summaryrefslogtreecommitdiff
path: root/clang/lib/CodeGen/CGObjC.cpp
diff options
context:
space:
mode:
authorZancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au>2012-09-24 09:58:17 +1000
committerZancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au>2012-09-24 09:58:17 +1000
commit222e2a7620e6520ffaf4fc4e69d79c18da31542e (patch)
tree7bfbc05bfa3b41c8f9d2e56d53a0bc3e310df239 /clang/lib/CodeGen/CGObjC.cpp
parent3d206f03985b50beacae843d880bccdc91a9f424 (diff)
Add the clang library to the repo (with some of my changes, too).
Diffstat (limited to 'clang/lib/CodeGen/CGObjC.cpp')
-rw-r--r--clang/lib/CodeGen/CGObjC.cpp2974
1 files changed, 2974 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGObjC.cpp b/clang/lib/CodeGen/CGObjC.cpp
new file mode 100644
index 0000000..d0aa0f5
--- /dev/null
+++ b/clang/lib/CodeGen/CGObjC.cpp
@@ -0,0 +1,2974 @@
+//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Objective-C code as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGDebugInfo.h"
+#include "CGObjCRuntime.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/Basic/Diagnostic.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/InlineAsm.h"
+using namespace clang;
+using namespace CodeGen;
+
+typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
+static TryEmitResult
+tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
+static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
+ const Expr *E,
+ const ObjCMethodDecl *Method,
+ RValue Result);
+
+/// Given the address of a variable of pointer type, find the correct
+/// null to store into it.
+static llvm::Constant *getNullForVariable(llvm::Value *addr) {
+ llvm::Type *type =
+ cast<llvm::PointerType>(addr->getType())->getElementType();
+ return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
+}
+
+/// Emits an instance of NSConstantString representing the object.
+llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
+{
+ llvm::Constant *C =
+ CGM.getObjCRuntime().GenerateConstantString(E->getString());
+ // FIXME: This bitcast should just be made an invariant on the Runtime.
+ return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
+}
+
+/// EmitObjCNumericLiteral - This routine generates code for
+/// the appropriate +[NSNumber numberWith<Type>:] method.
+///
+llvm::Value *
+CodeGenFunction::EmitObjCNumericLiteral(const ObjCNumericLiteral *E) {
+ // Generate the correct selector for this literal's concrete type.
+ const Expr *NL = E->getNumber();
+ // Get the method.
+ const ObjCMethodDecl *Method = E->getObjCNumericLiteralMethod();
+ assert(Method && "NSNumber method is null");
+ Selector Sel = Method->getSelector();
+
+ // Generate a reference to the class pointer, which will be the receiver.
+ QualType ResultType = E->getType(); // should be NSNumber *
+ const ObjCObjectPointerType *InterfacePointerType =
+ ResultType->getAsObjCInterfacePointerType();
+ ObjCInterfaceDecl *NSNumberDecl =
+ InterfacePointerType->getObjectType()->getInterface();
+ CGObjCRuntime &Runtime = CGM.getObjCRuntime();
+ llvm::Value *Receiver = Runtime.GetClass(Builder, NSNumberDecl);
+
+ const ParmVarDecl *argDecl = *Method->param_begin();
+ QualType ArgQT = argDecl->getType().getUnqualifiedType();
+ RValue RV = EmitAnyExpr(NL);
+ CallArgList Args;
+ Args.add(RV, ArgQT);
+
+ RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
+ ResultType, Sel, Receiver, Args,
+ NSNumberDecl, Method);
+ return Builder.CreateBitCast(result.getScalarVal(),
+ ConvertType(E->getType()));
+}
+
+llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
+ const ObjCMethodDecl *MethodWithObjects) {
+ ASTContext &Context = CGM.getContext();
+ const ObjCDictionaryLiteral *DLE = 0;
+ const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
+ if (!ALE)
+ DLE = cast<ObjCDictionaryLiteral>(E);
+
+ // Compute the type of the array we're initializing.
+ uint64_t NumElements =
+ ALE ? ALE->getNumElements() : DLE->getNumElements();
+ llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
+ NumElements);
+ QualType ElementType = Context.getObjCIdType().withConst();
+ QualType ElementArrayType
+ = Context.getConstantArrayType(ElementType, APNumElements,
+ ArrayType::Normal, /*IndexTypeQuals=*/0);
+
+ // Allocate the temporary array(s).
+ llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
+ llvm::Value *Keys = 0;
+ if (DLE)
+ Keys = CreateMemTemp(ElementArrayType, "keys");
+
+ // Perform the actual initialialization of the array(s).
+ for (uint64_t i = 0; i < NumElements; i++) {
+ if (ALE) {
+ // Emit the initializer.
+ const Expr *Rhs = ALE->getElement(i);
+ LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
+ ElementType,
+ Context.getTypeAlignInChars(Rhs->getType()),
+ Context);
+ EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
+ } else {
+ // Emit the key initializer.
+ const Expr *Key = DLE->getKeyValueElement(i).Key;
+ LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
+ ElementType,
+ Context.getTypeAlignInChars(Key->getType()),
+ Context);
+ EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
+
+ // Emit the value initializer.
+ const Expr *Value = DLE->getKeyValueElement(i).Value;
+ LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
+ ElementType,
+ Context.getTypeAlignInChars(Value->getType()),
+ Context);
+ EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
+ }
+ }
+
+ // Generate the argument list.
+ CallArgList Args;
+ ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
+ const ParmVarDecl *argDecl = *PI++;
+ QualType ArgQT = argDecl->getType().getUnqualifiedType();
+ Args.add(RValue::get(Objects), ArgQT);
+ if (DLE) {
+ argDecl = *PI++;
+ ArgQT = argDecl->getType().getUnqualifiedType();
+ Args.add(RValue::get(Keys), ArgQT);
+ }
+ argDecl = *PI;
+ ArgQT = argDecl->getType().getUnqualifiedType();
+ llvm::Value *Count =
+ llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
+ Args.add(RValue::get(Count), ArgQT);
+
+ // Generate a reference to the class pointer, which will be the receiver.
+ Selector Sel = MethodWithObjects->getSelector();
+ QualType ResultType = E->getType();
+ const ObjCObjectPointerType *InterfacePointerType
+ = ResultType->getAsObjCInterfacePointerType();
+ ObjCInterfaceDecl *Class
+ = InterfacePointerType->getObjectType()->getInterface();
+ CGObjCRuntime &Runtime = CGM.getObjCRuntime();
+ llvm::Value *Receiver = Runtime.GetClass(Builder, Class);
+
+ // Generate the message send.
+ RValue result
+ = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
+ MethodWithObjects->getResultType(),
+ Sel,
+ Receiver, Args, Class,
+ MethodWithObjects);
+ return Builder.CreateBitCast(result.getScalarVal(),
+ ConvertType(E->getType()));
+}
+
+llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
+ return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
+}
+
+llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
+ const ObjCDictionaryLiteral *E) {
+ return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
+}
+
+/// Emit a selector.
+llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
+ // Untyped selector.
+ // Note that this implementation allows for non-constant strings to be passed
+ // as arguments to @selector(). Currently, the only thing preventing this
+ // behaviour is the type checking in the front end.
+ return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
+}
+
+llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
+ // FIXME: This should pass the Decl not the name.
+ return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
+}
+
+/// \brief Adjust the type of the result of an Objective-C message send
+/// expression when the method has a related result type.
+static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
+ const Expr *E,
+ const ObjCMethodDecl *Method,
+ RValue Result) {
+ if (!Method)
+ return Result;
+
+ if (!Method->hasRelatedResultType() ||
+ CGF.getContext().hasSameType(E->getType(), Method->getResultType()) ||
+ !Result.isScalar())
+ return Result;
+
+ // We have applied a related result type. Cast the rvalue appropriately.
+ return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
+ CGF.ConvertType(E->getType())));
+}
+
+/// Decide whether to extend the lifetime of the receiver of a
+/// returns-inner-pointer message.
+static bool
+shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
+ switch (message->getReceiverKind()) {
+
+ // For a normal instance message, we should extend unless the
+ // receiver is loaded from a variable with precise lifetime.
+ case ObjCMessageExpr::Instance: {
+ const Expr *receiver = message->getInstanceReceiver();
+ const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
+ if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
+ receiver = ice->getSubExpr()->IgnoreParens();
+
+ // Only __strong variables.
+ if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
+ return true;
+
+ // All ivars and fields have precise lifetime.
+ if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
+ return false;
+
+ // Otherwise, check for variables.
+ const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
+ if (!declRef) return true;
+ const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
+ if (!var) return true;
+
+ // All variables have precise lifetime except local variables with
+ // automatic storage duration that aren't specially marked.
+ return (var->hasLocalStorage() &&
+ !var->hasAttr<ObjCPreciseLifetimeAttr>());
+ }
+
+ case ObjCMessageExpr::Class:
+ case ObjCMessageExpr::SuperClass:
+ // It's never necessary for class objects.
+ return false;
+
+ case ObjCMessageExpr::SuperInstance:
+ // We generally assume that 'self' lives throughout a method call.
+ return false;
+ }
+
+ llvm_unreachable("invalid receiver kind");
+}
+
+RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
+ ReturnValueSlot Return) {
+ // Only the lookup mechanism and first two arguments of the method
+ // implementation vary between runtimes. We can get the receiver and
+ // arguments in generic code.
+
+ bool isDelegateInit = E->isDelegateInitCall();
+
+ const ObjCMethodDecl *method = E->getMethodDecl();
+
+ // We don't retain the receiver in delegate init calls, and this is
+ // safe because the receiver value is always loaded from 'self',
+ // which we zero out. We don't want to Block_copy block receivers,
+ // though.
+ bool retainSelf =
+ (!isDelegateInit &&
+ CGM.getLangOpts().ObjCAutoRefCount &&
+ method &&
+ method->hasAttr<NSConsumesSelfAttr>());
+
+ CGObjCRuntime &Runtime = CGM.getObjCRuntime();
+ bool isSuperMessage = false;
+ bool isClassMessage = false;
+ ObjCInterfaceDecl *OID = 0;
+ // Find the receiver
+ QualType ReceiverType;
+ llvm::Value *Receiver = 0;
+ switch (E->getReceiverKind()) {
+ case ObjCMessageExpr::Instance:
+ ReceiverType = E->getInstanceReceiver()->getType();
+ if (retainSelf) {
+ TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
+ E->getInstanceReceiver());
+ Receiver = ter.getPointer();
+ if (ter.getInt()) retainSelf = false;
+ } else
+ Receiver = EmitScalarExpr(E->getInstanceReceiver());
+ break;
+
+ case ObjCMessageExpr::Class: {
+ ReceiverType = E->getClassReceiver();
+ const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
+ assert(ObjTy && "Invalid Objective-C class message send");
+ OID = ObjTy->getInterface();
+ assert(OID && "Invalid Objective-C class message send");
+ Receiver = Runtime.GetClass(Builder, OID);
+ isClassMessage = true;
+ break;
+ }
+
+ case ObjCMessageExpr::SuperInstance:
+ ReceiverType = E->getSuperType();
+ Receiver = LoadObjCSelf();
+ isSuperMessage = true;
+ break;
+
+ case ObjCMessageExpr::SuperClass:
+ ReceiverType = E->getSuperType();
+ Receiver = LoadObjCSelf();
+ isSuperMessage = true;
+ isClassMessage = true;
+ break;
+ }
+
+ if (retainSelf)
+ Receiver = EmitARCRetainNonBlock(Receiver);
+
+ // In ARC, we sometimes want to "extend the lifetime"
+ // (i.e. retain+autorelease) of receivers of returns-inner-pointer
+ // messages.
