diff options
author | Zancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au> | 2012-09-24 09:58:17 +1000 |
---|---|---|
committer | Zancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au> | 2012-09-24 09:58:17 +1000 |
commit | 222e2a7620e6520ffaf4fc4e69d79c18da31542e (patch) | |
tree | 7bfbc05bfa3b41c8f9d2e56d53a0bc3e310df239 /clang/lib/Sema/SemaDeclAttr.cpp | |
parent | 3d206f03985b50beacae843d880bccdc91a9f424 (diff) |
Add the clang library to the repo (with some of my changes, too).
Diffstat (limited to 'clang/lib/Sema/SemaDeclAttr.cpp')
-rw-r--r-- | clang/lib/Sema/SemaDeclAttr.cpp | 4171 |
1 files changed, 4171 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaDeclAttr.cpp b/clang/lib/Sema/SemaDeclAttr.cpp new file mode 100644 index 0000000..5c6ddd2 --- /dev/null +++ b/clang/lib/Sema/SemaDeclAttr.cpp @@ -0,0 +1,4171 @@ +//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements decl-related attribute processing. +// +//===----------------------------------------------------------------------===// + +#include "clang/Sema/SemaInternal.h" +#include "TargetAttributesSema.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/Expr.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Sema/DeclSpec.h" +#include "clang/Sema/DelayedDiagnostic.h" +#include "clang/Sema/Lookup.h" +#include "llvm/ADT/StringExtras.h" +using namespace clang; +using namespace sema; + +/// These constants match the enumerated choices of +/// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type. +enum AttributeDeclKind { + ExpectedFunction, + ExpectedUnion, + ExpectedVariableOrFunction, + ExpectedFunctionOrMethod, + ExpectedParameter, + ExpectedFunctionMethodOrBlock, + ExpectedFunctionMethodOrParameter, + ExpectedClass, + ExpectedVariable, + ExpectedMethod, + ExpectedVariableFunctionOrLabel, + ExpectedFieldOrGlobalVar, + ExpectedStruct +}; + +//===----------------------------------------------------------------------===// +// Helper functions +//===----------------------------------------------------------------------===// + +static const FunctionType *getFunctionType(const Decl *D, + bool blocksToo = true) { + QualType Ty; + if (const ValueDecl *decl = dyn_cast<ValueDecl>(D)) + Ty = decl->getType(); + else if (const FieldDecl *decl = dyn_cast<FieldDecl>(D)) + Ty = decl->getType(); + else if (const TypedefNameDecl* decl = dyn_cast<TypedefNameDecl>(D)) + Ty = decl->getUnderlyingType(); + else + return 0; + + if (Ty->isFunctionPointerType()) + Ty = Ty->getAs<PointerType>()->getPointeeType(); + else if (blocksToo && Ty->isBlockPointerType()) + Ty = Ty->getAs<BlockPointerType>()->getPointeeType(); + + return Ty->getAs<FunctionType>(); +} + +// FIXME: We should provide an abstraction around a method or function +// to provide the following bits of information. + +/// isFunction - Return true if the given decl has function +/// type (function or function-typed variable). +static bool isFunction(const Decl *D) { + return getFunctionType(D, false) != NULL; +} + +/// isFunctionOrMethod - Return true if the given decl has function +/// type (function or function-typed variable) or an Objective-C +/// method. +static bool isFunctionOrMethod(const Decl *D) { + return isFunction(D)|| isa<ObjCMethodDecl>(D); +} + +/// isFunctionOrMethodOrBlock - Return true if the given decl has function +/// type (function or function-typed variable) or an Objective-C +/// method or a block. +static bool isFunctionOrMethodOrBlock(const Decl *D) { + if (isFunctionOrMethod(D)) + return true; + // check for block is more involved. + if (const VarDecl *V = dyn_cast<VarDecl>(D)) { + QualType Ty = V->getType(); + return Ty->isBlockPointerType(); + } + return isa<BlockDecl>(D); +} + +/// Return true if the given decl has a declarator that should have +/// been processed by Sema::GetTypeForDeclarator. +static bool hasDeclarator(const Decl *D) { + // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl. + return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) || + isa<ObjCPropertyDecl>(D); +} + +/// hasFunctionProto - Return true if the given decl has a argument +/// information. This decl should have already passed +/// isFunctionOrMethod or isFunctionOrMethodOrBlock. +static bool hasFunctionProto(const Decl *D) { + if (const FunctionType *FnTy = getFunctionType(D)) + return isa<FunctionProtoType>(FnTy); + else { + assert(isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D)); + return true; + } +} + +/// getFunctionOrMethodNumArgs - Return number of function or method +/// arguments. It is an error to call this on a K&R function (use +/// hasFunctionProto first). +static unsigned getFunctionOrMethodNumArgs(const Decl *D) { + if (const FunctionType *FnTy = getFunctionType(D)) + return cast<FunctionProtoType>(FnTy)->getNumArgs(); + if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) + return BD->getNumParams(); + return cast<ObjCMethodDecl>(D)->param_size(); +} + +static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) { + if (const FunctionType *FnTy = getFunctionType(D)) + return cast<FunctionProtoType>(FnTy)->getArgType(Idx); + if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) + return BD->getParamDecl(Idx)->getType(); + + return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType(); +} + +static QualType getFunctionOrMethodResultType(const Decl *D) { + if (const FunctionType *FnTy = getFunctionType(D)) + return cast<FunctionProtoType>(FnTy)->getResultType(); + return cast<ObjCMethodDecl>(D)->getResultType(); +} + +static bool isFunctionOrMethodVariadic(const Decl *D) { + if (const FunctionType *FnTy = getFunctionType(D)) { + const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy); + return proto->isVariadic(); + } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) + return BD->isVariadic(); + else { + return cast<ObjCMethodDecl>(D)->isVariadic(); + } +} + +static bool isInstanceMethod(const Decl *D) { + if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) + return MethodDecl->isInstance(); + return false; +} + +static inline bool isNSStringType(QualType T, ASTContext &Ctx) { + const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); + if (!PT) + return false; + + ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface(); + if (!Cls) + return false; + + IdentifierInfo* ClsName = Cls->getIdentifier(); + + // FIXME: Should we walk the chain of classes? + return ClsName == &Ctx.Idents.get("NSString") || + ClsName == &Ctx.Idents.get("NSMutableString"); +} + +static inline bool isCFStringType(QualType T, ASTContext &Ctx) { + const PointerType *PT = T->getAs<PointerType>(); + if (!PT) + return false; + + const RecordType *RT = PT->getPointeeType()->getAs<RecordType>(); + if (!RT) + return false; + + const RecordDecl *RD = RT->getDecl(); + if (RD->getTagKind() != TTK_Struct) + return false; + + return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); +} + +/// \brief Check if the attribute has exactly as many args as Num. May +/// output an error. +static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr, + unsigned int Num) { + if (Attr.getNumArgs() != Num) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Num; + return false; + } + + return true; +} + + +/// \brief Check if the attribute has at least as many args as Num. May +/// output an error. +static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr, + unsigned int Num) { + if (Attr.getNumArgs() < Num) { + S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) << Num; + return false; + } + + return true; +} + +/// +/// \brief Check if passed in Decl is a field or potentially shared global var +/// \return true if the Decl is a field or potentially shared global variable +/// +static bool mayBeSharedVariable(const Decl *D) { + if (isa<FieldDecl>(D)) + return true; + if (const VarDecl *vd = dyn_cast<VarDecl>(D)) + return (vd->hasGlobalStorage() && !(vd->isThreadSpecified())); + + return false; +} + +/// \brief Check if the passed-in expression is of type int or bool. +static bool isIntOrBool(Expr *Exp) { + QualType QT = Exp->getType(); + return QT->isBooleanType() || QT->isIntegerType(); +} + +/// +/// \brief Check if passed in Decl is a pointer type. +/// Note that this function may produce an error message. +/// \return true if the Decl is a pointer type; false otherwise +/// +static bool checkIsPointer(Sema &S, const Decl *D, const AttributeList &Attr) { + if (const ValueDecl *vd = dyn_cast<ValueDecl>(D)) { + QualType QT = vd->getType(); + if (QT->isAnyPointerType()) + return true; + S.Diag(Attr.getLoc(), diag::warn_pointer_attribute_wrong_type) + << Attr.getName()->getName() << QT; + } else { + S.Diag(Attr.getLoc(), diag::err_attribute_can_be_applied_only_to_value_decl) + << Attr.getName(); + } + return false; +} + +/// \brief Checks that the passed in QualType either is of RecordType or points +/// to RecordType. Returns the relevant RecordType, null if it does not exit. +static const RecordType *getRecordType(QualType QT) { + if (const RecordType *RT = QT->getAs<RecordType>()) + return RT; + + // Now check if we point to record type. + if (const PointerType *PT = QT->getAs<PointerType>()) + return PT->getPointeeType()->getAs<RecordType>(); + + return 0; +} + +/// \brief Thread Safety Analysis: Checks that the passed in RecordType +/// resolves to a lockable object. May flag an error. +static void checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr, + QualType Ty) { + const RecordType *RT = getRecordType(Ty); + + // Warn if could not get record type for this argument. + if (!RT) { + S.Diag(Attr.getLoc(), diag::warn_attribute_argument_not_class) + << Attr.getName() << Ty.getAsString(); + return; + } + // Don't check for lockable if the class hasn't been defined yet. + if (RT->isIncompleteType()) + return; + // Warn if the type is not lockable. + if (!RT->getDecl()->getAttr<LockableAttr>()) { + S.Diag(Attr.getLoc(), diag::warn_attribute_argument_not_lockable) + << Attr.getName() << Ty.getAsString(); + return; + } +} + +/// \brief Thread Safety Analysis: Checks that all attribute arguments, starting +/// from Sidx, resolve to a lockable object. May flag an error. +/// \param Sidx The attribute argument index to start checking with. +/// \param ParamIdxOk Whether an argument can be indexing into a function +/// parameter list. +static bool checkAttrArgsAreLockableObjs(Sema &S, Decl *D, + const AttributeList &Attr, + SmallVectorImpl<Expr*> &Args, + int Sidx = 0, + bool ParamIdxOk = false) { + for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) { + Expr *ArgExp = Attr.getArg(Idx); + + if (ArgExp->isTypeDependent()) { + // FIXME -- need to processs this again on template instantiation + Args.push_back(ArgExp); + continue; + } + + QualType ArgTy = ArgExp->getType(); + + // First see if we can just cast to record type, or point to record type. + const RecordType *RT = getRecordType(ArgTy); + + // Now check if we index into a record type function param. + if(!RT && ParamIdxOk) { + FunctionDecl *FD = dyn_cast<FunctionDecl>(D); + IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp); + if(FD && IL) { + unsigned int NumParams = FD->getNumParams(); + llvm::APInt ArgValue = IL->getValue(); + uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); + uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; + if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range) + << Attr.getName() << Idx + 1 << NumParams; + return false; + } + ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); + } + } + + checkForLockableRecord(S, D, Attr, ArgTy); + + Args.push_back(ArgExp); + } + return true; +} + +//===----------------------------------------------------------------------===// +// Attribute Implementations +//===----------------------------------------------------------------------===// + +// FIXME: All this manual attribute parsing code is gross. At the +// least add some helper functions to check most argument patterns (# +// and types of args). + +static void handleGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr, + bool pointer = false) { + assert(!Attr.isInvalid()); + + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + // D must be either a member field or global (potentially shared) variable. + if (!mayBeSharedVariable(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFieldOrGlobalVar; + return; + } + + if (pointer && !checkIsPointer(S, D, Attr)) + return; + + if (pointer) + D->addAttr(::new (S.Context) PtGuardedVarAttr(Attr.getRange(), S.Context)); + else + D->addAttr(::new (S.Context) GuardedVarAttr(Attr.getRange(), S.Context)); +} + +static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr, + bool pointer = false) { + assert(!Attr.isInvalid()); + + if (!checkAttributeNumArgs(S, Attr, 1)) + return; + + Expr *Arg = Attr.getArg(0); + + // D must be either a member field or global (potentially shared) variable. + if (!mayBeSharedVariable(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFieldOrGlobalVar; + return; + } + + if (pointer && !checkIsPointer(S, D, Attr)) + return; + + if (!Arg->isTypeDependent()) { + checkForLockableRecord(S, D, Attr, Arg->getType()); + } + + if (pointer) + D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(), + S.Context, Arg)); + else + D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg)); +} + + +static void handleLockableAttr(Sema &S, Decl *D, const AttributeList &Attr, + bool scoped = false) { + assert(!Attr.isInvalid()); + + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + // FIXME: Lockable structs for C code. + if (!isa<CXXRecordDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedClass; + return; + } + + if (scoped) + D->addAttr(::new (S.Context) ScopedLockableAttr(Attr.getRange(), S.Context)); + else + D->addAttr(::new (S.Context) LockableAttr(Attr.getRange(), S.Context)); +} + +static void handleNoThreadSafetyAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + assert(!Attr.isInvalid()); + + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionOrMethod; + return; + } + + D->addAttr(::new (S.Context) NoThreadSafetyAnalysisAttr(Attr.getRange(), + S.Context)); +} + +static void handleNoAddressSafetyAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + assert(!Attr.isInvalid()); + + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionOrMethod; + return; + } + + D->addAttr(::new (S.Context) NoAddressSafetyAnalysisAttr(Attr.getRange(), + S.Context)); +} + +static void handleAcquireOrderAttr(Sema &S, Decl *D, const AttributeList &Attr, + bool before) { + assert(!Attr.isInvalid()); + + if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) + return; + + // D must be either a member field or global (potentially shared) variable. + ValueDecl *VD = dyn_cast<ValueDecl>(D); + if (!VD || !mayBeSharedVariable(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFieldOrGlobalVar; + return; + } + + // Check that this attribute only applies to lockable types + QualType QT = VD->getType(); + if (!QT->isDependentType()) { + const RecordType *RT = getRecordType(QT); + if (!RT || !RT->getDecl()->getAttr<LockableAttr>()) { + S.Diag(Attr.getLoc(), diag::warn_attribute_decl_not_lockable) + << Attr.getName(); + return; + } + } + + SmallVector<Expr*, 1> Args; + // check that all arguments are lockable objects + if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args)) + return; + + unsigned Size = Args.size(); + assert(Size == Attr.getNumArgs()); + Expr **StartArg = Size == 0 ? 