diff options
author | Zancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au> | 2012-09-24 09:58:17 +1000 |
---|---|---|
committer | Zancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au> | 2012-09-24 09:58:17 +1000 |
commit | 222e2a7620e6520ffaf4fc4e69d79c18da31542e (patch) | |
tree | 7bfbc05bfa3b41c8f9d2e56d53a0bc3e310df239 /clang/lib/CodeGen/CGValue.h | |
parent | 3d206f03985b50beacae843d880bccdc91a9f424 (diff) |
Add the clang library to the repo (with some of my changes, too).
Diffstat (limited to 'clang/lib/CodeGen/CGValue.h')
-rw-r--r-- | clang/lib/CodeGen/CGValue.h | 451 |
1 files changed, 451 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGValue.h b/clang/lib/CodeGen/CGValue.h new file mode 100644 index 0000000..ac704e7 --- /dev/null +++ b/clang/lib/CodeGen/CGValue.h @@ -0,0 +1,451 @@ +//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// These classes implement wrappers around llvm::Value in order to +// fully represent the range of values for C L- and R- values. +// +//===----------------------------------------------------------------------===// + +#ifndef CLANG_CODEGEN_CGVALUE_H +#define CLANG_CODEGEN_CGVALUE_H + +#include "clang/AST/ASTContext.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/Type.h" + +namespace llvm { + class Constant; + class Value; +} + +namespace clang { +namespace CodeGen { + class AggValueSlot; + class CGBitFieldInfo; + +/// RValue - This trivial value class is used to represent the result of an +/// expression that is evaluated. It can be one of three things: either a +/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the +/// address of an aggregate value in memory. +class RValue { + enum Flavor { Scalar, Complex, Aggregate }; + + // Stores first value and flavor. + llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; + // Stores second value and volatility. + llvm::PointerIntPair<llvm::Value *, 1, bool> V2; + +public: + bool isScalar() const { return V1.getInt() == Scalar; } + bool isComplex() const { return V1.getInt() == Complex; } + bool isAggregate() const { return V1.getInt() == Aggregate; } + + bool isVolatileQualified() const { return V2.getInt(); } + + /// getScalarVal() - Return the Value* of this scalar value. + llvm::Value *getScalarVal() const { + assert(isScalar() && "Not a scalar!"); + return V1.getPointer(); + } + + /// getComplexVal - Return the real/imag components of this complex value. + /// + std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { + return std::make_pair(V1.getPointer(), V2.getPointer()); + } + + /// getAggregateAddr() - Return the Value* of the address of the aggregate. + llvm::Value *getAggregateAddr() const { + assert(isAggregate() && "Not an aggregate!"); + return V1.getPointer(); + } + + static RValue get(llvm::Value *V) { + RValue ER; + ER.V1.setPointer(V); + ER.V1.setInt(Scalar); + ER.V2.setInt(false); + return ER; + } + static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { + RValue ER; + ER.V1.setPointer(V1); + ER.V2.setPointer(V2); + ER.V1.setInt(Complex); + ER.V2.setInt(false); + return ER; + } + static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { + return getComplex(C.first, C.second); + } + // FIXME: Aggregate rvalues need to retain information about whether they are + // volatile or not. Remove default to find all places that probably get this + // wrong. + static RValue getAggregate(llvm::Value *V, bool Volatile = false) { + RValue ER; + ER.V1.setPointer(V); + ER.V1.setInt(Aggregate); + ER.V2.setInt(Volatile); + return ER; + } +}; + + +/// LValue - This represents an lvalue references. Because C/C++ allow +/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a +/// bitrange. +class LValue { + enum { + Simple, // This is a normal l-value, use getAddress(). + VectorElt, // This is a vector element l-value (V[i]), use getVector* + BitField, // This is a bitfield l-value, use getBitfield*. + ExtVectorElt // This is an extended vector subset, use getExtVectorComp + } LVType; + + llvm::Value *V; + + union { + // Index into a vector subscript: V[i] + llvm::Value *VectorIdx; + + // ExtVector element subset: V.xyx + llvm::Constant *VectorElts; + + // BitField start bit and size + const CGBitFieldInfo *BitFieldInfo; + }; + + QualType Type; + + // 'const' is unused here + Qualifiers Quals; + + // The alignment to use when accessing this lvalue. (For vector elements, + // this is the alignment of the whole vector.) + unsigned short Alignment; + + // objective-c's ivar + bool Ivar:1; + + // objective-c's ivar is an array + bool ObjIsArray:1; + + // LValue is non-gc'able for any reason, including being a parameter or local + // variable. + bool NonGC: 1; + + // Lvalue is a global reference of an objective-c object + bool GlobalObjCRef : 1; + + // Lvalue is a thread local reference + bool ThreadLocalRef : 1; + + Expr *BaseIvarExp; + + /// TBAAInfo - TBAA information to attach to dereferences of this LValue. + llvm::MDNode *TBAAInfo; + +private: + void Initialize(QualType Type, Qualifiers Quals, + CharUnits Alignment = CharUnits(), + llvm::MDNode *TBAAInfo = 0) { + this->Type = Type; + this->Quals = Quals; + this->Alignment = Alignment.getQuantity(); + assert(this->Alignment == Alignment.getQuantity() && + "Alignment exceeds allowed max!"); + + // Initialize Objective-C flags. + this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; + this->ThreadLocalRef = false; + this->BaseIvarExp = 0; + this->TBAAInfo = TBAAInfo; + } + +public: + bool isSimple() const { return LVType == Simple; } + bool isVectorElt() const { return LVType == VectorElt; } + bool isBitField() const { return LVType == BitField; } + bool isExtVectorElt() const { return LVType == ExtVectorElt; } + + bool isVolatileQualified() const { return Quals.hasVolatile(); } + bool isRestrictQualified() const { return Quals.hasRestrict(); } + unsigned getVRQualifiers() const { + return Quals.getCVRQualifiers() & ~Qualifiers::Const; + } + + QualType getType() const { return Type; } + + Qualifiers::ObjCLifetime getObjCLifetime() const { + return Quals.getObjCLifetime(); + } + + bool isObjCIvar() const { return Ivar; } + void setObjCIvar(bool Value) { Ivar = Value; } + + bool isObjCArray() const { return ObjIsArray; } + void setObjCArray(bool Value) { ObjIsArray = Value; } + + bool isNonGC () const { return NonGC; } + void setNonGC(bool Value) { NonGC = Value; } + + bool isGlobalObjCRef() const { return GlobalObjCRef; } + void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } + + bool isThreadLocalRef() const { return ThreadLocalRef; } + void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} + + bool isObjCWeak() const { + return Quals.getObjCGCAttr() == Qualifiers::Weak; + } + bool isObjCStrong() const { + return Quals.getObjCGCAttr() == Qualifiers::Strong; + } + + bool isVolatile() const { + return Quals.hasVolatile(); + } + + Expr *getBaseIvarExp() const { return BaseIvarExp; } + void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } + + llvm::MDNode *getTBAAInfo() const { return TBAAInfo; } + void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; } + + const Qualifiers &getQuals() const { return Quals; } + Qualifiers &getQuals() { return Quals; } + + unsigned getAddressSpace() const { return Quals.getAddressSpace(); } + + CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } + void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } + + // simple lvalue + llvm::Value *getAddress() const { assert(isSimple()); return V; } + void setAddress(llvm::Value *address) { + assert(isSimple()); + V = address; + } + + // vector elt lvalue + llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; } + llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; } + + // extended vector elements. + llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; } + llvm::Constant *getExtVectorElts() const { + assert(isExtVectorElt()); + return VectorElts; + } + + // bitfield lvalue + llvm::Value *getBitFieldBaseAddr() const { + assert(isBitField()); + return V; + } + const CGBitFieldInfo &getBitFieldInfo() const { + assert(isBitField()); + return *BitFieldInfo; + } + + static LValue MakeAddr(llvm::Value *address, QualType type, + CharUnits alignment, ASTContext &Context, + llvm::MDNode *TBAAInfo = 0) { + Qualifiers qs = type.getQualifiers(); + qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); + + LValue R; + R.LVType = Simple; + R.V = address; + R.Initialize(type, qs, alignment, TBAAInfo); + return R; + } + + static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx, + QualType type, CharUnits Alignment) { + LValue R; + R.LVType = VectorElt; + R.V = Vec; + R.VectorIdx = Idx; + R.Initialize(type, type.getQualifiers(), Alignment); + return R; + } + + static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts, + QualType type, CharUnits Alignment) { + LValue R; + R.LVType = ExtVectorElt; + R.V = Vec; + R.VectorElts = Elts; + R.Initialize(type, type.getQualifiers(), Alignment); + return R; + } + + /// \brief Create a new object to represent a bit-field access. + /// + /// \param BaseValue - The base address of the structure containing the + /// bit-field. + /// \param Info - The information describing how to perform the bit-field + /// access. + static LValue MakeBitfield(llvm::Value *BaseValue, + const