summaryrefslogtreecommitdiff
path: root/clang/docs/LanguageExtensions.html
diff options
context:
space:
mode:
authorZancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au>2012-09-24 09:58:17 +1000
committerZancanaro; Carlo <czan8762@plang3.cs.usyd.edu.au>2012-09-24 09:58:17 +1000
commit222e2a7620e6520ffaf4fc4e69d79c18da31542e (patch)
tree7bfbc05bfa3b41c8f9d2e56d53a0bc3e310df239 /clang/docs/LanguageExtensions.html
parent3d206f03985b50beacae843d880bccdc91a9f424 (diff)
Add the clang library to the repo (with some of my changes, too).
Diffstat (limited to 'clang/docs/LanguageExtensions.html')
-rw-r--r--clang/docs/LanguageExtensions.html1810
1 files changed, 1810 insertions, 0 deletions
diff --git a/clang/docs/LanguageExtensions.html b/clang/docs/LanguageExtensions.html
new file mode 100644
index 0000000..68f0afc
--- /dev/null
+++ b/clang/docs/LanguageExtensions.html
@@ -0,0 +1,1810 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+ "http://www.w3.org/TR/html4/strict.dtd">
+<!-- Material used from: HTML 4.01 specs: http://www.w3.org/TR/html401/ -->
+<html>
+<head>
+ <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
+ <title>Clang Language Extensions</title>
+ <link type="text/css" rel="stylesheet" href="../menu.css">
+ <link type="text/css" rel="stylesheet" href="../content.css">
+ <style type="text/css">
+ td {
+ vertical-align: top;
+ }
+ th { background-color: #ffddaa; }
+ </style>
+</head>
+<body>
+
+<!--#include virtual="../menu.html.incl"-->
+
+<div id="content">
+
+<h1>Clang Language Extensions</h1>
+
+<ul>
+<li><a href="#intro">Introduction</a></li>
+<li><a href="#feature_check">Feature Checking Macros</a></li>
+<li><a href="#has_include">Include File Checking Macros</a></li>
+<li><a href="#builtinmacros">Builtin Macros</a></li>
+<li><a href="#vectors">Vectors and Extended Vectors</a></li>
+<li><a href="#deprecated">Messages on <tt>deprecated</tt> and <tt>unavailable</tt> attributes</a></li>
+<li><a href="#attributes-on-enumerators">Attributes on enumerators</a></li>
+<li><a href="#user_specified_system_framework">'User-Specified' System Frameworks</a></li>
+<li><a href="#availability">Availability attribute</a></li>
+<li><a href="#checking_language_features">Checks for Standard Language Features</a>
+ <ul>
+ <li><a href="#cxx98">C++98</a>
+ <ul>
+ <li><a href="#cxx_exceptions">C++ exceptions</a></li>
+ <li><a href="#cxx_rtti">C++ RTTI</a></li>
+ </ul></li>
+ <li><a href="#cxx11">C++11</a>
+ <ul>
+ <li><a href="#cxx_access_control_sfinae">C++11 SFINAE includes access control</a></li>
+ <li><a href="#cxx_alias_templates">C++11 alias templates</a></li>
+ <li><a href="#cxx_alignas">C++11 alignment specifiers</a></li>
+ <li><a href="#cxx_attributes">C++11 attributes</a></li>
+ <li><a href="#cxx_constexpr">C++11 generalized constant expressions</a></li>
+ <li><a href="#cxx_decltype">C++11 <tt>decltype()</tt></a></li>
+ <li><a href="#cxx_default_function_template_args">C++11 default template arguments in function templates</a></li>
+ <li><a href="#cxx_defaulted_functions">C++11 defaulted functions</a></li>
+ <li><a href="#cxx_delegating_constructor">C++11 delegating constructors</a></li>
+ <li><a href="#cxx_deleted_functions">C++11 deleted functions</a></li>
+ <li><a href="#cxx_explicit_conversions">C++11 explicit conversion functions</a></li>
+ <li><a href="#cxx_generalized_initializers">C++11 generalized initializers</a></li>
+ <li><a href="#cxx_implicit_moves">C++11 implicit move constructors/assignment operators</a></li>
+ <li><a href="#cxx_inheriting_constructors">C++11 inheriting constructors</a></li>
+ <li><a href="#cxx_inline_namespaces">C++11 inline namespaces</a></li>
+ <li><a href="#cxx_lambdas">C++11 lambdas</a></li>
+ <li><a href="#cxx_local_type_template_args">C++11 local and unnamed types as template arguments</a></li>
+ <li><a href="#cxx_noexcept">C++11 noexcept specification</a></li>
+ <li><a href="#cxx_nonstatic_member_init">C++11 in-class non-static data member initialization</a></li>
+ <li><a href="#cxx_nullptr">C++11 nullptr</a></li>
+ <li><a href="#cxx_override_control">C++11 override control</a></li>
+ <li><a href="#cxx_range_for">C++11 range-based for loop</a></li>
+ <li><a href="#cxx_raw_string_literals">C++11 raw string literals</a></li>
+ <li><a href="#cxx_rvalue_references">C++11 rvalue references</a></li>
+ <li><a href="#cxx_reference_qualified_functions">C++11 reference-qualified functions</a></li>
+ <li><a href="#cxx_static_assert">C++11 <tt>static_assert()</tt></a></li>
+ <li><a href="#cxx_auto_type">C++11 type inference</a></li>
+ <li><a href="#cxx_strong_enums">C++11 strongly-typed enumerations</a></li>
+ <li><a href="#cxx_trailing_return">C++11 trailing return type</a></li>
+ <li><a href="#cxx_unicode_literals">C++11 Unicode string literals</a></li>
+ <li><a href="#cxx_unrestricted_unions">C++11 unrestricted unions</a></li>
+ <li><a href="#cxx_user_literals">C++11 user-defined literals</a></li>
+ <li><a href="#cxx_variadic_templates">C++11 variadic templates</a></li>
+ </ul></li>
+ <li><a href="#c11">C11</a>
+ <ul>
+ <li><a href="#c_alignas">C11 alignment specifiers</a></li>
+ <li><a href="#c_atomic">C11 atomic operations</a></li>
+ <li><a href="#c_generic_selections">C11 generic selections</a></li>
+ <li><a href="#c_static_assert">C11 <tt>_Static_assert()</tt></a></li>
+ </ul></li>
+</ul></li>
+<li><a href="#checking_type_traits">Checks for Type Traits</a></li>
+<li><a href="#blocks">Blocks</a></li>
+<li><a href="#objc_features">Objective-C Features</a>
+ <ul>
+ <li><a href="#objc_instancetype">Related result types</a></li>
+ <li><a href="#objc_arc">Automatic reference counting</a></li>
+ <li><a href="#objc_fixed_enum">Enumerations with a fixed underlying type</a></li>
+ <li><a href="#objc_lambdas">Interoperability with C++11 lambdas</a></li>
+ <li><a href="#object-literals-subscripting">Object Literals and Subscripting</a></li>
+ </ul>
+</li>
+<li><a href="#overloading-in-c">Function Overloading in C</a></li>
+<li><a href="#complex-list-init">Initializer lists for complex numbers in C</a></li>
+<li><a href="#builtins">Builtin Functions</a>
+ <ul>
+ <li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li>
+ <li><a href="#__builtin_unreachable">__builtin_unreachable</a></li>
+ <li><a href="#__sync_swap">__sync_swap</a></li>
+ </ul>
+</li>
+<li><a href="#targetspecific">Target-Specific Extensions</a>
+ <ul>
+ <li><a href="#x86-specific">X86/X86-64 Language Extensions</a></li>
+ </ul>
+</li>
+<li><a href="#analyzerspecific">Static Analysis-Specific Extensions</a></li>
+<li><a href="#dynamicanalyzerspecific">Dynamic Analysis-Specific Extensions</a>
+ <ul>
+ <li><a href="#address_sanitizer">AddressSanitizer</a></li>
+ </ul>
+</li>
+<li><a href="#threadsafety">Thread Safety Annotation Checking</a>
