diff options
author | Carlo Zancanaro <carlo@pc-4w14-0.cs.usyd.edu.au> | 2012-10-15 17:10:06 +1100 |
---|---|---|
committer | Carlo Zancanaro <carlo@pc-4w14-0.cs.usyd.edu.au> | 2012-10-15 17:10:06 +1100 |
commit | be1de4be954c80875ad4108e0a33e8e131b2f2c0 (patch) | |
tree | 1fbbecf276bf7c7bdcbb4dd446099d6d90eaa516 /clang/lib/Sema/SemaCXXScopeSpec.cpp | |
parent | c4626a62754862d20b41e8a46a3574264ea80e6d (diff) | |
parent | f1bd2e48c5324d3f7cda4090c87f8a5b6f463ce2 (diff) |
Merge branch 'master' of ssh://bitbucket.org/czan/honours
Diffstat (limited to 'clang/lib/Sema/SemaCXXScopeSpec.cpp')
-rw-r--r-- | clang/lib/Sema/SemaCXXScopeSpec.cpp | 958 |
1 files changed, 958 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaCXXScopeSpec.cpp b/clang/lib/Sema/SemaCXXScopeSpec.cpp new file mode 100644 index 0000000..5a0fcec --- /dev/null +++ b/clang/lib/Sema/SemaCXXScopeSpec.cpp @@ -0,0 +1,958 @@ +//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements C++ semantic analysis for scope specifiers. +// +//===----------------------------------------------------------------------===// + +#include "clang/Sema/SemaInternal.h" +#include "clang/Sema/Lookup.h" +#include "clang/Sema/Template.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/NestedNameSpecifier.h" +#include "clang/Basic/PartialDiagnostic.h" +#include "clang/Sema/DeclSpec.h" +#include "TypeLocBuilder.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/raw_ostream.h" +using namespace clang; + +/// \brief Find the current instantiation that associated with the given type. +static CXXRecordDecl *getCurrentInstantiationOf(QualType T, + DeclContext *CurContext) { + if (T.isNull()) + return 0; + + const Type *Ty = T->getCanonicalTypeInternal().getTypePtr(); + if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { + CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); + if (!T->isDependentType()) + return Record; + + // This may be a member of a class template or class template partial + // specialization. If it's part of the current semantic context, then it's + // an injected-class-name; + for (; !CurContext->isFileContext(); CurContext = CurContext->getParent()) + if (CurContext->Equals(Record)) + return Record; + + return 0; + } else if (isa<InjectedClassNameType>(Ty)) + return cast<InjectedClassNameType>(Ty)->getDecl(); + else + return 0; +} + +/// \brief Compute the DeclContext that is associated with the given type. +/// +/// \param T the type for which we are attempting to find a DeclContext. +/// +/// \returns the declaration context represented by the type T, +/// or NULL if the declaration context cannot be computed (e.g., because it is +/// dependent and not the current instantiation). +DeclContext *Sema::computeDeclContext(QualType T) { + if (!T->isDependentType()) + if (const TagType *Tag = T->getAs<TagType>()) + return Tag->getDecl(); + + return ::getCurrentInstantiationOf(T, CurContext); +} + +/// \brief Compute the DeclContext that is associated with the given +/// scope specifier. +/// +/// \param SS the C++ scope specifier as it appears in the source +/// +/// \param EnteringContext when true, we will be entering the context of +/// this scope specifier, so we can retrieve the declaration context of a +/// class template or class template partial specialization even if it is +/// not the current instantiation. +/// +/// \returns the declaration context represented by the scope specifier @p SS, +/// or NULL if the declaration context cannot be computed (e.g., because it is +/// dependent and not the current instantiation). +DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS, + bool EnteringContext) { + if (!SS.isSet() || SS.isInvalid()) + return 0; + + NestedNameSpecifier *NNS + = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); + if (NNS->isDependent()) { + // If this nested-name-specifier refers to the current + // instantiation, return its DeclContext. + if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS)) + return Record; + + if (EnteringContext) { + const Type *NNSType = NNS->getAsType(); + if (!NNSType) { + return 0; + } + + // Look through type alias templates, per C++0x [temp.dep.type]p1. + NNSType = Context.getCanonicalType(NNSType); + if (const TemplateSpecializationType *SpecType + = NNSType->getAs<TemplateSpecializationType>()) { + // We are entering the context of the nested name specifier, so try to + // match the nested name specifier to either a primary class template + // or a class template partial specialization. + if (ClassTemplateDecl *ClassTemplate + = dyn_cast_or_null<ClassTemplateDecl>( + SpecType->getTemplateName().getAsTemplateDecl())) { + QualType ContextType + = Context.getCanonicalType(QualType(SpecType, 0)); + + // If the type of the nested name specifier is the same as the + // injected class name of the named class template, we're entering + // into that class template