+ if (getLangOpts().ObjCAutoRefCount && method &&
+ method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
+ shouldExtendReceiverForInnerPointerMessage(E))
+ Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
+
+ QualType ResultType =
+ method ? method->getResultType() : E->getType();
+
+ CallArgList Args;
+ EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
+
+ // For delegate init calls in ARC, do an unsafe store of null into
+ // self. This represents the call taking direct ownership of that
+ // value. We have to do this after emitting the other call
+ // arguments because they might also reference self, but we don't
+ // have to worry about any of them modifying self because that would
+ // be an undefined read and write of an object in unordered
+ // expressions.
+ if (isDelegateInit) {
+ assert(getLangOpts().ObjCAutoRefCount &&
+ "delegate init calls should only be marked in ARC");
+
+ // Do an unsafe store of null into self.
+ llvm::Value *selfAddr =
+ LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
+ assert(selfAddr && "no self entry for a delegate init call?");
+
+ Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
+ }
+
+ RValue result;
+ if (isSuperMessage) {
+ // super is only valid in an Objective-C method
+ const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
+ bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
+ result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
+ E->getSelector(),
+ OMD->getClassInterface(),
+ isCategoryImpl,
+ Receiver,
+ isClassMessage,
+ Args,
+ method);
+ } else {
+ result = Runtime.GenerateMessageSend(*this, Return, ResultType,
+ E->getSelector(),
+ Receiver, Args, OID,
+ method);
+ }
+
+ // For delegate init calls in ARC, implicitly store the result of
+ // the call back into self. This takes ownership of the value.
+ if (isDelegateInit) {
+ llvm::Value *selfAddr =
+ LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
+ llvm::Value *newSelf = result.getScalarVal();
+
+ // The delegate return type isn't necessarily a matching type; in
+ // fact, it's quite likely to be 'id'.
+ llvm::Type *selfTy =
+ cast<llvm::PointerType>(selfAddr->getType())->getElementType();
+ newSelf = Builder.CreateBitCast(newSelf, selfTy);
+
+ Builder.CreateStore(newSelf, selfAddr);
+ }
+
+ return AdjustRelatedResultType(*this, E, method, result);
+}
+
+namespace {
+struct FinishARCDealloc : EHScopeStack::Cleanup {
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
+
+ const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
+ const ObjCInterfaceDecl *iface = impl->getClassInterface();
+ if (!iface->getSuperClass()) return;
+
+ bool isCategory = isa<ObjCCategoryImplDecl>(impl);
+
+ // Call [super dealloc] if we have a superclass.
+ llvm::Value *self = CGF.LoadObjCSelf();
+
+ CallArgList args;
+ CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
+ CGF.getContext().VoidTy,
+ method->getSelector(),
+ iface,
+ isCategory,
+ self,
+ /*is class msg*/ false,
+ args,
+ method);
+ }
+};
+}
+
+/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
+/// the LLVM function and sets the other context used by
+/// CodeGenFunction.
+void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
+ const ObjCContainerDecl *CD,
+ SourceLocation StartLoc) {
+ FunctionArgList args;
+ // Check if we should generate debug info for this method.
+ if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>())
+ DebugInfo = CGM.getModuleDebugInfo();
+
+ llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
+
+ const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
+ CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
+
+ args.push_back(OMD->getSelfDecl());
+ args.push_back(OMD->getCmdDecl());
+
+ for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
+ E = OMD->param_end(); PI != E; ++PI)
+ args.push_back(*PI);
+
+ CurGD = OMD;
+
+ StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
+
+ // In ARC, certain methods get an extra cleanup.
+ if (CGM.getLangOpts().ObjCAutoRefCount &&
+ OMD->isInstanceMethod() &&
+ OMD->getSelector().isUnarySelector()) {
+ const IdentifierInfo *ident =
+ OMD->getSelector().getIdentifierInfoForSlot(0);
+ if (ident->isStr("dealloc"))
+ EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
+ }
+}
+
+static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
+ LValue lvalue, QualType type);
+
+/// Generate an Objective-C method. An Objective-C method is a C function with
+/// its pointer, name, and types registered in the class struture.
+void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
+ StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
+ EmitStmt(OMD->getBody());
+ FinishFunction(OMD->getBodyRBrace());
+}
+
+/// emitStructGetterCall - Call the runtime function to load a property
+/// into the return value slot.
+static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
+ bool isAtomic, bool hasStrong) {
+ ASTContext &Context = CGF.getContext();
+
+ llvm::Value *src =
+ CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
+ ivar, 0).getAddress();
+
+ // objc_copyStruct (ReturnValue, &structIvar,
+ // sizeof (Type of Ivar), isAtomic, false);
+ CallArgList args;
+
+ llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
+ args.add(RValue::get(dest), Context.VoidPtrTy);
+
+ src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
+ args.add(RValue::get(src), Context.VoidPtrTy);
+
+ CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
+ args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
+ args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
+ args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
+
+ llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
+ CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Context.VoidTy, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ fn, ReturnValueSlot(), args);
+}
+
+/// Determine whether the given architecture supports unaligned atomic
+/// accesses. They don't have to be fast, just faster than a function
+/// call and a mutex.
+static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
+ // FIXME: Allow unaligned atomic load/store on x86. (It is not
+ // currently supported by the backend.)
+ return 0;
+}
+
+/// Return the maximum size that permits atomic accesses for the given
+/// architecture.
+static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
+ llvm::Triple::ArchType arch) {
+ // ARM has 8-byte atomic accesses, but it's not clear whether we
+ // want to rely on them here.
+
+ // In the default case, just assume that any size up to a pointer is
+ // fine given adequate alignment.
+ return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
+}
+
+namespace {
+ class PropertyImplStrategy {
+ public:
+ enum StrategyKind {
+ /// The 'native' strategy is to use the architecture's provided
+ /// reads and writes.
+ Native,
+
+ /// Use objc_setProperty and objc_getProperty.
+ GetSetProperty,
+
+ /// Use objc_setProperty for the setter, but use expression
+ /// evaluation for the getter.
+ SetPropertyAndExpressionGet,
+
+ /// Use objc_copyStruct.
+ CopyStruct,
+
+ /// The 'expression' strategy is to emit normal assignment or
+ /// lvalue-to-rvalue expressions.
+ Expression
+ };
+
+ StrategyKind getKind() const { return StrategyKind(Kind); }
+
+ bool hasStrongMember() const { return HasStrong; }
+ bool isAtomic() const { return IsAtomic; }
+ bool isCopy() const { return IsCopy; }
+
+ CharUnits getIvarSize() const { return IvarSize; }
+ CharUnits getIvarAlignment() const { return IvarAlignment; }
+
+ PropertyImplStrategy(CodeGenModule &CGM,
+ const ObjCPropertyImplDecl *propImpl);
+
+ private:
+ unsigned Kind : 8;
+ unsigned IsAtomic : 1;
+ unsigned IsCopy : 1;
+ unsigned HasStrong : 1;
+
+ CharUnits IvarSize;
+ CharUnits IvarAlignment;
+ };
+}
+
+/// Pick an implementation strategy for the the given property synthesis.
+PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
+ const ObjCPropertyImplDecl *propImpl) {
+ const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
+ ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
+
+ IsCopy = (setterKind == ObjCPropertyDecl::Copy);
+ IsAtomic = prop->isAtomic();
+ HasStrong = false; // doesn't matter here.
+
+ // Evaluate the ivar's size and alignment.
+ ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
+ QualType ivarType = ivar->getType();
+ llvm::tie(IvarSize, IvarAlignment)
+ = CGM.getContext().getTypeInfoInChars(ivarType);
+
+ // If we have a copy property, we always have to use getProperty/setProperty.
+ // TODO: we could actually use setProperty and an expression for non-atomics.
+ if (IsCopy) {
+ Kind = GetSetProperty;
+ return;
+ }
+
+ // Handle retain.
+ if (setterKind == ObjCPropertyDecl::Retain) {
+ // In GC-only, there's nothing special that needs to be done.
+ if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
+ // fallthrough
+
+ // In ARC, if the property is non-atomic, use expression emission,
+ // which translates to objc_storeStrong. This isn't required, but
+ // it's slightly nicer.
+ } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
+ Kind = Expression;
+ return;
+
+ // Otherwise, we need to at least use setProperty. However, if
+ // the property isn't atomic, we can use normal expression
+ // emission for the getter.
+ } else if (!IsAtomic) {
+ Kind = SetPropertyAndExpressionGet;
+ return;
+
+ // Otherwise, we have to use both setProperty and getProperty.
+ } else {
+ Kind = GetSetProperty;
+ return;
+ }
+ }
+
+ // If we're not atomic, just use expression accesses.
+ if (!IsAtomic) {
+ Kind = Expression;
+ return;
+ }
+
+ // Properties on bitfield ivars need to be emitted using expression
+ // accesses even if they're nominally atomic.
+ if (ivar->isBitField()) {
+ Kind = Expression;
+ return;
+ }
+
+ // GC-qualified or ARC-qualified ivars need to be emitted as
+ // expressions. This actually works out to being atomic anyway,
+ // except for ARC __strong, but that should trigger the above code.
+ if (ivarType.hasNonTrivialObjCLifetime() ||
+ (CGM.getLangOpts().getGC() &&
+ CGM.getContext().getObjCGCAttrKind(ivarType))) {
+ Kind = Expression;
+ return;
+ }
+
+ // Compute whether the ivar has strong members.
+ if (CGM.getLangOpts().getGC())
+ if (const RecordType *recordType = ivarType->getAs<RecordType>())
+ HasStrong = recordType->getDecl()->hasObjectMember();
+
+ // We can never access structs with object members with a native
+ // access, because we need to use write barriers. This is what
+ // objc_copyStruct is for.
+ if (HasStrong) {
+ Kind = CopyStruct;
+ return;
+ }
+
+ // Otherwise, this is target-dependent and based on the size and
+ // alignment of the ivar.
+
+ // If the size of the ivar is not a power of two, give up. We don't
+ // want to get into the business of doing compare-and-swaps.
+ if (!IvarSize.isPowerOfTwo()) {
+ Kind = CopyStruct;
+ return;
+ }
+
+ llvm::Triple::ArchType arch =
+ CGM.getContext().getTargetInfo().getTriple().getArch();
+
+ // Most architectures require memory to fit within a single cache
+ // line, so the alignment has to be at least the size of the access.
+ // Otherwise we have to grab a lock.
+ if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
+ Kind = CopyStruct;
+ return;
+ }
+
+ // If the ivar's size exceeds the architecture's maximum atomic
+ // access size, we have to use CopyStruct.