+ <ul>
+ <li><a href="#ts_noanal"><tt>no_thread_safety_analysis</tt></a></li>
+ <li><a href="#ts_lockable"><tt>lockable</tt></a></li>
+ <li><a href="#ts_scopedlockable"><tt>scoped_lockable</tt></a></li>
+ <li><a href="#ts_guardedvar"><tt>guarded_var</tt></a></li>
+ <li><a href="#ts_ptguardedvar"><tt>pt_guarded_var</tt></a></li>
+ <li><a href="#ts_guardedby"><tt>guarded_by(l)</tt></a></li>
+ <li><a href="#ts_ptguardedby"><tt>pt_guarded_by(l)</tt></a></li>
+ <li><a href="#ts_acquiredbefore"><tt>acquired_before(...)</tt></a></li>
+ <li><a href="#ts_acquiredafter"><tt>acquired_after(...)</tt></a></li>
+ <li><a href="#ts_elf"><tt>exclusive_lock_function(...)</tt></a></li>
+ <li><a href="#ts_slf"><tt>shared_lock_function(...)</tt></a></li>
+ <li><a href="#ts_etf"><tt>exclusive_trylock_function(...)</tt></a></li>
+ <li><a href="#ts_stf"><tt>shared_trylock_function(...)</tt></a></li>
+ <li><a href="#ts_uf"><tt>unlock_function(...)</tt></a></li>
+ <li><a href="#ts_lr"><tt>lock_returned(l)</tt></a></li>
+ <li><a href="#ts_le"><tt>locks_excluded(...)</tt></a></li>
+ <li><a href="#ts_elr"><tt>exclusive_locks_required(...)</tt></a></li>
+ <li><a href="#ts_slr"><tt>shared_locks_required(...)</tt></a></li>
+ </ul>
+</li>
+</ul>
+
+<!-- ======================================================================= -->
+<h2 id="intro">Introduction</h2>
+<!-- ======================================================================= -->
+
+<p>This document describes the language extensions provided by Clang. In
+addition to the language extensions listed here, Clang aims to support a broad
+range of GCC extensions. Please see the <a
+href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for
+more information on these extensions.</p>
+
+<!-- ======================================================================= -->
+<h2 id="feature_check">Feature Checking Macros</h2>
+<!-- ======================================================================= -->
+
+<p>Language extensions can be very useful, but only if you know you can depend
+on them. In order to allow fine-grain features checks, we support three builtin
+function-like macros. This allows you to directly test for a feature in your
+code without having to resort to something like autoconf or fragile "compiler
+version checks".</p>
+
+<!-- ======================================================================= -->
+<h3><a name="__has_builtin">__has_builtin</a></h3>
+<!-- ======================================================================= -->
+
+<p>This function-like macro takes a single identifier argument that is the name
+of a builtin function. It evaluates to 1 if the builtin is supported or 0 if
+not. It can be used like this:</p>
+
+<blockquote>
+<pre>
+#ifndef __has_builtin // Optional of course.
+ #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
+#endif
+
+...
+#if __has_builtin(__builtin_trap)
+ __builtin_trap();
+#else
+ abort();
+#endif
+...
+</pre>
+</blockquote>
+
+
+<!-- ======================================================================= -->
+<h3><a name="__has_feature_extension"> __has_feature and __has_extension</a></h3>
+<!-- ======================================================================= -->
+
+<p>These function-like macros take a single identifier argument that is the
+name of a feature. <code>__has_feature</code> evaluates to 1 if the feature
+is both supported by Clang and standardized in the current language standard
+or 0 if not (but see <a href="#has_feature_back_compat">below</a>), while
+<code>__has_extension</code> evaluates to 1 if the feature is supported by
+Clang in the current language (either as a language extension or a standard
+language feature) or 0 if not. They can be used like this:</p>
+
+<blockquote>
+<pre>
+#ifndef __has_feature // Optional of course.
+ #define __has_feature(x) 0 // Compatibility with non-clang compilers.
+#endif
+#ifndef __has_extension
+ #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
+#endif
+
+...
+#if __has_feature(cxx_rvalue_references)
+// This code will only be compiled with the -std=c++11 and -std=gnu++11
+// options, because rvalue references are only standardized in C++11.
+#endif
+
+#if __has_extension(cxx_rvalue_references)
+// This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
+// and -std=gnu++98 options, because rvalue references are supported as a
+// language extension in C++98.
+#endif
+</pre>
+</blockquote>
+
+<p id="has_feature_back_compat">For backwards compatibility reasons,
+<code>__has_feature</code> can also be used to test for support for
+non-standardized features, i.e. features not prefixed <code>c_</code>,
+<code>cxx_</code> or <code>objc_</code>.</p>
+
+<p id="has_feature_for_non_language_features">
+Another use of <code>__has_feature</code> is to check for compiler features
+not related to the language standard, such as e.g.
+<a href="AddressSanitizer.html">AddressSanitizer</a>.
+
+<p>If the <code>-pedantic-errors</code> option is given,
+<code>__has_extension</code> is equivalent to <code>__has_feature</code>.</p>
+
+<p>The feature tag is described along with the language feature below.</p>
+
+<p>The feature name or extension name can also be specified with a preceding and
+following <code>__</code> (double underscore) to avoid interference from a macro
+with the same name. For instance, <code>__cxx_rvalue_references__</code> can be
+used instead of <code>cxx_rvalue_references</code>.</p>
+
+<!-- ======================================================================= -->
+<h3><a name="__has_attribute">__has_attribute</a></h3>
+<!-- ======================================================================= -->
+
+<p>This function-like macro takes a single identifier argument that is the name
+of an attribute. It evaluates to 1 if the attribute is supported or 0 if not. It
+can be used like this:</p>
+
+<blockquote>
+<pre>
+#ifndef __has_attribute // Optional of course.
+ #define __has_attribute(x) 0 // Compatibility with non-clang compilers.
+#endif
+
+...
+#if __has_attribute(always_inline)
+#define ALWAYS_INLINE __attribute__((always_inline))
+#else
+#define ALWAYS_INLINE
+#endif
+...
+</pre>
+</blockquote>
+
+<p>The attribute name can also be specified with a preceding and
+following <code>__</code> (double underscore) to avoid interference from a macro
+with the same name. For instance, <code>__always_inline__</code> can be used
+instead of <code>always_inline</code>.</p>
+
+<!-- ======================================================================= -->
+<h2 id="has_include">Include File Checking Macros</h2>
+<!-- ======================================================================= -->
+
+<p>Not all developments systems have the same include files.
