diff options
author | Carlo Zancanaro <carlo@pc-4w14-0.cs.usyd.edu.au> | 2012-10-15 17:10:06 +1100 |
---|---|---|
committer | Carlo Zancanaro <carlo@pc-4w14-0.cs.usyd.edu.au> | 2012-10-15 17:10:06 +1100 |
commit | be1de4be954c80875ad4108e0a33e8e131b2f2c0 (patch) | |
tree | 1fbbecf276bf7c7bdcbb4dd446099d6d90eaa516 /clang/lib/CodeGen/CGDecl.cpp | |
parent | c4626a62754862d20b41e8a46a3574264ea80e6d (diff) | |
parent | f1bd2e48c5324d3f7cda4090c87f8a5b6f463ce2 (diff) |
Merge branch 'master' of ssh://bitbucket.org/czan/honours
Diffstat (limited to 'clang/lib/CodeGen/CGDecl.cpp')
-rw-r--r-- | clang/lib/CodeGen/CGDecl.cpp | 1564 |
1 files changed, 1564 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGDecl.cpp b/clang/lib/CodeGen/CGDecl.cpp new file mode 100644 index 0000000..6447779 --- /dev/null +++ b/clang/lib/CodeGen/CGDecl.cpp @@ -0,0 +1,1564 @@ +//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Decl nodes as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "CGDebugInfo.h" +#include "CodeGenFunction.h" +#include "CodeGenModule.h" +#include "CGOpenCLRuntime.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclObjC.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Frontend/CodeGenOptions.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Intrinsics.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Type.h" +using namespace clang; +using namespace CodeGen; + + +void CodeGenFunction::EmitDecl(const Decl &D) { + switch (D.getKind()) { + case Decl::TranslationUnit: + case Decl::Namespace: + case Decl::UnresolvedUsingTypename: + case Decl::ClassTemplateSpecialization: + case Decl::ClassTemplatePartialSpecialization: + case Decl::TemplateTypeParm: + case Decl::UnresolvedUsingValue: + case Decl::NonTypeTemplateParm: + case Decl::CXXMethod: + case Decl::CXXConstructor: + case Decl::CXXDestructor: + case Decl::CXXConversion: + case Decl::Field: + case Decl::IndirectField: + case Decl::ObjCIvar: + case Decl::ObjCAtDefsField: + case Decl::ParmVar: + case Decl::ImplicitParam: + case Decl::ClassTemplate: + case Decl::FunctionTemplate: + case Decl::TypeAliasTemplate: + case Decl::TemplateTemplateParm: + case Decl::ObjCMethod: + case Decl::ObjCCategory: + case Decl::ObjCProtocol: + case Decl::ObjCInterface: + case Decl::ObjCCategoryImpl: + case Decl::ObjCImplementation: + case Decl::ObjCProperty: + case Decl::ObjCCompatibleAlias: + case Decl::AccessSpec: + case Decl::LinkageSpec: + case Decl::ObjCPropertyImpl: + case Decl::FileScopeAsm: + case Decl::Friend: + case Decl::FriendTemplate: + case Decl::Block: + case Decl::ClassScopeFunctionSpecialization: + llvm_unreachable("Declaration should not be in declstmts!"); + case Decl::Function: // void X(); + case Decl::Record: // struct/union/class X; + case Decl::Enum: // enum X; + case Decl::EnumConstant: // enum ? { X = ? } + case Decl::CXXRecord: // struct/union/class X; [C++] + case Decl::Using: // using X; [C++] + case Decl::UsingShadow: + case Decl::UsingDirective: // using namespace X; [C++] + case Decl::NamespaceAlias: + case Decl::StaticAssert: // static_assert(X, ""); [C++0x] + case Decl::Label: // __label__ x; + case Decl::Import: + // None of these decls require codegen support. + return; + + case Decl::Var: { + const VarDecl &VD = cast<VarDecl>(D); + assert(VD.isLocalVarDecl() && + "Should not see file-scope variables inside a function!"); + return EmitVarDecl(VD); + } + + case Decl::Typedef: // typedef int X; + case Decl::TypeAlias: { // using X = int; [C++0x] + const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); + QualType Ty = TD.getUnderlyingType(); + + if (Ty->isVariablyModifiedType()) + EmitVariablyModifiedType(Ty); + } + } +} + +/// EmitVarDecl - This method handles emission of any variable declaration +/// inside a function, including static vars etc. +void CodeGenFunction::EmitVarDecl(const VarDecl &D) { + switch (D.getStorageClass()) { + case SC_None: + case SC_Auto: + case SC_Register: + return EmitAutoVarDecl(D); + case SC_Static: { + llvm::GlobalValue::LinkageTypes Linkage = + llvm::GlobalValue::InternalLinkage; + + // If the function definition has some sort of weak linkage, its + // static variables should also be weak so that they get properly + // uniqued. We can't do this in C, though, because there's no + // standard way to agree on which variables are the same (i.e. + // there's no mangling). + if (getContext().getLangOpts().CPlusPlus) + if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) + Linkage = CurFn->getLinkage(); + + return EmitStaticVarDecl(D, Linkage); + } + case SC_Extern: + case SC_PrivateExtern: + // Don't emit it now, allow it to be emitted lazily on its first use. + return; + case SC_OpenCLWorkGroupLocal: + return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); + } + + llvm_unreachable("Unknown storage class"); +} + +static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, + const char *Separator) { + CodeGenModule &CGM = CGF.CGM; + if (CGF.getContext().getLangOpts().CPlusPlus) { + StringRef Name = CGM.getMangledName(&D); + return Name.str(); + } + + std::string ContextName; + if (!CGF.CurFuncDecl) { + // Better be in a block declared in global scope. + const NamedDecl *ND = cast<NamedDecl>(&D); + const DeclContext *DC = ND->getDeclContext(); + if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { + MangleBuffer Name; + CGM.getBlockMangledName(GlobalDecl(), Name, BD); + ContextName = Name.getString(); + } + else + llvm_unreachable("Unknown context for block static var decl"); + } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { + StringRef Name = CGM.getMangledName(FD); + ContextName = Name.str(); + } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) + ContextName = CGF.CurFn->getName(); + else + llvm_unreachable("Unknown context for static var decl"); + + return ContextName + Separator + D.getNameAsString(); +} + +llvm::GlobalVariable * +CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, + const char *Separator, + llvm::GlobalValue::LinkageTypes Linkage) { + QualType Ty = D.getType(); + assert(Ty->isConstantSizeType() && "VLAs can't be static"); + + // Use the label if the variable is renamed with the asm-label extension. + std::string Name; + if (D.hasAttr<AsmLabelAttr>()) + Name = CGM.getMangledName(&D); + else + Name = GetStaticDeclName(*this, D, Separator); + + llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); + llvm::GlobalVariable *GV = + new llvm::GlobalVariable(CGM.getModule(), LTy, + Ty.isConstant(getContext()), Linkage, + CGM.EmitNullConstant(D.getType()), Name, 