0 : &Args[0]; + + if (before) + D->addAttr(::new (S.Context) AcquiredBeforeAttr(Attr.getRange(), S.Context, + StartArg, Size)); + else + D->addAttr(::new (S.Context) AcquiredAfterAttr(Attr.getRange(), S.Context, + StartArg, Size)); +} + +static void handleLockFunAttr(Sema &S, Decl *D, const AttributeList &Attr, + bool exclusive = false) { + assert(!Attr.isInvalid()); + + // zero or more arguments ok + + // check that the attribute is applied to a function + if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionOrMethod; + return; + } + + // check that all arguments are lockable objects + SmallVector<Expr*, 1> Args; + if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true)) + return; + + unsigned Size = Args.size(); + assert(Size == Attr.getNumArgs()); + Expr **StartArg = Size == 0 ? 0 : &Args[0]; + + if (exclusive) + D->addAttr(::new (S.Context) ExclusiveLockFunctionAttr(Attr.getRange(), + S.Context, StartArg, + Size)); + else + D->addAttr(::new (S.Context) SharedLockFunctionAttr(Attr.getRange(), + S.Context, StartArg, + Size)); +} + +static void handleTrylockFunAttr(Sema &S, Decl *D, const AttributeList &Attr, + bool exclusive = false) { + assert(!Attr.isInvalid()); + + if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) + return; + + + if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionOrMethod; + return; + } + + if (!isIntOrBool(Attr.getArg(0))) { + S.Diag(Attr.getLoc(), diag::err_attribute_first_argument_not_int_or_bool) + << Attr.getName(); + return; + } + + SmallVector<Expr*, 2> Args; + // check that all arguments are lockable objects + if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1)) + return; + + unsigned Size = Args.size(); + Expr **StartArg = Size == 0 ? 0 : &Args[0]; + + if (exclusive) + D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(Attr.getRange(), + S.Context, + Attr.getArg(0), + StartArg, Size)); + else + D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(Attr.getRange(), + S.Context, + Attr.getArg(0), + StartArg, Size)); +} + +static void handleLocksRequiredAttr(Sema &S, Decl *D, const AttributeList &Attr, + bool exclusive = false) { + assert(!Attr.isInvalid()); + + if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) + return; + + if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionOrMethod; + return; + } + + // check that all arguments are lockable objects + SmallVector<Expr*, 1> Args; + if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args)) + return; + + unsigned Size = Args.size(); + assert(Size == Attr.getNumArgs()); + Expr **StartArg = Size == 0 ? 0 : &Args[0]; + + if (exclusive) + D->addAttr(::new (S.Context) ExclusiveLocksRequiredAttr(Attr.getRange(), + S.Context, StartArg, + Size)); + else + D->addAttr(::new (S.Context) SharedLocksRequiredAttr(Attr.getRange(), + S.Context, StartArg, + Size)); +} + +static void handleUnlockFunAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + assert(!Attr.isInvalid()); + + // zero or more arguments ok + + if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionOrMethod; + return; + } + + // check that all arguments are lockable objects + SmallVector<Expr*, 1> Args; + if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true)) + return; + + unsigned Size = Args.size(); + assert(Size == Attr.getNumArgs()); + Expr **StartArg = Size == 0 ? 0 : &Args[0]; + + D->addAttr(::new (S.Context) UnlockFunctionAttr(Attr.getRange(), S.Context, + StartArg, Size)); +} + +static void handleLockReturnedAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + assert(!Attr.isInvalid()); + + if (!checkAttributeNumArgs(S, Attr, 1)) + return; + Expr *Arg = Attr.getArg(0); + + if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionOrMethod; + return; + } + + if (Arg->isTypeDependent()) + return; + + // check that the argument is lockable object + checkForLockableRecord(S, D, Attr, Arg->getType()); + + D->addAttr(::new (S.Context) LockReturnedAttr(Attr.getRange(), S.Context, Arg)); +} + +static void handleLocksExcludedAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + assert(!Attr.isInvalid()); + + if (!checkAttributeAtLeastNumArgs(S, Attr, 1)) + return; + + if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionOrMethod; + return; + } + + // check that all arguments are lockable objects + SmallVector<Expr*, 1> Args; + if (!checkAttrArgsAreLockableObjs(S, D, Attr, Args)) + return; + + unsigned Size = Args.size(); + assert(Size == Attr.getNumArgs()); + Expr **StartArg = Size == 0 ? 0 : &Args[0]; + + D->addAttr(::new (S.Context) LocksExcludedAttr(Attr.getRange(), S.Context, + StartArg, Size)); +} + + +static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D, + const AttributeList &Attr) { + TypedefNameDecl *tDecl = dyn_cast<TypedefNameDecl>(D); + if (tDecl == 0) { + S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef); + return; + } + + QualType curType = tDecl->getUnderlyingType(); + + Expr *sizeExpr; + + // Special case where the argument is a template id. + if (Attr.getParameterName()) { + CXXScopeSpec SS; + SourceLocation TemplateKWLoc; + UnqualifiedId id; + id.setIdentifier(Attr.getParameterName(), Attr.getLoc()); + + ExprResult Size = S.ActOnIdExpression(scope, SS, TemplateKWLoc, id, + false, false); + if (Size.isInvalid()) + return; + + sizeExpr = Size.get(); + } else { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 1)) + return; + + sizeExpr = Attr.getArg(0); + } + + // Instantiate/Install the vector type, and let Sema build the type for us. + // This will run the reguired checks. + QualType T = S.BuildExtVectorType(curType, sizeExpr, Attr.getLoc()); + if (!T.isNull()) { + // FIXME: preserve the old source info. + tDecl->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(T)); + + // Remember this typedef decl, we will need it later for diagnostics. + S.ExtVectorDecls.push_back(tDecl); + } +} + +static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + if (TagDecl *TD = dyn_cast<TagDecl>(D)) + TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context)); + else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) { + // If the alignment is less than or equal to 8 bits, the packed attribute + // has no effect. + if (!FD->getType()->isIncompleteType() && + S.Context.getTypeAlign(FD->getType()) <= 8) + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type) + << Attr.getName() << FD->getType(); + else + FD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context)); + } else + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); +} + +static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (TagDecl *TD = dyn_cast<TagDecl>(D)) + TD->addAttr(::new (S.Context) MsStructAttr(Attr.getRange(), S.Context)); + else + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); +} + +static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + // The IBAction attributes only apply to instance methods. + if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) + if (MD->isInstanceMethod()) { + D->addAttr(::new (S.Context) IBActionAttr(Attr.getRange(), S.Context)); + return; + } + + S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName(); +} + +static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) { + // The IBOutlet/IBOutletCollection attributes only apply to instance + // variables or properties of Objective-C classes. The outlet must also + // have an object reference type. + if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) { + if (!VD->getType()->getAs<ObjCObjectPointerType>()) { + S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type) + << Attr.getName() << VD->getType() << 0; + return false; + } + } + else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) { + if (!PD->getType()->getAs<ObjCObjectPointerType>()) { + S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type) + << Attr.getName() << PD->getType() << 1; + return false; + } + } + else { + S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName(); + return false; + } + + return true; +} + +static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + if (!checkIBOutletCommon(S, D, Attr)) + return; + + D->addAttr(::new (S.Context) IBOutletAttr(Attr.getRange(), S.Context)); +} + +static void handleIBOutletCollection(Sema &S, Decl *D, + const AttributeList &Attr) { + + // The iboutletcollection attribute can have zero or one arguments. + if (Attr.getParameterName() && Attr.getNumArgs() > 0) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; + return; + } + + if (!checkIBOutletCommon(S, D, Attr)) + return; + + IdentifierInfo *II = Attr.getParameterName(); + if (!II) + II = &S.Context.Idents.get("NSObject"); + + ParsedType TypeRep = S.getTypeName(*II, Attr.getLoc(), + S.getScopeForContext(D->getDeclContext()->getParent())); + if (!TypeRep) { + S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II; + return; + } + QualType QT = TypeRep.get(); + // Diagnose use of non-object type in iboutletcollection attribute. + // FIXME. Gnu attribute extension ignores use of builtin types in + // attributes. So, __attribute__((iboutletcollection(char))) will be + // treated as __attribute__((iboutletcollection())). + if (!QT->isObjCIdType() && !QT->isObjCObjectType()) { + S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II; + return; + } + D->addAttr(::new (S.Context) IBOutletCollectionAttr(Attr.getRange(),S.Context, + QT, Attr.getParameterLoc())); +} + +static void possibleTransparentUnionPointerType(QualType &T) { + if (const RecordType *UT = T->getAsUnionType()) + if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { + RecordDecl *UD = UT->getDecl(); + for (RecordDecl::field_iterator it = UD->field_begin(), + itend = UD->field_end(); it != itend; ++it) { + QualType QT = it->getType(); + if (QT->isAnyPointerType() || QT->isBlockPointerType()) { + T = QT; + return; + } + } + } +} + +static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // GCC ignores the nonnull attribute on K&R style function prototypes, so we + // ignore it as well + if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + // In C++ the implicit 'this' function parameter also counts, and they are + // counted from one. + bool HasImplicitThisParam = isInstanceMethod(D); + unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam; + + // The nonnull attribute only applies to pointers. + SmallVector<unsigned, 10> NonNullArgs; + + for (AttributeList::arg_iterator I=Attr.arg_begin(), + E=Attr.arg_end(); I!=E; ++I) { + + + // The argument must be an integer constant expression. + Expr *Ex = *I; + llvm::APSInt ArgNum(32); + if (Ex->isTypeDependent() || Ex->isValueDependent() || + !Ex->isIntegerConstantExpr(ArgNum, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) + << "nonnull" << Ex->getSourceRange(); + return; + } + + unsigned x = (unsigned) ArgNum.getZExtValue(); + + if (x < 1 || x > NumArgs) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) + << "nonnull" << I.getArgNum() << Ex->getSourceRange(); + return; + } + + --x; + if (HasImplicitThisParam) { + if (x == 0) { + S.Diag(Attr.getLoc(), + diag::err_attribute_invalid_implicit_this_argument) + << "nonnull" << Ex->getSourceRange(); + return; + } + --x; + } + + // Is the function argument a pointer type? + QualType T = getFunctionOrMethodArgType(D, x).getNonReferenceType(); + possibleTransparentUnionPointerType(T); + + if (!T->isAnyPointerType() && !T->isBlockPointerType()) { + // FIXME: Should also highlight argument in decl. + S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only) + << "nonnull" << Ex->getSourceRange(); + continue; + } + + NonNullArgs.push_back(x); + } + + // If no arguments were specified to __attribute__((nonnull)) then all pointer + // arguments have a nonnull attribute. + if (NonNullArgs.empty()) { + for (unsigned I = 0, E = getFunctionOrMethodNumArgs(D); I != E; ++I) { + QualType T = getFunctionOrMethodArgType(D, I).getNonReferenceType(); + possibleTransparentUnionPointerType(T); + if (T->isAnyPointerType() || T->isBlockPointerType()) + NonNullArgs.push_back(I); + } + + // No pointer arguments? + if (NonNullArgs.empty()) { + // Warn the trivial case only if attribute is not coming from a + // macro instantiation. + if (Attr.getLoc().isFileID()) + S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers); + return; + } + } + + unsigned* start = &NonNullArgs[0]; + unsigned size = NonNullArgs.size(); + llvm::array_pod_sort(start, start + size); + D->addAttr(::new (S.Context) NonNullAttr(Attr.getRange(), S.Context, start, + size)); +} + +static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) { + // This attribute must be applied to a function declaration. + // The first argument to the attribute must be a string, + // the name of the resource, for example "malloc". + // The following arguments must be argument indexes, the arguments must be + // of integer type for Returns, otherwise of pointer type. + // The difference between Holds and Takes is that a pointer may still be used + // after being held. free() should be __attribute((ownership_takes)), whereas + // a list append function may well be __attribute((ownership_holds)). + + if (!AL.getParameterName()) { + S.Diag(AL.getLoc(), diag::err_attribute_argument_n_not_string) + << AL.getName()->getName() << 1; + return; + } + // Figure out our Kind, and check arguments while we're at it. + OwnershipAttr::OwnershipKind K; + switch (AL.getKind()) { + case AttributeList::AT_ownership_takes: + K = OwnershipAttr::Takes; + if (AL.getNumArgs() < 1) { + S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2; + return; + } + break; + case AttributeList::AT_ownership_holds: + K = OwnershipAttr::Holds; + if (AL.getNumArgs() < 1) { + S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2; + return; + } + break; + case AttributeList::AT_ownership_returns: + K = OwnershipAttr::Returns; + if (AL.getNumArgs() > 1) { + S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) + << AL.getNumArgs() + 1; + return; + } + break; + default: + // This should never happen given how we are called. + llvm_unreachable("Unknown ownership attribute"); + } + + if (!isFunction(D) || !hasFunctionProto(D)) { + S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) + << AL.getName() << ExpectedFunction; + return; + } + + // In C++ the implicit 'this' function parameter also counts, and they are + // counted from one. + bool HasImplicitThisParam = isInstanceMethod(D); + unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam; + + StringRef Module = AL.getParameterName()->getName(); + + // Normalize the argument, __foo__ becomes foo. + if (Module.startswith("__") && Module.endswith("__")) + Module = Module.substr(2, Module.size() - 4); + + SmallVector<unsigned, 10> OwnershipArgs; + + for (AttributeList::arg_iterator I = AL.arg_begin(), E = AL.arg_end(); I != E; + ++I) { + + Expr *IdxExpr = *I; + llvm::APSInt ArgNum(32); + if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() + || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) { + S.Diag(AL.getLoc(), diag::err_attribute_argument_not_int) + << AL.getName()->getName() << IdxExpr->getSourceRange(); + continue; + } + + unsigned x = (unsigned) ArgNum.getZExtValue(); + + if (x > NumArgs || x < 1) { + S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) + << AL.getName()->getName() << x << IdxExpr->getSourceRange(); + continue; + } + --x; + if (HasImplicitThisParam) { + if (x == 0) { + S.Diag(AL.getLoc(), diag::err_attribute_invalid_implicit_this_argument) + << "ownership" << IdxExpr->getSourceRange(); + return; + } + --x; + } + + switch (K) { + case OwnershipAttr::Takes: + case OwnershipAttr::Holds: { + // Is the function argument a pointer type? + QualType T = getFunctionOrMethodArgType(D, x); + if (!T->isAnyPointerType() && !T->isBlockPointerType()) { + // FIXME: Should also highlight argument in decl. + S.Diag(AL.getLoc(), diag::err_ownership_type) + << ((K==OwnershipAttr::Takes)?"ownership_takes":"ownership_holds") + << "pointer" + << IdxExpr->getSourceRange(); + continue; + } + break; + } + case OwnershipAttr::Returns: { + if (AL.getNumArgs() > 1) { + // Is the function argument an integer type? + Expr *IdxExpr = AL.getArg(0); + llvm::APSInt ArgNum(32); + if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() + || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) { + S.Diag(AL.getLoc(), diag::err_ownership_type) + << "ownership_returns" << "integer" + << IdxExpr->getSourceRange(); + return; + } + } + break; + } + } // switch + + // Check we don't have a conflict with another ownership attribute. + for (specific_attr_iterator<OwnershipAttr> + i = D->specific_attr_begin<OwnershipAttr>(), + e = D->specific_attr_end<OwnershipAttr>(); + i != e; ++i) { + if ((*i)->getOwnKind() != K) { + for (const unsigned *I = (*i)->args_begin(), *E = (*i)->args_end(); + I!