+The <a href="#__has_include">__has_include</a> and
+<a href="#__has_include_next">__has_include_next</a> macros allow you to
+check for the existence of an include file before doing
+a possibly failing #include directive.</p>
+
+<!-- ======================================================================= -->
+<h3><a name="__has_include">__has_include</a></h3>
+<!-- ======================================================================= -->
+
+<p>This function-like macro takes a single file name string argument that
+is the name of an include file. It evaluates to 1 if the file can
+be found using the include paths, or 0 otherwise:</p>
+
+<blockquote>
+<pre>
+// Note the two possible file name string formats.
+#if __has_include("myinclude.h") &amp;&amp; __has_include(&lt;stdint.h&gt;)
+# include "myinclude.h"
+#endif
+
+// To avoid problem with non-clang compilers not having this macro.
+#if defined(__has_include) &amp;&amp; __has_include("myinclude.h")
+# include "myinclude.h"
+#endif
+</pre>
+</blockquote>
+
+<p>To test for this feature, use #if defined(__has_include).</p>
+
+<!-- ======================================================================= -->
+<h3><a name="__has_include_next">__has_include_next</a></h3>
+<!-- ======================================================================= -->
+
+<p>This function-like macro takes a single file name string argument that
+is the name of an include file. It is like __has_include except that it
+looks for the second instance of the given file found in the include
+paths. It evaluates to 1 if the second instance of the file can
+be found using the include paths, or 0 otherwise:</p>
+
+<blockquote>
+<pre>
+// Note the two possible file name string formats.
+#if __has_include_next("myinclude.h") &amp;&amp; __has_include_next(&lt;stdint.h&gt;)
+# include_next "myinclude.h"
+#endif
+
+// To avoid problem with non-clang compilers not having this macro.
+#if defined(__has_include_next) &amp;&amp; __has_include_next("myinclude.h")
+# include_next "myinclude.h"
+#endif
+</pre>
+</blockquote>
+
+<p>Note that __has_include_next, like the GNU extension
+#include_next directive, is intended for use in headers only,
+and will issue a warning if used in the top-level compilation
+file. A warning will also be issued if an absolute path
+is used in the file argument.</p>
+
+
+<!-- ======================================================================= -->
+<h3><a name="__has_warning">__has_warning</a></h3>
+<!-- ======================================================================= -->
+
+<p>This function-like macro takes a string literal that represents a command
+ line option for a warning and returns true if that is a valid warning
+ option.</p>
+
+<blockquote>
+<pre>
+#if __has_warning("-Wformat")
+...
+#endif
+</pre>
+</blockquote>
+
+<!-- ======================================================================= -->
+<h2 id="builtinmacros">Builtin Macros</h2>
+<!-- ======================================================================= -->
+
+<dl>
+ <dt><code>__BASE_FILE__</code></dt>
+ <dd>Defined to a string that contains the name of the main input
+ file passed to Clang.</dd>
+
+ <dt><code>__COUNTER__</code></dt>
+ <dd>Defined to an integer value that starts at zero and is
+ incremented each time the <code>__COUNTER__</code> macro is
+ expanded.</dd>
+
+ <dt><code>__INCLUDE_LEVEL__</code></dt>
+ <dd>Defined to an integral value that is the include depth of the
+ file currently being translated. For the main file, this value is
+ zero.</dd>
+
+ <dt><code>__TIMESTAMP__</code></dt>
+ <dd>Defined to the date and time of the last modification of the
+ current source file.</dd>
+
+ <dt><code>__clang__</code></dt>
+ <dd>Defined when compiling with Clang</dd>
+
+ <dt><code>__clang_major__</code></dt>
+ <dd>Defined to the major marketing version number of Clang (e.g., the
+ 2 in 2.0.1). Note that marketing version numbers should not be used to
+ check for language features, as different vendors use different numbering
+ schemes. Instead, use the <a href="#feature_check">feature checking
+ macros</a>.</dd>
+
+ <dt><code>__clang_minor__</code></dt>
+ <dd>Defined to the minor version number of Clang (e.g., the 0 in
+ 2.0.1). Note that marketing version numbers should not be used to
+ check for language features, as different vendors use different numbering
+ schemes. Instead, use the <a href="#feature_check">feature checking
+ macros</a>.</dd>
+
+ <dt><code>__clang_patchlevel__</code></dt>
+ <dd>Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).</dd>
+
+ <dt><code>__clang_version__</code></dt>
+ <dd>Defined to a string that captures the Clang marketing version, including
+ the Subversion tag or revision number, e.g., "1.5 (trunk 102332)".</dd>
+</dl>
+
+<!-- ======================================================================= -->
+<h2 id="vectors">Vectors and Extended Vectors</h2>
+<!-- ======================================================================= -->
+
+<p>Supports the GCC, OpenCL, AltiVec and NEON vector extensions.</p>
+
+<p>OpenCL vector types are created using <tt>ext_vector_type</tt> attribute. It
+support for <tt>V.xyzw</tt> syntax and other tidbits as seen in OpenCL. An
+example is:</p>
+
+<blockquote>
+<pre>
+typedef float float4 <b>__attribute__((ext_vector_type(4)))</b>;
+typedef float float2 <b>__attribute__((ext_vector_type(2)))</b>;
+
+float4 foo(float2 a, float2 b) {
+ float4 c;
+ c.xz = a;
+ c.yw = b;
+ return c;
+}
+</pre>
+</blockquote>
+
+<p>Query for this feature with
+<tt>__has_extension(attribute_ext_vector_type)</tt>.</p>
+
+<p>Giving <tt>-faltivec</tt> option to clang enables support for AltiVec vector
+syntax and functions. For example:</p>
+
+<blockquote>
+<pre>
+vector float foo(vector int a) {
+ vector int b;
+ b = vec_add(a, a) + a;
+ return (vector float)b;
+}
+</pre>
+</blockquote>
+
+<p>NEON vector types are created using <tt>neon_vector_type</tt> and
+<tt>neon_polyvector_type</tt> attributes. For example:</p>
+
+<blockquote>
+<pre>
+typedef <b>__attribute__((neon_vector_type(8)))</b> int8_t int8x8_t;
+typedef <b>__attribute__((neon_polyvector_type(16)))</b> poly8_t poly8x16_t;
+
+int8x8_t foo(int8x8_t a) {
+ int8x8_t v;
+ v = a;
+ return v;
+}
+</pre>
+</blockquote>
+
+<!-- ======================================================================= -->
+<h3><a name="vector_literals">Vector Literals</a></h3>
+<!-- ======================================================================= -->
+
+<p>Vector literals can be used to create vectors from a set of scalars, or
+vectors. Either parentheses or braces form can be used. In the parentheses form
+the number of literal values specified must be one, i.e. referring to a scalar
+value, or must match the size of the vector type being created. If a single
+scalar literal value is specified, the scalar literal value will be replicated
+to all the components of the vector type. In the brackets form any number of
+literals can be specified. For example:</p>
+
+<blockquote>
+<pre>
+typedef int v4si __attribute__((__vector_size__(16)));
+typedef float float4 __attribute__((ext_vector_type(4)));
+typedef float float2 __attribute__((ext_vector_type(2)));
+
+v4si vsi = (v4si){1, 2, 3, 4};
+float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
+vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
+vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
+vector int vi3 = (vector int)(1, 2); // error
+vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
+vector int vi5 = (vector int)(1, 2, 3, 4);
+float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
+</pre>
+</blockquote>
+
+<!-- ======================================================================= -->
+<h3><a name="vector_operations">Vector Operations</a></h3>
+<!-- ======================================================================= -->
+
+<p>The table below shows the support for each operation by vector extension.