0, + D.isThreadSpecified(), + CGM.getContext().getTargetAddressSpace(Ty)); + GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); + if (Linkage != llvm::GlobalValue::InternalLinkage) + GV->setVisibility(CurFn->getVisibility()); + return GV; +} + +/// hasNontrivialDestruction - Determine whether a type's destruction is +/// non-trivial. If so, and the variable uses static initialization, we must +/// register its destructor to run on exit. +static bool hasNontrivialDestruction(QualType T) { + CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); + return RD && !RD->hasTrivialDestructor(); +} + +/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the +/// global variable that has already been created for it. If the initializer +/// has a different type than GV does, this may free GV and return a different +/// one. Otherwise it just returns GV. +llvm::GlobalVariable * +CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, + llvm::GlobalVariable *GV) { + llvm::Constant *Init = CGM.EmitConstantInit(D, this); + + // If constant emission failed, then this should be a C++ static + // initializer. + if (!Init) { + if (!getContext().getLangOpts().CPlusPlus) + CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); + else if (Builder.GetInsertBlock()) { + // Since we have a static initializer, this global variable can't + // be constant. + GV->setConstant(false); + + EmitCXXGuardedInit(D, GV, /*PerformInit*/true); + } + return GV; + } + + // The initializer may differ in type from the global. Rewrite + // the global to match the initializer. (We have to do this + // because some types, like unions, can't be completely represented + // in the LLVM type system.) + if (GV->getType()->getElementType() != Init->getType()) { + llvm::GlobalVariable *OldGV = GV; + + GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), + OldGV->isConstant(), + OldGV->getLinkage(), Init, "", + /*InsertBefore*/ OldGV, + D.isThreadSpecified(), + CGM.getContext().getTargetAddressSpace(D.getType())); + GV->setVisibility(OldGV->getVisibility()); + + // Steal the name of the old global + GV->takeName(OldGV); + + // Replace all uses of the old global with the new global + llvm::Constant *NewPtrForOldDecl = + llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); + OldGV->replaceAllUsesWith(NewPtrForOldDecl); + + // Erase the old global, since it is no longer used. + OldGV->eraseFromParent(); + } + + GV->setConstant(CGM.isTypeConstant(D.getType(), true)); + GV->setInitializer(Init); + + if (hasNontrivialDestruction(D.getType())) { + // We have a constant initializer, but a nontrivial destructor. We still + // need to perform a guarded "initialization" in order to register the + // destructor. + EmitCXXGuardedInit(D, GV, /*PerformInit*/false); + } + + return GV; +} + +void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, + llvm::GlobalValue::LinkageTypes Linkage) { + llvm::Value *&DMEntry = LocalDeclMap[&D]; + assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); + + // Check to see if we already have a global variable for this + // declaration. This can happen when double-emitting function + // bodies, e.g. with complete and base constructors. + llvm::Constant *addr = + CGM.getStaticLocalDeclAddress(&D); + + llvm::GlobalVariable *var; + if (addr) { + var = cast<llvm::GlobalVariable>(addr->stripPointerCasts()); + } else { + addr = var = CreateStaticVarDecl(D, ".", Linkage); + } + + // Store into LocalDeclMap before generating initializer to handle + // circular references. + DMEntry = addr; + CGM.setStaticLocalDeclAddress(&D, addr); + + // We can't have a VLA here, but we can have a pointer to a VLA, + // even though that doesn't really make any sense. + // Make sure to evaluate VLA bounds now so that we have them for later. + if (D.getType()->isVariablyModifiedType()) + EmitVariablyModifiedType(D.getType()); + + // Save the type in case adding the initializer forces a type change. + llvm::Type *expectedType = addr->getType(); + + // If this value has an initializer, emit it. + if (D.getInit()) + var = AddInitializerToStaticVarDecl(D, var); + + var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); + + if (D.hasAttr<AnnotateAttr>()) + CGM.AddGlobalAnnotations(&D, var); + + if (const SectionAttr *SA = D.getAttr<SectionAttr>()) + var->setSection(SA->getName()); + + if (D.hasAttr<UsedAttr>()) + CGM.AddUsedGlobal(var); + + // We may have to cast the constant because of the initializer + // mismatch above. + // + // FIXME: It is really dangerous to store this in the map; if anyone + // RAUW's the GV uses of this constant will be invalid. + llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType); + DMEntry = castedAddr; + CGM.setStaticLocalDeclAddress(&D, castedAddr); + + // Emit global variable debug descriptor for static vars. + CGDebugInfo *DI = getDebugInfo(); + if (DI) { + DI->setLocation(D.getLocation()); + DI->EmitGlobalVariable(var, &D); + } +} + +namespace { + struct DestroyObject : EHScopeStack::Cleanup { + DestroyObject(llvm::Value *addr, QualType type, + CodeGenFunction::Destroyer *destroyer, + bool useEHCleanupForArray) + : addr(addr), type(type), destroyer(destroyer), + useEHCleanupForArray(useEHCleanupForArray) {} + + llvm::Value *addr; + QualType type; + CodeGenFunction::Destroyer *destroyer; + bool useEHCleanupForArray; + + void Emit(CodeGenFunction &CGF, Flags flags) { + // Don't use an EH cleanup recursively from an EH cleanup. + bool useEHCleanupForArray = + flags.isForNormalCleanup() && this->useEHCleanupForArray; + + CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); + } + }; + + struct DestroyNRVOVariable : EHScopeStack::Cleanup { + DestroyNRVOVariable(llvm::Value *addr, + const CXXDestructorDecl *Dtor, + llvm::Value *NRVOFlag) + : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} + + const CXXDestructorDecl *Dtor; + llvm::Value *NRVOFlag; + llvm::Value *Loc; + + void Emit(CodeGenFunction &CGF, Flags flags) { + // Along the exceptions path we always execute the dtor. + bool NRVO = flags.isForNormalCleanup() && NRVOFlag; + + llvm::BasicBlock *SkipDtorBB = 0; + if (NRVO) { + // If we exited via NRVO, we skip the destructor call. + llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); + SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); + llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); + CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); + CGF.EmitBlock(RunDtorBB); + } + + CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, + /*ForVirtualBase=*/false, Loc); + + if (NRVO) CGF.EmitBlock(SkipDtorBB); + } + }; + + struct CallStackRestore : EHScopeStack::Cleanup { + llvm::Value *Stack; + CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} + void Emit(CodeGenFunction &CGF, Flags flags) { + llvm::Value *V = CGF.Builder.CreateLoad(Stack); + llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); + CGF.Builder.CreateCall(F, V); + } + }; + + struct ExtendGCLifetime : EHScopeStack::Cleanup { + const VarDecl &Var; + ExtendGCLifetime(const VarDecl *var) : Var(*var) {} + + void Emit(CodeGenFunction &CGF, Flags flags) { + // Compute the address of the local variable, in case it's a + // byref or something. + DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, + Var.getType(), VK_LValue, SourceLocation()); + llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); + CGF.EmitExtendGCLifetime(value); + } + }; + + struct CallCleanupFunction : EHScopeStack::Cleanup { + llvm::Constant *CleanupFn; + const CGFunctionInfo &FnInfo; + const VarDecl &Var; + + CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, + const VarDecl *Var) + : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} + + void Emit(CodeGenFunction &CGF, Flags flags) { + DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, + Var.getType(), VK_LValue, SourceLocation()); + // Compute the address of the local variable, in case it's a byref + // or something. + llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); + + // In some cases, the type of the function argument will be different from + // the type of the pointer. An example of this is + // void f(void* arg); + // __attribute__((cleanup(f))) void *g; + // + // To fix this we insert a bitcast here. + QualType ArgTy = FnInfo.arg_begin()->type; + llvm::Value *Arg = + CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); + + CallArgList Args; + Args.add(RValue::get(Arg), + CGF.getContext().getPointerType(Var.getType())); + CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); + } + }; +} + +/// EmitAutoVarWithLifetime - Does the setup required for an automatic +/// variable with lifetime. +static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, + llvm::Value *addr, + Qualifiers::ObjCLifetime lifetime) { + switch (lifetime) { + case Qualifiers::OCL_None: + llvm_unreachable("present but none"); + + case Qualifiers::OCL_ExplicitNone: + // nothing to do + break; + + case Qualifiers::OCL_Strong: { + CodeGenFunction::Destroyer *destroyer = + (var.hasAttr<ObjCPreciseLifetimeAttr>() + ? CodeGenFunction::destroyARCStrongPrecise + : CodeGenFunction::destroyARCStrongImprecise); + + CleanupKind cleanupKind = CGF.getARCCleanupKind(); + CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, + cleanupKind & EHCleanup); + break; + } + case Qualifiers::OCL_Autoreleasing: + // nothing to do + break; + + case Qualifiers::OCL_Weak: + // __weak objects always get EH cleanups; otherwise, exceptions + // could cause really nasty crashes instead of mere leaks. + CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), + CodeGenFunction::destroyARCWeak, + /*useEHCleanup*/ true); + break; + } +} + +static bool isAccessedBy(const VarDecl &var, const Stmt *s) { + if (const Expr *e = dyn_cast<Expr>(s)) { + // Skip the most common kinds of expressions that make + // hierarchy-walking expensive. + s = e = e->IgnoreParenCasts(); + + if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) + return (ref->getDecl() == &var); + } + + for (Stmt::const_child_range children = s->children(); children; ++children) + // children might be null; as in missing decl or conditional of an if-stmt. + if ((*children) && isAccessedBy(var, *children)) + return true; + + return false; +} + +static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { + if (!decl) return false; + if (!isa<VarDecl>(decl)) return false; + const VarDecl *var = cast<VarDecl>(decl); + return isAccessedBy(*var, e); +} + +static void drillIntoBlockVariable(CodeGenFunction &CGF, + LValue &lvalue, + const VarDecl *var) { + lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); +} + +void CodeGenFunction::EmitScalarInit(const Expr *init, + const ValueDecl *D, + LValue lvalue, + bool capturedByInit) { + Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); + if (!lifetime) { + llvm::Value *value = EmitScalarExpr(init); + if (capturedByInit) + drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); + EmitStoreThroughLValue(RValue::get(value), lvalue, true); + return; + } + + // If we're emitting a value with lifetime, we have to do the + // initialization *before* we leave the cleanup scopes. + if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { + enterFullExpression(ewc); + init = ewc->getSubExpr(); + } + CodeGenFunction::RunCleanupsScope Scope(*this); + + // We have to maintain the illusion that the variable is + // zero-initialized. If the variable might be accessed in its + // initializer, zero-initialize before running the initializer, then + // actually perform the initialization with an assign. + bool accessedByInit = false; + if (lifetime != Qualifiers::OCL_ExplicitNone) + accessedByInit = (capturedByInit || isAccessedBy(D, init)); + if (accessedByInit) { + LValue tempLV = lvalue; + // Drill down to the __block object if necessary. + if (capturedByInit) { + // We can use a simple GEP for this because it can't have been + // moved yet. + tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), + getByRefValueLLVMField(cast<VarDecl>(D)))); + } + + llvm::PointerType *ty + = cast<llvm::PointerType>(tempLV.getAddress()->getType()); + ty = cast<llvm::PointerType>(ty->getElementType()); + + llvm::Value *zero = llvm::ConstantPointerNull::get(ty); + + // If __weak, we want to use a barrier under certain conditions. + if (lifetime == Qualifiers::OCL_Weak) + EmitARCInitWeak(tempLV.getAddress(), zero); + + // Otherwise just do a simple store. + else + EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); + } + + // Emit the initializer. + llvm::Value *value = 0; + + switch (lifetime) { + case Qualifiers::OCL_None: + llvm_unreachable("present but none"); + + case Qualifiers::OCL_ExplicitNone: + // nothing to do + value = EmitScalarExpr(init); + break; + + case Qualifiers::OCL_Strong: { + value = EmitARCRetainScalarExpr(init); + break; + } + + case Qualifiers::OCL_Weak: { + // No way to optimize a producing initializer into this. It's not + // worth optimizing for, because the value will immediately + // disappear in the common case. + value = EmitScalarExpr(init); + + if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); + if (accessedByInit) + EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); + else + EmitARCInitWeak(lvalue.getAddress(), value); + return; + } + + case Qualifiers::OCL_Autoreleasing: + value = EmitARCRetainAutoreleaseScalarExpr(init); + break; + } + + if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); + + // If the variable might have been accessed by its initializer, we + // might have to initialize with a barrier. We have to do this for + // both __weak and __strong, but __weak got filtered out above. + if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { + llvm::Value *oldValue = EmitLoadOfScalar(lvalue); + EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); + EmitARCRelease(oldValue, /*precise*/ false); + return; + } + + EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); +} + +/// EmitScalarInit - Initialize the given lvalue with the given object. +void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { + Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); + if (!lifetime) + return EmitStoreThroughLValue(RValue::get(init), lvalue, true); + + switch (lifetime) { + case Qualifiers::OCL_None: + llvm_unreachable("present but none"); + + case Qualifiers::OCL_ExplicitNone: + // nothing to do + break; + + case Qualifiers::OCL_Strong: + init = EmitARCRetain(lvalue.getType(), init); + break; + + case Qualifiers::OCL_Weak: + // Initialize and then skip the primitive store. + EmitARCInitWeak(lvalue.getAddress(), init); + return; + + case Qualifiers::OCL_Autoreleasing: + init = EmitARCRetainAutorelease(lvalue.getType(), init); + break; + } + + EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); +} + +/// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the +/// non-zero parts of the specified initializer with equal or fewer than +/// NumStores scalar stores. +static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, + unsigned &NumStores) { + // Zero and Undef never requires any extra stores. + if (isa<llvm::ConstantAggregateZero>(Init) || + isa<llvm::ConstantPointerNull>(Init) || + isa<llvm::UndefValue>(Init)) + return true; + if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || + isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || + isa<llvm::ConstantExpr>(Init)) + return Init->isNullValue() || NumStores--; + + // See if we can emit each element. + if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { + for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { + llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); + if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) + return false; + } + return true; + } + + if (llvm::ConstantDataSequential *CDS = + dyn_cast<llvm::ConstantDataSequential>(Init)) { + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { + llvm::Constant *Elt = CDS->getElementAsConstant(i); + if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) + return false; + } + return true; + } + + // Anything else is hard and scary. + return false; +} + +/// emitStoresForInitAfterMemset - For inits that +/// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar +/// stores that would be required. +static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, + bool isVolatile, CGBuilderTy &Builder) { + // Zero doesn't require a store. + if (Init->isNullValue() || isa<llvm::UndefValue>(Init)) + return; + + if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || + isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || + isa<llvm::ConstantExpr>(Init)) { + Builder.CreateStore(Init, Loc, isVolatile); + return; + } + + if (llvm::ConstantDataSequential *CDS = + dyn_cast<llvm::ConstantDataSequential>(Init)) { + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { + llvm::Constant *Elt = CDS->getElementAsConstant(i); + + // Get a pointer to the element and emit it. + emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), + isVolatile, Builder); + } + return; + } + + assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && + "Unknown value type!"); + + for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { + llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); + // Get a pointer to the element and emit it. + emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), + isVolatile, Builder); + } +} + + +/// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset +/// plus some stores to initialize a local variable instead of using a memcpy +/// from a constant global. It is beneficial to use memset if the global is all +/// zeros, or mostly zeros and large. +static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, + uint64_t GlobalSize) { + // If a global is all zeros, always use a memset. + if (isa<llvm::ConstantAggregateZero>(Init)) return true; + + + // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, + // do it if it will require 6 or fewer scalar stores. + // TODO: Should budget depends on the size? Avoiding a large global warrants + // plopping in more stores. + unsigned StoreBudget = 6; + uint64_t SizeLimit = 32; + + return GlobalSize > SizeLimit && + canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); +} + + +/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a +/// variable declaration with auto, register, or no storage class specifier. +/// These turn into simple stack objects, or GlobalValues depending on target. +void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { + AutoVarEmission emission = EmitAutoVarAlloca(D); + EmitAutoVarInit(emission); + EmitAutoVarCleanups(emission); +} + +/// EmitAutoVarAlloca - Emit the alloca and debug information for a +/// local variable. Does not emit initalization or destruction. +CodeGenFunction::AutoVarEmission +CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { + QualType Ty = D.getType(); + + AutoVarEmission emission(D); + + bool isByRef = D.hasAttr<BlocksAttr>(); + emission.IsByRef = isByRef; + + CharUnits alignment = getContext().getDeclAlign(&D); + emission.Alignment = alignment; + + // If the type is variably-modified, emit all the VLA sizes for it. + if (Ty->isVariablyModifiedType()) + EmitVariablyModifiedType(Ty); + + llvm::Value *DeclPtr; + if (Ty->isConstantSizeType()) { + if (!Target.useGlobalsForAutomaticVariables()) { + bool NRVO = getContext().getLangOpts().ElideConstructors && + D.isNRVOVariable(); + + // If this value is a POD array or struct with a statically + // determinable constant initializer, there are optimizations we can do. + // + // TODO: We should constant-evaluate the initializer of any variable, + // as long as it is initialized by a constant expression. Currently, + // isConstantInitializer produces wrong answers for structs with + // reference or bitfield members, and a few