CGBitFieldInfo &Info, + QualType type) { + LValue R; + R.LVType = BitField; + R.V = BaseValue; + R.BitFieldInfo = &Info; + R.Initialize(type, type.getQualifiers()); + return R; + } + + RValue asAggregateRValue() const { + // FIMXE: Alignment + return RValue::getAggregate(getAddress(), isVolatileQualified()); + } +}; + +/// An aggregate value slot. +class AggValueSlot { + /// The address. + llvm::Value *Addr; + + // Qualifiers + Qualifiers Quals; + + unsigned short Alignment; + + /// DestructedFlag - This is set to true if some external code is + /// responsible for setting up a destructor for the slot. Otherwise + /// the code which constructs it should push the appropriate cleanup. + bool DestructedFlag : 1; + + /// ObjCGCFlag - This is set to true if writing to the memory in the + /// slot might require calling an appropriate Objective-C GC + /// barrier. The exact interaction here is unnecessarily mysterious. + bool ObjCGCFlag : 1; + + /// ZeroedFlag - This is set to true if the memory in the slot is + /// known to be zero before the assignment into it. This means that + /// zero fields don't need to be set. + bool ZeroedFlag : 1; + + /// AliasedFlag - This is set to true if the slot might be aliased + /// and it's not undefined behavior to access it through such an + /// alias. Note that it's always undefined behavior to access a C++ + /// object that's under construction through an alias derived from + /// outside the construction process. + /// + /// This flag controls whether calls that produce the aggregate + /// value may be evaluated directly into the slot, or whether they + /// must be evaluated into an unaliased temporary and then memcpy'ed + /// over. Since it's invalid in general to memcpy a non-POD C++ + /// object, it's important that this flag never be set when + /// evaluating an expression which constructs such an object. + bool AliasedFlag : 1; + +public: + enum IsAliased_t { IsNotAliased, IsAliased }; + enum IsDestructed_t { IsNotDestructed, IsDestructed }; + enum IsZeroed_t { IsNotZeroed, IsZeroed }; + enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; + + /// ignored - Returns an aggregate value slot indicating that the + /// aggregate value is being ignored. + static AggValueSlot ignored() { + return forAddr(0, CharUnits(), Qualifiers(), IsNotDestructed, + DoesNotNeedGCBarriers, IsNotAliased); + } + + /// forAddr - Make a slot for an aggregate value. + /// + /// \param quals - The qualifiers that dictate how the slot should + /// be initialied. Only 'volatile' and the Objective-C lifetime + /// qualifiers matter. + /// + /// \param isDestructed - true if something else is responsible + /// for calling destructors on this object + /// \param needsGC - true if the slot is potentially located + /// somewhere that ObjC GC calls should be emitted for + static AggValueSlot forAddr(llvm::Value *addr, CharUnits align, + Qualifiers quals, + IsDestructed_t isDestructed, + NeedsGCBarriers_t needsGC, + IsAliased_t isAliased, + IsZeroed_t isZeroed = IsNotZeroed) { + AggValueSlot AV; + AV.Addr = addr; + AV.Alignment = align.getQuantity(); + AV.Quals = quals; + AV.DestructedFlag = isDestructed; + AV.ObjCGCFlag = needsGC; + AV.ZeroedFlag = isZeroed; + AV.AliasedFlag = isAliased; + return AV; + } + + static AggValueSlot forLValue(LValue LV, IsDestructed_t isDestructed, + NeedsGCBarriers_t needsGC, + IsAliased_t isAliased, + IsZeroed_t isZeroed = IsNotZeroed) { + return forAddr(LV.getAddress(), LV.getAlignment(), + LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed); + } + + IsDestructed_t isExternallyDestructed() const { + return IsDestructed_t(DestructedFlag); + } + void setExternallyDestructed(bool destructed = true) { + DestructedFlag = destructed; + } + + Qualifiers getQualifiers() const { return Quals; } + + bool isVolatile() const { + return Quals.hasVolatile(); + } + + Qualifiers::ObjCLifetime getObjCLifetime() const { + return Quals.getObjCLifetime(); + } + + NeedsGCBarriers_t requiresGCollection() const { + return NeedsGCBarriers_t(ObjCGCFlag); + } + + llvm::Value *getAddr() const { + return Addr; + } + + bool isIgnored() const { + return Addr == 0; + } + + CharUnits getAlignment() const { + return CharUnits::fromQuantity(Alignment); + } + + IsAliased_t isPotentiallyAliased() const { + return IsAliased_t(AliasedFlag); + } + + // FIXME: Alignment? + RValue asRValue() const { + return RValue::getAggregate(getAddr(), isVolatile()); + } + + void setZeroed(bool V = true) { ZeroedFlag = V; } + IsZeroed_t isZeroed() const { + return IsZeroed_t(ZeroedFlag); + } +}; + +} // end namespace CodeGen +} // end namespace clang + +#endif |