+ if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
+ Kind = CopyStruct;
+ return;
+ }
+
+ // Otherwise, we can use native loads and stores.
+ Kind = Native;
+}
+
+/// GenerateObjCGetter - Generate an Objective-C property getter
+/// function. The given Decl must be an ObjCImplementationDecl. @synthesize
+/// is illegal within a category.
+void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
+ const ObjCPropertyImplDecl *PID) {
+ llvm::Constant *AtomicHelperFn =
+ GenerateObjCAtomicGetterCopyHelperFunction(PID);
+ const ObjCPropertyDecl *PD = PID->getPropertyDecl();
+ ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
+ assert(OMD && "Invalid call to generate getter (empty method)");
+ StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
+
+ generateObjCGetterBody(IMP, PID, AtomicHelperFn);
+
+ FinishFunction();
+}
+
+static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
+ const Expr *getter = propImpl->getGetterCXXConstructor();
+ if (!getter) return true;
+
+ // Sema only makes only of these when the ivar has a C++ class type,
+ // so the form is pretty constrained.
+
+ // If the property has a reference type, we might just be binding a
+ // reference, in which case the result will be a gl-value. We should
+ // treat this as a non-trivial operation.
+ if (getter->isGLValue())
+ return false;
+
+ // If we selected a trivial copy-constructor, we're okay.
+ if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
+ return (construct->getConstructor()->isTrivial());
+
+ // The constructor might require cleanups (in which case it's never
+ // trivial).
+ assert(isa<ExprWithCleanups>(getter));
+ return false;
+}
+
+/// emitCPPObjectAtomicGetterCall - Call the runtime function to
+/// copy the ivar into the resturn slot.
+static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
+ llvm::Value *returnAddr,
+ ObjCIvarDecl *ivar,
+ llvm::Constant *AtomicHelperFn) {
+ // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
+ // AtomicHelperFn);
+ CallArgList args;
+
+ // The 1st argument is the return Slot.
+ args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
+
+ // The 2nd argument is the address of the ivar.
+ llvm::Value *ivarAddr =
+ CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
+ CGF.LoadObjCSelf(), ivar, 0).getAddress();
+ ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
+ args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
+
+ // Third argument is the helper function.
+ args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
+
+ llvm::Value *copyCppAtomicObjectFn =
+ CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
+ CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ copyCppAtomicObjectFn, ReturnValueSlot(), args);
+}
+
+void
+CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
+ const ObjCPropertyImplDecl *propImpl,
+ llvm::Constant *AtomicHelperFn) {
+ // If there's a non-trivial 'get' expression, we just have to emit that.
+ if (!hasTrivialGetExpr(propImpl)) {
+ if (!AtomicHelperFn) {
+ ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
+ /*nrvo*/ 0);
+ EmitReturnStmt(ret);
+ }
+ else {
+ ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
+ emitCPPObjectAtomicGetterCall(*this, ReturnValue,
+ ivar, AtomicHelperFn);
+ }
+ return;
+ }
+
+ const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
+ QualType propType = prop->getType();
+ ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
+
+ ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
+
+ // Pick an implementation strategy.
+ PropertyImplStrategy strategy(CGM, propImpl);
+ switch (strategy.getKind()) {
+ case PropertyImplStrategy::Native: {
+ LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
+
+ // Currently, all atomic accesses have to be through integer
+ // types, so there's no point in trying to pick a prettier type.
+ llvm::Type *bitcastType =
+ llvm::Type::getIntNTy(getLLVMContext(),
+ getContext().toBits(strategy.getIvarSize()));
+ bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
+
+ // Perform an atomic load. This does not impose ordering constraints.
+ llvm::Value *ivarAddr = LV.getAddress();
+ ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
+ llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
+ load->setAlignment(strategy.getIvarAlignment().getQuantity());
+ load->setAtomic(llvm::Unordered);
+
+ // Store that value into the return address. Doing this with a
+ // bitcast is likely to produce some pretty ugly IR, but it's not
+ // the *most* terrible thing in the world.
+ Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
+
+ // Make sure we don't do an autorelease.
+ AutoreleaseResult = false;
+ return;
+ }
+
+ case PropertyImplStrategy::GetSetProperty: {
+ llvm::Value *getPropertyFn =
+ CGM.getObjCRuntime().GetPropertyGetFunction();
+ if (!getPropertyFn) {
+ CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
+ return;
+ }
+
+ // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
+ // FIXME: Can't this be simpler? This might even be worse than the
+ // corresponding gcc code.
+ llvm::Value *cmd =
+ Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
+ llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
+ llvm::Value *ivarOffset =
+ EmitIvarOffset(classImpl->getClassInterface(), ivar);
+
+ CallArgList args;
+ args.add(RValue::get(self), getContext().getObjCIdType());
+ args.add(RValue::get(cmd), getContext().getObjCSelType());
+ args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
+ args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
+ getContext().BoolTy);
+
+ // FIXME: We shouldn't need to get the function info here, the
+ // runtime already should have computed it to build the function.
+ RValue RV = EmitCall(getTypes().arrangeFunctionCall(propType, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ getPropertyFn, ReturnValueSlot(), args);
+
+ // We need to fix the type here. Ivars with copy & retain are
+ // always objects so we don't need to worry about complex or
+ // aggregates.
+ RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
+ getTypes().ConvertType(propType)));
+
+ EmitReturnOfRValue(RV, propType);
+
+ // objc_getProperty does an autorelease, so we should suppress ours.
+ AutoreleaseResult = false;
+
+ return;
+ }
+
+ case PropertyImplStrategy::CopyStruct:
+ emitStructGetterCall(*this, ivar, strategy.isAtomic(),
+ strategy.hasStrongMember());
+ return;
+
+ case PropertyImplStrategy::Expression:
+ case PropertyImplStrategy::SetPropertyAndExpressionGet: {
+ LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
+
+ QualType ivarType = ivar->getType();
+ if (ivarType->isAnyComplexType()) {
+ ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
+ LV.isVolatileQualified());
+ StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
+ } else if (hasAggregateLLVMType(ivarType)) {
+ // The return value slot is guaranteed to not be aliased, but
+ // that's not necessarily the same as "on the stack", so
+ // we still potentially need objc_memmove_collectable.
+ EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
+ } else {
+ llvm::Value *value;
+ if (propType->isReferenceType()) {
+ value = LV.getAddress();
+ } else {
+ // We want to load and autoreleaseReturnValue ARC __weak ivars.
+ if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
+ value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
+
+ // Otherwise we want to do a simple load, suppressing the
+ // final autorelease.
+ } else {
+ value = EmitLoadOfLValue(LV).getScalarVal();
+ AutoreleaseResult = false;
+ }
+
+ value = Builder.CreateBitCast(value, ConvertType(propType));
+ }
+
+ EmitReturnOfRValue(RValue::get(value), propType);
+ }
+ return;
+ }
+
+ }
+ llvm_unreachable("bad @property implementation strategy!");
+}
+
+/// emitStructSetterCall - Call the runtime function to store the value
+/// from the first formal parameter into the given ivar.
+static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
+ ObjCIvarDecl *ivar) {
+ // objc_copyStruct (&structIvar, &Arg,
+ // sizeof (struct something), true, false);
+ CallArgList args;
+
+ // The first argument is the address of the ivar.
+ llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
+ CGF.LoadObjCSelf(), ivar, 0)
+ .getAddress();
+ ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
+ args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
+
+ // The second argument is the address of the parameter variable.
+ ParmVarDecl *argVar = *OMD->param_begin();
+ DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
+ VK_LValue, SourceLocation());
+ llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
+ argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
+ args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
+
+ // The third argument is the sizeof the type.
+ llvm::Value *size =
+ CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
+ args.add(RValue::get(size), CGF.getContext().getSizeType());
+
+ // The fourth argument is the 'isAtomic' flag.
+ args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
+
+ // The fifth argument is the 'hasStrong' flag.
+ // FIXME: should this really always be false?
+ args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
+
+ llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
+ CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ copyStructFn, ReturnValueSlot(), args);
+}
+
+/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
+/// the value from the first formal parameter into the given ivar, using
+/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
+static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
+ ObjCMethodDecl *OMD,
+ ObjCIvarDecl *ivar,
+ llvm::Constant *AtomicHelperFn) {
+ // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
+ // AtomicHelperFn);
+ CallArgList args;
+
+ // The first argument is the address of the ivar.
+ llvm::Value *ivarAddr =
+ CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
+ CGF.LoadObjCSelf(), ivar, 0).getAddress();
+ ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
+ args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
+
+ // The second argument is the address of the parameter variable.
+ ParmVarDecl *argVar = *OMD->param_begin();
+ DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
+ VK_LValue, SourceLocation());
+ llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
+ argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
+ args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
+
+ // Third argument is the helper function.
+ args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
+
+ llvm::Value *copyCppAtomicObjectFn =
+ CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
+ CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ copyCppAtomicObjectFn, ReturnValueSlot(), args);
+
+
+}
+
+
+static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
+ Expr *setter = PID->getSetterCXXAssignment();
+ if (!setter) return true;
+
+ // Sema only makes only of these when the ivar has a C++ class type,
+ // so the form is pretty constrained.
+
+ // An operator call is trivial if the function it calls is trivial.
+ // This also implies that there's nothing non-trivial going on with
+ // the arguments, because operator= can only be trivial if it's a
+ // synthesized assignment operator and therefore both parameters are
+ // references.
+ if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
+ if (const FunctionDecl *callee
+ = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
+ if (callee->isTrivial())
+ return true;
+ return false;
+ }
+
+ assert(isa<ExprWithCleanups>(setter));
+ return false;
+}
+
+static bool UseOptimizedSetter(CodeGenModule &CGM) {
+ if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
+ return false;
+ const TargetInfo &Target = CGM.getContext().getTargetInfo();
+
+ if (Target.getPlatformName() != "macosx")
+ return false;
+
+ return Target.getPlatformMinVersion() >= VersionTuple(10, 8);
+}
+
+void
+CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
+ const ObjCPropertyImplDecl *propImpl,
+ llvm::Constant *AtomicHelperFn) {
+ const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
+ ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
+ ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
+
+ // Just use the setter expression if Sema gave us one and it's
+ // non-trivial.
+ if (!hasTrivialSetExpr(propImpl)) {
+ if (!AtomicHelperFn)
+ // If non-atomic, assignment is called directly.
+ EmitStmt(propImpl->getSetterCXXAssignment());
+ else
+ // If atomic, assignment is called via a locking api.
+ emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
+ AtomicHelperFn);
+ return;
+ }
+
+ PropertyImplStrategy strategy(CGM, propImpl);
+ switch (strategy.getKind()) {
+ case PropertyImplStrategy::Native: {
+ llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
+
+ LValue ivarLValue =
+ EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
+ llvm::Value *ivarAddr = ivarLValue.getAddress();
+
+ // Currently, all atomic accesses have to be through integer
+ // types, so there's no point in trying to pick a prettier type.
+ llvm::Type *bitcastType =
+ llvm::Type::getIntNTy(getLLVMContext(),
+ getContext().toBits(strategy.getIvarSize()));
+ bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
+
+ // Cast both arguments to the chosen operation type.