definition. + QualType Injected + = ClassTemplate->getInjectedClassNameSpecialization(); + if (Context.hasSameType(Injected, ContextType)) + return ClassTemplate->getTemplatedDecl(); + + // If the type of the nested name specifier is the same as the + // type of one of the class template's class template partial + // specializations, we're entering into the definition of that + // class template partial specialization. + if (ClassTemplatePartialSpecializationDecl *PartialSpec + = ClassTemplate->findPartialSpecialization(ContextType)) + return PartialSpec; + } + } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) { + // The nested name specifier refers to a member of a class template. + return RecordT->getDecl(); + } + } + + return 0; + } + + switch (NNS->getKind()) { + case NestedNameSpecifier::Identifier: + llvm_unreachable("Dependent nested-name-specifier has no DeclContext"); + + case NestedNameSpecifier::Namespace: + return NNS->getAsNamespace(); + + case NestedNameSpecifier::NamespaceAlias: + return NNS->getAsNamespaceAlias()->getNamespace(); + + case NestedNameSpecifier::TypeSpec: + case NestedNameSpecifier::TypeSpecWithTemplate: { + const TagType *Tag = NNS->getAsType()->getAs<TagType>(); + assert(Tag && "Non-tag type in nested-name-specifier"); + return Tag->getDecl(); + } + + case NestedNameSpecifier::Global: + return Context.getTranslationUnitDecl(); + } + + llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); +} + +bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) { + if (!SS.isSet() || SS.isInvalid()) + return false; + + NestedNameSpecifier *NNS + = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); + return NNS->isDependent(); +} + +// \brief Determine whether this C++ scope specifier refers to an +// unknown specialization, i.e., a dependent type that is not the +// current instantiation. +bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) { + if (!isDependentScopeSpecifier(SS)) + return false; + + NestedNameSpecifier *NNS + = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); + return getCurrentInstantiationOf(NNS) == 0; +} + +/// \brief If the given nested name specifier refers to the current +/// instantiation, return the declaration that corresponds to that +/// current instantiation (C++0x [temp.dep.type]p1). +/// +/// \param NNS a dependent nested name specifier. +CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) { + assert(getLangOpts().CPlusPlus && "Only callable in C++"); + assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed"); + + if (!NNS->getAsType()) + return 0; + + QualType T = QualType(NNS->getAsType(), 0); + return ::getCurrentInstantiationOf(T, CurContext); +} + +/// \brief Require that the context specified by SS be complete. +/// +/// If SS refers to a type, this routine checks whether the type is +/// complete enough (or can be made complete enough) for name lookup +/// into the DeclContext. A type that is not yet completed can be +/// considered "complete enough" if it is a class/struct/union/enum +/// that is currently being defined. Or, if we have a type that names +/// a class template specialization that is not a complete type, we +/// will attempt to instantiate that class template. +bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS, + DeclContext *DC) { + assert(DC != 0 && "given null context"); + + TagDecl *tag = dyn_cast<TagDecl>(DC); + + // If this is a dependent type, then we consider it complete. + if (!tag || tag->isDependentContext()) + return false; + + // If we're currently defining this type, then lookup into the + // type is okay: don't complain that it isn't complete yet. + QualType type = Context.getTypeDeclType(tag); + const TagType *tagType = type->getAs<TagType>(); + if (tagType && tagType->isBeingDefined()) + return false; + + SourceLocation loc = SS.getLastQualifierNameLoc(); + if (loc.isInvalid()) loc = SS.getRange().getBegin(); + + // The type must be complete. + if (RequireCompleteType(loc, type, + PDiag(diag::err_incomplete_nested_name_spec) + << SS.getRange())) { + SS.SetInvalid(SS.getRange()); + return true; + } + + // Fixed enum types are complete, but they aren't valid as scopes + // until we see a definition, so awkwardly pull out this special + // case. + const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType); + if (!enumType || enumType->getDecl()->isCompleteDefinition()) + return false; + + // Try to instantiate the definition, if this is a specialization of an + // enumeration temploid. + EnumDecl *ED = enumType->getDecl(); + if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) { + MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo(); + if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) { + if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED), + TSK_ImplicitInstantiation)) { + SS.SetInvalid(SS.getRange()); + return true; + } + return