=E; ++I) { + if (x == *I) { + S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) + << AL.getName()->getName() << "ownership_*"; + } + } + } + } + OwnershipArgs.push_back(x); + } + + unsigned* start = OwnershipArgs.data(); + unsigned size = OwnershipArgs.size(); + llvm::array_pod_sort(start, start + size); + + if (K != OwnershipAttr::Returns && OwnershipArgs.empty()) { + S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << 2; + return; + } + + D->addAttr(::new (S.Context) OwnershipAttr(AL.getLoc(), S.Context, K, Module, + start, size)); +} + +/// Whether this declaration has internal linkage for the purposes of +/// things that want to complain about things not have internal linkage. +static bool hasEffectivelyInternalLinkage(NamedDecl *D) { + switch (D->getLinkage()) { + case NoLinkage: + case InternalLinkage: + return true; + + // Template instantiations that go from external to unique-external + // shouldn't get diagnosed. + case UniqueExternalLinkage: + return true; + + case ExternalLinkage: + return false; + } + llvm_unreachable("unknown linkage kind!"); +} + +static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // Check the attribute arguments. + if (Attr.getNumArgs() > 1) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; + return; + } + + if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) + << Attr.getName() << ExpectedVariableOrFunction; + return; + } + + NamedDecl *nd = cast<NamedDecl>(D); + + // gcc rejects + // class c { + // static int a __attribute__((weakref ("v2"))); + // static int b() __attribute__((weakref ("f3"))); + // }; + // and ignores the attributes of + // void f(void) { + // static int a __attribute__((weakref ("v2"))); + // } + // we reject them + const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); + if (!Ctx->isFileContext()) { + S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) << + nd->getNameAsString(); + return; + } + + // The GCC manual says + // + // At present, a declaration to which `weakref' is attached can only + // be `static'. + // + // It also says + // + // Without a TARGET, + // given as an argument to `weakref' or to `alias', `weakref' is + // equivalent to `weak'. + // + // gcc 4.4.1 will accept + // int a7 __attribute__((weakref)); + // as + // int a7 __attribute__((weak)); + // This looks like a bug in gcc. We reject that for now. We should revisit + // it if this behaviour is actually used. + + if (!hasEffectivelyInternalLinkage(nd)) { + S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_static); + return; + } + + // GCC rejects + // static ((alias ("y"), weakref)). + // Should we? How to check that weakref is before or after alias? + + if (Attr.getNumArgs() == 1) { + Expr *Arg = Attr.getArg(0); + Arg = Arg->IgnoreParenCasts(); + StringLiteral *Str = dyn_cast<StringLiteral>(Arg); + + if (!Str || !Str->isAscii()) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) + << "weakref" << 1; + return; + } + // GCC will accept anything as the argument of weakref. Should we + // check for an existing decl? + D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, + Str->getString())); + } + + D->addAttr(::new (S.Context) WeakRefAttr(Attr.getRange(), S.Context)); +} + +static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (Attr.getNumArgs() != 1) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; + return; + } + + Expr *Arg = Attr.getArg(0); + Arg = Arg->IgnoreParenCasts(); + StringLiteral *Str = dyn_cast<StringLiteral>(Arg); + + if (!Str || !Str->isAscii()) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) + << "alias" << 1; + return; + } + + if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { + S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin); + return; + } + + // FIXME: check if target symbol exists in current file + + D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, + Str->getString())); +} + +static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // Check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + if (!isa<FunctionDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + D->addAttr(::new (S.Context) NakedAttr(Attr.getRange(), S.Context)); +} + +static void handleAlwaysInlineAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + // Check the attribute arguments. + if (Attr.hasParameterOrArguments()) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + return; + } + + if (!isa<FunctionDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + D->addAttr(::new (S.Context) AlwaysInlineAttr(Attr.getRange(), S.Context)); +} + +static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // Check the attribute arguments. + if (Attr.hasParameterOrArguments()) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + return; + } + + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + QualType RetTy = FD->getResultType(); + if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) { + D->addAttr(::new (S.Context) MallocAttr(Attr.getRange(), S.Context)); + return; + } + } + + S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only); +} + +static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + D->addAttr(::new (S.Context) MayAliasAttr(Attr.getRange(), S.Context)); +} + +static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) { + assert(!Attr.isInvalid()); + if (isa<VarDecl>(D)) + D->addAttr(::new (S.Context) NoCommonAttr(Attr.getRange(), S.Context)); + else + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedVariable; +} + +static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) { + assert(!Attr.isInvalid()); + if (isa<VarDecl>(D)) + D->addAttr(::new (S.Context) CommonAttr(Attr.getRange(), S.Context)); + else + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedVariable; +} + +static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) { + if (hasDeclarator(D)) return; + + if (S.CheckNoReturnAttr(attr)) return; + + if (!isa<ObjCMethodDecl>(D)) { + S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << attr.getName() << ExpectedFunctionOrMethod; + return; + } + + D->addAttr(::new (S.Context) NoReturnAttr(attr.getRange(), S.Context)); +} + +bool Sema::CheckNoReturnAttr(const AttributeList &attr) { + if (attr.hasParameterOrArguments()) { + Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + attr.setInvalid(); + return true; + } + + return false; +} + +static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + + // The checking path for 'noreturn' and 'analyzer_noreturn' are different + // because 'analyzer_noreturn' does not impact the type. + + if(!checkAttributeNumArgs(S, Attr, 0)) + return; + + if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) { + ValueDecl *VD = dyn_cast<ValueDecl>(D); + if (VD == 0 || (!VD->getType()->isBlockPointerType() + && !VD->getType()->isFunctionPointerType())) { + S.Diag(Attr.getLoc(), + Attr.isCXX0XAttribute() ? diag::err_attribute_wrong_decl_type + : diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionMethodOrBlock; + return; + } + } + + D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(Attr.getRange(), S.Context)); +} + +// PS3 PPU-specific. +static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) { +/* + Returning a Vector Class in Registers + + According to the PPU ABI specifications, a class with a single member of + vector type is returned in memory when used as the return value of a function. + This results in inefficient code when implementing vector classes. To return + the value in a single vector register, add the vecreturn attribute to the + class definition. This attribute is also applicable to struct types. + + Example: + + struct Vector + { + __vector float xyzw; + } __attribute__((vecreturn)); + + Vector Add(Vector lhs, Vector rhs) + { + Vector result; + result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); + return result; // This will be returned in a register + } +*/ + if (!isa<RecordDecl>(D)) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) + << Attr.getName() << ExpectedClass; + return; + } + + if (D->getAttr<VecReturnAttr>()) { + S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn"; + return; + } + + RecordDecl *record = cast<RecordDecl>(D); + int count = 0; + + if (!isa<CXXRecordDecl>(record)) { + S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member); + return; + } + + if (!cast<CXXRecordDecl>(record)->isPOD()) { + S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record); + return; + } + + for (RecordDecl::field_iterator iter = record->field_begin(); + iter != record->field_end(); iter++) { + if ((count == 1) || !iter->getType()->isVectorType()) { + S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member); + return; + } + count++; + } + + D->addAttr(::new (S.Context) VecReturnAttr(Attr.getRange(), S.Context)); +} + +static void handleDependencyAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (!isFunctionOrMethod(D) && !isa<ParmVarDecl>(D)) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionMethodOrParameter; + return; + } + // FIXME: Actually store the attribute on the declaration +} + +static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (Attr.hasParameterOrArguments()) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + return; + } + + if (!isa<VarDecl>(D) && !isa<ObjCIvarDecl>(D) && !isFunctionOrMethod(D) && + !isa<TypeDecl>(D) && !isa<LabelDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedVariableFunctionOrLabel; + return; + } + + D->addAttr(::new (S.Context) UnusedAttr(Attr.getRange(), S.Context)); +} + +static void handleReturnsTwiceAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + // check the attribute arguments. + if (Attr.hasParameterOrArguments()) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + return; + } + + if (!isa<FunctionDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + D->addAttr(::new (S.Context) ReturnsTwiceAttr(Attr.getRange(), S.Context)); +} + +static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (Attr.hasParameterOrArguments()) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + return; + } + + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { + if (VD->hasLocalStorage() || VD->hasExternalStorage()) { + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used"; + return; + } + } else if (!isFunctionOrMethod(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedVariableOrFunction; + return; + } + + D->addAttr(::new (S.Context) UsedAttr(Attr.getRange(), S.Context)); +} + +static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (Attr.getNumArgs() > 1) { + S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1; + return; + } + + int priority = 65535; // FIXME: Do not hardcode such constants. + if (Attr.getNumArgs() > 0) { + Expr *E = Attr.getArg(0); + llvm::APSInt Idx(32); + if (E->isTypeDependent() || E->isValueDependent() || + !E->isIntegerConstantExpr(Idx, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) + << "constructor" << 1 << E->getSourceRange(); + return; + } + priority = Idx.getZExtValue(); + } + + if (!isa<FunctionDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + D->addAttr(::new (S.Context) ConstructorAttr(Attr.getRange(), S.Context, + priority)); +} + +static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (Attr.getNumArgs() > 1) { + S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1; + return; + } + + int priority = 65535; // FIXME: Do not hardcode such constants. + if (Attr.getNumArgs() > 0) { + Expr *E = Attr.getArg(0); + llvm::APSInt Idx(32); + if (E->isTypeDependent() || E->isValueDependent() || + !E->isIntegerConstantExpr(Idx, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) + << "destructor" << 1 << E->getSourceRange(); + return; + } + priority = Idx.getZExtValue(); + } + + if (!isa<FunctionDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + D->addAttr(::new (S.Context) DestructorAttr(Attr.getRange(), S.Context, + priority)); +} + +static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) { + unsigned NumArgs = Attr.getNumArgs(); + if (NumArgs > 1) { + S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1; + return; + } + + // Handle the case where deprecated attribute has a text message. + StringRef Str; + if (NumArgs == 1) { + StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0)); + if (!SE) { + S.Diag(Attr.getArg(0)->getLocStart(), diag::err_attribute_not_string) + << "deprecated"; + return; + } + Str = SE->getString(); + } + + D->addAttr(::new (S.Context) DeprecatedAttr(Attr.getRange(), S.Context, Str)); +} + +static void handleUnavailableAttr(Sema &S, Decl *D, const AttributeList &Attr) { + unsigned NumArgs = Attr.getNumArgs(); + if (NumArgs > 1) { + S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1; + return; + } + + // Handle the case where unavailable attribute has a text message. + StringRef Str; + if (NumArgs == 1) { + StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0)); + if (!SE) { + S.Diag(Attr.getArg(0)->getLocStart(), + diag::err_attribute_not_string) << "unavailable"; + return; + } + Str = SE->getString(); + } + D->addAttr(::new (S.Context) UnavailableAttr(Attr.getRange(), S.Context, Str)); +} + +static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + unsigned NumArgs = Attr.getNumArgs(); + if (NumArgs > 0) { + S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0; + return; + } + + D->addAttr(::new (S.Context) ArcWeakrefUnavailableAttr( + Attr.getRange(), S.Context)); +} + +static void handleObjCRootClassAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + if (!isa<ObjCInterfaceDecl>(D)) { + S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface); + return; + } + + unsigned NumArgs = Attr.getNumArgs(); + if (NumArgs > 0) { + S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0; + return; + } + + D->addAttr(::new (S.Context) ObjCRootClassAttr(Attr.getRange(), S.Context)); +} + +static void handleObjCRequiresPropertyDefsAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + if (!isa<ObjCInterfaceDecl>(D)) { + S.Diag(Attr.getLoc(), diag::err_suppress_autosynthesis); + return; + } + + unsigned NumArgs = Attr.getNumArgs(); + if (NumArgs > 0) { + S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 0; + return; + } + + D->addAttr(::new (S.Context) ObjCRequiresPropertyDefsAttr( + Attr.getRange(), S.Context)); +} + +static void handleAvailabilityAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + IdentifierInfo *Platform = Attr.getParameterName(); + SourceLocation PlatformLoc = Attr.getParameterLoc(); + + StringRef PlatformName + = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); + if (PlatformName.empty()) { + S.Diag(PlatformLoc, diag::warn_availability_unknown_platform) + << Platform; + + PlatformName = Platform->getName(); + } + + AvailabilityChange Introduced = Attr.getAvailabilityIntroduced(); + AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated(); + AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted(); + bool IsUnavailable = Attr.getUnavailableLoc().isValid(); + + // Ensure that Introduced <= Deprecated <= Obsoleted (although not all + // of these steps are needed). + if (Introduced.isValid() && Deprecated.isValid() && + !