+ argAddr = Builder.CreateBitCast(argAddr, bitcastType);
+ ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
+
+ // This bitcast load is likely to cause some nasty IR.
+ llvm::Value *load = Builder.CreateLoad(argAddr);
+
+ // Perform an atomic store. There are no memory ordering requirements.
+ llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
+ store->setAlignment(strategy.getIvarAlignment().getQuantity());
+ store->setAtomic(llvm::Unordered);
+ return;
+ }
+
+ case PropertyImplStrategy::GetSetProperty:
+ case PropertyImplStrategy::SetPropertyAndExpressionGet: {
+
+ llvm::Value *setOptimizedPropertyFn = 0;
+ llvm::Value *setPropertyFn = 0;
+ if (UseOptimizedSetter(CGM)) {
+ // 10.8 code and GC is off
+ setOptimizedPropertyFn =
+ CGM.getObjCRuntime()
+ .GetOptimizedPropertySetFunction(strategy.isAtomic(),
+ strategy.isCopy());
+ if (!setOptimizedPropertyFn) {
+ CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
+ return;
+ }
+ }
+ else {
+ setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
+ if (!setPropertyFn) {
+ CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
+ return;
+ }
+ }
+
+ // Emit objc_setProperty((id) self, _cmd, offset, arg,
+ // <is-atomic>, <is-copy>).
+ llvm::Value *cmd =
+ Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
+ llvm::Value *self =
+ Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
+ llvm::Value *ivarOffset =
+ EmitIvarOffset(classImpl->getClassInterface(), ivar);
+ llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
+ arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
+
+ CallArgList args;
+ args.add(RValue::get(self), getContext().getObjCIdType());
+ args.add(RValue::get(cmd), getContext().getObjCSelType());
+ if (setOptimizedPropertyFn) {
+ args.add(RValue::get(arg), getContext().getObjCIdType());
+ args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
+ EmitCall(getTypes().arrangeFunctionCall(getContext().VoidTy, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ setOptimizedPropertyFn, ReturnValueSlot(), args);
+ } else {
+ args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
+ args.add(RValue::get(arg), getContext().getObjCIdType());
+ args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
+ getContext().BoolTy);
+ args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
+ getContext().BoolTy);
+ // FIXME: We shouldn't need to get the function info here, the runtime
+ // already should have computed it to build the function.
+ EmitCall(getTypes().arrangeFunctionCall(getContext().VoidTy, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ setPropertyFn, ReturnValueSlot(), args);
+ }
+
+ return;
+ }
+
+ case PropertyImplStrategy::CopyStruct:
+ emitStructSetterCall(*this, setterMethod, ivar);
+ return;
+
+ case PropertyImplStrategy::Expression:
+ break;
+ }
+
+ // Otherwise, fake up some ASTs and emit a normal assignment.
+ ValueDecl *selfDecl = setterMethod->getSelfDecl();
+ DeclRefExpr self(selfDecl, false, selfDecl->getType(),
+ VK_LValue, SourceLocation());
+ ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
+ selfDecl->getType(), CK_LValueToRValue, &self,
+ VK_RValue);
+ ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
+ SourceLocation(), &selfLoad, true, true);
+
+ ParmVarDecl *argDecl = *setterMethod->param_begin();
+ QualType argType = argDecl->getType().getNonReferenceType();
+ DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
+ ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
+ argType.getUnqualifiedType(), CK_LValueToRValue,
+ &arg, VK_RValue);
+
+ // The property type can differ from the ivar type in some situations with
+ // Objective-C pointer types, we can always bit cast the RHS in these cases.
+ // The following absurdity is just to ensure well-formed IR.
+ CastKind argCK = CK_NoOp;
+ if (ivarRef.getType()->isObjCObjectPointerType()) {
+ if (argLoad.getType()->isObjCObjectPointerType())
+ argCK = CK_BitCast;
+ else if (argLoad.getType()->isBlockPointerType())
+ argCK = CK_BlockPointerToObjCPointerCast;
+ else
+ argCK = CK_CPointerToObjCPointerCast;
+ } else if (ivarRef.getType()->isBlockPointerType()) {
+ if (argLoad.getType()->isBlockPointerType())
+ argCK = CK_BitCast;
+ else
+ argCK = CK_AnyPointerToBlockPointerCast;
+ } else if (ivarRef.getType()->isPointerType()) {
+ argCK = CK_BitCast;
+ }
+ ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
+ ivarRef.getType(), argCK, &argLoad,
+ VK_RValue);
+ Expr *finalArg = &argLoad;
+ if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
+ argLoad.getType()))
+ finalArg = &argCast;
+
+
+ BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
+ ivarRef.getType(), VK_RValue, OK_Ordinary,
+ SourceLocation());
+ EmitStmt(&assign);
+}
+
+/// GenerateObjCSetter - Generate an Objective-C property setter
+/// function. The given Decl must be an ObjCImplementationDecl. @synthesize
+/// is illegal within a category.
+void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
+ const ObjCPropertyImplDecl *PID) {
+ llvm::Constant *AtomicHelperFn =
+ GenerateObjCAtomicSetterCopyHelperFunction(PID);
+ const ObjCPropertyDecl *PD = PID->getPropertyDecl();
+ ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
+ assert(OMD && "Invalid call to generate setter (empty method)");
+ StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
+
+ generateObjCSetterBody(IMP, PID, AtomicHelperFn);
+
+ FinishFunction();
+}
+
+namespace {
+ struct DestroyIvar : EHScopeStack::Cleanup {
+ private:
+ llvm::Value *addr;
+ const ObjCIvarDecl *ivar;
+ CodeGenFunction::Destroyer *destroyer;
+ bool useEHCleanupForArray;
+ public:
+ DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
+ CodeGenFunction::Destroyer *destroyer,
+ bool useEHCleanupForArray)
+ : addr(addr), ivar(ivar), destroyer(destroyer),
+ useEHCleanupForArray(useEHCleanupForArray) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ LValue lvalue
+ = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
+ CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
+ flags.isForNormalCleanup() && useEHCleanupForArray);
+ }
+ };
+}
+
+/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
+static void destroyARCStrongWithStore(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ QualType type) {
+ llvm::Value *null = getNullForVariable(addr);
+ CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
+}
+
+static void emitCXXDestructMethod(CodeGenFunction &CGF,
+ ObjCImplementationDecl *impl) {
+ CodeGenFunction::RunCleanupsScope scope(CGF);
+
+ llvm::Value *self = CGF.LoadObjCSelf();
+
+ const ObjCInterfaceDecl *iface = impl->getClassInterface();
+ for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
+ ivar; ivar = ivar->getNextIvar()) {
+ QualType type = ivar->getType();
+
+ // Check whether the ivar is a destructible type.
+ QualType::DestructionKind dtorKind = type.isDestructedType();
+ if (!dtorKind) continue;
+
+ CodeGenFunction::Destroyer *destroyer = 0;
+
+ // Use a call to objc_storeStrong to destroy strong ivars, for the
+ // general benefit of the tools.
+ if (dtorKind == QualType::DK_objc_strong_lifetime) {
+ destroyer = destroyARCStrongWithStore;
+
+ // Otherwise use the default for the destruction kind.
+ } else {
+ destroyer = CGF.getDestroyer(dtorKind);
+ }
+
+ CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
+
+ CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
+ cleanupKind & EHCleanup);
+ }
+
+ assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
+}
+
+void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
+ ObjCMethodDecl *MD,
+ bool ctor) {
+ MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
+ StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
+
+ // Emit .cxx_construct.
+ if (ctor) {
+ // Suppress the final autorelease in ARC.
+ AutoreleaseResult = false;
+
+ SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
+ for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
+ E = IMP->init_end(); B != E; ++B) {
+ CXXCtorInitializer *IvarInit = (*B);
+ FieldDecl *Field = IvarInit->getAnyMember();
+ ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
+ LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
+ LoadObjCSelf(), Ivar, 0);
+ EmitAggExpr(IvarInit->getInit(),
+ AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased));
+ }
+ // constructor returns 'self'.
+ CodeGenTypes &Types = CGM.getTypes();
+ QualType IdTy(CGM.getContext().getObjCIdType());
+ llvm::Value *SelfAsId =
+ Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
+ EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
+
+ // Emit .cxx_destruct.
+ } else {
+ emitCXXDestructMethod(*this, IMP);
+ }
+ FinishFunction();
+}
+
+bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
+ CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
+ it++; it++;
+ const ABIArgInfo &AI = it->info;
+ // FIXME. Is this sufficient check?
+ return (AI.getKind() == ABIArgInfo::Indirect);
+}
+
+bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
+ if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
+ return false;
+ if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
+ return FDTTy->getDecl()->hasObjectMember();
+ return false;
+}
+
+llvm::Value *CodeGenFunction::LoadObjCSelf() {
+ const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
+ return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
+}
+
+QualType CodeGenFunction::TypeOfSelfObject() {
+ const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
+ ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
+ const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
+ getContext().getCanonicalType(selfDecl->getType()));
+ return PTy->getPointeeType();
+}
+
+void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
+ llvm::Constant *EnumerationMutationFn =
+ CGM.getObjCRuntime().EnumerationMutationFunction();
+
+ if (!EnumerationMutationFn) {
+ CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
+ return;
+ }
+
+ CGDebugInfo *DI = getDebugInfo();
+ if (DI)
+ DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
+
+ // The local variable comes into scope immediately.
+ AutoVarEmission variable = AutoVarEmission::invalid();
+ if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
+ variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
+
+ JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
+
+ // Fast enumeration state.
+ QualType StateTy = CGM.getObjCFastEnumerationStateType();
+ llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
+ EmitNullInitialization(StatePtr, StateTy);
+
+ // Number of elements in the items array.
+ static const unsigned NumItems = 16;
+
+ // Fetch the countByEnumeratingWithState:objects:count: selector.
+ IdentifierInfo *II[] = {
+ &CGM.getContext().Idents.get("countByEnumeratingWithState"),
+ &CGM.getContext().Idents.get("objects"),
+ &CGM.getContext().Idents.get("count")
+ };
+ Selector FastEnumSel =
+ CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
+
+ QualType ItemsTy =
+ getContext().getConstantArrayType(getContext().getObjCIdType(),
+ llvm::APInt(32, NumItems),
+ ArrayType::Normal, 0);
+ llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
+
+ // Emit the collection pointer. In ARC, we do a retain.
+ llvm::Value *Collection;
+ if (getLangOpts().ObjCAutoRefCount) {
+ Collection = EmitARCRetainScalarExpr(S.getCollection());
+
+ // Enter a cleanup to do the release.
+ EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
+ } else {
+ Collection = EmitScalarExpr(S.getCollection());
+ }
+
+ // The 'continue' label needs to appear within the cleanup for the
+ // collection object.
+ JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
+
+ // Send it our message:
+ CallArgList Args;
+
+ // The first argument is a temporary of the enumeration-state type.
+ Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
+
+ // The second argument is a temporary array with space for NumItems
+ // pointers. We'll actually be loading elements from the array
+ // pointer written into the control state; this buffer is so that
+ // collections that *aren't* backed by arrays can still queue up
+ // batches of elements.
+ Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
+
+ // The third argument is the capacity of that temporary array.
+ llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
+ llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
+ Args.add(RValue::get(Count), getContext().UnsignedLongTy);
+
+ // Start the enumeration.
+ RValue CountRV =
+ CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
+ getContext().UnsignedLongTy,
+ FastEnumSel,
+ Collection, Args);
+
+ // The initial number of objects that were returned in the buffer.
+ llvm::Value *initialBufferLimit = CountRV.getScalarVal();
+
+ llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
+ llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
+
+ llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
+
+ // If the limit pointer was zero to begin with, the collection is
+ // empty; skip all this.
+ Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
+ EmptyBB, LoopInitBB);
+
+ // Otherwise, initialize the loop.
+ EmitBlock(LoopInitBB);
+
+ // Save the initial mutations value. This is the value at an
+ // address that was written into the state object by
+ // countByEnumeratingWithState:objects:count:.
+ llvm::Value *StateMutationsPtrPtr =
+ Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
+ llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
+ "mutationsptr");
+
+ llvm::Value *initialMutations =
+ Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
+
+ // Start looping. This is the point we return to whenever we have a
+ // fresh, non-empty batch of objects.
+ llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
+ EmitBlock(LoopBodyBB);
+
+ // The current index into the buffer.
+ llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
+ index->addIncoming(zero, LoopInitBB);
+
+ // The current buffer size.
+ llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
+ count->addIncoming(initialBufferLimit, LoopInitBB);
+
+ // Check whether the mutations value has changed from where it was
+ // at start. StateMutationsPtr should actually be invariant between
+ // refreshes.
+ StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
+ llvm::Value *currentMutations
+ = Builder.CreateLoad(StateMutationsPtr, "statemutations");
+
+ llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
+ llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
+
+ Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
+ WasNotMutatedBB, WasMutatedBB);
+
+ // If so, call the enumeration-mutation function.
+ EmitBlock(WasMutatedBB);
+ llvm::Value *V =
+ Builder.CreateBitCast(Collection,
+ ConvertType(getContext().getObjCIdType()));
+ CallArgList Args2;
+ Args2.add(RValue::get(V), getContext().getObjCIdType());
+ // FIXME: We shouldn't need to get the function info here, the runtime already
+ // should have computed it to build the function.
+ EmitCall(CGM.getTypes().arrangeFunctionCall(getContext().VoidTy, Args2,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All),
+ EnumerationMutationFn, ReturnValueSlot(), Args2);
+
+ // Otherwise, or if the mutation function returns, just continue.
+ EmitBlock(WasNotMutatedBB);
+
+ // Initialize the element variable.
+ RunCleanupsScope elementVariableScope(*this);
+ bool elementIsVariable;
+ LValue elementLValue;
+ QualType elementType;
+ if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
+ // Initialize the variable, in case it's a __block variable or something.
+ EmitAutoVarInit(variable);
+
+ const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
+ DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
+ VK_LValue, SourceLocation());
+ elementLValue = EmitLValue(&tempDRE);
+ elementType = D->getType();
+ elementIsVariable = true;
+
+ if (D->isARCPseudoStrong())
+ elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
+ } else {
+ elementLValue = LValue(); // suppress warning
+ elementType = cast<Expr>(S.getElement())->getType();
+ elementIsVariable = false;
+ }
+ llvm::Type *convertedElementType = ConvertType(elementType);
+
+ // Fetch the buffer out of the enumeration state.
+ // TODO: this pointer should actually be invariant between
+ // refreshes, which would help us do certain loop optimizations.
+ llvm::Value *StateItemsPtr =
+ Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
+ llvm::Value *EnumStateItems =
+ Builder.CreateLoad(StateItemsPtr, "stateitems");
+
+ // Fetch the value at the current index from the buffer.
+ llvm::Value *CurrentItemPtr =
+ Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
+ llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
+
+ // Cast that value to the right type.
+ CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
+ "currentitem");
+
+ // Make sure we have an l-value. Yes, this gets evaluated every
+ // time through the loop.
+ if (!elementIsVariable) {
+ elementLValue = EmitLValue(cast<Expr>(S.getElement()));
+ EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
+ } else {
+ EmitScalarInit(CurrentItem, elementLValue);
+ }
+
+ // If we do have an element variable, this assignment is the end of
+ // its initialization.
+ if (elementIsVariable)
+ EmitAutoVarCleanups(variable);
+
+ // Perform the loop body, setting up break and continue labels.
+ BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
+ {
+ RunCleanupsScope Scope(*this);
+ EmitStmt(S.getBody());
+ }
+ BreakContinueStack.pop_back();
+
+ // Destroy the element variable now.
+ elementVariableScope.ForceCleanup();
+
+ // Check whether there are more elements.
+ EmitBlock(AfterBody.getBlock());
+
+ llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
+
+ // First we check in the local buffer.
+ llvm::Value *indexPlusOne
+ = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
+
+ // If we haven't overrun the buffer yet, we can continue.
+ Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
+ LoopBodyBB, FetchMoreBB);
+
+ index->addIncoming(indexPlusOne, AfterBody.getBlock());
+ count->addIncoming(count, AfterBody.getBlock());
+
+ // Otherwise, we have to fetch more elements.
+ EmitBlock(FetchMoreBB);
+
+ CountRV =
+ CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
+ getContext().UnsignedLongTy,
+ FastEnumSel,
+ Collection, Args);
+
+ // If we got a zero count, we're done.
+ llvm::Value *refetchCount = CountRV.getScalarVal();
+
+ // (note that the message send might split FetchMoreBB)
+ index->addIncoming(zero, Builder.GetInsertBlock());
+ count->addIncoming(refetchCount, Builder.GetInsertBlock());
+
+ Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
+ EmptyBB, LoopBodyBB);
+
+ // No more elements.
+ EmitBlock(EmptyBB);
+
+ if (!elementIsVariable) {
+ // If the element was not a declaration, set it to be null.
+
+ llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
+ elementLValue = EmitLValue(cast<Expr>(S.getElement()));
+ EmitStoreThroughLValue(RValue::get(null), elementLValue);
+ }
+
+ if (DI)
+ DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
+
+ // Leave the cleanup we entered in ARC.
+ if (getLangOpts().ObjCAutoRefCount)
+ PopCleanupBlock();
+
+ EmitBlock(LoopEnd.getBlock());
+}
+
+void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
+ CGM.getObjCRuntime().EmitTryStmt(*this, S);
+}
+
+void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
+ CGM.getObjCRuntime().EmitThrowStmt(*this, S);
+}
+
+void CodeGenFunction::EmitObjCAtSynchronizedStmt(
+ const ObjCAtSynchronizedStmt &S) {
+ CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
+}
+
+/// Produce the code for a CK_ARCProduceObject. Just does a
+/// primitive retain.
+llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
+ llvm::Value *value) {
+ return EmitARCRetain(type, value);
+}
+
+namespace {
+ struct CallObjCRelease : EHScopeStack::Cleanup {
+ CallObjCRelease(llvm::Value *object) : object(object) {}
+ llvm::Value *object;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ CGF.EmitARCRelease(object, /*precise*/ true);
+ }
+ };
+}
+
+/// Produce the code for a CK_ARCConsumeObject. Does a primitive
+/// release at the end of the full-expression.
+llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
+ llvm::Value *object) {
+ // If we're in a conditional branch, we need to make the cleanup
+ // conditional.
+ pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
+ return object;
+}
+
+llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
+ llvm::Value *value) {
+ return EmitARCRetainAutorelease(type, value);
+}
+
+
+static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
+ llvm::FunctionType *type,
+ StringRef fnName) {
+ llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
+
+ // In -fobjc-no-arc-runtime, emit weak references to the runtime
+ // support library.
+ if (!CGM.getCodeGenOpts().ObjCRuntimeHasARC)
+ if (llvm::Function *f = dyn_cast<llvm::Function>(fn))
+ f->setLinkage(llvm::Function::ExternalWeakLinkage);
+
+ return fn;
+}
+
+/// Perform an operation having the signature
+/// i8* (i8*)
+/// where a null input causes a no-op and returns null.
+static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
+ llvm::Value *value,
+ llvm::Constant *&fn,
+ StringRef fnName) {
+ if (isa<llvm::ConstantPointerNull>(value)) return value;
+
+ if (!fn) {
+ std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
+ fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
+ }
+
+ // Cast the argument to 'id'.
+ llvm::Type *origType = value->getType();
+ value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
+
+ // Call the function.
+ llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
+ call->setDoesNotThrow();
+
+ // Cast the result back to the original type.
+ return CGF.Builder.CreateBitCast(call, origType);
+}
+
+/// Perform an operation having the following signature:
+/// i8* (i8**)
+static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ llvm::Constant *&fn,
+ StringRef fnName) {
+ if (!fn) {
+ std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
+ fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
+ }
+
+ // Cast the argument to 'id*'.
+ llvm::Type *origType = addr->getType();
+ addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
+
+ // Call the function.
+ llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
+ call->setDoesNotThrow();
+
+ // Cast the result back to a dereference of the original type.
+ llvm::Value *result = call;
+ if (origType != CGF.Int8PtrPtrTy)
+ result = CGF.Builder.CreateBitCast(result,
+ cast<llvm::PointerType>(origType)->getElementType());
+
+ return result;
+}
+
+/// Perform an operation having the following signature:
+/// i8* (i8**, i8*)
+static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ llvm::Value *value,
+ llvm::Constant *&fn,
+ StringRef fnName,
+ bool ignored) {
+ assert(cast<llvm::PointerType>(addr->getType())->getElementType()
+ == value->getType());
+
+ if (!fn) {
+ llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
+
+ llvm::FunctionType *fnType
+ = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
+ fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
+ }
+
+ llvm::Type *origType = value->getType();
+
+ addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
+ value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
+
+ llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
+ result->setDoesNotThrow();
+
+ if (ignored) return 0;
+
+ return CGF.Builder.CreateBitCast(result, origType);
+}
+
+/// Perform an operation having the following signature:
+/// void (i8**, i8**)
+static void emitARCCopyOperation(CodeGenFunction &CGF,
+ llvm::Value *dst,
+ llvm::Value *src,
+ llvm::Constant *&fn,
+ StringRef fnName) {
+ assert(dst->getType() == src->getType());
+
+ if (!fn) {
+ std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
+ llvm::FunctionType *fnType
+ = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
+ fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
+ }
+
+ dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
+ src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
+
+ llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
+ result->setDoesNotThrow();
+}
+
+/// Produce the code to do a retain. Based on the type, calls one of:
+/// call i8* @objc_retain(i8* %value)
+/// call i8* @objc_retainBlock(i8* %value)
+llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
+ if (type->isBlockPointerType())
+ return EmitARCRetainBlock(value, /*mandatory*/ false);
+ else
+ return EmitARCRetainNonBlock(value);
+}
+
+/// Retain the given object, with normal retain semantics.
+/// call i8* @objc_retain(i8* %value)
+llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
+ return emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_retain,
+ "objc_retain");
+}
+
+/// Retain the given block, with _Block_copy semantics.