other cases, and checking + // for POD-ness protects us from some of these. + if (D.getInit() && + (Ty->isArrayType() || Ty->isRecordType()) && + (Ty.isPODType(getContext()) || + getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && + D.getInit()->isConstantInitializer(getContext(), false)) { + + // If the variable's a const type, and it's neither an NRVO + // candidate nor a __block variable and has no mutable members, + // emit it as a global instead. + if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && + CGM.isTypeConstant(Ty, true)) { + EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); + + emission.Address = 0; // signal this condition to later callbacks + assert(emission.wasEmittedAsGlobal()); + return emission; + } + + // Otherwise, tell the initialization code that we're in this case. + emission.IsConstantAggregate = true; + } + + // A normal fixed sized variable becomes an alloca in the entry block, + // unless it's an NRVO variable. + llvm::Type *LTy = ConvertTypeForMem(Ty); + + if (NRVO) { + // The named return value optimization: allocate this variable in the + // return slot, so that we can elide the copy when returning this + // variable (C++0x [class.copy]p34). + DeclPtr = ReturnValue; + + if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { + if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { + // Create a flag that is used to indicate when the NRVO was applied + // to this variable. Set it to zero to indicate that NRVO was not + // applied. + llvm::Value *Zero = Builder.getFalse(); + llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); + EnsureInsertPoint(); + Builder.CreateStore(Zero, NRVOFlag); + + // Record the NRVO flag for this variable. + NRVOFlags[&D] = NRVOFlag; + emission.NRVOFlag = NRVOFlag; + } + } + } else { + if (isByRef) + LTy = BuildByRefType(&D); + + llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); + Alloc->setName(D.getName()); + + CharUnits allocaAlignment = alignment; + if (isByRef) + allocaAlignment = std::max(allocaAlignment, + getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); + Alloc->setAlignment(allocaAlignment.getQuantity()); + DeclPtr = Alloc; + } + } else { + // Targets that don't support recursion emit locals as globals. + const char *Class = + D.getStorageClass() == SC_Register ? ".reg." : ".auto."; + DeclPtr = CreateStaticVarDecl(D, Class, + llvm::GlobalValue::InternalLinkage); + } + } else { + EnsureInsertPoint(); + + if (!DidCallStackSave) { + // Save the stack. + llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); + + llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); + llvm::Value *V = Builder.CreateCall(F); + + Builder.CreateStore(V, Stack); + + DidCallStackSave = true; + + // Push a cleanup block and restore the stack there. + // FIXME: in general circumstances, this should be an EH cleanup. + EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); + } + + llvm::Value *elementCount; + QualType elementType; + llvm::tie(elementCount, elementType) = getVLASize(Ty); + + llvm::Type *llvmTy = ConvertTypeForMem(elementType); + + // Allocate memory for the array. + llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); + vla->setAlignment(alignment.getQuantity()); + + DeclPtr = vla; + } + + llvm::Value *&DMEntry = LocalDeclMap[&D]; + assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); + DMEntry = DeclPtr; + emission.Address = DeclPtr; + + // Emit debug info for local var declaration. + if (HaveInsertPoint()) + if (CGDebugInfo *DI = getDebugInfo()) { + DI->setLocation(D.getLocation()); + if (Target.useGlobalsForAutomaticVariables()) { + DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D); + } else + DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); + } + + if (D.hasAttr<AnnotateAttr>()) + EmitVarAnnotations(&D, emission.Address); + + return emission; +} + +/// Determines whether the given __block variable is potentially +/// captured by the given expression. +static bool isCapturedBy(const VarDecl &var, const Expr *e) { + // Skip the most common kinds of expressions that make + // hierarchy-walking expensive. + e = e->IgnoreParenCasts(); + + if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { + const BlockDecl *block = be->getBlockDecl(); + for (BlockDecl::capture_const_iterator i = block->capture_begin(), + e = block->capture_end(); i != e; ++i) { + if (i->getVariable() == &var) + return true; + } + + // No need to walk into the subexpressions. + return false; + } + + if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { + const CompoundStmt *CS = SE->getSubStmt(); + for (CompoundStmt::const_body_iterator BI = CS->body_begin(), + BE = CS->body_end(); BI != BE; ++BI) + if (Expr *E = dyn_cast<Expr>((*BI))) { + if (isCapturedBy(var, E)) + return true; + } + else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) { + // special case declarations + for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); + I != E; ++I) { + if (VarDecl *VD = dyn_cast<VarDecl>((*I))) { + Expr *Init = VD->getInit(); + if (Init && isCapturedBy(var, Init)) + return true; + } + } + } + else + // FIXME. Make safe assumption assuming arbitrary statements cause capturing. + // Later, provide code to poke into statements for capture analysis. + return true; + return false; + } + + for (Stmt::const_child_range children = e->children(); children; ++children) + if (isCapturedBy(var, cast<Expr>(*children))) + return true; + + return false; +} + +/// \brief Determine whether the given initializer is trivial in the sense +/// that it requires no code to be generated. +static bool isTrivialInitializer(const Expr *Init) { + if (!Init) + return true; + + if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) + if (CXXConstructorDecl *Constructor = Construct->getConstructor()) + if (Constructor->isTrivial() && + Constructor->isDefaultConstructor() && + !Construct->requiresZeroInitialization()) + return true; + + return false; +} +void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { + assert(emission.Variable && "emission was not valid!"); + + // If this was emitted as a global constant, we're done. + if (emission.wasEmittedAsGlobal()) return; + + const VarDecl &D = *emission.Variable; + QualType type = D.getType(); + + // If this local has an initializer, emit it now. + const Expr *Init = D.getInit(); + + // If we are at an unreachable point, we don't need to emit the initializer + // unless it contains a label. + if (!HaveInsertPoint()) { + if (!Init || !ContainsLabel(Init)) return; + EnsureInsertPoint(); + } + + // Initialize the structure