(Introduced.Version <= Deprecated.Version)) { + S.Diag(Introduced.KeywordLoc, diag::warn_availability_version_ordering) + << 1 << PlatformName << Deprecated.Version.getAsString() + << 0 << Introduced.Version.getAsString(); + return; + } + + if (Introduced.isValid() && Obsoleted.isValid() && + !(Introduced.Version <= Obsoleted.Version)) { + S.Diag(Introduced.KeywordLoc, diag::warn_availability_version_ordering) + << 2 << PlatformName << Obsoleted.Version.getAsString() + << 0 << Introduced.Version.getAsString(); + return; + } + + if (Deprecated.isValid() && Obsoleted.isValid() && + !(Deprecated.Version <= Obsoleted.Version)) { + S.Diag(Deprecated.KeywordLoc, diag::warn_availability_version_ordering) + << 2 << PlatformName << Obsoleted.Version.getAsString() + << 1 << Deprecated.Version.getAsString(); + return; + } + + StringRef Str; + const StringLiteral *SE = + dyn_cast_or_null<const StringLiteral>(Attr.getMessageExpr()); + if (SE) + Str = SE->getString(); + + D->addAttr(::new (S.Context) AvailabilityAttr(Attr.getRange(), S.Context, + Platform, + Introduced.Version, + Deprecated.Version, + Obsoleted.Version, + IsUnavailable, + Str)); +} + +static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if(!checkAttributeNumArgs(S, Attr, 1)) + return; + + Expr *Arg = Attr.getArg(0); + Arg = Arg->IgnoreParenCasts(); + StringLiteral *Str = dyn_cast<StringLiteral>(Arg); + + if (!Str || !Str->isAscii()) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) + << "visibility" << 1; + return; + } + + StringRef TypeStr = Str->getString(); + VisibilityAttr::VisibilityType type; + + if (TypeStr == "default") + type = VisibilityAttr::Default; + else if (TypeStr == "hidden") + type = VisibilityAttr::Hidden; + else if (TypeStr == "internal") + type = VisibilityAttr::Hidden; // FIXME + else if (TypeStr == "protected") { + // Complain about attempts to use protected visibility on targets + // (like Darwin) that don't support it. + if (!S.Context.getTargetInfo().hasProtectedVisibility()) { + S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility); + type = VisibilityAttr::Default; + } else { + type = VisibilityAttr::Protected; + } + } else { + S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr; + return; + } + + D->addAttr(::new (S.Context) VisibilityAttr(Attr.getRange(), S.Context, type)); +} + +static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl, + const AttributeList &Attr) { + ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(decl); + if (!method) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) + << ExpectedMethod; + return; + } + + if (Attr.getNumArgs() != 0 || !Attr.getParameterName()) { + if (!Attr.getParameterName() && Attr.getNumArgs() == 1) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) + << "objc_method_family" << 1; + } else { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + } + Attr.setInvalid(); + return; + } + + StringRef param = Attr.getParameterName()->getName(); + ObjCMethodFamilyAttr::FamilyKind family; + if (param == "none") + family = ObjCMethodFamilyAttr::OMF_None; + else if (param == "alloc") + family = ObjCMethodFamilyAttr::OMF_alloc; + else if (param == "copy") + family = ObjCMethodFamilyAttr::OMF_copy; + else if (param == "init") + family = ObjCMethodFamilyAttr::OMF_init; + else if (param == "mutableCopy") + family = ObjCMethodFamilyAttr::OMF_mutableCopy; + else if (param == "new") + family = ObjCMethodFamilyAttr::OMF_new; + else { + // Just warn and ignore it. This is future-proof against new + // families being used in system headers. + S.Diag(Attr.getParameterLoc(), diag::warn_unknown_method_family); + return; + } + + if (family == ObjCMethodFamilyAttr::OMF_init && + !method->getResultType()->isObjCObjectPointerType()) { + S.Diag(method->getLocation(), diag::err_init_method_bad_return_type) + << method->getResultType(); + // Ignore the attribute. + return; + } + + method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(), + S.Context, family)); +} + +static void handleObjCExceptionAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D); + if (OCI == 0) { + S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface); + return; + } + + D->addAttr(::new (S.Context) ObjCExceptionAttr(Attr.getRange(), S.Context)); +} + +static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) { + if (Attr.getNumArgs() != 0) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; + return; + } + if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { + QualType T = TD->getUnderlyingType(); + if (!T->isPointerType() || + !T->getAs<PointerType>()->getPointeeType()->isRecordType()) { + S.Diag(TD->getLocation(), diag::err_nsobject_attribute); + return; + } + } + else if (!isa<ObjCPropertyDecl>(D)) { + // It is okay to include this attribute on properties, e.g.: + // + // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject)); + // + // In this case it follows tradition and suppresses an error in the above + // case. + S.Diag(D->getLocation(), diag::warn_nsobject_attribute); + } + D->addAttr(::new (S.Context) ObjCNSObjectAttr(Attr.getRange(), S.Context)); +} + +static void +handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (Attr.getNumArgs() != 0) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; + return; + } + + if (!isa<FunctionDecl>(D)) { + S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function); + return; + } + + D->addAttr(::new (S.Context) OverloadableAttr(Attr.getRange(), S.Context)); +} + +static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (!Attr.getParameterName()) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) + << "blocks" << 1; + return; + } + + if (Attr.getNumArgs() != 0) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; + return; + } + + BlocksAttr::BlockType type; + if (Attr.getParameterName()->isStr("byref")) + type = BlocksAttr::ByRef; + else { + S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) + << "blocks" << Attr.getParameterName(); + return; + } + + D->addAttr(::new (S.Context) BlocksAttr(Attr.getRange(), S.Context, type)); +} + +static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (Attr.getNumArgs() > 2) { + S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2; + return; + } + + unsigned sentinel = 0; + if (Attr.getNumArgs() > 0) { + Expr *E = Attr.getArg(0); + llvm::APSInt Idx(32); + if (E->isTypeDependent() || E->isValueDependent() || + !E->isIntegerConstantExpr(Idx, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) + << "sentinel" << 1 << E->getSourceRange(); + return; + } + + if (Idx.isSigned() && Idx.isNegative()) { + S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero) + << E->getSourceRange(); + return; + } + + sentinel = Idx.getZExtValue(); + } + + unsigned nullPos = 0; + if (Attr.getNumArgs() > 1) { + Expr *E = Attr.getArg(1); + llvm::APSInt Idx(32); + if (E->isTypeDependent() || E->isValueDependent() || + !E->isIntegerConstantExpr(Idx, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) + << "sentinel" << 2 << E->getSourceRange(); + return; + } + nullPos = Idx.getZExtValue(); + + if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) { + // FIXME: This error message could be improved, it would be nice + // to say what the bounds actually are. + S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) + << E->getSourceRange(); + return; + } + } + + if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { + const FunctionType *FT = FD->getType()->castAs<FunctionType>(); + if (isa<FunctionNoProtoType>(FT)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments); + return; + } + + if (!cast<FunctionProtoType>(FT)->isVariadic()) { + S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; + return; + } + } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { + if (!MD->isVariadic()) { + S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; + return; + } + } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) { + if (!BD->isVariadic()) { + S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; + return; + } + } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) { + QualType Ty = V->getType(); + if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { + const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D) + : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>(); + if (!cast<FunctionProtoType>(FT)->isVariadic()) { + int m = Ty->isFunctionPointerType() ? 0 : 1; + S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; + return; + } + } else { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionMethodOrBlock; + return; + } + } else { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionMethodOrBlock; + return; + } + D->addAttr(::new (S.Context) SentinelAttr(Attr.getRange(), S.Context, sentinel, + nullPos)); +} + +static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + if (!isFunction(D) && !isa<ObjCMethodDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionOrMethod; + return; + } + + if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) { + S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method) + << Attr.getName() << 0; + return; + } + if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) + if (MD->getResultType()->isVoidType()) { + S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method) + << Attr.getName() << 1; + return; + } + + D->addAttr(::new (S.Context) WarnUnusedResultAttr(Attr.getRange(), S.Context)); +} + +static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (Attr.hasParameterOrArguments()) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + return; + } + + if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) { + if (isa<CXXRecordDecl>(D)) { + D->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context)); + return; + } + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedVariableOrFunction; + return; + } + + NamedDecl *nd = cast<NamedDecl>(D); + + // 'weak' only applies to declarations with external linkage. + if (hasEffectivelyInternalLinkage(nd)) { + S.Diag(Attr.getLoc(), diag::err_attribute_weak_static); + return; + } + + nd->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context)); +} + +static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + + // weak_import only applies to variable & function declarations. + bool isDef = false; + if (!D->canBeWeakImported(isDef)) { + if (isDef) + S.Diag(Attr.getLoc(), + diag::warn_attribute_weak_import_invalid_on_definition) + << "weak_import" << 2 /*variable and function*/; + else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) || + (S.Context.getTargetInfo().getTriple().isOSDarwin() && + (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) { + // Nothing to warn about here. + } else + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedVariableOrFunction; + + return; + } + + D->addAttr(::new (S.Context) WeakImportAttr(Attr.getRange(), S.Context)); +} + +static void handleReqdWorkGroupSize(Sema &S, Decl *D, + const AttributeList &Attr) { + // Attribute has 3 arguments. + if (!checkAttributeNumArgs(S, Attr, 3)) + return; + + unsigned WGSize[3]; + for (unsigned i = 0; i < 3; ++i) { + Expr *E = Attr.getArg(i); + llvm::APSInt ArgNum(32); + if (E->isTypeDependent() || E->isValueDependent() || + !E->isIntegerConstantExpr(ArgNum, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) + << "reqd_work_group_size" << E->getSourceRange(); + return; + } + WGSize[i] = (unsigned) ArgNum.getZExtValue(); + } + D->addAttr(::new (S.Context) ReqdWorkGroupSizeAttr(Attr.getRange(), S.Context, + WGSize[0], WGSize[1], + WGSize[2])); +} + +static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // Attribute has no arguments. + if (!checkAttributeNumArgs(S, Attr, 1)) + return; + + // Make sure that there is a string literal as the sections's single + // argument. + Expr *ArgExpr = Attr.getArg(0); + StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr); + if (!SE) { + S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) << "section"; + return; + } + + // If the target wants to validate the section specifier, make it happen. + std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(SE->getString()); + if (!Error.empty()) { + S.Diag(SE->getLocStart(), diag::err_attribute_section_invalid_for_target) + << Error; + return; + } + + // This attribute cannot be applied to local variables. + if (isa<VarDecl>(D) && cast<VarDecl>(D)->hasLocalStorage()) { + S.Diag(SE->getLocStart(), diag::err_attribute_section_local_variable); + return; + } + + D->addAttr(::new (S.Context) SectionAttr(Attr.getRange(), S.Context, + SE->getString())); +} + + +static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (Attr.hasParameterOrArguments()) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + return; + } + + if (NoThrowAttr *Existing = D->getAttr<NoThrowAttr>()) { + if (Existing->getLocation().isInvalid()) + Existing->setRange(Attr.getRange()); + } else { + D->addAttr(::new (S.Context) NoThrowAttr(Attr.getRange(), S.Context)); + } +} + +static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (Attr.hasParameterOrArguments()) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + return; + } + + if (ConstAttr *Existing = D->getAttr<ConstAttr>()) { + if (Existing->getLocation().isInvalid()) + Existing->setRange(Attr.getRange()); + } else { + D->addAttr(::new (S.Context) ConstAttr(Attr.getRange(), S.Context)); + } +} + +static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + D->addAttr(::new (S.Context) PureAttr(Attr.getRange(), S.Context)); +} + +static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (!Attr.getParameterName()) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; + return; + } + + if (Attr.getNumArgs() != 0) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; + return; + } + + VarDecl *VD = dyn_cast<VarDecl>(D); + + if (!VD || !VD->hasLocalStorage()) { + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup"; + return; + } + + // Look up the function + // FIXME: Lookup probably isn't looking in the right place + NamedDecl *CleanupDecl + = S.LookupSingleName(S.TUScope, Attr.getParameterName(), + Attr.getParameterLoc(), Sema::LookupOrdinaryName); + if (!CleanupDecl) { + S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_arg_not_found) << + Attr.getParameterName(); + return; + } + + FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl); + if (!FD) { + S.Diag(Attr.getParameterLoc(), + diag::err_attribute_cleanup_arg_not_function) + << Attr.getParameterName(); + return; + } + + if (FD->getNumParams() != 1) { + S.Diag(Attr.getParameterLoc(), + diag::err_attribute_cleanup_func_must_take_one_arg) + << Attr.getParameterName(); + return; + } + + // We're currently more strict than GCC about what function types we accept. + // If this ever proves to be a problem it should be easy to fix. + QualType Ty = S.Context.getPointerType(VD->getType()); + QualType ParamTy = FD->getParamDecl(0)->getType(); + if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), + ParamTy, Ty) != Sema::Compatible) { + S.Diag(Attr.getParameterLoc(), + diag::err_attribute_cleanup_func_arg_incompatible_type) << + Attr.getParameterName() << ParamTy << Ty; + return; + } + + D->addAttr(::new (S.Context) CleanupAttr(Attr.getRange(), S.Context, FD)); + S.MarkFunctionReferenced(Attr.getParameterLoc(), FD); +} + +/// Handle __attribute__((format_arg((idx)))) attribute based on +/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html +static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (!checkAttributeNumArgs(S, Attr, 1)) + return; + + if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + // In C++ the implicit 'this' function parameter also counts, and they are + // counted from one. + bool HasImplicitThisParam = isInstanceMethod(D); + unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam; + unsigned FirstIdx = 1; + + // checks for the 2nd argument + Expr *IdxExpr = Attr.getArg(0); + llvm::APSInt Idx(32); + if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || + !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) + << "format" << 2 << IdxExpr->getSourceRange(); + return; + } + + if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) + << "format" << 2 << IdxExpr->getSourceRange(); + return; + } + + unsigned ArgIdx = Idx.getZExtValue() - 1; + + if (HasImplicitThisParam) { + if (ArgIdx == 0) { + S.Diag(Attr.getLoc(), diag::err_attribute_invalid_implicit_this_argument) + << "format_arg" << IdxExpr->getSourceRange(); + return; + } + ArgIdx--; + } + + // make sure the format string is really a string + QualType Ty = getFunctionOrMethodArgType(D, ArgIdx); + + bool not_nsstring_type = !isNSStringType(Ty, S.Context); + if (not_nsstring_type && + !isCFStringType(Ty, S.Context) && + (!Ty->isPointerType() || + !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) { + // FIXME: Should highlight the actual expression that has the wrong type. + S.Diag(Attr.getLoc(), diag::err_format_attribute_not) + << (not_nsstring_type ? "a string type" : "an NSString") + << IdxExpr->getSourceRange(); + return; + } + Ty = getFunctionOrMethodResultType(D); + if (!isNSStringType(Ty, S.Context) && + !isCFStringType(Ty, S.Context) && + (!Ty->isPointerType() || + !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) { + // FIXME: Should highlight the actual expression that has the wrong type. + S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not) + << (not_nsstring_type ? "string type" : "NSString") + << IdxExpr->getSourceRange(); + return; + } + + D->addAttr(::new (S.Context) FormatArgAttr(Attr.getRange(), S.Context, + Idx.getZExtValue())); +} + +enum FormatAttrKind { + CFStringFormat, + NSStringFormat, + StrftimeFormat, + SupportedFormat, + IgnoredFormat, + InvalidFormat +}; + +/// getFormatAttrKind - Map from format attribute names to supported format +/// types. +static FormatAttrKind getFormatAttrKind(StringRef Format) { + // Check for formats that get handled specially. + if (Format == "NSString") + return NSStringFormat; + if (Format == "CFString") + return CFStringFormat; + if (Format == "strftime") + return StrftimeFormat; + + // Otherwise, check for supported formats. + if (Format == "scanf" || Format == "printf" || Format == "printf0" || + Format == "strfmon" || Format == "cmn_err" || Format == "vcmn_err" || + Format == "zcmn_err" || + Format == "kprintf") // OpenBSD. + return SupportedFormat; + + if (Format == "gcc_diag" || Format == "gcc_cdiag" || + Format == "gcc_cxxdiag" || Format == "gcc_tdiag") + return IgnoredFormat; + + return InvalidFormat; +} + +/// Handle __attribute__((init_priority(priority))) attributes based on +/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html +static void handleInitPriorityAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + if (!S.getLangOpts().CPlusPlus) { + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName(); + return; + } + + if (!isa<VarDecl>(D) || S.getCurFunctionOrMethodDecl()) { + S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr); + Attr.setInvalid(); + return; + } + QualType T = dyn_cast<VarDecl>(D)->getType(); + if (S.Context.getAsArrayType(T)) + T = S.Context.getBaseElementType(T); + if (!T->getAs<RecordType>()) { + S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr); + Attr.setInvalid(); + return; + } + + if (Attr.getNumArgs() != 1) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; + Attr.setInvalid(); + return; + } + Expr *priorityExpr = Attr.getArg(0); + + llvm::APSInt priority(32); + if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() || + !priorityExpr->isIntegerConstantExpr(priority, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) + << "init_priority" << priorityExpr->getSourceRange(); + Attr.setInvalid(); + return; + } + unsigned prioritynum = priority.getZExtValue(); + if (prioritynum < 101 || prioritynum > 65535) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range) + << priorityExpr->getSourceRange(); + Attr.setInvalid(); + return; + } + D->addAttr(::new (S.Context) InitPriorityAttr(Attr.getRange(), S.Context, + prioritynum)); +} + +/// Handle __attribute__((format(type,idx,firstarg))) attributes based on +/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html +static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) { + + if (!Attr.getParameterName()) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) + << "format" << 1; + return; + } + + if (Attr.getNumArgs() != 2) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3; + return; + } + + if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + // In C++ the implicit 'this' function parameter also counts, and they are + // counted from one. + bool HasImplicitThisParam = isInstanceMethod(D); + unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam; + unsigned FirstIdx = 1; + + StringRef Format = Attr.getParameterName()->getName(); + + // Normalize the argument, __foo__ becomes foo. + if (Format.startswith("__") && Format.endswith("__")) + Format = Format.substr(2, Format.size() - 4); + + // Check for supported formats. + FormatAttrKind Kind = getFormatAttrKind(Format); + + if (Kind == IgnoredFormat) + return; + + if (Kind == InvalidFormat) { + S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported) + << "format" << Attr.getParameterName()->getName(); + return; + } + + // checks for the 2nd argument + Expr *IdxExpr = Attr.getArg(0); + llvm::APSInt Idx(32); + if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || + !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) + << "format" << 2 << IdxExpr->getSourceRange(); + return; + } + + if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) + << "format" << 2 << IdxExpr->getSourceRange(); + return; + } + + // FIXME: Do we need to bounds check? + unsigned ArgIdx = Idx.getZExtValue() - 1; + + if (HasImplicitThisParam) { + if (ArgIdx == 0) { + S.Diag(Attr.getLoc(), + diag::err_format_attribute_implicit_this_format_string) + << IdxExpr->getSourceRange(); + return; + } + ArgIdx--; + } + + // make sure the format string is really a string + QualType Ty = getFunctionOrMethodArgType(D, ArgIdx); + + if (Kind == CFStringFormat) { + if (!isCFStringType(Ty, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_format_attribute_not) + << "a CFString" << IdxExpr->getSourceRange(); + return; + } + } else if (Kind == NSStringFormat) { + // FIXME: do we need to check if the type is NSString*? What are the + // semantics? + if (!isNSStringType(Ty, S.Context)) { + // FIXME: Should highlight the actual expression that has the wrong type. + S.Diag(Attr.getLoc(), diag::err_format_attribute_not) + << "an NSString" << IdxExpr->getSourceRange(); + return; + } + } else if (!Ty->isPointerType() || + !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) { + // FIXME: Should highlight the actual expression that has the wrong type. + S.Diag(Attr.getLoc(), diag::err_format_attribute_not) + << "a string type" << IdxExpr->getSourceRange(); + return; + } + + // check the 3rd argument + Expr *FirstArgExpr = Attr.getArg(1); + llvm::APSInt FirstArg(32); + if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() || + !FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) + << "format" << 3 << FirstArgExpr->getSourceRange(); + return; + } + + // check if the function is variadic if the 3rd argument non-zero + if (FirstArg != 0) { + if (isFunctionOrMethodVariadic(D)) { + ++NumArgs; // +1 for ... + } else { + S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic); + return; + } + } + + // strftime requires FirstArg to be 0 because it doesn't read from any + // variable the input is just the current time + the format string. + if (Kind == StrftimeFormat) { + if (FirstArg != 0) { + S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter) + << FirstArgExpr->getSourceRange(); + return; + } + // if 0 it disables parameter checking (to use with e.g. va_list) + } else if (FirstArg != 0 && FirstArg != NumArgs) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds) + << "format" << 3 << FirstArgExpr->getSourceRange(); + return; + } + + // Check whether we already have an equivalent format attribute. + for (specific_attr_iterator<FormatAttr> + i = D->specific_attr_begin<FormatAttr>(), + e = D->specific_attr_end<FormatAttr>(); + i != e ; ++i) { + FormatAttr *f = *i; + if (f->getType() == Format && + f->getFormatIdx() == (int)Idx.getZExtValue() && + f->getFirstArg() == (int)FirstArg.getZExtValue()) { + // If we don't have a valid location for this attribute, adopt the + // location. + if (f->getLocation().isInvalid()) + f->setRange(Attr.getRange()); + return; + } + } + + D->addAttr(::new (S.Context) FormatAttr(Attr.getRange(), S.Context, Format, + Idx.getZExtValue(), + FirstArg.getZExtValue())); +} + +static void handleTransparentUnionAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + + // Try to find the underlying union declaration. + RecordDecl *RD = 0; + TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D); + if (TD && TD->getUnderlyingType()->isUnionType()) + RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); + else + RD = dyn_cast<RecordDecl>(D); + + if (!RD || !RD->isUnion()) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedUnion; + return; + } + + if (!RD->isCompleteDefinition()) { + S.Diag(Attr.getLoc(), + diag::warn_transparent_union_attribute_not_definition); + return; + } + + RecordDecl::field_iterator Field = RD->field_begin(), + FieldEnd = RD->field_end(); + if (Field == FieldEnd) { + S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields); + return; + } + + FieldDecl *FirstField = *Field; + QualType FirstType = FirstField->getType(); + if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { + S.Diag(FirstField->getLocation(), + diag::warn_transparent_union_attribute_floating) + << FirstType->isVectorType() << FirstType; + return; + } + + uint64_t FirstSize = S.Context.getTypeSize(FirstType); + uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); + for (; Field != FieldEnd; ++Field) { + QualType FieldType = Field->getType(); + if (S.Context.getTypeSize(FieldType) != FirstSize || + S.Context.getTypeAlign(FieldType) != FirstAlign) { + // Warn if we drop the attribute. + bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; + unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType) + : S.Context.getTypeAlign(FieldType); + S.Diag(Field->getLocation(), + diag::warn_transparent_union_attribute_field_size_align) + << isSize << Field->getDeclName() << FieldBits; + unsigned FirstBits = isSize? FirstSize : FirstAlign; + S.Diag(FirstField->getLocation(), + diag::note_transparent_union_first_field_size_align) + << isSize << FirstBits; + return; + } + } + + RD->addAttr(::new (S.Context) TransparentUnionAttr(Attr.getRange(), S.Context)); +} + +static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 1)) + return; + + Expr *ArgExpr = Attr.getArg(0); + StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr); + + // Make sure that there is a string literal as the annotation's single + // argument. + if (!SE) { + S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) <<"annotate"; + return; + } + + // Don't duplicate annotations that are already set. + for (specific_attr_iterator<AnnotateAttr> + i = D->specific_attr_begin<AnnotateAttr>(), + e = D->specific_attr_end<AnnotateAttr>(); i != e; ++i) { + if ((*i)->getAnnotation() == SE->getString()) + return; + } + D->addAttr(::new (S.Context) AnnotateAttr(Attr.getRange(), S.Context, + SE->getString())); +} + +static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (Attr.getNumArgs() > 1) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; + return; + } + + //FIXME: The C++0x version of this attribute has more limited applicabilty + // than GNU's, and should error out when it is used to specify a + // weaker alignment, rather than being silently ignored. + + if (Attr.getNumArgs() == 0) { + D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context, true, 0)); + return; + } + + S.AddAlignedAttr(Attr.getRange(), D, Attr.getArg(0)); +} + +void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E) { + // FIXME: Handle pack-expansions here. + if (DiagnoseUnexpandedParameterPack(E)) + return; + + if (E->isTypeDependent() || E->isValueDependent()) { + // Save dependent expressions in the AST to be instantiated. + D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, E)); + return; + } + + SourceLocation AttrLoc = AttrRange.getBegin(); + // FIXME: Cache the number on the Attr object? + llvm::APSInt Alignment(32); + ExprResult ICE = + VerifyIntegerConstantExpression(E, &Alignment, + PDiag(diag::err_attribute_argument_not_int) << "aligned", + /*AllowFold*/ false); + if (ICE.isInvalid()) + return; + if (!llvm::isPowerOf2_64(Alignment.getZExtValue())) { + Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two) + << E->getSourceRange(); + return; + } + + D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, true, ICE.take())); +} + +void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS) { + // FIXME: Cache the number on the Attr object if non-dependent? + // FIXME: Perform checking of type validity + D->addAttr(::new (Context) AlignedAttr(AttrRange, Context, false, TS)); + return; +} + +/// handleModeAttr - This attribute modifies the width of a decl with primitive +/// type. +/// +/// Despite what would be logical, the mode attribute is a decl attribute, not a +/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be +/// HImode, not an intermediate pointer. +static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // This attribute isn't documented, but glibc uses it. It changes + // the width of an int or unsigned int to the specified size. + + // Check that there aren't any arguments + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + + IdentifierInfo *Name = Attr.getParameterName(); + if (!Name) { + S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name); + return; + } + + StringRef Str = Attr.getParameterName()->getName(); + + // Normalize the attribute name, __foo__ becomes foo. + if (Str.startswith("__") && Str.endswith("__")) + Str = Str.substr(2, Str.size() - 4); + + unsigned DestWidth = 0; + bool IntegerMode = true; + bool ComplexMode = false; + switch (Str.size()) { + case 2: + switch (Str[0]) { + case 'Q': DestWidth = 8; break; + case 'H': DestWidth = 16; break; + case 'S': DestWidth = 32; break; + case 'D': DestWidth = 64; break; + case 'X': DestWidth = 96; break; + case 'T': DestWidth = 128; break; + } + if (Str[1] == 'F') { + IntegerMode = false; + } else if (Str[1] == 'C') { + IntegerMode = false; + ComplexMode = true; + } else if (Str[1] != 'I') { + DestWidth = 0; + } + break; + case 4: + // FIXME: glibc uses 'word' to define register_t; this is narrower than a + // pointer on PIC16 and other embedded platforms. + if (Str == "word") + DestWidth = S.Context.getTargetInfo().getPointerWidth(0); + else if (Str == "byte") + DestWidth = S.Context.getTargetInfo().getCharWidth(); + break; + case 7: + if (Str == "pointer") + DestWidth = S.Context.getTargetInfo().getPointerWidth(0); + break; + } + + QualType OldTy; + if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) + OldTy = TD->getUnderlyingType(); + else if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) + OldTy = VD->getType(); + else { + S.Diag(D->getLocation(), diag::err_attr_wrong_decl) + << "mode" << Attr.getRange(); + return; + } + + if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType()) + S.Diag(Attr.getLoc(), diag::err_mode_not_primitive); + else if (IntegerMode) { + if (!OldTy->isIntegralOrEnumerationType()) + S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); + } else if (ComplexMode) { + if (!OldTy->isComplexType()) + S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); + } else { + if (!OldTy->isFloatingType()) + S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); + } + + // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t + // and friends, at least with glibc. + // FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong + // width on unusual platforms. + // FIXME: Make sure floating-point mappings are accurate + // FIXME: Support XF and TF types + QualType NewTy; + switch (DestWidth) { + case 0: + S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name; + return; + default: + S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; + return; + case 8: + if (!IntegerMode) { + S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; + return; + } + if (OldTy->isSignedIntegerType()) + NewTy = S.Context.SignedCharTy; + else + NewTy = S.Context.UnsignedCharTy; + break; + case 16: + if (!IntegerMode) { + S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; + return; + } + if (OldTy->isSignedIntegerType()) + NewTy = S.Context.ShortTy; + else + NewTy = S.Context.UnsignedShortTy; + break; + case 32: + if (!IntegerMode) + NewTy = S.Context.FloatTy; + else if (OldTy->isSignedIntegerType()) + NewTy = S.Context.IntTy; + else + NewTy = S.Context.UnsignedIntTy; + break; + case 64: + if (!IntegerMode) + NewTy = S.Context.DoubleTy; + else if (OldTy->isSignedIntegerType()) + if (S.Context.getTargetInfo().getLongWidth() == 64) + NewTy = S.Context.LongTy; + else + NewTy = S.Context.LongLongTy; + else + if (S.Context.getTargetInfo().getLongWidth() == 64) + NewTy = S.Context.UnsignedLongTy; + else + NewTy = S.Context.UnsignedLongLongTy; + break; + case 96: + NewTy = S.Context.LongDoubleTy; + break; + case 128: + if (!IntegerMode) { + S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name; + return; + } + if (OldTy->isSignedIntegerType()) + NewTy = S.Context.Int128Ty; + else + NewTy = S.Context.UnsignedInt128Ty; + break; + } + + if (ComplexMode) { + NewTy = S.Context.getComplexType(NewTy); + } + + // Install the new type. + if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { + // FIXME: preserve existing source info. + TD->setTypeSourceInfo(S.Context.getTrivialTypeSourceInfo(NewTy)); + } else + cast<ValueDecl>(D)->setType(NewTy); +} + +static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + if (!isFunctionOrMethod(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + D->addAttr(::new (S.Context) NoDebugAttr(Attr.getRange(), S.Context)); +} + +static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + + if (!isa<FunctionDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + D->addAttr(::new (S.Context) NoInlineAttr(Attr.getRange(), S.Context)); +} + +static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + + if (!isa<FunctionDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + D->addAttr(::new (S.Context) NoInstrumentFunctionAttr(Attr.getRange(), + S.Context)); +} + +static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (S.LangOpts.CUDA) { + // check the attribute arguments. + if (Attr.hasParameterOrArguments()) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + return; + } + + if (!isa<VarDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedVariable; + return; + } + + D->addAttr(::new (S.Context) CUDAConstantAttr(Attr.getRange(), S.Context)); + } else { + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant"; + } +} + +static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (S.LangOpts.CUDA) { + // check the attribute arguments. + if (Attr.getNumArgs() != 0) { + S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + return; + } + + if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedVariableOrFunction; + return; + } + + D->addAttr(::new (S.Context) CUDADeviceAttr(Attr.getRange(), S.Context)); + } else { + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device"; + } +} + +static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (S.LangOpts.CUDA) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + if (!isa<FunctionDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + FunctionDecl *FD = cast<FunctionDecl>(D); + if (!FD->getResultType()->isVoidType()) { + TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens(); + if (FunctionTypeLoc* FTL = dyn_cast<FunctionTypeLoc>(&TL)) { + S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) + << FD->getType() + << FixItHint::CreateReplacement(FTL->getResultLoc().getSourceRange(), + "void"); + } else { + S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) + << FD->getType(); + } + return; + } + + D->addAttr(::new (S.Context) CUDAGlobalAttr(Attr.getRange(), S.Context)); + } else { + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global"; + } +} + +static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (S.LangOpts.CUDA) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + + if (!isa<FunctionDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + D->addAttr(::new (S.Context) CUDAHostAttr(Attr.getRange(), S.Context)); + } else { + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host"; + } +} + +static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (S.LangOpts.CUDA) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + + if (!isa<VarDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedVariable; + return; + } + + D->addAttr(::new (S.Context) CUDASharedAttr(Attr.getRange(), S.Context)); + } else { + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared"; + } +} + +static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 0)) + return; + + FunctionDecl *Fn = dyn_cast<FunctionDecl>(D); + if (Fn == 0) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunction; + return; + } + + if (!Fn->isInlineSpecified()) { + S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); + return; + } + + D->addAttr(::new (S.Context) GNUInlineAttr(Attr.getRange(), S.Context)); +} + +static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (hasDeclarator(D)) return; + + // Diagnostic is emitted elsewhere: here we store the (valid) Attr + // in the Decl node for syntactic reasoning, e.g., pretty-printing. + CallingConv CC; + if (S.CheckCallingConvAttr(Attr, CC)) + return; + + if (!isa<ObjCMethodDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionOrMethod; + return; + } + + switch (Attr.getKind()) { + case AttributeList::AT_fastcall: + D->addAttr(::new (S.Context) FastCallAttr(Attr.getRange(), S.Context)); + return; + case AttributeList::AT_stdcall: + D->addAttr(::new (S.Context) StdCallAttr(Attr.getRange(), S.Context)); + return; + case AttributeList::AT_thiscall: + D->addAttr(::new (S.Context) ThisCallAttr(Attr.getRange(), S.Context)); + return; + case AttributeList::AT_cdecl: + D->addAttr(::new (S.Context) CDeclAttr(Attr.getRange(), S.Context)); + return; + case AttributeList::AT_pascal: + D->addAttr(::new (S.Context) PascalAttr(Attr.getRange(), S.Context)); + return; + case AttributeList::AT_pcs: { + Expr *Arg = Attr.getArg(0); + StringLiteral *Str = dyn_cast<StringLiteral>(Arg); + if (!Str || !Str->isAscii()) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) + << "pcs" << 1; + Attr.setInvalid(); + return; + } + + StringRef StrRef = Str->getString(); + PcsAttr::PCSType PCS; + if (StrRef == "aapcs") + PCS = PcsAttr::AAPCS; + else if (StrRef == "aapcs-vfp") + PCS = PcsAttr::AAPCS_VFP; + else { + S.Diag(Attr.getLoc(), diag::err_invalid_pcs); + Attr.setInvalid(); + return; + } + + D->addAttr(::new (S.Context) PcsAttr(Attr.getRange(), S.Context, PCS)); + } + default: + llvm_unreachable("unexpected attribute kind"); + } +} + +static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){ + assert(!Attr.isInvalid()); + D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getRange(), S.Context)); +} + +bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC) { + if (attr.isInvalid()) + return true; + + if ((attr.getNumArgs() != 0 && + !(attr.getKind() == AttributeList::AT_pcs && attr.getNumArgs() == 1)) || + attr.getParameterName()) { + Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0; + attr.setInvalid(); + return true; + } + + // TODO: diagnose uses of these conventions on the wrong target. Or, better + // move to TargetAttributesSema one day. + switch (attr.getKind()) { + case AttributeList::AT_cdecl: CC = CC_C; break; + case AttributeList::AT_fastcall: CC = CC_X86FastCall; break; + case AttributeList::AT_stdcall: CC = CC_X86StdCall; break; + case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break; + case AttributeList::AT_pascal: CC = CC_X86Pascal; break; + case AttributeList::AT_pcs: { + Expr *Arg = attr.getArg(0); + StringLiteral *Str = dyn_cast<StringLiteral>(Arg); + if (!Str || !Str->isAscii()) { + Diag(attr.getLoc(), diag::err_attribute_argument_n_not_string) + << "pcs" << 1; + attr.setInvalid(); + return true; + } + + StringRef StrRef = Str->getString(); + if (StrRef == "aapcs") { + CC = CC_AAPCS; + break; + } else if (StrRef == "aapcs-vfp") { + CC = CC_AAPCS_VFP; + break; + } + // FALLS THROUGH + } + default: llvm_unreachable("unexpected attribute kind"); + } + + return false; +} + +static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (hasDeclarator(D)) return; + + unsigned numParams; + if (S.CheckRegparmAttr(Attr, numParams)) + return; + + if (!isa<ObjCMethodDecl>(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionOrMethod; + return; + } + + D->addAttr(::new (S.Context) RegparmAttr(Attr.getRange(), S.Context, numParams)); +} + +/// Checks a regparm attribute, returning true if it is ill-formed and +/// otherwise setting numParams to the appropriate value. +bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) { + if (Attr.isInvalid()) + return true; + + if (Attr.getNumArgs() != 1) { + Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1; + Attr.setInvalid(); + return true; + } + + Expr *NumParamsExpr = Attr.getArg(0); + llvm::APSInt NumParams(32); + if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() || + !NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) { + Diag(Attr.getLoc(), diag::err_attribute_argument_not_int) + << "regparm" << NumParamsExpr->getSourceRange(); + Attr.setInvalid(); + return true; + } + + if (Context.getTargetInfo().getRegParmMax() == 0) { + Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform) + << NumParamsExpr->getSourceRange(); + Attr.setInvalid(); + return true; + } + + numParams = NumParams.getZExtValue(); + if (numParams > Context.getTargetInfo().getRegParmMax()) { + Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number) + << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); + Attr.setInvalid(); + return true; + } + + return false; +} + +static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){ + if (S.LangOpts.CUDA) { + // check the attribute arguments. + if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) { + // FIXME: 0 is not okay. + S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2; + return; + } + + if (!isFunctionOrMethod(D)) { + S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) + << Attr.getName() << ExpectedFunctionOrMethod; + return; + } + + Expr *MaxThreadsExpr = Attr.getArg(0); + llvm::APSInt MaxThreads(32); + if (MaxThreadsExpr->isTypeDependent() || + MaxThreadsExpr->isValueDependent() || + !MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) + << "launch_bounds" << 1 << MaxThreadsExpr->getSourceRange(); + return; + } + + llvm::APSInt MinBlocks(32); + if (Attr.getNumArgs() > 1) { + Expr *MinBlocksExpr = Attr.getArg(1); + if (MinBlocksExpr->isTypeDependent() || + MinBlocksExpr->isValueDependent() || + !MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int) + << "launch_bounds" << 2 << MinBlocksExpr->getSourceRange(); + return; + } + } + + D->addAttr(::new (S.Context) CUDALaunchBoundsAttr(Attr.getRange(), S.Context, + MaxThreads.getZExtValue(), + MinBlocks.getZExtValue())); + } else { + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds"; + } +} + +//===----------------------------------------------------------------------===// +// Checker-specific attribute handlers. +//===----------------------------------------------------------------------===// + +static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) { + return type->isDependentType() || + type->isObjCObjectPointerType() || + S.Context.isObjCNSObjectType(type); +} +static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) { + return type->isDependentType() || + type->isPointerType() || + isValidSubjectOfNSAttribute(S, type); +} + +static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) { + ParmVarDecl *param = dyn_cast<ParmVarDecl>(D); + if (!param) { + S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type) + << Attr.getRange() << Attr.getName() << ExpectedParameter; + return; + } + + bool typeOK, cf; + if (Attr.getKind() == AttributeList::AT_ns_consumed) { + typeOK = isValidSubjectOfNSAttribute(S, param->getType()); + cf = false; + } else { + typeOK = isValidSubjectOfCFAttribute(S, param->getType()); + cf = true; + } + + if (!typeOK) { + S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type) + << Attr.getRange() << Attr.getName() << cf; + return; + } + + if (cf) + param->addAttr(::new (S.Context) CFConsumedAttr(Attr.getRange(), S.Context)); + else + param->addAttr(::new (S.Context) NSConsumedAttr(Attr.getRange(), S.Context)); +} + +static void handleNSConsumesSelfAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + if (!isa<ObjCMethodDecl>(D)) { + S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type) + << Attr.getRange() << Attr.getName() << ExpectedMethod; + return; + } + + D->addAttr(::new (S.Context) NSConsumesSelfAttr(Attr.getRange(), S.Context)); +} + +static void handleNSReturnsRetainedAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + + QualType returnType; + + if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) + returnType = MD->getResultType(); + else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) + returnType = PD->getType(); + else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) && + (Attr.getKind() == AttributeList::AT_ns_returns_retained)) + return; // ignore: was handled as a type attribute + else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) + returnType = FD->getResultType(); + else { + S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type) + << Attr.getRange() << Attr.getName() + << ExpectedFunctionOrMethod; + return; + } + + bool typeOK; + bool cf; + switch (Attr.getKind()) { + default: llvm_unreachable("invalid ownership attribute"); + case AttributeList::AT_ns_returns_autoreleased: + case AttributeList::AT_ns_returns_retained: + case AttributeList::AT_ns_returns_not_retained: + typeOK = isValidSubjectOfNSAttribute(S, returnType); + cf = false; + break; + + case AttributeList::AT_cf_returns_retained: + case