCS;
+ else if (StrRef == "aapcs-vfp")
+ PCS = PcsAttr::AAPCS_VFP;
+ else {
+ S.Diag(Attr.getLoc(), diag::err_invalid_pcs);
+ Attr.setInvalid();
+ return;
+ }
+
+ D->addAttr(::new (S.Context) PcsAttr(Attr.getRange(), S.Context, PCS));
+ }
+ default:
+ llvm_unreachable("unexpected attribute kind");
+ }
+}
+
+static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){
+ assert(!Attr.isInvalid());
+ D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getRange(), S.Context));
+}
+
+bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC) {
+ if (attr.isInvalid())
+ return true;
+
+ if ((attr.getNumArgs() != 0 &&
+ !(attr.getKind() == AttributeList::AT_pcs && attr.getNumArgs() == 1)) ||
+ attr.getParameterName()) {
+ Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
+ attr.setInvalid();
+ return true;
+ }
+
+ // TODO: diagnose uses of these conventions on the wrong target. Or, better
+ // move to TargetAttributesSema one day.
+ switch (attr.getKind()) {
+ case AttributeList::AT_cdecl: CC = CC_C; break;
+ case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
+ case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
+ case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break;
+ case AttributeList::AT_pascal: CC = CC_X86Pascal; break;
+ case AttributeList::AT_pcs: {
+ Expr *Arg = attr.getArg(0);
+ StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
+ if (!Str || !Str->isAscii()) {
+ Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string)
+ << "pcs" << 1;
+ attr.setInvalid();
+ return true;
+ }
+
+ StringRef StrRef = Str->getString();
+ if (StrRef == "aapcs") {
+ CC = CC_AAPCS;
+ break;
+ } else if (StrRef == "aapcs-vfp") {
+ CC = CC_AAPCS_VFP;
+ break;
+ }
+ // FALLS THROUGH
+ }
+ default: llvm_unreachable("unexpected attribute kind");
+ }
+
+ return false;
+}
+
+static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (hasDeclarator(D)) return;
+
+ unsigned numParams;
+ if (S.CheckRegparmAttr(Attr, numParams))
+ return;
+
+ if (!isa<ObjCMethodDecl>(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) RegparmAttr(Attr.getRange(), S.Context, numParams));
+}
+
+/// Checks a regparm attribute, returning true if it is ill-formed and
+/// otherwise setting numParams to the appropriate value.
+bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
+ if (Attr.isInvalid())
+ return true;
+
+ if (Attr.getNumArgs() != 1) {
+ Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
+ Attr.setInvalid();
+ return true;
+ }
+
+ Expr *NumParamsExpr = Attr.getArg(0);
+ llvm::APSInt NumParams(32);
+ if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
+ !NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) {
+ Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
+ << "regparm" << NumParamsExpr->getSourceRange();
+ Attr.setInvalid();
+ return true;
+ }
+
+ if (Context.getTargetInfo().getRegParmMax() == 0) {
+ Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
+ << NumParamsExpr->getSourceRange();
+ Attr.setInvalid();
+ return true;
+ }
+
+ numParams = NumParams.getZExtValue();
+ if (numParams > Context.getTargetInfo().getRegParmMax()) {
+ Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
+ << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
+ Attr.setInvalid();
+ return true;
+ }
+
+ return false;
+}
+
+static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){
+ if (S.LangOpts.CUDA) {
+ // check the attribute arguments.
+ if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) {
+ // FIXME: 0 is not okay.
+ S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
+ return;
+ }
+
+ if (!isFunctionOrMethod(D)) {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getName() << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ Expr *MaxThreadsExpr = Attr.getArg(0);
+ llvm::APSInt MaxThreads(32);
+ if (MaxThreadsExpr->isTypeDependent() ||
+ MaxThreadsExpr->isValueDependent() ||
+ !MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
+ << "launch_bounds" << 1 << MaxThreadsExpr->getSourceRange();
+ return;
+ }
+
+ llvm::APSInt MinBlocks(32);
+ if (Attr.getNumArgs() > 1) {
+ Expr *MinBlocksExpr = Attr.getArg(1);
+ if (MinBlocksExpr->isTypeDependent() ||
+ MinBlocksExpr->isValueDependent() ||
+ !MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
+ << "launch_bounds" << 2 << MinBlocksExpr->getSourceRange();
+ return;
+ }
+ }
+
+ D->addAttr(::new (S.Context) CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
+ MaxThreads.getZExtValue(),
+ MinBlocks.getZExtValue()));
+ } else {
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds";
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Checker-specific attribute handlers.