+/// call i8* @objc_retainBlock(i8* %value)
+///
+/// \param mandatory - If false, emit the call with metadata
+/// indicating that it's okay for the optimizer to eliminate this call
+/// if it can prove that the block never escapes except down the stack.
+llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
+ bool mandatory) {
+ llvm::Value *result
+ = emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_retainBlock,
+ "objc_retainBlock");
+
+ // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
+ // tell the optimizer that it doesn't need to do this copy if the
+ // block doesn't escape, where being passed as an argument doesn't
+ // count as escaping.
+ if (!mandatory && isa<llvm::Instruction>(result)) {
+ llvm::CallInst *call
+ = cast<llvm::CallInst>(result->stripPointerCasts());
+ assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
+
+ SmallVector<llvm::Value*,1> args;
+ call->setMetadata("clang.arc.copy_on_escape",
+ llvm::MDNode::get(Builder.getContext(), args));
+ }
+
+ return result;
+}
+
+/// Retain the given object which is the result of a function call.
+/// call i8* @objc_retainAutoreleasedReturnValue(i8* %value)
+///
+/// Yes, this function name is one character away from a different
+/// call with completely different semantics.
+llvm::Value *
+CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
+ // Fetch the void(void) inline asm which marks that we're going to
+ // retain the autoreleased return value.
+ llvm::InlineAsm *&marker
+ = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
+ if (!marker) {
+ StringRef assembly
+ = CGM.getTargetCodeGenInfo()
+ .getARCRetainAutoreleasedReturnValueMarker();
+
+ // If we have an empty assembly string, there's nothing to do.
+ if (assembly.empty()) {
+
+ // Otherwise, at -O0, build an inline asm that we're going to call
+ // in a moment.
+ } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
+ llvm::FunctionType *type =
+ llvm::FunctionType::get(VoidTy, /*variadic*/false);
+
+ marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
+
+ // If we're at -O1 and above, we don't want to litter the code
+ // with this marker yet, so leave a breadcrumb for the ARC
+ // optimizer to pick up.
+ } else {
+ llvm::NamedMDNode *metadata =
+ CGM.getModule().getOrInsertNamedMetadata(
+ "clang.arc.retainAutoreleasedReturnValueMarker");
+ assert(metadata->getNumOperands() <= 1);
+ if (metadata->getNumOperands() == 0) {
+ llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
+ metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
+ }
+ }
+ }
+
+ // Call the marker asm if we made one, which we do only at -O0.
+ if (marker) Builder.CreateCall(marker);
+
+ return emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
+ "objc_retainAutoreleasedReturnValue");
+}
+
+/// Release the given object.
+/// call void @objc_release(i8* %value)
+void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
+ if (isa<llvm::ConstantPointerNull>(value)) return;
+
+ llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
+ if (!fn) {
+ std::vector<llvm::Type*> args(1, Int8PtrTy);
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(Builder.getVoidTy(), args, false);
+ fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
+ }
+
+ // Cast the argument to 'id'.
+ value = Builder.CreateBitCast(value, Int8PtrTy);
+
+ // Call objc_release.
+ llvm::CallInst *call = Builder.CreateCall(fn, value);
+ call->setDoesNotThrow();
+
+ if (!precise) {
+ SmallVector<llvm::Value*,1> args;
+ call->setMetadata("clang.imprecise_release",
+ llvm::MDNode::get(Builder.getContext(), args));
+ }
+}
+
+/// Store into a strong object. Always calls this:
+/// call void @objc_storeStrong(i8** %addr, i8* %value)
+llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
+ llvm::Value *value,
+ bool ignored) {
+ assert(cast<llvm::PointerType>(addr->getType())->getElementType()
+ == value->getType());
+
+ llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
+ if (!fn) {
+ llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
+ llvm::FunctionType *fnType
+ = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
+ fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
+ }
+
+ addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
+ llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
+
+ Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
+
+ if (ignored) return 0;
+ return value;
+}
+
+/// Store into a strong object. Sometimes calls this:
+/// call void @objc_storeStrong(i8** %addr, i8* %value)
+/// Other times, breaks it down into components.
+llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
+ llvm::Value *newValue,
+ bool ignored) {
+ QualType type = dst.getType();
+ bool isBlock = type->isBlockPointerType();
+
+ // Use a store barrier at -O0 unless this is a block type or the
+ // lvalue is inadequately aligned.
+ if (shouldUseFusedARCCalls() &&
+ !isBlock &&
+ (dst.getAlignment().isZero() ||
+ dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
+ return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
+ }
+
+ // Otherwise, split it out.
+
+ // Retain the new value.
+ newValue = EmitARCRetain(type, newValue);
+
+ // Read the old value.
+ llvm::Value *oldValue = EmitLoadOfScalar(dst);
+
+ // Store. We do this before the release so that any deallocs won't
+ // see the old value.
+ EmitStoreOfScalar(newValue, dst);
+
+ // Finally, release the old value.
+ EmitARCRelease(oldValue, /*precise*/ false);
+
+ return newValue;
+}
+
+/// Autorelease the given object.
+/// call i8* @objc_autorelease(i8* %value)
+llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
+ return emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_autorelease,
+ "objc_autorelease");
+}
+
+/// Autorelease the given object.
+/// call i8* @objc_autoreleaseReturnValue(i8* %value)
+llvm::Value *
+CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
+ return emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
+ "objc_autoreleaseReturnValue");
+}
+
+/// Do a fused retain/autorelease of the given object.
+/// call i8* @objc_retainAutoreleaseReturnValue(i8* %value)
+llvm::Value *
+CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
+ return emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
+ "objc_retainAutoreleaseReturnValue");
+}
+
+/// Do a fused retain/autorelease of the given object.
+/// call i8* @objc_retainAutorelease(i8* %value)
+/// or
+/// %retain = call i8* @objc_retainBlock(i8* %value)
+/// call i8* @objc_autorelease(i8* %retain)
+llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
+ llvm::Value *value) {
+ if (!type->isBlockPointerType())
+ return EmitARCRetainAutoreleaseNonBlock(value);
+
+ if (isa<llvm::ConstantPointerNull>(value)) return value;
+
+ llvm::Type *origType = value->getType();
+ value = Builder.CreateBitCast(value, Int8PtrTy);
+ value = EmitARCRetainBlock(value, /*mandatory*/ true);
+ value = EmitARCAutorelease(value);
+ return Builder.CreateBitCast(value, origType);
+}
+
+/// Do a fused retain/autorelease of the given object.
+/// call i8* @objc_retainAutorelease(i8* %value)
+llvm::Value *
+CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
+ return emitARCValueOperation(*this, value,
+ CGM.getARCEntrypoints().objc_retainAutorelease,
+ "objc_retainAutorelease");
+}
+
+/// i8* @objc_loadWeak(i8** %addr)
+/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
+llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
+ return emitARCLoadOperation(*this, addr,
+ CGM.getARCEntrypoints().objc_loadWeak,
+ "objc_loadWeak");
+}
+
+/// i8* @objc_loadWeakRetained(i8** %addr)
+llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
+ return emitARCLoadOperation(*this, addr,
+ CGM.getARCEntrypoints().objc_loadWeakRetained,
+ "objc_loadWeakRetained");
+}
+
+/// i8* @objc_storeWeak(i8** %addr, i8* %value)
+/// Returns %value.
+llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
+ llvm::Value *value,
+ bool ignored) {
+ return emitARCStoreOperation(*this, addr, value,
+ CGM.getARCEntrypoints().objc_storeWeak,
+ "objc_storeWeak", ignored);
+}
+
+/// i8* @objc_initWeak(i8** %addr, i8* %value)
+/// Returns %value. %addr is known to not have a current weak entry.
+/// Essentially equivalent to:
+/// *addr = nil; objc_storeWeak(addr, value);
+void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
+ // If we're initializing to null, just write null to memory; no need
+ // to get the runtime involved. But don't do this if optimization
+ // is enabled, because accounting for this would make the optimizer
+ // much more complicated.
+ if (isa<llvm::ConstantPointerNull>(value) &&
+ CGM.getCodeGenOpts().OptimizationLevel == 0) {
+ Builder.CreateStore(value, addr);
+ return;
+ }
+
+ emitARCStoreOperation(*this, addr, value,
+ CGM.getARCEntrypoints().objc_initWeak,
+ "objc_initWeak", /*ignored*/ true);
+}
+
+/// void @objc_destroyWeak(i8** %addr)
+/// Essentially objc_storeWeak(addr, nil).
+void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
+ llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
+ if (!fn) {
+ std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(Builder.getVoidTy(), args, false);
+ fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
+ }
+
+ // Cast the argument to 'id*'.
+ addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
+
+ llvm::CallInst *call = Builder.CreateCall(fn, addr);
+ call->setDoesNotThrow();
+}
+
+/// void @objc_moveWeak(i8** %dest, i8** %src)
+/// Disregards the current value in %dest. Leaves %src pointing to nothing.
+/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
+void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
+ emitARCCopyOperation(*this, dst, src,
+ CGM.getARCEntrypoints().objc_moveWeak,
+ "objc_moveWeak");
+}
+
+/// void @objc_copyWeak(i8** %dest, i8** %src)
+/// Disregards the current value in %dest. Essentially
+/// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
+void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
+ emitARCCopyOperation(*this, dst, src,
+ CGM.getARCEntrypoints().objc_copyWeak,
+ "objc_copyWeak");
+}
+
+/// Produce the code to do a objc_autoreleasepool_push.
+/// call i8* @objc_autoreleasePoolPush(void)
+llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
+ llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
+ if (!fn) {
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(Int8PtrTy, false);
+ fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
+ }
+
+ llvm::CallInst *call = Builder.CreateCall(fn);
+ call->setDoesNotThrow();
+
+ return call;
+}
+
+/// Produce the code to do a primitive release.
+/// call void @objc_autoreleasePoolPop(i8* %ptr)
+void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
+ assert(value->getType() == Int8PtrTy);
+
+ llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
+ if (!fn) {
+ std::vector<llvm::Type*> args(1, Int8PtrTy);
+ llvm::FunctionType *fnType =
+ llvm::FunctionType::get(Builder.getVoidTy(), args, false);
+
+ // We don't want to use a weak import here; instead we should not
+ // fall into this path.
+ fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
+ }
+
+ llvm::CallInst *call = Builder.CreateCall(fn, value);
+ call->setDoesNotThrow();
+}
+
+/// Produce the code to do an MRR version objc_autoreleasepool_push.
+/// Which is: [[NSAutoreleasePool alloc] init];
+/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
+/// init is declared as: - (id) init; in its NSObject super class.
+///
+llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
+ CGObjCRuntime &Runtime = CGM.getObjCRuntime();
+ llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
+ // [NSAutoreleasePool alloc]
+ IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
+ Selector AllocSel = getContext().Selectors.getSelector(0, &II);
+ CallArgList Args;
+ RValue AllocRV =
+ Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
+ getContext().getObjCIdType(),
+ AllocSel, Receiver, Args);
+
+ // [Receiver init]
+ Receiver = AllocRV.getScalarVal();
+ II = &CGM.getContext().Idents.get("init");
+ Selector InitSel = getContext().Selectors.getSelector(0, &II);
+ RValue InitRV =
+ Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
+ getContext().getObjCIdType(),
+ InitSel, Receiver, Args);
+ return InitRV.getScalarVal();
+}
+
+/// Produce the code to do a primitive release.