false; + } + } + + Diag(loc, diag::err_incomplete_nested_name_spec) + << type << SS.getRange(); + SS.SetInvalid(SS.getRange()); + return true; +} + +bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc, + CXXScopeSpec &SS) { + SS.MakeGlobal(Context, CCLoc); + return false; +} + +/// \brief Determines whether the given declaration is an valid acceptable +/// result for name lookup of a nested-name-specifier. +bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) { + if (!SD) + return false; + + // Namespace and namespace aliases are fine. + if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD)) + return true; + + if (!isa<TypeDecl>(SD)) + return false; + + // Determine whether we have a class (or, in C++11, an enum) or + // a typedef thereof. If so, build the nested-name-specifier. + QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD)); + if (T->isDependentType()) + return true; + else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) { + if (TD->getUnderlyingType()->isRecordType() || + (Context.getLangOpts().CPlusPlus0x && + TD->getUnderlyingType()->isEnumeralType())) + return true; + } else if (isa<RecordDecl>(SD) || + (Context.getLangOpts().CPlusPlus0x && isa<EnumDecl>(SD))) + return true; + + return false; +} + +/// \brief If the given nested-name-specifier begins with a bare identifier +/// (e.g., Base::), perform name lookup for that identifier as a +/// nested-name-specifier within the given scope, and return the result of that +/// name lookup. +NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) { + if (!S || !NNS) + return 0; + + while (NNS->getPrefix()) + NNS = NNS->getPrefix(); + + if (NNS->getKind() != NestedNameSpecifier::Identifier) + return 0; + + LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(), + LookupNestedNameSpecifierName); + LookupName(Found, S); + assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet"); + + if (!Found.isSingleResult()) + return 0; + + NamedDecl *Result = Found.getFoundDecl(); + if (isAcceptableNestedNameSpecifier(Result)) + return Result; + + return 0; +} + +bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, + SourceLocation IdLoc, + IdentifierInfo &II, + ParsedType ObjectTypePtr) { + QualType ObjectType = GetTypeFromParser(ObjectTypePtr); + LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName); + + // Determine where to perform name lookup + DeclContext *LookupCtx = 0; + bool isDependent = false; + if (!ObjectType.isNull()) { + // This nested-name-specifier occurs in a member access expression, e.g., + // x->B::f, and we are looking into the type of the object. + assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); + LookupCtx = computeDeclContext(ObjectType); + isDependent = ObjectType->isDependentType(); + } else if (SS.isSet()) { + // This nested-name-specifier occurs after another nested-name-specifier, + // so long into the context associated with the prior nested-name-specifier. + LookupCtx = computeDeclContext(SS, false); + isDependent = isDependentScopeSpecifier(SS); + Found.setContextRange(SS.getRange()); + } + + if (LookupCtx) { + // Perform "qualified" name lookup into the declaration context we + // computed, which is either the type of the base of a member access + // expression or the declaration context associated with a prior + // nested-name-specifier. + + // The declaration context must be complete. + if (!LookupCtx->isDependentContext() && + RequireCompleteDeclContext(SS, LookupCtx)) + return false; + + LookupQualifiedName(Found, LookupCtx); + } else if (isDependent) { + return false; + } else { + LookupName(Found, S); + } + Found.suppressDiagnostics(); + + if (NamedDecl *ND = Found.getAsSingle<NamedDecl>()) + return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); + + return false; +} + +namespace { + +// Callback to only accept typo corrections that can be a valid C++ member +// intializer: either a non-static field member or a base class. +class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback { + public: + explicit NestedNameSpecifierValidatorCCC(Sema &SRef) + : SRef(SRef) {} + + virtual bool ValidateCandidate(const TypoCorrection &candidate) { + return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl()); + } + + private: + Sema &SRef; +}; + +} + +/// \brief Build a new nested-name-specifier for "identifier::", as described +/// by ActOnCXXNestedNameSpecifier. +/// +/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in +/// that it contains an extra parameter \p ScopeLookupResult, which provides +/// the result of name lookup within the scope of the nested-name-specifier +/// that was computed at template definition time. +/// +/// If ErrorRecoveryLookup is true, then this call is used to improve error +/// recovery. This means that it should not emit diagnostics, it should +/// just return true on failure. It also means it should only return a valid +/// scope