of a __block variable. + if (emission.IsByRef) + emitByrefStructureInit(emission); + + if (isTrivialInitializer(Init)) + return; + + CharUnits alignment = emission.Alignment; + + // Check whether this is a byref variable that's potentially + // captured and moved by its own initializer. If so, we'll need to + // emit the initializer first, then copy into the variable. + bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); + + llvm::Value *Loc = + capturedByInit ? emission.Address : emission.getObjectAddress(*this); + + llvm::Constant *constant = 0; + if (emission.IsConstantAggregate) { + assert(!capturedByInit && "constant init contains a capturing block?"); + constant = CGM.EmitConstantInit(D, this); + } + + if (!constant) { + LValue lv = MakeAddrLValue(Loc, type, alignment); + lv.setNonGC(true); + return EmitExprAsInit(Init, &D, lv, capturedByInit); + } + + // If this is a simple aggregate initialization, we can optimize it + // in various ways. + bool isVolatile = type.isVolatileQualified(); + + llvm::Value *SizeVal = + llvm::ConstantInt::get(IntPtrTy, + getContext().getTypeSizeInChars(type).getQuantity()); + + llvm::Type *BP = Int8PtrTy; + if (Loc->getType() != BP) + Loc = Builder.CreateBitCast(Loc, BP); + + // If the initializer is all or mostly zeros, codegen with memset then do + // a few stores afterward. + if (shouldUseMemSetPlusStoresToInitialize(constant, + CGM.getTargetData().getTypeAllocSize(constant->getType()))) { + Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, + alignment.getQuantity(), isVolatile); + if (!constant->isNullValue()) { + Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); + emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); + } + } else { + // Otherwise, create a temporary global with the initializer then + // memcpy from the global to the alloca. + std::string Name = GetStaticDeclName(*this, D, "."); + llvm::GlobalVariable *GV = + new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, + llvm::GlobalValue::PrivateLinkage, + constant, Name, 0, false, 0); + GV->setAlignment(alignment.getQuantity()); + GV->setUnnamedAddr(true); + + llvm::Value *SrcPtr = GV; + if (SrcPtr->getType() != BP) + SrcPtr = Builder.CreateBitCast(SrcPtr, BP); + + Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), + isVolatile); + } +} + +/// Emit an expression as an initializer for a variable at the given +/// location. The expression is not necessarily the normal +/// initializer for the variable, and the address is not necessarily +/// its normal location. +/// +/// \param init the initializing expression +/// \param var the variable to act as if we're initializing +/// \param loc the address to initialize; its type is a pointer +/// to the LLVM mapping of the variable's type +/// \param alignment the alignment of the address +/// \param capturedByInit true if the variable is a __block variable +/// whose address is potentially changed by the initializer +void CodeGenFunction::EmitExprAsInit(const Expr *init, + const ValueDecl *D, + LValue lvalue, + bool capturedByInit) { + QualType type = D->getType(); + + if (type->isReferenceType()) { + RValue rvalue = EmitReferenceBindingToExpr(init, D); + if (capturedByInit) + drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); + EmitStoreThroughLValue(rvalue, lvalue, true); + } else if (!hasAggregateLLVMType(type)) { + EmitScalarInit(init, D, lvalue, capturedByInit); + } else if (type->isAnyComplexType()) { + ComplexPairTy complex = EmitComplexExpr(init); + if (capturedByInit) + drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); + StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile()); + } else { + // TODO: how can we delay here if D is captured by its initializer? + EmitAggExpr(init, AggValueSlot::forLValue(lvalue, + AggValueSlot::IsDestructed, + AggValueSlot::DoesNotNeedGCBarriers, + AggValueSlot::IsNotAliased)); + MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init); + } +} + +/// Enter a destroy cleanup for the given local variable. +void CodeGenFunction::emitAutoVarTypeCleanup( + const CodeGenFunction::AutoVarEmission &emission, + QualType::DestructionKind dtorKind) { + assert(dtorKind != QualType::DK_none); + + // Note that for __block variables, we want to destroy the + // original stack object, not the possibly forwarded object. + llvm::Value *addr = emission.getObjectAddress(*this); + + const VarDecl *var = emission.Variable; + QualType type = var->getType(); + + CleanupKind cleanupKind = NormalAndEHCleanup; + CodeGenFunction::Destroyer *destroyer = 0; + + switch (dtorKind) { + case QualType::DK_none: + llvm_unreachable("no cleanup for trivially-destructible variable"); + + case QualType::DK_cxx_destructor: + // If there's an NRVO flag on the emission, we need a different + // cleanup. + if (emission.NRVOFlag) { + assert(!type->isArrayType()); + CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); + EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, + emission.NRVOFlag); + return; + } + break; + + case QualType::DK_objc_strong_lifetime: + // Suppress cleanups for pseudo-strong variables. + if (var->isARCPseudoStrong()) return; + + // Otherwise, consider whether to use an EH cleanup or not. + cleanupKind = getARCCleanupKind(); + + // Use the imprecise destroyer by default. + if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) + destroyer = CodeGenFunction::destroyARCStrongImprecise; + break; + + case QualType::DK_objc_weak_lifetime: + break; + } + + // If we haven't chosen a more specific destroyer, use the default. + if (!destroyer) destroyer = getDestroyer(dtorKind); + + // Use an EH cleanup in array destructors iff the destructor itself + // is being pushed as an EH cleanup. + bool useEHCleanup = (cleanupKind & EHCleanup); + EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, + useEHCleanup); +} + +void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { + assert(emission.Variable && "emission was not valid!"); + + // If this was emitted as a global constant, we're done. + if (emission.wasEmittedAsGlobal()) return; + + // If we don't have an insertion point, we're done. Sema prevents + // us from jumping into any of these scopes anyway. + if (!HaveInsertPoint()) return; + + const VarDecl &D = *emission.Variable; + + // Check the type for a cleanup. + if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) + emitAutoVarTypeCleanup(emission, dtorKind); + + // In GC mode, honor objc_precise_lifetime. + if (getLangOpts().getGC() != LangOptions::NonGC && + D.hasAttr<ObjCPreciseLifetimeAttr>()) { + EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); + } + + // Handle