+A dash indicates that an operation is not accepted according to a corresponding
+specification.</p>
+
+<table width="500" border="1" cellspacing="0">
+ <tr>
+ <th>Operator</th>
+ <th>OpenCL</th>
+ <th>AltiVec</th>
+ <th>GCC</th>
+ <th>NEON</th>
+ </tr>
+ <tr>
+ <td>[]</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">-</td>
+ </tr>
+ <tr>
+ <td>unary operators +, -</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">-</td>
+ </tr>
+ <tr>
+ <td>++, --</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">-</td>
+ <td align="center">-</td>
+ </tr>
+ <tr>
+ <td>+, -, *, /, %</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">-</td>
+ </tr>
+ <tr>
+ <td>bitwise operators &, |, ^, ~</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">-</td>
+ </tr>
+ <tr>
+ <td>&gt&gt, &lt&lt</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">-</td>
+ </tr>
+ <tr>
+ <td>!, &&,||</td>
+ <td align="center">no</td>
+ <td align="center">-</td>
+ <td align="center">-</td>
+ <td align="center">-</td>
+ </tr>
+ <tr>
+ <td>==,!=, >, <, >=, <=</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">-</td>
+ <td align="center">-</td>
+ </tr>
+ <tr>
+ <td>=</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ </tr>
+ <tr>
+ <td>:?</td>
+ <td align="center">yes</td>
+ <td align="center">-</td>
+ <td align="center">-</td>
+ <td align="center">-</td>
+ </tr>
+ <tr>
+ <td>sizeof</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ <td align="center">yes</td>
+ </tr>
+</table>
+
+<p>See also <a href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p>
+
+<!-- ======================================================================= -->
+<h2 id="deprecated">Messages on <tt>deprecated</tt> and <tt>unavailable</tt> Attributes</h2>
+<!-- ======================================================================= -->
+
+<p>An optional string message can be added to the <tt>deprecated</tt>
+and <tt>unavailable</tt> attributes. For example:</p>
+
+<blockquote>
+<pre>void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));</pre>
+</blockquote>
+
+<p>If the deprecated or unavailable declaration is used, the message
+will be incorporated into the appropriate diagnostic:</p>
+
+<blockquote>
+<pre>harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
+ [-Wdeprecated-declarations]
+ explode();
+ ^</pre>
+</blockquote>
+
+<p>Query for this feature
+with <tt>__has_extension(attribute_deprecated_with_message)</tt>
+and <tt>__has_extension(attribute_unavailable_with_message)</tt>.</p>
+
+<!-- ======================================================================= -->
+<h2 id="attributes-on-enumerators">Attributes on Enumerators</h2>
+<!-- ======================================================================= -->
+
+<p>Clang allows attributes to be written on individual enumerators.
+This allows enumerators to be deprecated, made unavailable, etc. The
+attribute must appear after the enumerator name and before any
+initializer, like so:</p>
+
+<blockquote>
+<pre>enum OperationMode {
+ OM_Invalid,
+ OM_Normal,
+ OM_Terrified __attribute__((deprecated)),
+ OM_AbortOnError __attribute__((deprecated)) = 4
+};</pre>
+</blockquote>
+
+<p>Attributes on the <tt>enum</tt> declaration do not apply to
+individual enumerators.</p>
+
+<p>Query for this feature with <tt>__has_extension(enumerator_attributes)</tt>.</p>
+
+<!-- ======================================================================= -->
+<h2 id="user_specified_system_framework">'User-Specified' System Frameworks</h2>
+<!-- ======================================================================= -->
+
+<p>Clang provides a mechanism by which frameworks can be built in such a way
+that they will always be treated as being 'system frameworks', even if they are
+not present in a system framework directory. This can be useful to system
+framework developers who want to be able to test building other applications
+with development builds of their framework, including the manner in which the
+compiler changes warning behavior for system headers.</p>
+
+<p>Framework developers can opt-in to this mechanism by creating a
+'.system_framework' file at the top-level of their framework. That is, the
+framework should have contents like:</p>
+
+<pre>
+ .../TestFramework.framework
+ .../TestFramework.framework/.system_framework
+ .../TestFramework.framework/Headers
+ .../TestFramework.framework/Headers/TestFramework.h
+ ...
+</pre>
+
+<p>Clang will treat the presence of this file as an indicator that the framework
+should be treated as a system framework, regardless of how it was found in the
+framework search path. For consistency, we recommend that such files never be
+included in installed versions of the framework.</p>
+
+<!-- ======================================================================= -->
+<h2 id="availability">Availability attribute</h2
+<!-- ======================================================================= -->
+
+<p>Clang introduces the <code>availability</code> attribute, which can
+be placed on declarations to describe the lifecycle of that
+declaration relative to operating system versions. Consider the function declaration for a hypothetical function <code>f</code>:</p>
+
+<pre>
+void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7)));
+</pre>
+
+<p>The availability attribute states that <code>f</code> was introduced in Mac OS X 10.4, deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7. This information is used by Clang to determine when it is safe to use <code>f</code>: for example, if Clang is instructed to compile code for Mac OS X 10.5, a call to <code>f()</code> succeeds. If Clang is instructed to compile code for Mac OS X 10.6, the call succeeds but Clang emits a warning specifying that the function is deprecated. Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call fails because <code>f()</code> is no longer available.</p>
+
+<p>The availablility attribute is a comma-separated list starting with the platform name and then including clauses specifying important milestones in the declaration's lifetime (in any order) along with additional information. Those clauses can be:</p>
+
+<dl>
+ <dt>introduced=<i>version</i></dt>
+ <dd>The first version in which this declaration was introduced.</dd>
+
+ <dt>deprecated=<i>version</i></dt>
+ <dd>The first version in which this declaration was deprecated, meaning that users should migrate away from this API.</dd>