+//===----------------------------------------------------------------------===//
+
+static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
+ return type->isDependentType() ||
+ type->isObjCObjectPointerType() ||
+ S.Context.isObjCNSObjectType(type);
+}
+static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
+ return type->isDependentType() ||
+ type->isPointerType() ||
+ isValidSubjectOfNSAttribute(S, type);
+}
+
+static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ ParmVarDecl *param = dyn_cast<ParmVarDecl>(D);
+ if (!param) {
+ S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getRange() << Attr.getName() << ExpectedParameter;
+ return;
+ }
+
+ bool typeOK, cf;
+ if (Attr.getKind() == AttributeList::AT_ns_consumed) {
+ typeOK = isValidSubjectOfNSAttribute(S, param->getType());
+ cf = false;
+ } else {
+ typeOK = isValidSubjectOfCFAttribute(S, param->getType());
+ cf = true;
+ }
+
+ if (!typeOK) {
+ S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
+ << Attr.getRange() << Attr.getName() << cf;
+ return;
+ }
+
+ if (cf)
+ param->addAttr(::new (S.Context) CFConsumedAttr(Attr.getRange(), S.Context));
+ else
+ param->addAttr(::new (S.Context) NSConsumedAttr(Attr.getRange(), S.Context));
+}
+
+static void handleNSConsumesSelfAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!isa<ObjCMethodDecl>(D)) {
+ S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getRange() << Attr.getName() << ExpectedMethod;
+ return;
+ }
+
+ D->addAttr(::new (S.Context) NSConsumesSelfAttr(Attr.getRange(), S.Context));
+}
+
+static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+
+ QualType returnType;
+
+ if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
+ returnType = MD->getResultType();
+ else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
+ returnType = PD->getType();
+ else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
+ (Attr.getKind() == AttributeList::AT_ns_returns_retained))
+ return; // ignore: was handled as a type attribute
+ else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ returnType = FD->getResultType();
+ else {
+ S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
+ << Attr.getRange() << Attr.getName()
+ << ExpectedFunctionOrMethod;
+ return;
+ }
+
+ bool typeOK;
+ bool cf;
+ switch (Attr.getKind()) {
+ default: llvm_unreachable("invalid ownership attribute");
+ case AttributeList::AT_ns_returns_autoreleased:
+ case AttributeList::AT_ns_returns_retained:
+ case AttributeList::AT_ns_returns_not_retained:
+ typeOK = isValidSubjectOfNSAttribute(S, returnType);
+ cf = false;
+ break;
+
+ case AttributeList::AT_cf_returns_retained:
+ case AttributeList::AT_cf_returns_not_retained:
+ typeOK = isValidSubjectOfCFAttribute(S, returnType);
+ cf = true;
+ break;
+ }
+
+ if (!typeOK) {
+ S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
+ << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
+ return;
+ }
+
+ switch (Attr.getKind()) {
+ default:
+ llvm_unreachable("invalid ownership attribute");
+ case AttributeList::AT_ns_returns_autoreleased:
+ D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(Attr.getRange(),
+ S.Context));
+ return;
+ case AttributeList::AT_cf_returns_not_retained:
+ D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(Attr.getRange(),
+ S.Context));
+ return;
+ case AttributeList::AT_ns_returns_not_retained:
+ D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(Attr.getRange(),
+ S.Context));
+ return;
+ case AttributeList::AT_cf_returns_retained:
+ D->addAttr(::new (S.Context) CFReturnsRetainedAttr(Attr.getRange(),
+ S.Context));
+ return;
+ case AttributeList::AT_ns_returns_retained:
+ D->addAttr(::new (S.Context) NSReturnsRetainedAttr(Attr.getRange(),
+ S.Context));
+ return;
+ };
+}
+
+static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
+ const AttributeList &attr) {
+ SourceLocation loc = attr.getLoc();
+
+ ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
+
+ if (!isa<ObjCMethodDecl>(method)) {
+ S.Diag(method->getLocStart(), diag::err_attribute_wrong_decl_type)
+ << SourceRange(loc, loc) << attr.getName() << ExpectedMethod;
+ return;
+ }
+
+ // Check that the method returns a normal pointer.
+ QualType resultType = method->getResultType();
+
+ if (!resultType->isReferenceType() &&
+ (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
+ S.Diag(method->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
+ << SourceRange(loc)
+ << attr.getName() << /*method*/ 1 << /*non-retainable pointer*/ 2;
+
+ // Drop the attribute.
+ return;
+ }
+
+ method->addAttr(
+ ::new (S.Context) ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context));
+}
+
+/// Handle cf_audited_transfer and cf_unknown_transfer.
+static void handleCFTransferAttr(Sema &S, Decl *D, const AttributeList &A) {
+ if (!isa<FunctionDecl>(D)) {
+ S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
+ << A.getRange() << A.getName() << ExpectedFunction;
+ return;
+ }
+
+ bool IsAudited = (A.getKind() == AttributeList::AT_cf_audited_transfer);
+
+ // Check whether there's a conflicting attribute already present.
+ Attr *Existing;
+ if (IsAudited) {
+ Existing = D->getAttr<CFUnknownTransferAttr>();
+ } else {
+ Existing = D->getAttr<CFAuditedTransferAttr>();
+ }
+ if (Existing) {
+ S.Diag(D->getLocStart(), diag::err_attributes_are_not_compatible)
+ << A.getName()
+ << (IsAudited ? "cf_unknown_transfer" : "cf_audited_transfer")
+ << A.getRange() << Existing->getRange();
+ return;
+ }
+
+ // All clear; add the attribute.