the cleanup attribute. + if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { + const FunctionDecl *FD = CA->getFunctionDecl(); + + llvm::Constant *F = CGM.GetAddrOfFunction(FD); + assert(F && "Could not find function!"); + + const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); + EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); + } + + // If this is a block variable, call _Block_object_destroy + // (on the unforwarded address). + if (emission.IsByRef) + enterByrefCleanup(emission); +} + +CodeGenFunction::Destroyer * +CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { + switch (kind) { + case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); + case QualType::DK_cxx_destructor: + return destroyCXXObject; + case QualType::DK_objc_strong_lifetime: + return destroyARCStrongPrecise; + case QualType::DK_objc_weak_lifetime: + return destroyARCWeak; + } + llvm_unreachable("Unknown DestructionKind"); +} + +/// pushDestroy - Push the standard destructor for the given type. +void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, + llvm::Value *addr, QualType type) { + assert(dtorKind && "cannot push destructor for trivial type"); + + CleanupKind cleanupKind = getCleanupKind(dtorKind); + pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), + cleanupKind & EHCleanup); +} + +void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, + QualType type, Destroyer *destroyer, + bool useEHCleanupForArray) { + pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, + destroyer, useEHCleanupForArray); +} + +/// emitDestroy - Immediately perform the destruction of the given +/// object. +/// +/// \param addr - the address of the object; a type* +/// \param type - the type of the object; if an array type, all +/// objects are destroyed in reverse order +/// \param destroyer - the function to call to destroy individual +/// elements +/// \param useEHCleanupForArray - whether an EH cleanup should be +/// used when destroying array elements, in case one of the +/// destructions throws an exception +void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, + Destroyer *destroyer, + bool useEHCleanupForArray) { + const ArrayType *arrayType = getContext().getAsArrayType(type); + if (!arrayType) + return destroyer(*this, addr, type); + + llvm::Value *begin = addr; + llvm::Value *length = emitArrayLength(arrayType, type, begin); + + // Normally we have to check whether the array is zero-length. + bool checkZeroLength = true; + + // But if the array length is constant, we can suppress that. + if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { + // ...and if it's constant zero, we can just skip the entire thing. + if (constLength->isZero()) return; + checkZeroLength = false; + } + + llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); + emitArrayDestroy(begin, end, type, destroyer, + checkZeroLength, useEHCleanupForArray); +} + +/// emitArrayDestroy - Destroys all the elements of the given array, +/// beginning from last to first. The array cannot be zero-length. +/// +/// \param begin - a type* denoting the first element of the array +/// \param end - a type* denoting one past the end of the array +/// \param type - the element type of the array +/// \param destroyer - the function to call to destroy elements +/// \param useEHCleanup - whether to push an EH cleanup to destroy +/// the remaining elements in case the destruction of a single +/// element throws +void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, + llvm::Value *end, + QualType type, + Destroyer *destroyer, + bool checkZeroLength, + bool useEHCleanup) { + assert(!type->isArrayType()); + + // The basic structure here is a do-while loop, because we don't + // need to check for the zero-element case. + llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); + llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); + + if (checkZeroLength) { + llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, + "arraydestroy.isempty"); + Builder.CreateCondBr(isEmpty, doneBB, bodyBB); + } + + // Enter the loop body, making that address the current address. + llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); + EmitBlock(bodyBB); + llvm::PHINode *elementPast = + Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); + elementPast->addIncoming(end, entryBB); + + // Shift the address back by one element. + llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); + llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, + "arraydestroy.element"); + + if (useEHCleanup) + pushRegularPartialArrayCleanup(begin, element, type, destroyer); + + // Perform the actual destruction there. + destroyer(*this, element, type); + + if (useEHCleanup) + PopCleanupBlock(); + + // Check whether we've reached the end. + llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); + Builder.CreateCondBr(done, doneBB, bodyBB); + elementPast->addIncoming(element, Builder.GetInsertBlock()); + + // Done. + EmitBlock(doneBB); +} + +/// Perform partial array destruction as if in an EH cleanup. Unlike +/// emitArrayDestroy, the element type here may still be an array type. +static void emitPartialArrayDestroy(CodeGenFunction &CGF, + llvm::Value *begin, llvm::Value *end, + QualType type, + CodeGenFunction::Destroyer *destroyer) { + // If the element type is itself an array, drill down. + unsigned arrayDepth = 0; + while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { + // VLAs don't require a GEP index to walk into. + if (!isa<VariableArrayType>(arrayType)) + arrayDepth++; + type = arrayType->getElementType(); + } + + if (arrayDepth) { + llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); + + SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); + begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); + end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); + } + + // Destroy the array. We don't ever need an EH cleanup because we + // assume that we're in an EH cleanup ourselves, so a throwing + // destructor causes an immediate terminate. + CGF.emitArrayDestroy(begin, end, type, destroyer, + /*checkZeroLength*/ true, /*useEHCleanup*/ false); +} + +namespace { + /// RegularPartialArrayDestroy - a cleanup which performs a partial + /// array destroy where the end pointer is regularly determined and + /// does not need to be loaded from a local. + class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { + llvm::Value *ArrayBegin; + llvm::Value *ArrayEnd; + QualType ElementType; + CodeGenFunction::Destroyer *Destroyer; + public: + RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, + QualType elementType, + CodeGenFunction::Destroyer *destroyer) + : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), + ElementType(elementType), Destroyer(destroyer) {} + + void Emit(CodeGenFunction &CGF, Flags flags) { + emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, + ElementType, Destroyer); + } + }; + + /// IrregularPartialArrayDestroy - a cleanup which performs a + /// partial array destroy where the end pointer is irregularly + /// determined and must be loaded from a local. + class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { + llvm::Value *ArrayBegin; + llvm::Value *ArrayEndPointer; + QualType ElementType; + CodeGenFunction::Destroyer *Destroyer; + public: + IrregularPartialArrayDestroy(llvm::Value *arrayBegin, + llvm::Value *arrayEndPointer, + QualType elementType, + CodeGenFunction::Destroyer *destroyer) + : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), + ElementType(elementType), Destroyer(destroyer) {} + + void Emit(CodeGenFunction &CGF, Flags flags) { + llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); + emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, + ElementType, Destroyer); + } + }; +} + +/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy +/// already-constructed elements of the given array. The cleanup +/// may be popped with DeactivateCleanupBlock or PopCleanupBlock. +/// +/// \param elementType - the immediate element type of the array; +/// possibly still an array type +/// \param array - a value of type elementType* +/// \param destructionKind - the kind of destruction required +/// \param initializedElementCount - a value of type size_t* holding +/// the number of successfully-constructed elements +void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, + llvm::Value *arrayEndPointer, + QualType elementType, + Destroyer *destroyer) { + pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, + arrayBegin, arrayEndPointer, + elementType, destroyer); +} + +/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy +/// already-constructed elements of the given array. The cleanup +/// may be popped with DeactivateCleanupBlock or PopCleanupBlock. +/// +/// \param elementType - the immediate element type of the array; +/// possibly still an array type +/// \param array - a value of type elementType* +/// \param destructionKind - the kind of destruction required +/// \param initializedElementCount - a value of type size_t* holding +/// the number of successfully-constructed elements +void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, + llvm::Value *arrayEnd, + QualType elementType, + Destroyer *destroyer) { + pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, + arrayBegin, arrayEnd, + elementType, destroyer); +} + +namespace { + /// A cleanup to perform a release of an object at the end of a + /// function. This is used to balance out the incoming +1 of a + /// ns_consumed argument when we can't reasonably do that just by + /// not doing the initial retain for a __block argument. + struct ConsumeARCParameter : EHScopeStack::Cleanup { + ConsumeARCParameter(llvm::Value *param) : Param(param) {} + + llvm::Value *Param; + + void Emit(CodeGenFunction &CGF, Flags flags) { + CGF.EmitARCRelease(Param, /*precise*/ false); + } + }; +} + +/// Emit an alloca (or GlobalValue depending on target) +/// for the specified parameter and set up LocalDeclMap. +void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, + unsigned ArgNo) { + // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? + assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && + "Invalid argument to EmitParmDecl"); + + Arg->setName(D.getName()); + + // Use better IR generation for certain implicit parameters. + if (isa<ImplicitParamDecl>(D)) { + // The only implicit argument a block has is its literal. + if (BlockInfo) { + LocalDeclMap[&D] = Arg; + + if (CGDebugInfo *DI = getDebugInfo()) { + DI->setLocation(D.getLocation()); + DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder); + } + + return; + } + } + + QualType Ty = D.getType(); + + llvm::Value *DeclPtr; + // If this is an aggregate or variable sized value, reuse the input pointer. + if (!Ty->isConstantSizeType() || + CodeGenFunction::hasAggregateLLVMType(Ty)) { + DeclPtr = Arg; + } else { + // Otherwise, create a temporary to hold the value. + llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), + D.getName() + ".addr"); + Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); + DeclPtr = Alloc; + + bool doStore = true; + + Qualifiers qs = Ty.getQualifiers(); + + if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { + // We honor __attribute__((ns_consumed)) for types with lifetime. + // For __strong, it's handled by just skipping the initial retain; + // otherwise we have to balance out the initial +1 with an extra + // cleanup to do the release at the end of the function. + bool isConsumed = D.hasAttr<NSConsumedAttr>(); + + // 'self' is always formally __strong, but if this is not an + // init method then we don't want to retain it. + if (D.isARCPseudoStrong()) { + const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); + assert(&D == method->getSelfDecl()); + assert(lt == Qualifiers::OCL_Strong); + assert(qs.hasConst()); + assert(method->getMethodFamily() != OMF_init); + (void) method; + lt = Qualifiers::OCL_ExplicitNone; + } + + if (lt == Qualifiers::OCL_Strong) { + if (!isConsumed) + // Don't use objc_retainBlock for block pointers, because we + // don't want to Block_copy something just because we got it + // as a parameter. + Arg = EmitARCRetainNonBlock(Arg); + } else { + // Push the cleanup for a consumed parameter. + if (isConsumed) + EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg); + + if (lt == Qualifiers::OCL_Weak) { + EmitARCInitWeak(DeclPtr, Arg); + doStore = false; // The weak init is a store, no need to do two. + } + } + + // Enter the cleanup scope. + EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); + } + + // Store the initial value into the alloca. + if (doStore) { + LValue lv = MakeAddrLValue(DeclPtr, Ty, + getContext().getDeclAlign(&D)); + EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); + } + } + + llvm::Value *&DMEntry = LocalDeclMap[&D]; + assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); + DMEntry = DeclPtr; + + // Emit debug info for param declaration. + if (CGDebugInfo *DI = getDebugInfo()) + DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); + + if (D.hasAttr<AnnotateAttr>()) + EmitVarAnnotations(&D, DeclPtr); +} |