AttributeList::AT_cf_returns_not_retained: + typeOK = isValidSubjectOfCFAttribute(S, returnType); + cf = true; + break; + } + + if (!typeOK) { + S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type) + << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf; + return; + } + + switch (Attr.getKind()) { + default: + llvm_unreachable("invalid ownership attribute"); + case AttributeList::AT_ns_returns_autoreleased: + D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(Attr.getRange(), + S.Context)); + return; + case AttributeList::AT_cf_returns_not_retained: + D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(Attr.getRange(), + S.Context)); + return; + case AttributeList::AT_ns_returns_not_retained: + D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(Attr.getRange(), + S.Context)); + return; + case AttributeList::AT_cf_returns_retained: + D->addAttr(::new (S.Context) CFReturnsRetainedAttr(Attr.getRange(), + S.Context)); + return; + case AttributeList::AT_ns_returns_retained: + D->addAttr(::new (S.Context) NSReturnsRetainedAttr(Attr.getRange(), + S.Context)); + return; + }; +} + +static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D, + const AttributeList &attr) { + SourceLocation loc = attr.getLoc(); + + ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D); + + if (!isa<ObjCMethodDecl>(method)) { + S.Diag(method->getLocStart(), diag::err_attribute_wrong_decl_type) + << SourceRange(loc, loc) << attr.getName() << ExpectedMethod; + return; + } + + // Check that the method returns a normal pointer. + QualType resultType = method->getResultType(); + + if (!resultType->isReferenceType() && + (!resultType->isPointerType() || resultType->isObjCRetainableType())) { + S.Diag(method->getLocStart(), diag::warn_ns_attribute_wrong_return_type) + << SourceRange(loc) + << attr.getName() << /*method*/ 1 << /*non-retainable pointer*/ 2; + + // Drop the attribute. + return; + } + + method->addAttr( + ::new (S.Context) ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context)); +} + +/// Handle cf_audited_transfer and cf_unknown_transfer. +static void handleCFTransferAttr(Sema &S, Decl *D, const AttributeList &A) { + if (!isa<FunctionDecl>(D)) { + S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) + << A.getRange() << A.getName() << ExpectedFunction; + return; + } + + bool IsAudited = (A.getKind() == AttributeList::AT_cf_audited_transfer); + + // Check whether there's a conflicting attribute already present. + Attr *Existing; + if (IsAudited) { + Existing = D->getAttr<CFUnknownTransferAttr>(); + } else { + Existing = D->getAttr<CFAuditedTransferAttr>(); + } + if (Existing) { + S.Diag(D->getLocStart(), diag::err_attributes_are_not_compatible) + << A.getName() + << (IsAudited ? "cf_unknown_transfer" : "cf_audited_transfer") + << A.getRange() << Existing->getRange(); + return; + } + + // All clear; add the attribute. + if (IsAudited) { + D->addAttr( + ::new (S.Context) CFAuditedTransferAttr(A.getRange(), S.Context)); + } else { + D->addAttr( + ::new (S.Context) CFUnknownTransferAttr(A.getRange(), S.Context)); + } +} + +static void handleNSBridgedAttr(Sema &S, Scope *Sc, Decl *D, + const AttributeList &Attr) { + RecordDecl *RD = dyn_cast<RecordDecl>(D); + if (!RD || RD->isUnion()) { + S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) + << Attr.getRange() << Attr.getName() << ExpectedStruct; + } + + IdentifierInfo *ParmName = Attr.getParameterName(); + + // In Objective-C, verify that the type names an Objective-C type. + // We don't want to check this outside of ObjC because people sometimes + // do crazy C declarations of Objective-C types. + if (ParmName && S.getLangOpts().ObjC1) { + // Check for an existing type with this name. + LookupResult R(S, DeclarationName(ParmName), Attr.getParameterLoc(), + Sema::LookupOrdinaryName); + if (S.LookupName(R, Sc)) { + NamedDecl *Target = R.getFoundDecl(); + if (Target && !isa<ObjCInterfaceDecl>(Target)) { + S.Diag(D->getLocStart(), diag::err_ns_bridged_not_interface); + S.Diag(Target->getLocStart(), diag::note_declared_at); + } + } + } + + D->addAttr(::new (S.Context) NSBridgedAttr(Attr.getRange(), S.Context, + ParmName)); +} + +static void handleObjCOwnershipAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + if (hasDeclarator(D)) return; + + S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) + << Attr.getRange() << Attr.getName() << ExpectedVariable; +} + +static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D, + const AttributeList &Attr) { + if (!isa<VarDecl>(D) && !isa<FieldDecl>(D)) { + S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type) + << Attr.getRange() << Attr.getName() << ExpectedVariable; + return; + } + + ValueDecl *vd = cast<ValueDecl>(D); + QualType type = vd->getType(); + + if (!type->isDependentType() && + !type->isObjCLifetimeType()) { + S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type) + << type; + return; + } + + Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); + + // If we have no lifetime yet, check the lifetime we're presumably + // going to infer. + if (lifetime == Qualifiers::OCL_None && !type->isDependentType()) + lifetime = type->getObjCARCImplicitLifetime(); + + switch (lifetime) { + case Qualifiers::OCL_None: + assert(type->isDependentType() && + "didn't infer lifetime for non-dependent type?"); + break; + + case Qualifiers::OCL_Weak: // meaningful + case Qualifiers::OCL_Strong: // meaningful + break; + + case Qualifiers::OCL_ExplicitNone: + case Qualifiers::OCL_Autoreleasing: + S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless) + << (lifetime == Qualifiers::OCL_Autoreleasing); + break; + } + + D->addAttr(::new (S.Context) + ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context)); +} + +static bool isKnownDeclSpecAttr(const AttributeList &Attr) { + switch (Attr.getKind()) { + default: + return false; + case AttributeList::AT_dllimport: + case AttributeList::AT_dllexport: + case AttributeList::AT_uuid: + case AttributeList::AT_deprecated: + case AttributeList::AT_noreturn: + case AttributeList::AT_nothrow: + case AttributeList::AT_naked: + case AttributeList::AT_noinline: + return true; + } +} + +//===----------------------------------------------------------------------===// +// Microsoft specific attribute handlers. +//===----------------------------------------------------------------------===// + +static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) { + if (S.LangOpts.MicrosoftExt || S.LangOpts.Borland) { + // check the attribute arguments. + if (!checkAttributeNumArgs(S, Attr, 1)) + return; + + Expr *Arg = Attr.getArg(0); + StringLiteral *Str = dyn_cast<StringLiteral>(Arg); + if (!Str || !Str->isAscii()) { + S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string) + << "uuid" << 1; + return; + } + + StringRef StrRef = Str->getString(); + + bool IsCurly = StrRef.size() > 1 && StrRef.front() == '{' && + StrRef.back() == '}'; + + // Validate GUID length. + if (IsCurly && StrRef.size() != 38) { + S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid); + return; + } + if (!IsCurly && StrRef.size() != 36) { + S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid); + return; + } + + // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or + // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}" + StringRef::iterator I = StrRef.begin(); + if (IsCurly) // Skip the optional '{' + ++I; + + for (int i = 0; i < 36; ++i) { + if (i == 8 || i == 13 || i == 18 || i == 23) { + if (*I != '-') { + S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid); + return; + } + } else if (!isxdigit(*I)) { + S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid); + return; + } + I++; + } + + D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, + Str->getString())); + } else + S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "uuid"; +} + +//===----------------------------------------------------------------------===// +// Top Level Sema Entry Points +//===----------------------------------------------------------------------===// + +static void ProcessNonInheritableDeclAttr(Sema &S, Scope *scope, Decl *D, + const AttributeList &Attr) { + switch (Attr.getKind()) { + case AttributeList::AT_device: handleDeviceAttr (S, D, Attr); break; + case AttributeList::AT_host: handleHostAttr (S, D, Attr); break; + case AttributeList::AT_overloadable:handleOverloadableAttr(S, D, Attr); break; + default: + break; + } +} + +static void ProcessInheritableDeclAttr(Sema &S, Scope *scope, Decl *D, + const AttributeList &Attr) { + switch (Attr.getKind()) { + case AttributeList::AT_ibaction: handleIBAction(S, D, Attr); break; + case AttributeList::AT_iboutlet: handleIBOutlet(S, D, Attr); break; + case AttributeList::AT_iboutletcollection: + handleIBOutletCollection(S, D, Attr); break; + case AttributeList::AT_address_space: + case AttributeList::AT_opencl_image_access: + case AttributeList::AT_objc_gc: + case AttributeList::AT_vector_size: + case AttributeList::AT_neon_vector_type: + case AttributeList::AT_neon_polyvector_type: + // Ignore these, these are type attributes, handled by + // ProcessTypeAttributes. + break; + case AttributeList::AT_device: + case AttributeList::AT_host: + case AttributeList::AT_overloadable: + // Ignore, this is a non-inheritable attribute, handled + // by ProcessNonInheritableDeclAttr. + break; + case AttributeList::AT_alias: handleAliasAttr (S, D, Attr); break; + case AttributeList::AT_aligned: handleAlignedAttr (S, D, Attr); break; + case AttributeList::AT_always_inline: + handleAlwaysInlineAttr (S, D, Attr); break; + case AttributeList::AT_analyzer_noreturn: + handleAnalyzerNoReturnAttr (S, D, Attr); break; + case AttributeList::AT_annotate: handleAnnotateAttr (S, D, Attr); break; + case AttributeList::AT_availability:handleAvailabilityAttr(S, D, Attr); break; + case AttributeList::AT_carries_dependency: + handleDependencyAttr (S, D, Attr); break; + case AttributeList::AT_common: handleCommonAttr (S, D, Attr); break; + case AttributeList::AT_constant: handleConstantAttr (S, D, Attr); break; + case AttributeList::AT_constructor: handleConstructorAttr (S, D, Attr); break; + case AttributeList::AT_deprecated: handleDeprecatedAttr (S, D, Attr); break; + case AttributeList::AT_destructor: handleDestructorAttr (S, D, Attr); break; + case AttributeList::AT_ext_vector_type: + handleExtVectorTypeAttr(S, scope, D, Attr); + break; + case AttributeList::AT_format: handleFormatAttr (S, D, Attr); break; + case AttributeList::AT_format_arg: handleFormatArgAttr (S, D, Attr); break; + case AttributeList::AT_global: handleGlobalAttr (S, D, Attr); break; + case AttributeList::AT_gnu_inline: handleGNUInlineAttr (S, D, Attr); break; + case AttributeList::AT_launch_bounds: + handleLaunchBoundsAttr(S, D, Attr); + break; + case AttributeList::AT_mode: handleModeAttr (S, D, Attr); break; + case AttributeList::AT_malloc: handleMallocAttr (S, D, Attr); break; + case AttributeList::AT_may_alias: handleMayAliasAttr (S, D, Attr); break; + case AttributeList::AT_nocommon: handleNoCommonAttr (S, D, Attr); break; + case AttributeList::AT_nonnull: handleNonNullAttr (S, D, Attr); break; + case AttributeList::AT_ownership_returns: + case AttributeList::AT_ownership_takes: + case AttributeList::AT_ownership_holds: + handleOwnershipAttr (S, D, Attr); break; + case AttributeList::AT_naked: handleNakedAttr (S, D, Attr); break; + case AttributeList::AT_noreturn: handleNoReturnAttr (S, D, Attr); break; + case AttributeList::AT_nothrow: handleNothrowAttr (S, D, Attr); break; + case AttributeList::AT_shared: handleSharedAttr (S, D, Attr); break; + case AttributeList::AT_vecreturn: handleVecReturnAttr (S, D, Attr); break; + + case AttributeList::AT_objc_ownership: + handleObjCOwnershipAttr(S, D, Attr); break; + case AttributeList::AT_objc_precise_lifetime: + handleObjCPreciseLifetimeAttr(S, D, Attr); break; + + case AttributeList::AT_objc_returns_inner_pointer: + handleObjCReturnsInnerPointerAttr(S, D, Attr); break; + + case AttributeList::AT_ns_bridged: + handleNSBridgedAttr(S, scope, D, Attr); break; + + case AttributeList::AT_cf_audited_transfer: + case AttributeList::AT_cf_unknown_transfer: + handleCFTransferAttr(S, D, Attr); break; + + // Checker-specific. + case AttributeList::AT_cf_consumed: + case AttributeList::AT_ns_consumed: handleNSConsumedAttr (S, D, Attr); break; + case AttributeList::AT_ns_consumes_self: + handleNSConsumesSelfAttr(S, D, Attr); break; + + case AttributeList::AT_ns_returns_autoreleased: + case AttributeList::AT_ns_returns_not_retained: + case AttributeList::AT_cf_returns_not_retained: + case AttributeList::AT_ns_returns_retained: + case AttributeList::AT_cf_returns_retained: + handleNSReturnsRetainedAttr(S, D, Attr); break; + + case AttributeList::AT_reqd_work_group_size: + handleReqdWorkGroupSize(S, D, Attr); break; + + case AttributeList::AT_init_priority: + handleInitPriorityAttr(S, D, Attr); break; + + case AttributeList::AT_packed: handlePackedAttr (S, D, Attr); break; + case AttributeList::AT_ms_struct: handleMsStructAttr (S, D, Attr); break; + case AttributeList::AT_section: handleSectionAttr (S, D, Attr); break; + case AttributeList::AT_unavailable: handleUnavailableAttr (S, D, Attr); break; + case AttributeList::AT_objc_arc_weak_reference_unavailable: + handleArcWeakrefUnavailableAttr (S, D, Attr); + break; + case AttributeList::AT_objc_root_class: + handleObjCRootClassAttr(S, D, Attr); + break; + case AttributeList::AT_objc_requires_property_definitions: + handleObjCRequiresPropertyDefsAttr (S, D, Attr); + break; + case AttributeList::AT_unused: handleUnusedAttr (S, D, Attr); break; + case AttributeList::AT_returns_twice: + handleReturnsTwiceAttr(S, D, Attr); + break; + case AttributeList::AT_used: handleUsedAttr (S, D, Attr); break; + case AttributeList::AT_visibility: handleVisibilityAttr (S, D, Attr); break; + case AttributeList::AT_warn_unused_result: handleWarnUnusedResult(S, D, Attr); + break; + case AttributeList::AT_weak: handleWeakAttr (S, D, Attr); break; + case AttributeList::AT_weakref: handleWeakRefAttr (S, D, Attr); break; + case AttributeList::AT_weak_import: handleWeakImportAttr (S, D, Attr); break; + case AttributeList::AT_transparent_union: + handleTransparentUnionAttr(S, D, Attr); + break; + case AttributeList::AT_objc_exception: + handleObjCExceptionAttr(S, D, Attr); + break; + case AttributeList::AT_objc_method_family: + handleObjCMethodFamilyAttr(S, D, Attr); + break; + case AttributeList::AT_NSObject: handleObjCNSObject (S, D, Attr); break; + case AttributeList::AT_blocks: handleBlocksAttr (S, D, Attr); break; + case AttributeList::AT_sentinel: handleSentinelAttr (S, D, Attr); break; + case AttributeList::AT_const: handleConstAttr (S, D, Attr); break; + case AttributeList::AT_pure: handlePureAttr (S, D, Attr); break; + case AttributeList::AT_cleanup: handleCleanupAttr (S, D, Attr); break; + case AttributeList::AT_nodebug: handleNoDebugAttr (S, D, Attr); break; + case AttributeList::AT_noinline: handleNoInlineAttr (S, D, Attr); break; + case AttributeList::AT_regparm: handleRegparmAttr (S, D, Attr); break; + case AttributeList::IgnoredAttribute: + // Just ignore + break; + case AttributeList::AT_no_instrument_function: // Interacts with -pg. + handleNoInstrumentFunctionAttr(S, D, Attr); + break; + case AttributeList::AT_stdcall: + case AttributeList::AT_cdecl: + case AttributeList::AT_fastcall: + case AttributeList::AT_thiscall: + case AttributeList::AT_pascal: + case AttributeList::AT_pcs: + handleCallConvAttr(S, D, Attr); + break; + case AttributeList::AT_opencl_kernel_function: + handleOpenCLKernelAttr(S, D, Attr); + break; + case