if it *knows* that the result is correct. It should not return in a +/// dependent context, for example. Nor will it extend \p SS with the scope +/// specifier. +bool Sema::BuildCXXNestedNameSpecifier(Scope *S, + IdentifierInfo &Identifier, + SourceLocation IdentifierLoc, + SourceLocation CCLoc, + QualType ObjectType, + bool EnteringContext, + CXXScopeSpec &SS, + NamedDecl *ScopeLookupResult, + bool ErrorRecoveryLookup) { + LookupResult Found(*this, &Identifier, IdentifierLoc, + LookupNestedNameSpecifierName); + + // Determine where to perform name lookup + DeclContext *LookupCtx = 0; + bool isDependent = false; + if (!ObjectType.isNull()) { + // This nested-name-specifier occurs in a member access expression, e.g., + // x->B::f, and we are looking into the type of the object. + assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); + LookupCtx = computeDeclContext(ObjectType); + isDependent = ObjectType->isDependentType(); + } else if (SS.isSet()) { + // This nested-name-specifier occurs after another nested-name-specifier, + // so look into the context associated with the prior nested-name-specifier. + LookupCtx = computeDeclContext(SS, EnteringContext); + isDependent = isDependentScopeSpecifier(SS); + Found.setContextRange(SS.getRange()); + } + + + bool ObjectTypeSearchedInScope = false; + if (LookupCtx) { + // Perform "qualified" name lookup into the declaration context we + // computed, which is either the type of the base of a member access + // expression or the declaration context associated with a prior + // nested-name-specifier. + + // The declaration context must be complete. + if (!LookupCtx->isDependentContext() && + RequireCompleteDeclContext(SS, LookupCtx)) + return true; + + LookupQualifiedName(Found, LookupCtx); + + if (!ObjectType.isNull() && Found.empty()) { + // C++ [basic.lookup.classref]p4: + // If the id-expression in a class member access is a qualified-id of + // the form + // + // class-name-or-namespace-name::... + // + // the class-name-or-namespace-name following the . or -> operator is + // looked up both in the context of the entire postfix-expression and in + // the scope of the class of the object expression. If the name is found + // only in the scope of the class of the object expression, the name + // shall refer to a class-name. If the name is found only in the + // context of the entire postfix-expression, the name shall refer to a + // class-name or namespace-name. [...] + // + // Qualified name lookup into a class will not find a namespace-name, + // so we do not need to diagnose that case specifically. However, + // this qualified name lookup may find nothing. In that case, perform + // unqualified name lookup in the given scope (if available) or + // reconstruct the result from when name lookup was performed at template + // definition time. + if (S) + LookupName(Found, S); + else if (ScopeLookupResult) + Found.addDecl(ScopeLookupResult); + + ObjectTypeSearchedInScope = true; + } + } else if (!isDependent) { + // Perform unqualified name lookup in the current scope. + LookupName(Found, S); + } + + // If we performed lookup into a dependent context and did not find anything, + // that's fine: just build a dependent nested-name-specifier. + if (Found.empty() && isDependent && + !(LookupCtx && LookupCtx->isRecord() && + (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || + !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) { + // Don't speculate if we're just trying to improve error recovery. + if (ErrorRecoveryLookup) + return true; + + // We were not able to compute the declaration context for a dependent + // base object type or prior nested-name-specifier, so this + // nested-name-specifier refers to an unknown specialization. Just build + // a dependent nested-name-specifier. + SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc); + return false; + } + + // FIXME: Deal with ambiguities cleanly. + + if (Found.empty() && !ErrorRecoveryLookup) { + // We haven't found anything, and we're not recovering from a + // different kind of error, so look for typos. + DeclarationName Name = Found.getLookupName(); + NestedNameSpecifierValidatorCCC Validator(*this); + TypoCorrection Corrected; + Found.clear(); + if ((Corrected = CorrectTypo(Found.getLookupNameInfo(), + Found.getLookupKind(), S, &SS, Validator, + LookupCtx, EnteringContext))) { + std::string CorrectedStr(Corrected.getAsString(getLangOpts())); + std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts())); + if (LookupCtx) + Diag(Found.getNameLoc(), diag::err_no_member_suggest) + << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() + << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); + else + Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest) + << Name << CorrectedQuotedStr + << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); + + if (NamedDecl *ND = Corrected.getCorrectionDecl()) { + Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr; + Found.addDecl(ND); + } + Found.setLookupName(Corrected.getCorrection()); + } else { + Found.setLookupName(&Identifier); + } + } + + NamedDecl *SD = Found.getAsSingle<NamedDecl>(); + if (isAcceptableNestedNameSpecifier(SD)) { + if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) { + // C++ [basic.lookup.classref]p4: + // [...] If the name is found in both contexts, the + // class-name-or-namespace-name shall refer to the same entity. + // + // We already found the name in the scope of the object. Now, look + // into the current scope (the scope of the postfix-expression) to + // see if we can find the same name there. As above, if there is no + // scope, reconstruct the result from the template instantiation itself. + NamedDecl *OuterDecl; + if (S) { + LookupResult FoundOuter(*this, &Identifier, IdentifierLoc, + LookupNestedNameSpecifierName); + LookupName(FoundOuter, S); + OuterDecl = FoundOuter.getAsSingle<NamedDecl>(); + } else + OuterDecl = ScopeLookupResult; + + if (isAcceptableNestedNameSpecifier(OuterDecl) && + OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() && + (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) || + !Context.hasSameType( + Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)), + Context.getTypeDeclType(cast<TypeDecl>(SD))))) { + if (ErrorRecoveryLookup) + return true; + + Diag(IdentifierLoc, + diag::err_nested_name_member_ref_lookup_ambiguous) + << &Identifier; + Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type) + << ObjectType; + Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope); + + // Fall through so that we'll pick the name we found in the object + // type, since that's probably what the user wanted anyway. + } + } + + // If we're just performing this lookup for error-recovery purposes, + // don't extend the nested-name-specifier. Just return now. + if (ErrorRecoveryLookup) + return false; + + if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) { + SS.Extend(Context, Namespace, IdentifierLoc, CCLoc); + return false; + } + + if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) { + SS.Extend(Context, Alias, IdentifierLoc, CCLoc); + return false; + } + + QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD)); + TypeLocBuilder TLB; + if (isa<InjectedClassNameType>(T)) { + InjectedClassNameTypeLoc InjectedTL + = TLB.push<InjectedClassNameTypeLoc>(T); + InjectedTL.setNameLoc(IdentifierLoc); + } else if (isa<RecordType>(T)) { + RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T); + RecordTL.setNameLoc(IdentifierLoc); + } else if (isa<TypedefType>(T)) { + TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T); + TypedefTL.setNameLoc(IdentifierLoc); + } else if (isa<EnumType>(T)) { + EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T); + EnumTL.setNameLoc(IdentifierLoc); + } else if (isa<TemplateTypeParmType>(T)) { + TemplateTypeParmTypeLoc TemplateTypeTL + = TLB.push<TemplateTypeParmTypeLoc>(T); + TemplateTypeTL.setNameLoc(IdentifierLoc); + } else if (isa<UnresolvedUsingType>(T)) { + UnresolvedUsingTypeLoc UnresolvedTL + = TLB.push<UnresolvedUsingTypeLoc>(T); + UnresolvedTL.setNameLoc(IdentifierLoc); + } else if (isa<SubstTemplateTypeParmType>(T)) { + SubstTemplateTypeParmTypeLoc TL + = TLB.push<SubstTemplateTypeParmTypeLoc>(T); + TL.setNameLoc(IdentifierLoc); + } else if (isa<SubstTemplateTypeParmPackType>(T)) { + SubstTemplateTypeParmPackTypeLoc TL + = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T); + TL.setNameLoc(IdentifierLoc); + } else { + llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier"); + } + + if (T->isEnumeralType()) + Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec); + + SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T), + CCLoc); + return false; + } + + // Otherwise, we have an error case. If we don't want diagnostics, just + // return an error now. + if (ErrorRecoveryLookup) + return true; + + // If we didn't find anything during our lookup, try again with + // ordinary name lookup, which can help us produce better error + // messages. + if (Found.empty()) { + Found.clear(LookupOrdinaryName); + LookupName(Found, S); + } + + // In Microsoft mode, if we are within a templated function and we can't + // resolve Identifier, then extend the SS with Identifier. This will have + // the effect of resolving Identifier during template instantiation. + // The goal is to be able to resolve a function call whose + // nested-name-specifier is located inside a dependent base class. + // Example: + // + // class C { + // public: + // static void foo2() { } + // }; + // template <class T> class A { public: typedef C D; }; + // + // template <class T> class B : public A<T> { + // public: + // void foo() { D::foo2(); } + // }; + if (getLangOpts().MicrosoftExt) { + DeclContext *DC = LookupCtx ? LookupCtx : CurContext; + if (DC->isDependentContext() && DC->isFunctionOrMethod()) { + SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc); + return false; + } + } + + unsigned DiagID; + if (!Found.empty()) + DiagID = diag::err_expected_class_or_namespace; + else if (SS.isSet()) { + Diag(IdentifierLoc, diag::err_no_member) + << &Identifier << LookupCtx << SS.getRange(); + return true; + } else + DiagID = diag::err_undeclared_var_use; + + if (SS.isSet()) + Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange(); + else + Diag(IdentifierLoc, DiagID) << &Identifier; + + return true; +} + +bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, + IdentifierInfo &Identifier, + SourceLocation IdentifierLoc, + SourceLocation CCLoc, + ParsedType ObjectType, + bool EnteringContext, + CXXScopeSpec &SS) { + if (SS.isInvalid()) + return true; + + return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc, + GetTypeFromParser(ObjectType), + EnteringContext, SS, + /*ScopeLookupResult=*/0, false); +} + +bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS, + const DeclSpec &DS, + SourceLocation ColonColonLoc) { + if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error) + return true; + + assert(DS.getTypeSpecType() == DeclSpec::TST_decltype); + + QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); + if (!T->isDependentType() && !T->getAs<TagType>()) { + Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class) + << T << getLangOpts().CPlusPlus; + return true; + } + + TypeLocBuilder TLB; + DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); + DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); + SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T), + ColonColonLoc); + return false; +} + +/// IsInvalidUnlessNestedName - This method is used for error recovery +/// purposes to determine whether the specified identifier is only valid as +/// a nested name specifier, for example a namespace name. It is +/// conservatively correct to always return false from this method. +/// +/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier. +bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS, + IdentifierInfo &Identifier, + SourceLocation IdentifierLoc, + SourceLocation ColonLoc, + ParsedType ObjectType, + bool EnteringContext) { + if (SS.isInvalid()) + return false; + + return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc, + GetTypeFromParser(ObjectType), + EnteringContext, SS, + /*ScopeLookupResult=*/0, true); +} + +bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, + CXXScopeSpec &SS, + SourceLocation TemplateKWLoc, + TemplateTy Template, + SourceLocation TemplateNameLoc, + SourceLocation LAngleLoc, + ASTTemplateArgsPtr TemplateArgsIn, + SourceLocation RAngleLoc, + SourceLocation CCLoc, + bool EnteringContext) { + if (SS.isInvalid()) + return true; + + // Translate the parser's template argument list in our AST format. + TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); + translateTemplateArguments(TemplateArgsIn, TemplateArgs); + + if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){ + // Handle a dependent template specialization for which we cannot resolve + // the template name. + assert(DTN->getQualifier() + == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); + QualType T = Context.getDependentTemplateSpecializationType(ETK_None, + DTN->getQualifier(), + DTN->getIdentifier(), + TemplateArgs); + + // Create source-location information for this type. + TypeLocBuilder Builder; + DependentTemplateSpecializationTypeLoc SpecTL + = Builder.push<DependentTemplateSpecializationTypeLoc>(T); + SpecTL.setElaboratedKeywordLoc(SourceLocation()); + SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); + SpecTL.setTemplateKeywordLoc(TemplateKWLoc); + SpecTL.setTemplateNameLoc(TemplateNameLoc); + SpecTL.setLAngleLoc(LAngleLoc); + SpecTL.setRAngleLoc(RAngleLoc); + for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) + SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); + + SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T), + CCLoc); + return false; + } + + + if (Template.get().getAsOverloadedTemplate() || + isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) { + SourceRange R(TemplateNameLoc, RAngleLoc); + if (SS.getRange().isValid()) + R.setBegin(SS.getRange().getBegin()); + + Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier) + << Template.get() << R; + NoteAllFoundTemplates(Template.get()); + return true; + } + + // We were able to resolve the template name to an actual template. + // Build an appropriate nested-name-specifier. + QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc, + TemplateArgs); + if (T.isNull()) + return true; + + // Alias template specializations can produce types which are not valid + // nested name specifiers. + if (!T->isDependentType() && !T->getAs<TagType>()) { + Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T; + NoteAllFoundTemplates(Template.get()); + return true; + } + + // Provide source-location information for the template specialization type. + TypeLocBuilder Builder; + TemplateSpecializationTypeLoc SpecTL + = Builder.push<TemplateSpecializationTypeLoc>(T); + SpecTL.setTemplateKeywordLoc(TemplateKWLoc); + SpecTL.setTemplateNameLoc(TemplateNameLoc); + SpecTL.setLAngleLoc(LAngleLoc); + SpecTL.setRAngleLoc(RAngleLoc); + for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) + SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); + + + SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T), + CCLoc); + return false; +} + +namespace { + /// \brief A structure that stores a nested-name-specifier annotation, + /// including both the nested-name-specifier + struct NestedNameSpecifierAnnotation { + NestedNameSpecifier *NNS; + }; +} + +void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) { + if (SS.isEmpty() || SS.isInvalid()) + return 0; + + void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) + + SS.location_size()), + llvm::alignOf<NestedNameSpecifierAnnotation>()); + NestedNameSpecifierAnnotation *Annotation + = new (Mem) NestedNameSpecifierAnnotation; + Annotation->NNS = SS.getScopeRep(); + memcpy(Annotation + 1, SS.location_data(), SS.location_size()); + return Annotation; +} + +void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr, + SourceRange AnnotationRange, + CXXScopeSpec &SS) { + if (!AnnotationPtr) { + SS.SetInvalid(AnnotationRange); + return; + } + + NestedNameSpecifierAnnotation *Annotation + = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr); + SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1)); +} + +bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) { + assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); + + NestedNameSpecifier *Qualifier = + static_cast<NestedNameSpecifier*>(SS.getScopeRep()); + + // There are only two places a well-formed program may qualify a + // declarator: first, when defining a namespace or class member + // out-of-line, and second, when naming an explicitly-qualified + // friend function. The latter case is governed by + // C++03 [basic.lookup.unqual]p10: + // In a friend declaration naming a member function, a name used + // in the function declarator and not part of a template-argument + // in a template-id is first looked up in the scope of the member + // function's class. If it is not found, or if the name is part of + // a template-argument in a template-id, the look up is as + // described for unqualified names in the definition of the class + // granting friendship. + // i.e. we don't push a scope unless it's a class member. + + switch (Qualifier->getKind()) { + case NestedNameSpecifier::Global: + case NestedNameSpecifier::Namespace: + case NestedNameSpecifier::NamespaceAlias: + // These are always namespace scopes. We never want to enter a + // namespace scope from anything but a file context. + return CurContext->getRedeclContext()->isFileContext(); + + case NestedNameSpecifier::Identifier: + case NestedNameSpecifier::TypeSpec: + case NestedNameSpecifier::TypeSpecWithTemplate: + // These are never namespace scopes. + return true; + } + + llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); +} + +/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global +/// scope or nested-name-specifier) is parsed, part of a declarator-id. +/// After this method is called, according to [C++ 3.4.3p3], names should be +/// looked up in the declarator-id's scope, until the declarator is parsed and +/// ActOnCXXExitDeclaratorScope is called. +/// The 'SS' should be a non-empty valid CXXScopeSpec. +bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) { + assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); + + if (SS.isInvalid()) return true; + + DeclContext *DC = computeDeclContext(SS, true); + if (!DC) return true; + + // Before we enter a declarator's context, we need to make sure that + // it is a complete declaration context. + if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC)) + return true; + + EnterDeclaratorContext(S, DC); + + // Rebuild the nested name specifier for the new scope. + if (DC->isDependentContext()) + RebuildNestedNameSpecifierInCurrentInstantiation(SS); + + return false; +} + +/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously +/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same +/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. +/// Used to indicate that names should revert to being looked up in the +/// defining scope. +void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) { + assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); + if (SS.isInvalid()) + return; + assert(!SS.isInvalid() && computeDeclContext(SS, true) && + "exiting declarator scope we never really entered"); + ExitDeclaratorContext(S); +} |