+ if (IsAudited) {
+ D->addAttr(
+ ::new (S.Context) CFAuditedTransferAttr(A.getRange(), S.Context));
+ } else {
+ D->addAttr(
+ ::new (S.Context) CFUnknownTransferAttr(A.getRange(), S.Context));
+ }
+}
+
+static void handleNSBridgedAttr(Sema &S, Scope *Sc, Decl *D,
+ const AttributeList &Attr) {
+ RecordDecl *RD = dyn_cast<RecordDecl>(D);
+ if (!RD || RD->isUnion()) {
+ S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
+ << Attr.getRange() << Attr.getName() << ExpectedStruct;
+ }
+
+ IdentifierInfo *ParmName = Attr.getParameterName();
+
+ // In Objective-C, verify that the type names an Objective-C type.
+ // We don't want to check this outside of ObjC because people sometimes
+ // do crazy C declarations of Objective-C types.
+ if (ParmName && S.getLangOpts().ObjC1) {
+ // Check for an existing type with this name.
+ LookupResult R(S, DeclarationName(ParmName), Attr.getParameterLoc(),
+ Sema::LookupOrdinaryName);
+ if (S.LookupName(R, Sc)) {
+ NamedDecl *Target = R.getFoundDecl();
+ if (Target && !isa<ObjCInterfaceDecl>(Target)) {
+ S.Diag(D->getLocStart(), diag::err_ns_bridged_not_interface);
+ S.Diag(Target->getLocStart(), diag::note_declared_at);
+ }
+ }
+ }
+
+ D->addAttr(::new (S.Context) NSBridgedAttr(Attr.getRange(), S.Context,
+ ParmName));
+}
+
+static void handleObjCOwnershipAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (hasDeclarator(D)) return;
+
+ S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
+ << Attr.getRange() << Attr.getName() << ExpectedVariable;
+}
+
+static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
+ const AttributeList &Attr) {
+ if (!isa<VarDecl>(D) && !isa<FieldDecl>(D)) {
+ S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
+ << Attr.getRange() << Attr.getName() << ExpectedVariable;
+ return;
+ }
+
+ ValueDecl *vd = cast<ValueDecl>(D);
+ QualType type = vd->getType();
+
+ if (!type->isDependentType() &&
+ !type->isObjCLifetimeType()) {
+ S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
+ << type;
+ return;
+ }
+
+ Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
+
+ // If we have no lifetime yet, check the lifetime we're presumably
+ // going to infer.
+ if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
+ lifetime = type->getObjCARCImplicitLifetime();
+
+ switch (lifetime) {
+ case Qualifiers::OCL_None:
+ assert(type->isDependentType() &&
+ "didn't infer lifetime for non-dependent type?");
+ break;
+
+ case Qualifiers::OCL_Weak: // meaningful
+ case Qualifiers::OCL_Strong: // meaningful
+ break;
+
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
+ << (lifetime == Qualifiers::OCL_Autoreleasing);
+ break;
+ }
+
+ D->addAttr(::new (S.Context)
+ ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context));
+}
+
+static bool isKnownDeclSpecAttr(const AttributeList &Attr) {
+ switch (Attr.getKind()) {
+ default:
+ return false;
+ case AttributeList::AT_dllimport:
+ case AttributeList::AT_dllexport:
+ case AttributeList::AT_uuid:
+ case AttributeList::AT_deprecated:
+ case AttributeList::AT_noreturn:
+ case AttributeList::AT_nothrow:
+ case AttributeList::AT_naked:
+ case AttributeList::AT_noinline:
+ return true;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Microsoft specific attribute handlers.
+//===----------------------------------------------------------------------===//
+
+static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
+ if (S.LangOpts.MicrosoftExt || S.LangOpts.Borland) {
+ // check the attribute arguments.
+ if (!checkAttributeNumArgs(S, Attr, 1))
+ return;
+
+ Expr *Arg = Attr.getArg(0);
+ StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
+ if (!Str || !Str->isAscii()) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
+ << "uuid" << 1;
+ return;
+ }
+
+ StringRef StrRef = Str->getString();
+
+ bool IsCurly = StrRef.size() > 1 && StrRef.front() == '{' &&
+ StrRef.back() == '}';
+
+ // Validate GUID length.