AttributeList::AT_uuid: + handleUuidAttr(S, D, Attr); + break; + + // Thread safety attributes: + case AttributeList::AT_guarded_var: + handleGuardedVarAttr(S, D, Attr); + break; + case AttributeList::AT_pt_guarded_var: + handleGuardedVarAttr(S, D, Attr, /*pointer = */true); + break; + case AttributeList::AT_scoped_lockable: + handleLockableAttr(S, D, Attr, /*scoped = */true); + break; + case AttributeList::AT_no_address_safety_analysis: + handleNoAddressSafetyAttr(S, D, Attr); + break; + case AttributeList::AT_no_thread_safety_analysis: + handleNoThreadSafetyAttr(S, D, Attr); + break; + case AttributeList::AT_lockable: + handleLockableAttr(S, D, Attr); + break; + case AttributeList::AT_guarded_by: + handleGuardedByAttr(S, D, Attr); + break; + case AttributeList::AT_pt_guarded_by: + handleGuardedByAttr(S, D, Attr, /*pointer = */true); + break; + case AttributeList::AT_exclusive_lock_function: + handleLockFunAttr(S, D, Attr, /*exclusive = */true); + break; + case AttributeList::AT_exclusive_locks_required: + handleLocksRequiredAttr(S, D, Attr, /*exclusive = */true); + break; + case AttributeList::AT_exclusive_trylock_function: + handleTrylockFunAttr(S, D, Attr, /*exclusive = */true); + break; + case AttributeList::AT_lock_returned: + handleLockReturnedAttr(S, D, Attr); + break; + case AttributeList::AT_locks_excluded: + handleLocksExcludedAttr(S, D, Attr); + break; + case AttributeList::AT_shared_lock_function: + handleLockFunAttr(S, D, Attr); + break; + case AttributeList::AT_shared_locks_required: + handleLocksRequiredAttr(S, D, Attr); + break; + case AttributeList::AT_shared_trylock_function: + handleTrylockFunAttr(S, D, Attr); + break; + case AttributeList::AT_unlock_function: + handleUnlockFunAttr(S, D, Attr); + break; + case AttributeList::AT_acquired_before: + handleAcquireOrderAttr(S, D, Attr, /*before = */true); + break; + case AttributeList::AT_acquired_after: + handleAcquireOrderAttr(S, D, Attr, /*before = */false); + break; + + default: + // Ask target about the attribute. + const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema(); + if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S)) + S.Diag(Attr.getLoc(), diag::warn_unknown_attribute_ignored) + << Attr.getName(); + break; + } +} + +/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if +/// the attribute applies to decls. If the attribute is a type attribute, just +/// silently ignore it if a GNU attribute. FIXME: Applying a C++0x attribute to +/// the wrong thing is illegal (C++0x [dcl.attr.grammar]/4). +static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, + const AttributeList &Attr, + bool NonInheritable, bool Inheritable) { + if (Attr.isInvalid()) + return; + + if (Attr.isDeclspecAttribute() && !isKnownDeclSpecAttr(Attr)) + // FIXME: Try to deal with other __declspec attributes! + return; + + if (NonInheritable) + ProcessNonInheritableDeclAttr(S, scope, D, Attr); + + if (Inheritable) + ProcessInheritableDeclAttr(S, scope, D, Attr); +} + +/// ProcessDeclAttributeList - Apply all the decl attributes in the specified +/// attribute list to the specified decl, ignoring any type attributes. +void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, + const AttributeList *AttrList, + bool NonInheritable, bool Inheritable) { + for (const AttributeList* l = AttrList; l; l = l->getNext()) { + ProcessDeclAttribute(*this, S, D, *l, NonInheritable, Inheritable); + } + + // GCC accepts + // static int a9 __attribute__((weakref)); + // but that looks really pointless. We reject it. + if (Inheritable && D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { + Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) << + dyn_cast<NamedDecl>(D)->getNameAsString(); + return; + } +} + +// Annotation attributes are the only attributes allowed after an access +// specifier. +bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, + const AttributeList *AttrList) { + for (const AttributeList* l = AttrList; l; l = l->getNext()) { + if (l->getKind() == AttributeList::AT_annotate) { + handleAnnotateAttr(*this, ASDecl, *l); + } else { + Diag(l->getLoc(), diag::err_only_annotate_after_access_spec); + return true; + } + } + + return false; +} + +/// checkUnusedDeclAttributes - Check a list of attributes to see if it +/// contains any decl attributes that we should warn about. +static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) { + for ( ; A; A = A->getNext()) { + // Only warn if the attribute is an unignored, non-type attribute. + if (A->isUsedAsTypeAttr()) continue; + if (A->getKind() == AttributeList::IgnoredAttribute) continue; + + if (A->getKind() == AttributeList::UnknownAttribute) { + S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored) + << A->getName() << A->getRange(); + } else { + S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl) + << A->getName() << A->getRange(); + } + } +} + +/// checkUnusedDeclAttributes - Given a declarator which is not being +/// used to build a declaration, complain about any decl attributes +/// which might be lying around on it. +void Sema::checkUnusedDeclAttributes(Declarator &D) { + ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList()); + ::checkUnusedDeclAttributes(*this, D.getAttributes()); + for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) + ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); +} + +/// DeclClonePragmaWeak - clone existing decl (maybe definition), +/// #pragma weak needs a non-definition decl and source may not have one +NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, + SourceLocation Loc) { + assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); + NamedDecl *NewD = 0; + if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { + FunctionDecl *NewFD; + // FIXME: Missing call to CheckFunctionDeclaration(). + // FIXME: Mangling? + // FIXME: Is the qualifier info correct? + // FIXME: Is the DeclContext correct? + NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(), + Loc, Loc, DeclarationName(II), + FD->getType(), FD->getTypeSourceInfo(), + SC_None, SC_None, + false/*isInlineSpecified*/, + FD->hasPrototype(), + false/*isConstexprSpecified*/); + NewD = NewFD; + + if (FD->getQualifier()) + NewFD->setQualifierInfo(FD->getQualifierLoc()); + + // Fake up parameter variables; they are declared as if this were + // a typedef. + QualType FDTy = FD->getType(); + if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) { + SmallVector<ParmVarDecl*, 16> Params; + for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(), + AE = FT->arg_type_end(); AI != AE; ++AI) { + ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI); + Param->setScopeInfo(0, Params.size()); + Params.push_back(Param); + } + NewFD->setParams(Params); + } + } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) { + NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), + VD->getInnerLocStart(), VD->getLocation(), II, + VD->getType(), VD->getTypeSourceInfo(), + VD->getStorageClass(), + VD->getStorageClassAsWritten()); + if (VD->getQualifier()) { + VarDecl *NewVD = cast<VarDecl>(NewD); + NewVD->setQualifierInfo(VD->getQualifierLoc()); + } + } + return NewD; +} + +/// DeclApplyPragmaWeak - A declaration (maybe definition) needs #pragma weak +/// applied to it, possibly with an alias. +void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) { + if (W.getUsed()) return; // only do this once + W.setUsed(true); + if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) + IdentifierInfo *NDId = ND->getIdentifier(); + NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); + NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context, + NDId->getName())); + NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context)); + WeakTopLevelDecl.push_back(NewD); + // FIXME: "hideous" code from Sema::LazilyCreateBuiltin + // to insert Decl at TU scope, sorry. + DeclContext *SavedContext = CurContext; + CurContext = Context.getTranslationUnitDecl(); + PushOnScopeChains(NewD, S); + CurContext = SavedContext; + } else { // just add weak to existing + ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context)); + } +} + +/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in +/// it, apply them to D. This is a bit tricky because PD can have attributes +/// specified in many different places, and we need to find and apply them all. +void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD, + bool NonInheritable, bool Inheritable) { + // It's valid to "forward-declare" #pragma weak, in which case we + // have to do this. + if (Inheritable) { + LoadExternalWeakUndeclaredIdentifiers(); + if (!WeakUndeclaredIdentifiers.empty()) { + if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) { + if (IdentifierInfo *Id = ND->getIdentifier()) { + llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I + = WeakUndeclaredIdentifiers.find(Id); + if (I != WeakUndeclaredIdentifiers.end() && ND->hasLinkage()) { + WeakInfo W = I->second; + DeclApplyPragmaWeak(S, ND, W); + WeakUndeclaredIdentifiers[Id] = W; + } + } + } + } + } + + // Apply decl attributes from the DeclSpec if present. + if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList()) + ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable); + + // Walk the declarator structure, applying decl attributes that were in a type + // position to the decl itself. This handles cases like: + // int *__attr__(x)** D; + // when X is a decl attribute. + for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) + if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs()) + ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable); + + // Finally, apply any attributes on the decl itself. + if (const AttributeList *Attrs = PD.getAttributes()) + ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable); +} + +/// Is the given declaration allowed to use a forbidden type? +static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) { + // Private ivars are always okay. Unfortunately, people don't + // always properly make their ivars private, even in system headers. + // Plus we need to make fields okay, too. + // Function declarations in sys headers will be marked unavailable. + if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) && + !isa<FunctionDecl>(decl)) + return false; + + // Require it to be declared in a system header. + return S.Context.getSourceManager().isInSystemHeader(decl->getLocation()); +} + +/// Handle a delayed forbidden-type diagnostic. +static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag, + Decl *decl) { + if (decl && isForbiddenTypeAllowed(S, decl)) { + decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context, + "this system declaration uses an unsupported type")); + return; + } + if (S.getLangOpts().ObjCAutoRefCount) + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) { + // FIXME. we may want to supress diagnostics for all + // kind of forbidden type messages on unavailable functions. + if (FD->hasAttr<UnavailableAttr>() && + diag.getForbiddenTypeDiagnostic() == + diag::err_arc_array_param_no_ownership) { + diag.Triggered = true; + return; + } + } + + S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic()) + << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument(); + diag.Triggered = true; +} + +// This duplicates a vector push_back but hides the need to know the +// size of the type. +void Sema::DelayedDiagnostics::add(const DelayedDiagnostic &diag) { + assert(StackSize <= StackCapacity); + + // Grow the stack if necessary. + if (StackSize == StackCapacity) { + unsigned newCapacity = 2 * StackCapacity + 2; + char *newBuffer = new char[newCapacity * sizeof(DelayedDiagnostic)]; + const char *oldBuffer = (const char*) Stack; + + if (StackCapacity) + memcpy(newBuffer, oldBuffer, StackCapacity * sizeof(DelayedDiagnostic)); + + delete[] oldBuffer; + Stack = reinterpret_cast<sema::DelayedDiagnostic*>(newBuffer); + StackCapacity = newCapacity; + } + + assert(StackSize < StackCapacity); + new (&Stack[StackSize++]) DelayedDiagnostic(diag); +} + +void Sema::DelayedDiagnostics::popParsingDecl(Sema &S, ParsingDeclState state, + Decl *decl) { + DelayedDiagnostics &DD = S.DelayedDiagnostics; + + // Check the invariants. + assert(DD.StackSize >= state.SavedStackSize); + assert(state.SavedStackSize >= DD.ActiveStackBase); + assert(DD.ParsingDepth > 0); + + // Drop the parsing depth. + DD.ParsingDepth--; + + // If there are no active diagnostics, we're done. + if (DD.StackSize == DD.ActiveStackBase) + return; + + // We only want to actually emit delayed diagnostics when we + // successfully parsed a decl. + if (decl) { + // We emit all the active diagnostics, not just those starting + // from the saved state. The idea is this: we get one push for a + // decl spec and another for each declarator; in a decl group like: + // deprecated_typedef foo, *bar, baz(); + // only the declarator pops will be passed decls. This is correct; + // we really do need to consider delayed diagnostics from the decl spec + // for each of the different declarations. + for (unsigned i = DD.ActiveStackBase, e = DD.StackSize; i != e; ++i) { + DelayedDiagnostic &diag = DD.Stack[i]; + if (diag.Triggered) + continue; + + switch (diag.Kind) { + case DelayedDiagnostic::Deprecation: + // Don't bother giving deprecation diagnostics if the decl is invalid. + if (!decl->isInvalidDecl()) + S.HandleDelayedDeprecationCheck(diag, decl); + break; + + case DelayedDiagnostic::Access: + S.HandleDelayedAccessCheck(diag, decl); + break; + + case DelayedDiagnostic::ForbiddenType: + handleDelayedForbiddenType(S, diag, decl); + break; + } + } + } + + // Destroy all the delayed diagnostics we're about to pop off. + for (unsigned i = state.SavedStackSize, e = DD.StackSize; i != e; ++i) + DD.Stack[i].Destroy(); + + DD.StackSize = state.SavedStackSize; +} + +static bool isDeclDeprecated(Decl *D) { + do { + if (D->isDeprecated()) + return true; + // A category implicitly has the availability of the interface. + if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D)) + return CatD->getClassInterface()->isDeprecated(); + } while ((D = cast_or_null<Decl>(D->getDeclContext()))); + return false; +} + +void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD, + Decl *Ctx) { + if (isDeclDeprecated(Ctx)) + return; + + DD.Triggered = true; + if (!DD.getDeprecationMessage().empty()) + Diag(DD.Loc, diag::warn_deprecated_message) + << DD.getDeprecationDecl()->getDeclName() + << DD.getDeprecationMessage(); + else if (DD.getUnknownObjCClass()) { + Diag(DD.Loc, diag::warn_deprecated_fwdclass_message) + << DD.getDeprecationDecl()->getDeclName(); + Diag(DD.getUnknownObjCClass()->getLocation(), diag::note_forward_class); + } + else + Diag(DD.Loc, diag::warn_deprecated) + << DD.getDeprecationDecl()->getDeclName(); +} + +void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message, + SourceLocation Loc, + const ObjCInterfaceDecl *UnknownObjCClass) { + // Delay if we're currently parsing a declaration. + if (DelayedDiagnostics.shouldDelayDiagnostics()) { + DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D, + UnknownObjCClass, + Message)); + return; + } + + // Otherwise, don't warn if our current context is deprecated. + if (isDeclDeprecated(cast<Decl>(getCurLexicalContext()))) + return; + if (!Message.empty()) + Diag(Loc, diag::warn_deprecated_message) << D->getDeclName() + << Message; + else { + if (!UnknownObjCClass) + Diag(Loc, diag::warn_deprecated) << D->getDeclName(); + else { + Diag(Loc, diag::warn_deprecated_fwdclass_message) << D->getDeclName(); + Diag(UnknownObjCClass->getLocation(), diag::note_forward_class); + } + } +} |