+
+ <dt>obsoleted=<i>version</i></dt>
+ <dd>The first version in which this declaration was obsoleted, meaning that it was removed completely and can no longer be used.</dd>
+
+ <dt>unavailable</dt>
+ <dd>This declaration is never available on this platform.</dd>
+
+ <dt>message=<i>string-literal</i></dt>
+ <dd>Additional message text that Clang will provide when emitting a warning or error about use of a deprecated or obsoleted declaration. Useful to direct users to replacement APIs.</dd>
+</dl>
+
+<p>Multiple availability attributes can be placed on a declaration, which may correspond to different platforms. Only the availability attribute with the platform corresponding to the target platform will be used; any others will be ignored. If no availability attribute specifies availability for the current target platform, the availability attributes are ignored. Supported platforms are:</p>
+
+<dl>
+ <dt>ios</dt>
+ <dd>Apple's iOS operating system. The minimum deployment target is specified by the <code>-mios-version-min=<i>version</i></code> or <code>-miphoneos-version-min=<i>version</i></code> command-line arguments.</dd>
+
+ <dt>macosx</dt>
+ <dd>Apple's Mac OS X operating system. The minimum deployment target is specified by the <code>-mmacosx-version-min=<i>version</i></code> command-line argument.</dd>
+</dl>
+
+<p>A declaration can be used even when deploying back to a platform
+version prior to when the declaration was introduced. When this
+happens, the declaration is <a
+ href="https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html">weakly
+linked</a>, as if the <code>weak_import</code> attribute were added to the declaration. A weakly-linked declaration may or may not be present a run-time, and a program can determine whether the declaration is present by checking whether the address of that declaration is non-NULL.</p>
+
+<!-- ======================================================================= -->
+<h2 id="checking_language_features">Checks for Standard Language Features</h2>
+<!-- ======================================================================= -->
+
+<p>The <tt>__has_feature</tt> macro can be used to query if certain standard
+language features are enabled. The <tt>__has_extension</tt> macro can be used
+to query if language features are available as an extension when compiling for
+a standard which does not provide them. The features which can be tested are
+listed here.</p>
+
+<h3 id="cxx98">C++98</h3>
+
+<p>The features listed below are part of the C++98 standard. These features are
+enabled by default when compiling C++ code.</p>
+
+<h4 id="cxx_exceptions">C++ exceptions</h4>
+
+<p>Use <tt>__has_feature(cxx_exceptions)</tt> to determine if C++ exceptions have been enabled. For
+example, compiling code with <tt>-fno-exceptions</tt> disables C++ exceptions.</p>
+
+<h4 id="cxx_rtti">C++ RTTI</h4>
+
+<p>Use <tt>__has_feature(cxx_rtti)</tt> to determine if C++ RTTI has been enabled. For example,
+compiling code with <tt>-fno-rtti</tt> disables the use of RTTI.</p>
+
+<h3 id="cxx11">C++11</h3>
+
+<p>The features listed below are part of the C++11 standard. As a result, all
+these features are enabled with the <tt>-std=c++11</tt> or <tt>-std=gnu++11</tt>
+option when compiling C++ code.</p>
+
+<h4 id="cxx_access_control_sfinae">C++11 SFINAE includes access control</h4>
+
+<p>Use <tt>__has_feature(cxx_access_control_sfinae)</tt> or <tt>__has_extension(cxx_access_control_sfinae)</tt> to determine whether access-control errors (e.g., calling a private constructor) are considered to be template argument deduction errors (aka SFINAE errors), per <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170">C++ DR1170</a>.</p>
+
+<h4 id="cxx_alias_templates">C++11 alias templates</h4>
+
+<p>Use <tt>__has_feature(cxx_alias_templates)</tt> or
+<tt>__has_extension(cxx_alias_templates)</tt> to determine if support for
+C++11's alias declarations and alias templates is enabled.</p>
+
+<h4 id="cxx_alignas">C++11 alignment specifiers</h4>
+
+<p>Use <tt>__has_feature(cxx_alignas)</tt> or
+<tt>__has_extension(cxx_alignas)</tt> to determine if support for alignment
+specifiers using <tt>alignas</tt> is enabled.</p>
+
+<h4 id="cxx_attributes">C++11 attributes</h4>
+
+<p>Use <tt>__has_feature(cxx_attributes)</tt> or
+<tt>__has_extension(cxx_attributes)</tt> to determine if support for attribute
+parsing with C++11's square bracket notation is enabled.</p>
+
+<h4 id="cxx_constexpr">C++11 generalized constant expressions</h4>
+
+<p>Use <tt>__has_feature(cxx_constexpr)</tt> to determine if support
+for generalized constant expressions (e.g., <tt>constexpr</tt>) is
+enabled.</p>
+
+<h4 id="cxx_decltype">C++11 <tt>decltype()</tt></h4>
+
+<p>Use <tt>__has_feature(cxx_decltype)</tt> or
+<tt>__has_extension(cxx_decltype)</tt> to determine if support for the
+<tt>decltype()</tt> specifier is enabled. C++11's <tt>decltype</tt>
+does not require type-completeness of a function call expression.
+Use <tt>__has_feature(cxx_decltype_incomplete_return_types)</tt>
+or <tt>__has_extension(cxx_decltype_incomplete_return_types)</tt>
+to determine if support for this feature is enabled.</p>
+
+<h4 id="cxx_default_function_template_args">C++11 default template arguments in function templates</h4>
+
+<p>Use <tt>__has_feature(cxx_default_function_template_args)</tt> or
+<tt>__has_extension(cxx_default_function_template_args)</tt> to determine
+if support for default template arguments in function templates is enabled.</p>
+
+<h4 id="cxx_defaulted_functions">C++11 <tt>default</tt>ed functions</h4>
+
+<p>Use <tt>__has_feature(cxx_defaulted_functions)</tt> or
+<tt>__has_extension(cxx_defaulted_functions)</tt> to determine if support for
+defaulted function definitions (with <tt>= default</tt>) is enabled.</p>
+
+<h4 id="cxx_delegating_constructors">C++11 delegating constructors</h4>
+
+<p>Use <tt>__has_feature(cxx_delegating_constructors)</tt> to determine if
+support for delegating constructors is enabled.</p>
+
+<h4 id="cxx_deleted_functions">C++11 <tt>delete</tt>d functions</h4>
+
+<p>Use <tt>__has_feature(cxx_deleted_functions)</tt> or
+<tt>__has_extension(cxx_deleted_functions)</tt> to determine if support for
+deleted function definitions (with <tt>= delete</tt>) is enabled.</p>
+