+ if (IsCurly && StrRef.size() != 38) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
+ return;
+ }
+ if (!IsCurly && StrRef.size() != 36) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
+ return;
+ }
+
+ // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
+ // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}"
+ StringRef::iterator I = StrRef.begin();
+ if (IsCurly) // Skip the optional '{'
+ ++I;
+
+ for (int i = 0; i < 36; ++i) {
+ if (i == 8 || i == 13 || i == 18 || i == 23) {
+ if (*I != '-') {
+ S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
+ return;
+ }
+ } else if (!isxdigit(*I)) {
+ S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
+ return;
+ }
+ I++;
+ }
+
+ D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context,
+ Str->getString()));
+ } else
+ S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "uuid";
+}
+
+//===----------------------------------------------------------------------===//
+// Top Level Sema Entry Points
+//===----------------------------------------------------------------------===//
+
+static void ProcessNonInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
+ const AttributeList &Attr) {
+ switch (Attr.getKind()) {
+ case AttributeList::AT_device: handleDeviceAttr (S, D, Attr); break;
+ case AttributeList::AT_host: handleHostAttr (S, D, Attr); break;
+ case AttributeList::AT_overloadable:handleOverloadableAttr(S, D, Attr); break;
+ default:
+ break;
+ }
+}
+
+static void ProcessInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
+ const AttributeList &Attr) {
+ switch (Attr.getKind()) {
+ case AttributeList::AT_ibaction: handleIBAction(S, D, Attr); break;
+ case AttributeList::AT_iboutlet: handleIBOutlet(S, D, Attr); break;
+ case AttributeList::AT_iboutletcollection:
+ handleIBOutletCollection(S, D, Attr); break;
+ case AttributeList::AT_address_space:
+ case AttributeList::AT_opencl_image_access:
+ case AttributeList::AT_objc_gc:
+ case AttributeList::AT_vector_size:
+ case AttributeList::AT_neon_vector_type:
+ case AttributeList::AT_neon_polyvector_type:
+ // Ignore these, these are type attributes, handled by
+ // ProcessTypeAttributes.
+ break;
+ case AttributeList::AT_device:
+ case AttributeList::AT_host:
+ case AttributeList::AT_overloadable:
+ // Ignore, this is a non-inheritable attribute, handled
+ // by ProcessNonInheritableDeclAttr.
+ break;
+ case AttributeList::AT_alias: handleAliasAttr (S, D, Attr); break;
+ case AttributeList::AT_aligned: handleAlignedAttr (S, D, Attr); break;
+ case AttributeList::AT_always_inline:
+ handleAlwaysInlineAttr (S, D, Attr); break;
+ case AttributeList::AT_analyzer_noreturn:
+ handleAnalyzerNoReturnAttr (S, D, Attr); break;
+ case AttributeList::AT_annotate: handleAnnotateAttr (S, D, Attr); break;
+ case AttributeList::AT_availability:handleAvailabilityAttr(S, D, Attr); break;
+ case AttributeList::AT_carries_dependency:
+ handleDependencyAttr (S, D, Attr); break;
+ case AttributeList::AT_common: handleCommonAttr (S, D, Attr); break;
+ case AttributeList::AT_constant: handleConstantAttr (S, D, Attr); break;
+ case AttributeList::AT_constructor: handleConstructorAttr (S, D, Attr); break;
+ case AttributeList::AT_deprecated: handleDeprecatedAttr (S, D, Attr); break;
+ case AttributeList::AT_destructor: handleDestructorAttr (S, D, Attr); break;
+ case AttributeList::AT_ext_vector_type:
+ handleExtVectorTypeAttr(S, scope, D, Attr);
+ break;
+ case AttributeList::AT_format: handleFormatAttr (S, D, Attr); break;
+ case AttributeList::AT_format_arg: handleFormatArgAttr (S, D, Attr); break;
+ case AttributeList::AT_global: handleGlobalAttr (S, D, Attr); break;
+ case AttributeList::AT_gnu_inline: handleGNUInlineAttr (S, D, Attr); break;
+ case AttributeList::AT_launch_bounds:
+ handleLaunchBoundsAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_mode: handleModeAttr (S, D, Attr); break;
+ case AttributeList::AT_malloc: handleMallocAttr (S, D, Attr); break;
+ case AttributeList::AT_may_alias: handleMayAliasAttr (S, D, Attr); break;
+ case AttributeList::AT_nocommon: handleNoCommonAttr (S, D, Attr); break;
+ case AttributeList::AT_nonnull: handleNonNullAttr (S, D, Attr); break;
+ case AttributeList::AT_ownership_returns:
+ case AttributeList::AT_ownership_takes:
+ case AttributeList::AT_ownership_holds:
+ handleOwnershipAttr (S, D, Attr); break;
+ case AttributeList::AT_naked: handleNakedAttr (S, D, Attr); break;
+ case AttributeList::AT_noreturn: handleNoReturnAttr (S, D, Attr); break;
+ case AttributeList::AT_nothrow: handleNothrowAttr (S, D, Attr); break;
+ case AttributeList::AT_shared: handleSharedAttr (S, D, Attr); break;
+ case AttributeList::AT_vecreturn: handleVecReturnAttr (S, D, Attr); break;
+
+ case AttributeList::AT_objc_ownership:
+ handleObjCOwnershipAttr(S, D, Attr); break;
+ case AttributeList::AT_objc_precise_lifetime:
+ handleObjCPreciseLifetimeAttr(S, D, Attr); break;
+
+ case AttributeList::AT_objc_returns_inner_pointer:
+ handleObjCReturnsInnerPointerAttr(S, D, Attr); break;
+
+ case AttributeList::AT_ns_bridged:
+ handleNSBridgedAttr(S, scope, D, Attr); break;
+
+ case AttributeList::AT_cf_audited_transfer:
+ case AttributeList::AT_cf_unknown_transfer:
+ handleCFTransferAttr(S, D, Attr); break;
+
+ // Checker-specific.