+/// [tmp drain];
+void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
+ IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
+ Selector DrainSel = getContext().Selectors.getSelector(0, &II);
+ CallArgList Args;
+ CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
+ getContext().VoidTy, DrainSel, Arg, Args);
+}
+
+void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ QualType type) {
+ llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
+ CGF.EmitARCRelease(ptr, /*precise*/ true);
+}
+
+void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ QualType type) {
+ llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
+ CGF.EmitARCRelease(ptr, /*precise*/ false);
+}
+
+void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
+ llvm::Value *addr,
+ QualType type) {
+ CGF.EmitARCDestroyWeak(addr);
+}
+
+namespace {
+ struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
+ llvm::Value *Token;
+
+ CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ CGF.EmitObjCAutoreleasePoolPop(Token);
+ }
+ };
+ struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
+ llvm::Value *Token;
+
+ CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) {
+ CGF.EmitObjCMRRAutoreleasePoolPop(Token);
+ }
+ };
+}
+
+void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
+ if (CGM.getLangOpts().ObjCAutoRefCount)
+ EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
+ else
+ EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
+}
+
+static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
+ LValue lvalue,
+ QualType type) {
+ switch (type.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Autoreleasing:
+ return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
+ false);
+
+ case Qualifiers::OCL_Weak:
+ return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
+ true);
+ }
+
+ llvm_unreachable("impossible lifetime!");
+}
+
+static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
+ const Expr *e) {
+ e = e->IgnoreParens();
+ QualType type = e->getType();
+
+ // If we're loading retained from a __strong xvalue, we can avoid
+ // an extra retain/release pair by zeroing out the source of this
+ // "move" operation.
+ if (e->isXValue() &&
+ !type.isConstQualified() &&
+ type.getObjCLifetime() == Qualifiers::OCL_Strong) {
+ // Emit the lvalue.
+ LValue lv = CGF.EmitLValue(e);
+
+ // Load the object pointer.
+ llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
+
+ // Set the source pointer to NULL.
+ CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
+
+ return TryEmitResult(result, true);
+ }
+
+ // As a very special optimization, in ARC++, if the l-value is the
+ // result of a non-volatile assignment, do a simple retain of the
+ // result of the call to objc_storeWeak instead of reloading.
+ if (CGF.getLangOpts().CPlusPlus &&
+ !type.isVolatileQualified() &&
+ type.getObjCLifetime() == Qualifiers::OCL_Weak &&
+ isa<BinaryOperator>(e) &&
+ cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
+ return TryEmitResult(CGF.EmitScalarExpr(e), false);
+
+ return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
+}
+
+static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
+ llvm::Value *value);
+
+/// Given that the given expression is some sort of call (which does
+/// not return retained), emit a retain following it.
+static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
+ llvm::Value *value = CGF.EmitScalarExpr(e);
+ return emitARCRetainAfterCall(CGF, value);
+}
+
+static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
+ llvm::Value *value) {
+ if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
+ CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
+
+ // Place the retain immediately following the call.
+ CGF.Builder.SetInsertPoint(call->getParent(),
+ ++llvm::BasicBlock::iterator(call));
+ value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
+
+ CGF.Builder.restoreIP(ip);
+ return value;
+ } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
+ CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
+
+ // Place the retain at the beginning of the normal destination block.
+ llvm::BasicBlock *BB = invoke->getNormalDest();
+ CGF.Builder.SetInsertPoint(BB, BB->begin());
+ value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
+
+ CGF.Builder.restoreIP(ip);
+ return value;
+
+ // Bitcasts can arise because of related-result returns. Rewrite
+ // the operand.
+ } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
+ llvm::Value *operand = bitcast->getOperand(0);
+ operand = emitARCRetainAfterCall(CGF, operand);
+ bitcast->setOperand(0, operand);
+ return bitcast;
+
+ // Generic fall-back case.
+ } else {
+ // Retain using the non-block variant: we never need to do a copy
+ // of a block that's been returned to us.
+ return CGF.EmitARCRetainNonBlock(value);
+ }
+}
+
+/// Determine whether it might be important to emit a separate
+/// objc_retain_block on the result of the given expression, or
+/// whether it's okay to just emit it in a +1 context.
+static bool shouldEmitSeparateBlockRetain(const Expr *e) {
+ assert(e->getType()->isBlockPointerType());
+ e = e->IgnoreParens();
+
+ // For future goodness, emit block expressions directly in +1
+ // contexts if we can.
+ if (isa<BlockExpr>(e))
+ return false;
+
+ if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
+ switch (cast->getCastKind()) {
+ // Emitting these operations in +1 contexts is goodness.
+ case CK_LValueToRValue:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCProduceObject:
+ return false;
+
+ // These operations preserve a block type.
+ case CK_NoOp:
+ case CK_BitCast:
+ return shouldEmitSeparateBlockRetain(cast->getSubExpr());
+
+ // These operations are known to be bad (or haven't been considered).
+ case CK_AnyPointerToBlockPointerCast:
+ default:
+ return true;
+ }
+ }
+
+ return true;
+}
+
+/// Try to emit a PseudoObjectExpr at +1.
+///
+/// This massively duplicates emitPseudoObjectRValue.
+static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
+ const PseudoObjectExpr *E) {
+ llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
+
+ // Find the result expression.
+ const Expr *resultExpr = E->getResultExpr();
+ assert(resultExpr);
+ TryEmitResult result;
+
+ for (PseudoObjectExpr::const_semantics_iterator
+ i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
+ const Expr *semantic = *i;
+
+ // If this semantic expression is an opaque value, bind it
+ // to the result of its source expression.
+ if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
+ typedef CodeGenFunction::OpaqueValueMappingData OVMA;
+ OVMA opaqueData;
+
+ // If this semantic is the result of the pseudo-object
+ // expression, try to evaluate the source as +1.
+ if (ov == resultExpr) {
+ assert(!OVMA::shouldBindAsLValue(ov));
+ result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
+ opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
+
+ // Otherwise, just bind it.
+ } else {
+ opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
+ }
+ opaques.push_back(opaqueData);
+
+ // Otherwise, if the expression is the result, evaluate it
+ // and remember the result.
+ } else if (semantic == resultExpr) {
+ result = tryEmitARCRetainScalarExpr(CGF, semantic);
+
+ // Otherwise, evaluate the expression in an ignored context.
+ } else {
+ CGF.EmitIgnoredExpr(semantic);
+ }
+ }
+
+ // Unbind all the opaques now.
+ for (unsigned i = 0, e = opaques.size(); i != e; ++i)
+ opaques[i].unbind(CGF);
+
+ return result;
+}
+
+static TryEmitResult
+tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
+ // Look through cleanups.
+ if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
+ CGF.enterFullExpression(cleanups);
+ CodeGenFunction::RunCleanupsScope scope(CGF);
+ return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr());
+ }
+
+ // The desired result type, if it differs from the type of the
+ // ultimate opaque expression.
+ llvm::Type *resultType = 0;
+
+ while (true) {
+ e = e->IgnoreParens();
+
+ // There's a break at the end of this if-chain; anything
+ // that wants to keep looping has to explicitly continue.
+ if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
+ switch (ce->getCastKind()) {
+ // No-op casts don't change the type, so we just ignore them.
+ case CK_NoOp:
+ e = ce->getSubExpr();
+ continue;
+
+ case CK_LValueToRValue: {
+ TryEmitResult loadResult
+ = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
+ if (resultType) {
+ llvm::Value *value = loadResult.getPointer();
+ value = CGF.Builder.CreateBitCast(value, resultType);
+ loadResult.setPointer(value);
+ }
+ return loadResult;
+ }
+
+ // These casts can change the type, so remember that and
+ // soldier on. We only need to remember the outermost such
+ // cast, though.
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_BitCast:
+ if (!resultType)
+ resultType = CGF.ConvertType(ce->getType());
+ e = ce->getSubExpr();
+ assert(e->getType()->hasPointerRepresentation());
+ continue;
+
+ // For consumptions, just emit the subexpression and thus elide
+ // the retain/release pair.
+ case CK_ARCConsumeObject: {
+ llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
+ if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
+ return TryEmitResult(result, true);
+ }
+
+ // Block extends are net +0. Naively, we could just recurse on
+ // the subexpression, but actually we need to ensure that the
+ // value is copied as a block, so there's a little filter here.
+ case CK_ARCExtendBlockObject: {
+ llvm::Value *result; // will be a +0 value
+
+ // If we can't safely assume the sub-expression will produce a
+ // block-copied value, emit the sub-expression at +0.
+ if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
+ result = CGF.EmitScalarExpr(ce->getSubExpr());
+
+ // Otherwise, try to emit the sub-expression at +1 recursively.
+ } else {
+ TryEmitResult subresult
+ = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
+ result = subresult.getPointer();
+
+ // If that produced a retained value, just use that,
+ // possibly casting down.
+ if (subresult.getInt()) {
+ if (resultType)
+ result = CGF.Builder.CreateBitCast(result, resultType);
+ return TryEmitResult(result, true);
+ }
+
+ // Otherwise it's +0.
+ }
+
+ // Retain the object as a block, then cast down.
+ result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
+ if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
+ return TryEmitResult(result, true);
+ }
+
+ // For reclaims, emit the subexpression as a retained call and
+ // skip the consumption.
+ case CK_ARCReclaimReturnedObject: {
+ llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
+ if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
+ return TryEmitResult(result, true);
+ }
+
+ default:
+ break;
+ }
+
+ // Skip __extension__.
+ } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
+ if (op->getOpcode() == UO_Extension) {
+ e = op->getSubExpr();
+ continue;
+ }
+
+ // For calls and message sends, use the retained-call logic.
+ // Delegate inits are a special case in that they're the only
+ // returns-retained expression that *isn't* surrounded by
+ // a consume.
+ } else if (isa<CallExpr>(e) ||
+ (isa<ObjCMessageExpr>(e) &&
+ !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
+ llvm::Value *result = emitARCRetainCall(CGF, e);
+ if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
+ return TryEmitResult(result, true);
+
+ // Look through pseudo-object expressions.
+ } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
+ TryEmitResult result
+ = tryEmitARCRetainPseudoObject(CGF, pseudo);
+ if (resultType) {
+ llvm::Value *value = result.getPointer();
+ value = CGF.Builder.CreateBitCast(value, resultType);
+ result.setPointer(value);
+ }
+ return result;
+ }
+
+ // Conservatively halt the search at any other expression kind.
+ break;
+ }
+
+ // We didn't find an obvious production, so emit what we've got and
+ // tell the caller that we didn't manage to retain.
+ llvm::Value *result = CGF.EmitScalarExpr(e);
+ if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
+ return TryEmitResult(result, false);
+}
+
+static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
+ LValue lvalue,
+ QualType type) {
+ TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
+ llvm::Value *value = result.getPointer();
+ if (!result.getInt())
+ value = CGF.EmitARCRetain(type, value);
+ return value;
+}
+
+/// EmitARCRetainScalarExpr - Semantically equivalent to
+/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
+/// best-effort attempt to peephole expressions that naturally produce
+/// retained objects.
+llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
+ TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
+ llvm::Value *value = result.getPointer();
+ if (!result.getInt())
+ value = EmitARCRetain(e->getType(), value);
+ return value;
+}
+
+llvm::Value *
+CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
+ TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
+ llvm::Value *value = result.getPointer();
+ if (result.getInt())
+ value = EmitARCAutorelease(value);
+ else
+ value = EmitARCRetainAutorelease(e->getType(), value);
+ return value;
+}
+
+llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
+ llvm::Value *result;
+ bool doRetain;
+
+ if (shouldEmitSeparateBlockRetain(e)) {
+ result = EmitScalarExpr(e);
+ doRetain = true;
+ } else {
+ TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
+ result = subresult.getPointer();
+ doRetain = !subresult.getInt();
+ }
+
+ if (doRetain)
+ result = EmitARCRetainBlock(result, /*mandatory*/ true);
+ return EmitObjCConsumeObject(e->getType(), result);
+}
+
+llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
+ // In ARC, retain and autorelease the expression.
+ if (getLangOpts().ObjCAutoRefCount) {
+ // Do so before running any cleanups for the full-expression.
+ // tryEmitARCRetainScalarExpr does make an effort to do things
+ // inside cleanups, but there are crazy cases like
+ // @throw A().foo;
+ // where a full retain+autorelease is required and would
+ // otherwise happen after the destructor for the temporary.
+ if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) {
+ enterFullExpression(ewc);
+ expr = ewc->getSubExpr();
+ }
+
+ CodeGenFunction::RunCleanupsScope cleanups(*this);
+ return EmitARCRetainAutoreleaseScalarExpr(expr);
+ }
+
+ // Otherwise, use the normal scalar-expression emission. The
+ // exception machinery doesn't do anything special with the
+ // exception like retaining it, so there's no safety associated with
+ // only running cleanups after the throw has started, and when it
+ // matters it tends to be substantially inferior code.
+ return EmitScalarExpr(expr);
+}
+
+std::pair<LValue,llvm::Value*>
+CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
+ bool ignored) {
+ // Evaluate the RHS first.
+ TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
+ llvm::Value *value = result.getPointer();
+
+ bool hasImmediateRetain = result.getInt();
+
+ // If we didn't emit a retained object, and the l-value is of block
+ // type, then we need to emit the block-retain immediately in case
+ // it invalidates the l-value.
+ if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
+ value = EmitARCRetainBlock(value, /*mandatory*/ false);
+ hasImmediateRetain = true;
+ }
+
+ LValue lvalue = EmitLValue(e->getLHS());
+
+ // If the RHS was emitted retained, expand this.
+ if (hasImmediateRetain) {
+ llvm::Value *oldValue =
+ EmitLoadOfScalar(lvalue);
+ EmitStoreOfScalar(value, lvalue);
+ EmitARCRelease(oldValue, /*precise*/ false);
+ } else {
+ value = EmitARCStoreStrong(lvalue, value, ignored);
+ }
+
+ return std::pair<LValue,llvm::Value*>(lvalue, value);
+}
+
+std::pair<LValue,llvm::Value*>
+CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
+ llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
+ LValue lvalue = EmitLValue(e->getLHS());
+
+ EmitStoreOfScalar(value, lvalue);
+
+ return std::pair<LValue,llvm::Value*>(lvalue, value);
+}
+
+void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
+ const ObjCAutoreleasePoolStmt &ARPS) {
+ const Stmt *subStmt = ARPS.getSubStmt();
+ const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
+
+ CGDebugInfo *DI = getDebugInfo();
+ if (DI)
+ DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
+
+ // Keep track of the current cleanup stack depth.
+ RunCleanupsScope Scope(*this);
+ if (CGM.getCodeGenOpts().ObjCRuntimeHasARC) {
+ llvm::Value *token = EmitObjCAutoreleasePoolPush();
+ EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
+ } else {
+ llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
+ EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
+ }
+
+ for (CompoundStmt::const_body_iterator I = S.body_begin(),
+ E = S.body_end(); I != E; ++I)
+ EmitStmt(*I);
+
+ if (DI)
+ DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
+}
+
+/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
+/// make sure it survives garbage collection until this point.
+void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
+ // We just use an inline assembly.
+ llvm::FunctionType *extenderType
+ = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
+ llvm::Value *extender
+ = llvm::InlineAsm::get(extenderType,
+ /* assembly */ "",
+ /* constraints */ "r",
+ /* side effects */ true);
+
+ object = Builder.CreateBitCast(object, VoidPtrTy);
+ Builder.CreateCall(extender, object)->setDoesNotThrow();
+}
+
+/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
+/// non-trivial copy assignment function, produce following helper function.
+/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
+///
+llvm::Constant *
+CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
+ const ObjCPropertyImplDecl *PID) {
+ // FIXME. This api is for NeXt runtime only for now.
+ if (!getLangOpts().CPlusPlus || !getLangOpts().NeXTRuntime)
+ return 0;
+ QualType Ty = PID->getPropertyIvarDecl()->getType();
+ if (!Ty->isRecordType())
+ return 0;
+ const ObjCPropertyDecl *PD = PID->getPropertyDecl();
+ if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
+ return 0;
+ llvm::Constant * HelperFn = 0;
+ if (hasTrivialSetExpr(PID))
+ return 0;
+ assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
+ if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
+ return HelperFn;
+
+ ASTContext &C = getContext();
+ IdentifierInfo *II
+ = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
+ FunctionDecl *FD = FunctionDecl::Create(C,
+ C.getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(), II, C.VoidTy, 0,
+ SC_Static,
+ SC_None,
+ false,
+ false);
+
+ QualType DestTy = C.getPointerType(Ty);
+ QualType SrcTy = Ty;
+ SrcTy.addConst();
+ SrcTy = C.getPointerType(SrcTy);
+
+ FunctionArgList args;
+ ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
+ args.push_back(&dstDecl);
+ ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
+ args.push_back(&srcDecl);
+
+ const CGFunctionInfo &FI =
+ CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All);
+
+ llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
+
+ llvm::Function *Fn =
+ llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
+ "__assign_helper_atomic_property_",
+ &CGM.getModule());
+
+ if (CGM.getModuleDebugInfo())
+ DebugInfo = CGM.getModuleDebugInfo();
+
+
+ StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
+
+ DeclRefExpr DstExpr(&dstDecl, false, DestTy,
+ VK_RValue, SourceLocation());
+ UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
+ VK_LValue, OK_Ordinary, SourceLocation());
+
+ DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
+ VK_RValue, SourceLocation());
+ UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
+ VK_LValue, OK_Ordinary, SourceLocation());
+
+ Expr *Args[2] = { &DST, &SRC };
+ CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
+ CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
+ Args, 2, DestTy->getPointeeType(),
+ VK_LValue, SourceLocation());
+
+ EmitStmt(&TheCall);
+
+ FinishFunction();
+ HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
+ CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
+ return HelperFn;
+}
+
+llvm::Constant *
+CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
+ const ObjCPropertyImplDecl *PID) {
+ // FIXME. This api is for NeXt runtime only for now.
+ if (!getLangOpts().CPlusPlus || !getLangOpts().NeXTRuntime)
+ return 0;
+ const ObjCPropertyDecl *PD = PID->getPropertyDecl();
+ QualType Ty = PD->getType();
+ if (!Ty->isRecordType())
+ return 0;
+ if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
+ return 0;
+ llvm::Constant * HelperFn = 0;
+
+ if (hasTrivialGetExpr(PID))
+ return 0;
+ assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
+ if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
+ return HelperFn;
+
+
+ ASTContext &C = getContext();
+ IdentifierInfo *II
+ = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
+ FunctionDecl *FD = FunctionDecl::Create(C,
+ C.getTranslationUnitDecl(),
+ SourceLocation(),
+ SourceLocation(), II, C.VoidTy, 0,
+ SC_Static,
+ SC_None,
+ false,
+ false);
+
+ QualType DestTy = C.getPointerType(Ty);
+ QualType SrcTy = Ty;
+ SrcTy.addConst();
+ SrcTy = C.getPointerType(SrcTy);
+
+ FunctionArgList args;
+ ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
+ args.push_back(&dstDecl);
+ ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
+ args.push_back(&srcDecl);
+
+ const CGFunctionInfo &FI =
+ CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
+ FunctionType::ExtInfo(),
+ RequiredArgs::All);
+
+ llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
+
+ llvm::Function *Fn =
+ llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
+ "__copy_helper_atomic_property_", &CGM.getModule());
+
+ if (CGM.getModuleDebugInfo())
+ DebugInfo = CGM.getModuleDebugInfo();
+
+
+ StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
+
+ DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
+ VK_RValue, SourceLocation());
+
+ UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
+ VK_LValue, OK_Ordinary, SourceLocation());
+
+ CXXConstructExpr *CXXConstExpr =
+ cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
+
+ SmallVector<Expr*, 4> ConstructorArgs;
+ ConstructorArgs.push_back(&SRC);
+ CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
+ ++A;
+
+ for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
+ A != AEnd; ++A)
+ ConstructorArgs.push_back(*A);
+
+ CXXConstructExpr *TheCXXConstructExpr =
+ CXXConstructExpr::Create(C, Ty, SourceLocation(),
+ CXXConstExpr->getConstructor(),
+ CXXConstExpr->isElidable(),
+ &ConstructorArgs[0], ConstructorArgs.size(),
+ CXXConstExpr->hadMultipleCandidates(),
+ CXXConstExpr->isListInitialization(),
+ CXXConstExpr->requiresZeroInitialization(),
+ CXXConstExpr->getConstructionKind(),
+ SourceRange());
+
+ DeclRefExpr DstExpr(&dstDecl, false, DestTy,
+ VK_RValue, SourceLocation());
+
+ RValue DV = EmitAnyExpr(&DstExpr);
+ CharUnits Alignment
+ = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
+ EmitAggExpr(TheCXXConstructExpr,
+ AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased));
+
+ FinishFunction();
+ HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
+ CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
+ return HelperFn;
+}
+
+llvm::Value *
+CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
+ // Get selectors for retain/autorelease.
+ IdentifierInfo *CopyID = &getContext().Idents.get("copy");
+ Selector CopySelector =
+ getContext().Selectors.getNullarySelector(CopyID);
+ IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
+ Selector AutoreleaseSelector =
+ getContext().Selectors.getNullarySelector(AutoreleaseID);
+
+ // Emit calls to retain/autorelease.
+ CGObjCRuntime &Runtime = CGM.getObjCRuntime();
+ llvm::Value *Val = Block;
+ RValue Result;
+ Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
+ Ty, CopySelector,
+ Val, CallArgList(), 0, 0);
+ Val = Result.getScalarVal();
+ Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
+ Ty, AutoreleaseSelector,
+ Val, CallArgList(), 0, 0);
+ Val = Result.getScalarVal();
+ return Val;
+}
+
+
+CGObjCRuntime::~CGObjCRuntime() {}