+<h4 id="cxx_explicit_conversions">C++11 explicit conversion functions</h4>
+<p>Use <tt>__has_feature(cxx_explicit_conversions)</tt> to determine if support for <tt>explicit</tt> conversion functions is enabled.</p>
+
+<h4 id="cxx_generalized_initializers">C++11 generalized initializers</h4>
+
+<p>Use <tt>__has_feature(cxx_generalized_initializers)</tt> to determine if
+support for generalized initializers (using braced lists and
+<tt>std::initializer_list</tt>) is enabled.</p>
+
+<h4 id="cxx_implicit_moves">C++11 implicit move constructors/assignment operators</h4>
+
+<p>Use <tt>__has_feature(cxx_implicit_moves)</tt> to determine if Clang will
+implicitly generate move constructors and move assignment operators where needed.</p>
+
+<h4 id="cxx_inheriting_constructors">C++11 inheriting constructors</h4>
+
+<p>Use <tt>__has_feature(cxx_inheriting_constructors)</tt> to determine if support for inheriting constructors is enabled. Clang does not currently implement this feature.</p>
+
+<h4 id="cxx_inline_namespaces">C++11 inline namespaces</h4>
+
+<p>Use <tt>__has_feature(cxx_inline_namespaces)</tt> or
+<tt>__has_extension(cxx_inline_namespaces)</tt> to determine if support for
+inline namespaces is enabled.</p>
+
+<h4 id="cxx_lambdas">C++11 lambdas</h4>
+
+<p>Use <tt>__has_feature(cxx_lambdas)</tt> or
+<tt>__has_extension(cxx_lambdas)</tt> to determine if support for lambdas
+is enabled. </p>
+
+<h4 id="cxx_local_type_template_args">C++11 local and unnamed types as template arguments</h4>
+
+<p>Use <tt>__has_feature(cxx_local_type_template_args)</tt> or
+<tt>__has_extension(cxx_local_type_template_args)</tt> to determine if
+support for local and unnamed types as template arguments is enabled.</p>
+
+<h4 id="cxx_noexcept">C++11 noexcept</h4>
+
+<p>Use <tt>__has_feature(cxx_noexcept)</tt> or
+<tt>__has_extension(cxx_noexcept)</tt> to determine if support for noexcept
+exception specifications is enabled.</p>
+
+<h4 id="cxx_nonstatic_member_init">C++11 in-class non-static data member initialization</h4>
+
+<p>Use <tt>__has_feature(cxx_nonstatic_member_init)</tt> to determine whether in-class initialization of non-static data members is enabled.</p>
+
+<h4 id="cxx_nullptr">C++11 <tt>nullptr</tt></h4>
+
+<p>Use <tt>__has_feature(cxx_nullptr)</tt> or
+<tt>__has_extension(cxx_nullptr)</tt> to determine if support for
+<tt>nullptr</tt> is enabled.</p>
+
+<h4 id="cxx_override_control">C++11 <tt>override control</tt></h4>
+
+<p>Use <tt>__has_feature(cxx_override_control)</tt> or
+<tt>__has_extension(cxx_override_control)</tt> to determine if support for
+the override control keywords is enabled.</p>
+
+<h4 id="cxx_reference_qualified_functions">C++11 reference-qualified functions</h4>
+<p>Use <tt>__has_feature(cxx_reference_qualified_functions)</tt> or
+<tt>__has_extension(cxx_reference_qualified_functions)</tt> to determine
+if support for reference-qualified functions (e.g., member functions with
+<code>&amp;</code> or <code>&amp;&amp;</code> applied to <code>*this</code>)
+is enabled.</p>
+
+<h4 id="cxx_range_for">C++11 range-based <tt>for</tt> loop</h4>
+
+<p>Use <tt>__has_feature(cxx_range_for)</tt> or
+<tt>__has_extension(cxx_range_for)</tt> to determine if support for the
+range-based for loop is enabled. </p>
+
+<h4 id="cxx_raw_string_literals">C++11 raw string literals</h4>
+<p>Use <tt>__has_feature(cxx_raw_string_literals)</tt> to determine if support
+for raw string literals (e.g., <tt>R"x(foo\bar)x"</tt>) is enabled.</p>
+
+<h4 id="cxx_rvalue_references">C++11 rvalue references</h4>
+
+<p>Use <tt>__has_feature(cxx_rvalue_references)</tt> or
+<tt>__has_extension(cxx_rvalue_references)</tt> to determine if support for
+rvalue references is enabled. </p>
+
+<h4 id="cxx_static_assert">C++11 <tt>static_assert()</tt></h4>
+
+<p>Use <tt>__has_feature(cxx_static_assert)</tt> or
+<tt>__has_extension(cxx_static_assert)</tt> to determine if support for
+compile-time assertions using <tt>static_assert</tt> is enabled.</p>
+
+<h4 id="cxx_auto_type">C++11 type inference</h4>
+
+<p>Use <tt>__has_feature(cxx_auto_type)</tt> or
+<tt>__has_extension(cxx_auto_type)</tt> to determine C++11 type inference is
+supported using the <tt>auto</tt> specifier. If this is disabled, <tt>auto</tt>
+will instead be a storage class specifier, as in C or C++98.</p>
+
+<h4 id="cxx_strong_enums">C++11 strongly typed enumerations</h4>
+
+<p>Use <tt>__has_feature(cxx_strong_enums)</tt> or
+<tt>__has_extension(cxx_strong_enums)</tt> to determine if support for
+strongly typed, scoped enumerations is enabled.</p>
+
+<h4 id="cxx_trailing_return">C++11 trailing return type</h4>
+
+<p>Use <tt>__has_feature(cxx_trailing_return)</tt> or
+<tt>__has_extension(cxx_trailing_return)</tt> to determine if support for the
+alternate function declaration syntax with trailing return type is enabled.</p>
+
+<h4 id="cxx_unicode_literals">C++11 Unicode string literals</h4>
+<p>Use <tt>__has_feature(cxx_unicode_literals)</tt> to determine if
+support for Unicode string literals is enabled.</p>
+
+<h4 id="cxx_unrestricted_unions">C++11 unrestricted unions</h4>
+
+<p>Use <tt>__has_feature(cxx_unrestricted_unions)</tt> to determine if support for unrestricted unions is enabled.</p>
+
+<h4 id="cxx_user_literals">C++11 user-defined literals</h4>
+
+<p>Use <tt>__has_feature(cxx_user_literals)</tt> to determine if support for user-defined literals is enabled.</p>
+
+<h4 id="cxx_variadic_templates">C++11 variadic templates</h4>
+
+<p>Use <tt>__has_feature(cxx_variadic_templates)</tt> or
+<tt>__has_extension(cxx_variadic_templates)</tt> to determine if support
+for variadic templates is enabled.</p>
+
+<h3 id="c11">C11</h3>
+
+<p>The features listed below are part of the C11 standard. As a result, all
+these features are enabled with the <tt>-std=c11</tt> or <tt>-std=gnu11</tt>
+option when compiling C code. Additionally, because these features are all
+backward-compatible, they are available as extensions in all language modes.</p>
+
+<h4 id="c_alignas">C11 alignment specifiers</h4>
+
+<p>Use <tt>__has_feature(c_alignas)</tt> or <tt>__has_extension(c_alignas)</tt>
+to determine if support for alignment specifiers using <tt>_Alignas</tt>
+is enabled.</p>
+
+<h4 id="c_atomic">C11 atomic operations</h4>
+
+<p>Use <tt>__has_feature(c_atomic)</tt> or <tt>__has_extension(c_atomic)</tt>
+to determine if support for atomic types using <tt>_Atomic</tt> is enabled.