+ case AttributeList::AT_cf_consumed:
+ case AttributeList::AT_ns_consumed: handleNSConsumedAttr (S, D, Attr); break;
+ case AttributeList::AT_ns_consumes_self:
+ handleNSConsumesSelfAttr(S, D, Attr); break;
+
+ case AttributeList::AT_ns_returns_autoreleased:
+ case AttributeList::AT_ns_returns_not_retained:
+ case AttributeList::AT_cf_returns_not_retained:
+ case AttributeList::AT_ns_returns_retained:
+ case AttributeList::AT_cf_returns_retained:
+ handleNSReturnsRetainedAttr(S, D, Attr); break;
+
+ case AttributeList::AT_reqd_work_group_size:
+ handleReqdWorkGroupSize(S, D, Attr); break;
+
+ case AttributeList::AT_init_priority:
+ handleInitPriorityAttr(S, D, Attr); break;
+
+ case AttributeList::AT_packed: handlePackedAttr (S, D, Attr); break;
+ case AttributeList::AT_ms_struct: handleMsStructAttr (S, D, Attr); break;
+ case AttributeList::AT_section: handleSectionAttr (S, D, Attr); break;
+ case AttributeList::AT_unavailable: handleUnavailableAttr (S, D, Attr); break;
+ case AttributeList::AT_objc_arc_weak_reference_unavailable:
+ handleArcWeakrefUnavailableAttr (S, D, Attr);
+ break;
+ case AttributeList::AT_objc_root_class:
+ handleObjCRootClassAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_objc_requires_property_definitions:
+ handleObjCRequiresPropertyDefsAttr (S, D, Attr);
+ break;
+ case AttributeList::AT_unused: handleUnusedAttr (S, D, Attr); break;
+ case AttributeList::AT_returns_twice:
+ handleReturnsTwiceAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_used: handleUsedAttr (S, D, Attr); break;
+ case AttributeList::AT_visibility: handleVisibilityAttr (S, D, Attr); break;
+ case AttributeList::AT_warn_unused_result: handleWarnUnusedResult(S, D, Attr);
+ break;
+ case AttributeList::AT_weak: handleWeakAttr (S, D, Attr); break;
+ case AttributeList::AT_weakref: handleWeakRefAttr (S, D, Attr); break;
+ case AttributeList::AT_weak_import: handleWeakImportAttr (S, D, Attr); break;
+ case AttributeList::AT_transparent_union:
+ handleTransparentUnionAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_objc_exception:
+ handleObjCExceptionAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_objc_method_family:
+ handleObjCMethodFamilyAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_NSObject: handleObjCNSObject (S, D, Attr); break;
+ case AttributeList::AT_blocks: handleBlocksAttr (S, D, Attr); break;
+ case AttributeList::AT_sentinel: handleSentinelAttr (S, D, Attr); break;
+ case AttributeList::AT_const: handleConstAttr (S, D, Attr); break;
+ case AttributeList::AT_pure: handlePureAttr (S, D, Attr); break;
+ case AttributeList::AT_cleanup: handleCleanupAttr (S, D, Attr); break;
+ case AttributeList::AT_nodebug: handleNoDebugAttr (S, D, Attr); break;
+ case AttributeList::AT_noinline: handleNoInlineAttr (S, D, Attr); break;
+ case AttributeList::AT_regparm: handleRegparmAttr (S, D, Attr); break;
+ case AttributeList::IgnoredAttribute:
+ // Just ignore
+ break;
+ case AttributeList::AT_no_instrument_function: // Interacts with -pg.
+ handleNoInstrumentFunctionAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_stdcall:
+ case AttributeList::AT_cdecl:
+ case AttributeList::AT_fastcall:
+ case AttributeList::AT_thiscall:
+ case AttributeList::AT_pascal:
+ case AttributeList::AT_pcs:
+ handleCallConvAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_opencl_kernel_function:
+ handleOpenCLKernelAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_uuid:
+ handleUuidAttr(S, D, Attr);
+ break;
+
+ // Thread safety attributes:
+ case AttributeList::AT_guarded_var:
+ handleGuardedVarAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_pt_guarded_var:
+ handleGuardedVarAttr(S, D, Attr, /*pointer = */true);
+ break;
+ case AttributeList::AT_scoped_lockable:
+ handleLockableAttr(S, D, Attr, /*scoped = */true);
+ break;
+ case AttributeList::AT_no_address_safety_analysis:
+ handleNoAddressSafetyAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_no_thread_safety_analysis:
+ handleNoThreadSafetyAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_lockable:
+ handleLockableAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_guarded_by:
+ handleGuardedByAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_pt_guarded_by:
+ handleGuardedByAttr(S, D, Attr, /*pointer = */true);
+ break;
+ case AttributeList::AT_exclusive_lock_function:
+ handleLockFunAttr(S, D, Attr, /*exclusive = */true);
+ break;
+ case AttributeList::AT_exclusive_locks_required:
+ handleLocksRequiredAttr(S, D, Attr, /*exclusive = */true);
+ break;
+ case AttributeList::AT_exclusive_trylock_function:
+ handleTrylockFunAttr(S, D, Attr, /*exclusive = */true);
+ break;
+ case AttributeList::AT_lock_returned:
+ handleLockReturnedAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_locks_excluded:
+ handleLocksExcludedAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_shared_lock_function:
+ handleLockFunAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_shared_locks_required:
+ handleLocksRequiredAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_shared_trylock_function:
+ handleTrylockFunAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_unlock_function:
+ handleUnlockFunAttr(S, D, Attr);
+ break;
+ case AttributeList::AT_acquired_before:
+ handleAcquireOrderAttr(S, D, Attr, /*before = */true);
+ break;
+ case AttributeList::AT_acquired_after:
+ handleAcquireOrderAttr(S, D, Attr, /*before = */false);
+ break;
+
+ default:
+ // Ask target about the attribute.
+ const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema();
+ if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S))
+ S.Diag(Attr.getLoc(), diag::warn_unknown_attribute_ignored)
+ << Attr.getName();
+ break;
+ }
+}
+
+/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
+/// the attribute applies to decls. If the attribute is a type attribute, just
+/// silently ignore it if a GNU attribute. FIXME: Applying a C++0x attribute to
+/// the wrong thing is illegal (C++0x [dcl.attr.grammar]/4).
+static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
+ const AttributeList &Attr,
+ bool NonInheritable, bool Inheritable) {
+ if (Attr.isInvalid())
+ return;
+
+ if (Attr.isDeclspecAttribute() && !isKnownDeclSpecAttr(Attr))
+ // FIXME: Try to deal with other __declspec attributes!
+ return;
+
+ if (NonInheritable)
+ ProcessNonInheritableDeclAttr(S, scope, D, Attr);
+
+ if (Inheritable)
+ ProcessInheritableDeclAttr(S, scope, D, Attr);
+}
+
+/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
+/// attribute list to the specified decl, ignoring any type attributes.
+void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
+ const AttributeList *AttrList,
+ bool NonInheritable, bool Inheritable) {
+ for (const AttributeList* l = AttrList; l; l = l->getNext()) {
+ ProcessDeclAttribute(*this, S, D, *l, NonInheritable, Inheritable);
+ }
+
+ // GCC accepts
+ // static int a9 __attribute__((weakref));
+ // but that looks really pointless. We reject it.
+ if (Inheritable && D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
+ Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) <<
+ dyn_cast<NamedDecl>(D)->getNameAsString();
+ return;
+ }
+}
+
+// Annotation attributes are the only attributes allowed after an access
+// specifier.
+bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
+ const AttributeList *AttrList) {
+ for (const AttributeList* l = AttrList; l; l = l->getNext()) {
+ if (l->getKind() == AttributeList::AT_annotate) {
+ handleAnnotateAttr(*this, ASDecl, *l);
+ } else {
+ Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// checkUnusedDeclAttributes - Check a list of attributes to see if it
+/// contains any decl attributes that we should warn about.
+static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
+ for ( ; A; A = A->getNext()) {
+ // Only warn if the attribute is an unignored, non-type attribute.
+ if (A->isUsedAsTypeAttr()) continue;
+ if (A->getKind() == AttributeList::IgnoredAttribute) continue;
+
+ if (A->getKind() == AttributeList::UnknownAttribute) {
+ S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
+ << A->getName() << A->getRange();
+ } else {
+ S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
+ << A->getName() << A->getRange();
+ }
+ }
+}
+
+/// checkUnusedDeclAttributes - Given a declarator which is not being
+/// used to build a declaration, complain about any decl attributes
+/// which might be lying around on it.
+void Sema::checkUnusedDeclAttributes(Declarator &D) {
+ ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
+ ::checkUnusedDeclAttributes(*this, D.getAttributes());
+ for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
+ ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
+}
+
+/// DeclClonePragmaWeak - clone existing decl (maybe definition),
+/// #pragma weak needs a non-definition decl and source may not have one
+NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
+ SourceLocation Loc) {
+ assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
+ NamedDecl *NewD = 0;
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
+ FunctionDecl *NewFD;
+ // FIXME: Missing call to CheckFunctionDeclaration().
+ // FIXME: Mangling?
+ // FIXME: Is the qualifier info correct?
+ // FIXME: Is the DeclContext correct?
+ NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
+ Loc, Loc, DeclarationName(II),
+ FD->getType(), FD->getTypeSourceInfo(),
+ SC_None, SC_None,
+ false/*isInlineSpecified*/,
+ FD->hasPrototype(),
+ false/*isConstexprSpecified*/);
+ NewD = NewFD;
+
+ if (FD->getQualifier())
+ NewFD->setQualifierInfo(FD->getQualifierLoc());
+
+ // Fake up parameter variables; they are declared as if this were
+ // a typedef.
+ QualType FDTy = FD->getType();
+ if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
+ SmallVector<ParmVarDecl*, 16> Params;
+ for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
+ AE = FT->arg_type_end(); AI != AE; ++AI) {
+ ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI);
+ Param->setScopeInfo(0, Params.size());
+ Params.push_back(Param);
+ }
+ NewFD->setParams(Params);
+ }
+ } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
+ NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
+ VD->getInnerLocStart(), VD->getLocation(), II,
+ VD->getType(), VD->getTypeSourceInfo(),
+ VD->getStorageClass(),
+ VD->getStorageClassAsWritten());
+ if (VD->getQualifier()) {
+ VarDecl *NewVD = cast<VarDecl>(NewD);
+ NewVD->setQualifierInfo(VD->getQualifierLoc());
+ }
+ }
+ return NewD;
+}
+
+/// DeclApplyPragmaWeak - A declaration (maybe definition) needs #pragma weak
+/// applied to it, possibly with an alias.
+void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
+ if (W.getUsed()) return; // only do this once
+ W.setUsed(true);
+ if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
+ IdentifierInfo *NDId = ND->getIdentifier();
+ NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
+ NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context,
+ NDId->getName()));
+ NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
+ WeakTopLevelDecl.push_back(NewD);
+ // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
+ // to insert Decl at TU scope, sorry.
+ DeclContext *SavedContext = CurContext;
+ CurContext = Context.getTranslationUnitDecl();
+ PushOnScopeChains(NewD, S);
+ CurContext = SavedContext;
+ } else { // just add weak to existing
+ ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
+ }
+}
+
+/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
+/// it, apply them to D. This is a bit tricky because PD can have attributes
+/// specified in many different places, and we need to find and apply them all.
+void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD,
+ bool NonInheritable, bool Inheritable) {
+ // It's valid to "forward-declare" #pragma weak, in which case we
+ // have to do this.
+ if (Inheritable) {
+ LoadExternalWeakUndeclaredIdentifiers();
+ if (!WeakUndeclaredIdentifiers.empty()) {
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
+ if (IdentifierInfo *Id = ND->getIdentifier()) {
+ llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
+ = WeakUndeclaredIdentifiers.find(Id);
+ if (I != WeakUndeclaredIdentifiers.end() && ND->hasLinkage()) {
+ WeakInfo W = I->second;
+ DeclApplyPragmaWeak(S, ND, W);
+ WeakUndeclaredIdentifiers[Id] = W;
+ }
+ }
+ }
+ }
+ }
+
+ // Apply decl attributes from the DeclSpec if present.
+ if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
+ ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
+
+ // Walk the declarator structure, applying decl attributes that were in a type
+ // position to the decl itself. This handles cases like:
+ // int *__attr__(x)** D;
+ // when X is a decl attribute.
+ for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
+ if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
+ ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
+
+ // Finally, apply any attributes on the decl itself.
+ if (const AttributeList *Attrs = PD.getAttributes())
+ ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
+}
+
+/// Is the given declaration allowed to use a forbidden type?
+static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
+ // Private ivars are always okay. Unfortunately, people don't
+ // always properly make their ivars private, even in system headers.
+ // Plus we need to make fields okay, too.
+ // Function declarations in sys headers will be marked unavailable.
+ if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
+ !isa<FunctionDecl>(decl))
+ return false;
+
+ // Require it to be declared in a system header.
+ return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
+}
+
+/// Handle a delayed forbidden-type diagnostic.
+static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
+ Decl *decl) {
+ if (decl && isForbiddenTypeAllowed(S, decl)) {
+ decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context,
+ "this system declaration uses an unsupported type"));
+ return;
+ }
+ if (S.getLangOpts().ObjCAutoRefCount)
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
+ // FIXME. we may want to supress diagnostics for all
+ // kind of forbidden type messages on unavailable functions.
+ if (FD->hasAttr<UnavailableAttr>() &&
+ diag.getForbiddenTypeDiagnostic() ==
+ diag::err_arc_array_param_no_ownership) {
+ diag.Triggered = true;
+ return;
+ }
+ }
+
+ S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
+ << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
+ diag.Triggered = true;
+}
+
+// This duplicates a vector push_back but hides the need to know the
+// size of the type.
+void Sema::DelayedDiagnostics::add(const DelayedDiagnostic &diag) {
+ assert(StackSize <= StackCapacity);
+
+ // Grow the stack if necessary.