+Clang also provides <a href="#__c11_atomic">a set of builtins</a> which can be
+used to implement the <tt>&lt;stdatomic.h&gt;</tt> operations on _Atomic
+types.</p>
+
+<h4 id="c_generic_selections">C11 generic selections</h4>
+
+<p>Use <tt>__has_feature(c_generic_selections)</tt> or
+<tt>__has_extension(c_generic_selections)</tt> to determine if support for
+generic selections is enabled.</p>
+
+<p>As an extension, the C11 generic selection expression is available in all
+languages supported by Clang. The syntax is the same as that given in the
+C11 standard.</p>
+
+<p>In C, type compatibility is decided according to the rules given in the
+appropriate standard, but in C++, which lacks the type compatibility rules
+used in C, types are considered compatible only if they are equivalent.</p>
+
+<h4 id="c_static_assert">C11 <tt>_Static_assert()</tt></h4>
+
+<p>Use <tt>__has_feature(c_static_assert)</tt> or
+<tt>__has_extension(c_static_assert)</tt> to determine if support for
+compile-time assertions using <tt>_Static_assert</tt> is enabled.</p>
+
+<!-- ======================================================================= -->
+<h2 id="checking_type_traits">Checks for Type Traits</h2>
+<!-- ======================================================================= -->
+
+<p>Clang supports the <a href="http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html">GNU C++ type traits</a> and a subset of the <a href="http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx">Microsoft Visual C++ Type traits</a>. For each supported type trait <code>__X</code>, <code>__has_extension(X)</code> indicates the presence of the type trait. For example:
+<blockquote>
+<pre>
+#if __has_extension(is_convertible_to)
+template&lt;typename From, typename To&gt;
+struct is_convertible_to {
+ static const bool value = __is_convertible_to(From, To);
+};
+#else
+// Emulate type trait
+#endif
+</pre>
+</blockquote>
+
+<p>The following type traits are supported by Clang:</p>
+<ul>
+ <li><code>__has_nothrow_assign</code> (GNU, Microsoft)</li>
+ <li><code>__has_nothrow_copy</code> (GNU, Microsoft)</li>
+ <li><code>__has_nothrow_constructor</code> (GNU, Microsoft)</li>
+ <li><code>__has_trivial_assign</code> (GNU, Microsoft)</li>
+ <li><code>__has_trivial_copy</code> (GNU, Microsoft)</li>
+ <li><code>__has_trivial_constructor</code> (GNU, Microsoft)</li>
+ <li><code>__has_trivial_destructor</code> (GNU, Microsoft)</li>
+ <li><code>__has_virtual_destructor</code> (GNU, Microsoft)</li>
+ <li><code>__is_abstract</code> (GNU, Microsoft)</li>
+ <li><code>__is_base_of</code> (GNU, Microsoft)</li>
+ <li><code>__is_class</code> (GNU, Microsoft)</li>
+ <li><code>__is_convertible_to</code> (Microsoft)</li>
+ <li><code>__is_empty</code> (GNU, Microsoft)</li>
+ <li><code>__is_enum</code> (GNU, Microsoft)</li>
+ <li><code>__is_pod</code> (GNU, Microsoft)</li>
+ <li><code>__is_polymorphic</code> (GNU, Microsoft)</li>
+ <li><code>__is_union</code> (GNU, Microsoft)</li>
+ <li><code>__is_literal(type)</code>: Determines whether the given type is a literal type</li>
+ <li><code>__is_final</code>: Determines whether the given type is declared with a <code>final</code> class-virt-specifier.</li>
+ <li><code>__underlying_type(type)</code>: Retrieves the underlying type for a given <code>enum</code> type. This trait is required to implement the C++11 standard library.</li>
+ <li><code>__is_trivially_assignable(totype, fromtype)</code>: Determines whether a value of type <tt>totype</tt> can be assigned to from a value of type <tt>fromtype</tt> such that no non-trivial functions are called as part of that assignment. This trait is required to implement the C++11 standard library.</li>
+ <li><code>__is_trivially_constructible(type, argtypes...)</code>: Determines whether a value of type <tt>type</tt> can be direct-initialized with arguments of types <tt>argtypes...</tt> such that no non-trivial functions are called as part of that initialization. This trait is required to implement the C++11 standard library.</li>
+</ul>
+
+<!-- ======================================================================= -->
+<h2 id="blocks">Blocks</h2>
+<!-- ======================================================================= -->
+
+<p>The syntax and high level language feature description is in <a
+href="BlockLanguageSpec.txt">BlockLanguageSpec.txt</a>. Implementation and ABI
+details for the clang implementation are in <a
+href="Block-ABI-Apple.txt">Block-ABI-Apple.txt</a>.</p>
+
+
+<p>Query for this feature with __has_extension(blocks).</p>
+
+<!-- ======================================================================= -->
+<h2 id="objc_features">Objective-C Features</h2>
+<!-- ======================================================================= -->
+
+<h3 id="objc_instancetype">Related result types</h3>
+
+<p>According to Cocoa conventions, Objective-C methods with certain names ("init", "alloc", etc.) always return objects that are an instance of the receiving class's type. Such methods are said to have a "related result type", meaning that a message send to one of these methods will have the same static type as an instance of the receiver class. For example, given the following classes:</p>
+
+<blockquote>
+<pre>
+@interface NSObject
++ (id)alloc;
+- (id)init;
+@end
+
+@interface NSArray : NSObject
+@end
+</pre>
+</blockquote>
+
+<p>and this common initialization pattern</p>
+
+<blockquote>
+<pre>
+NSArray *array = [[NSArray alloc] init];
+</pre>
+</blockquote>
+
+<p>the type of the expression <code>[NSArray alloc]</code> is
+<code>NSArray*</code> because <code>alloc</code> implicitly has a
+related result type. Similarly, the type of the expression
+<code>[[NSArray alloc] init]</code> is <code>NSArray*</code>, since
+<code>init</code> has a related result type and its receiver is known
+to have the type <code>NSArray *</code>. If neither <code>alloc</code> nor <code>init</code> had a related result type, the expressions would have had type <code>id</code>, as declared in the method signature.</p>
+
+<p>A method with a related result type can be declared by using the
+type <tt>instancetype</tt> as its result type. <tt>instancetype</tt>
+is a contextual keyword that is only permitted in the result type of
+an Objective-C method, e.g.</p>
+
+<pre>
+@interface A
++ (<b>instancetype</b>)constructAnA;
+@end
+</pre>
+
+<p>The related result type can also be inferred for some methods.