+ if (StackSize == StackCapacity) {
+ unsigned newCapacity = 2 * StackCapacity + 2;
+ char *newBuffer = new char[newCapacity * sizeof(DelayedDiagnostic)];
+ const char *oldBuffer = (const char*) Stack;
+
+ if (StackCapacity)
+ memcpy(newBuffer, oldBuffer, StackCapacity * sizeof(DelayedDiagnostic));
+
+ delete[] oldBuffer;
+ Stack = reinterpret_cast<sema::DelayedDiagnostic*>(newBuffer);
+ StackCapacity = newCapacity;
+ }
+
+ assert(StackSize < StackCapacity);
+ new (&Stack[StackSize++]) DelayedDiagnostic(diag);
+}
+
+void Sema::DelayedDiagnostics::popParsingDecl(Sema &S, ParsingDeclState state,
+ Decl *decl) {
+ DelayedDiagnostics &DD = S.DelayedDiagnostics;
+
+ // Check the invariants.
+ assert(DD.StackSize >= state.SavedStackSize);
+ assert(state.SavedStackSize >= DD.ActiveStackBase);
+ assert(DD.ParsingDepth > 0);
+
+ // Drop the parsing depth.
+ DD.ParsingDepth--;
+
+ // If there are no active diagnostics, we're done.
+ if (DD.StackSize == DD.ActiveStackBase)
+ return;
+
+ // We only want to actually emit delayed diagnostics when we
+ // successfully parsed a decl.
+ if (decl) {
+ // We emit all the active diagnostics, not just those starting
+ // from the saved state. The idea is this: we get one push for a
+ // decl spec and another for each declarator; in a decl group like:
+ // deprecated_typedef foo, *bar, baz();
+ // only the declarator pops will be passed decls. This is correct;
+ // we really do need to consider delayed diagnostics from the decl spec
+ // for each of the different declarations.
+ for (unsigned i = DD.ActiveStackBase, e = DD.StackSize; i != e; ++i) {
+ DelayedDiagnostic &diag = DD.Stack[i];
+ if (diag.Triggered)
+ continue;
+
+ switch (diag.Kind) {
+ case DelayedDiagnostic::Deprecation:
+ // Don't bother giving deprecation diagnostics if the decl is invalid.
+ if (!decl->isInvalidDecl())
+ S.HandleDelayedDeprecationCheck(diag, decl);
+ break;
+
+ case DelayedDiagnostic::Access:
+ S.HandleDelayedAccessCheck(diag, decl);
+ break;
+
+ case DelayedDiagnostic::ForbiddenType:
+ handleDelayedForbiddenType(S, diag, decl);
+ break;
+ }
+ }
+ }
+
+ // Destroy all the delayed diagnostics we're about to pop off.
+ for (unsigned i = state.SavedStackSize, e = DD.StackSize; i != e; ++i)
+ DD.Stack[i].Destroy();
+
+ DD.StackSize = state.SavedStackSize;
+}
+
+static bool isDeclDeprecated(Decl *D) {
+ do {
+ if (D->isDeprecated())
+ return true;
+ // A category implicitly has the availability of the interface.
+ if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
+ return CatD->getClassInterface()->isDeprecated();
+ } while ((D = cast_or_null<Decl>(D->getDeclContext())));
+ return false;
+}
+
+void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD,
+ Decl *Ctx) {
+ if (isDeclDeprecated(Ctx))
+ return;
+
+ DD.Triggered = true;
+ if (!DD.getDeprecationMessage().empty())
+ Diag(DD.Loc, diag::warn_deprecated_message)
+ << DD.getDeprecationDecl()->getDeclName()
+ << DD.getDeprecationMessage();
+ else if (DD.getUnknownObjCClass()) {
+ Diag(DD.Loc, diag::warn_deprecated_fwdclass_message)
+ << DD.getDeprecationDecl()->getDeclName();
+ Diag(DD.getUnknownObjCClass()->getLocation(), diag::note_forward_class);
+ }
+ else
+ Diag(DD.Loc, diag::warn_deprecated)
+ << DD.getDeprecationDecl()->getDeclName();
+}
+
+void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message,
+ SourceLocation Loc,
+ const ObjCInterfaceDecl *UnknownObjCClass) {
+ // Delay if we're currently parsing a declaration.
+ if (DelayedDiagnostics.shouldDelayDiagnostics()) {
+ DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D,
+ UnknownObjCClass,
+ Message));
+ return;
+ }
+
+ // Otherwise, don't warn if our current context is deprecated.
+ if (isDeclDeprecated(cast<Decl>(getCurLexicalContext())))
+ return;
+ if (!Message.empty())
+ Diag(Loc, diag::warn_deprecated_message) << D->getDeclName()
+ << Message;
+ else {
+ if (!UnknownObjCClass)
+ Diag(Loc, diag::warn_deprecated) << D->getDeclName();
+ else {
+ Diag(Loc, diag::warn_deprecated_fwdclass_message) << D->getDeclName();
+ Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
+ }
+ }
+}