+To determine whether a method has an inferred related result type, the first
+word in the camel-case selector (e.g., "init" in "initWithObjects") is
+considered, and the method will have a related result type if its return
+type is compatible with the type of its class and if</p>
+
+<ul>
+
+ <li>the first word is "alloc" or "new", and the method is a class
+ method, or</li>
+
+ <li>the first word is "autorelease", "init", "retain", or "self",
+ and the method is an instance method.</li>
+
+</ul>
+
+<p>If a method with a related result type is overridden by a subclass
+method, the subclass method must also return a type that is compatible
+with the subclass type. For example:</p>
+
+<blockquote>
+<pre>
+@interface NSString : NSObject
+- (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
+@end
+</pre>
+</blockquote>
+
+<p>Related result types only affect the type of a message send or
+property access via the given method. In all other respects, a method
+with a related result type is treated the same way as method that
+returns <tt>id</tt>.</p>
+
+<p>Use <tt>__has_feature(objc_instancetype)</tt> to determine whether
+the <tt>instancetype</tt> contextual keyword is available.</p>
+
+<!-- ======================================================================= -->
+<h2 id="objc_arc">Automatic reference counting </h2>
+<!-- ======================================================================= -->
+
+<p>Clang provides support for <a href="AutomaticReferenceCounting.html">automated reference counting</a> in Objective-C, which eliminates the need for manual retain/release/autorelease message sends. There are two feature macros associated with automatic reference counting: <code>__has_feature(objc_arc)</code> indicates the availability of automated reference counting in general, while <code>__has_feature(objc_arc_weak)</code> indicates that automated reference counting also includes support for <code>__weak</code> pointers to Objective-C objects.</p>
+
+<!-- ======================================================================= -->
+<h2 id="objc_fixed_enum">Enumerations with a fixed underlying type</h2>
+<!-- ======================================================================= -->
+
+<p>Clang provides support for C++11 enumerations with a fixed
+underlying type within Objective-C. For example, one can write an
+enumeration type as:</p>
+
+<pre>
+typedef enum : unsigned char { Red, Green, Blue } Color;
+</pre>
+
+<p>This specifies that the underlying type, which is used to store the
+enumeration value, is <tt>unsigned char</tt>.</p>
+
+<p>Use <tt>__has_feature(objc_fixed_enum)</tt> to determine whether
+support for fixed underlying types is available in Objective-C.</p>
+
+<!-- ======================================================================= -->
+<h2 id="objc_lambdas">Interoperability with C++11 lambdas</h2>
+<!-- ======================================================================= -->
+
+<p>Clang provides interoperability between C++11 lambdas and
+blocks-based APIs, by permitting a lambda to be implicitly converted
+to a block pointer with the corresponding signature. For example,
+consider an API such as <code>NSArray</code>'s array-sorting
+method:</p>
+
+<pre> - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr; </pre>
+
+<p><code>NSComparator</code> is simply a typedef for the block pointer
+<code>NSComparisonResult (^)(id, id)</code>, and parameters of this
+type are generally provided with block literals as arguments. However,
+one can also use a C++11 lambda so long as it provides the same
+signature (in this case, accepting two parameters of type
+<code>id</code> and returning an <code>NSComparisonResult</code>):</p>
+
+<pre>
+ NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
+ @"String 02"];
+ const NSStringCompareOptions comparisonOptions
+ = NSCaseInsensitiveSearch | NSNumericSearch |
+ NSWidthInsensitiveSearch | NSForcedOrderingSearch;
+ NSLocale *currentLocale = [NSLocale currentLocale];
+ NSArray *sorted
+ = [array sortedArrayUsingComparator:<b>[=](id s1, id s2) -&gt; NSComparisonResult {
+ NSRange string1Range = NSMakeRange(0, [s1 length]);
+ return [s1 compare:s2 options:comparisonOptions
+ range:string1Range locale:currentLocale];
+ }</b>];
+ NSLog(@"sorted: %@", sorted);
+</pre>
+
+<p>This code relies on an implicit conversion from the type of the
+lambda expression (an unnamed, local class type called the <i>closure
+type</i>) to the corresponding block pointer type. The conversion
+itself is expressed by a conversion operator in that closure type
+that produces a block pointer with the same signature as the lambda
+itself, e.g.,</p>
+
+<pre>
+ operator NSComparisonResult (^)(id, id)() const;
+</pre>
+
+<p>This conversion function returns a new block that simply forwards
+the two parameters to the lambda object (which it captures by copy),
+then returns the result. The returned block is first copied (with
+<tt>Block_copy</tt>) and then autoreleased. As an optimization, if a
+lambda expression is immediately converted to a block pointer (as in
+the first example, above), then the block is not copied and
+autoreleased: rather, it is given the same lifetime as a block literal
+written at that point in the program, which avoids the overhead of
+copying a block to the heap in the common case.</p>
+
+<p>The conversion from a lambda to a block pointer is only available
+in Objective-C++, and not in C++ with blocks, due to its use of
+Objective-C memory management (autorelease).</p>
+
+<!-- ======================================================================= -->
+<h2 id="object-literals-subscripting">Object Literals and Subscripting</h2>
+<!-- ======================================================================= -->
+
+<p>Clang provides support for <a href="ObjectiveCLiterals.html">Object Literals and Subscripting</a> in Objective-C, which simplifies common Objective-C programming patterns, makes programs more concise, and improves the safety of container creation. There are several feature macros associated with object literals and subscripting: <code>__has_feature(objc_array_literals)</code> tests the availability of array literals; <code>__has_feature(objc_dictionary_literals)</code> tests the availability of dictionary literals; <code>__has_feature(objc_subscripting)</code> tests the availability of object subscripting.</p>
+
+<!-- ======================================================================= -->
+<h2 id="overloading-in-c">Function Overloading in C</h2>
+<!-- ======================================================================= -->
+
+<p>Clang provides support for C++ function overloading in C. Function
+overloading in C is introduced using the <tt>overloadable</tt> attribute. For
+example, one might provide several overloaded versions of a <tt>tgsin</tt>
+function that invokes the appropriate standard function computing the sine of a
+value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt>
+precision:</p>
+
+<blockquote>
+<pre>
+#include &lt;math.h&gt;
+float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); }
+double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); }
+long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); }
+</pre>
+</blockquote>
+
+<p>Given these declarations, one can call <tt>tgsin</tt> with a
+<tt>float</tt> value to receive a <tt>float</tt> result, with a
+<tt>double</tt> to receive a <tt>double</tt> result, etc. Function
+overloading in C follows the rules of C++ function overloading to pick
+the best overload given the call arguments, with a few C-specific
+semantics:</p>
+<ul>
+ <li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long
+ double</tt> is ranked as a floating-point promotion (per C99) rather
+ than as a floating-point conversion (as in C++).</li>
+
+ <li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type
+ <tt>U*</tt> is considered a pointer conversion (with conversion
+ rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li>
+
+ <li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt>
+ is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This
+ conversion is given "conversion" rank.</li>
+</ul>
+
+<p>The declaration of <tt>overloadable</tt> functions is restricted to
+function declarations and definitions. Most importantly, if any
+function with a given name is given the <tt>overloadable</tt>
+attribute, then all function declarations and definitions with that
+name (and in that scope) must have the <tt>overloadable</tt>
+attribute. This rule even applies to redeclarations of functions whose original
+declaration had the <tt>overloadable</tt> attribute, e.g.,</p>
+
+<blockquote>
+<pre>
+int f(int) __attribute__((overloadable));
+float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i>
+
+int g(int) __attribute__((overloadable));
+int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i>
+</pre>
+</blockquote>
+
+<p>Functions marked <tt>overloadable</tt> must have
+prototypes. Therefore, the following code is ill-formed:</p>
+
+<blockquote>
+<pre>
+int h() __attribute__((overloadable)); <i>// error: h does not have a prototype</i>
+</pre>
+</blockquote>
+
+<p>However, <tt>overloadable</tt> functions are allowed to use a
+ellipsis even if there are no named parameters (as is permitted in C++). This feature is particularly useful when combined with the <tt>unavailable</tt> attribute:</p>
+
+<blockquote>
+<pre>
+void honeypot(...) __attribute__((overloadable, unavailable)); <i>// calling me is an error</i>
+</pre>
+</blockquote>
+
+<p>Functions declared with the <tt>overloadable</tt> attribute have
+their names mangled according to the same rules as C++ function
+names. For example, the three <tt>tgsin</tt> functions in our
+motivating example get the mangled names <tt>_Z5tgsinf</tt>,
+<tt>_Z5tgsind</tt>, and <tt>_Z5tgsine</tt>, respectively. There are two
+caveats to this use of name mangling:</p>
+
+<ul>
+
+ <li>Future versions of Clang may change the name mangling of
+ functions overloaded in C, so you should not depend on an specific
+ mangling. To be completely safe, we strongly urge the use of
+ <tt>static inline</tt> with <tt>overloadable</tt> functions.</li>
+
+ <li>The <tt>overloadable</tt> attribute has almost no meaning when
+ used in C++, because names will already be mangled and functions are
+ already overloadable. However, when an <tt>overloadable</tt>
+ function occurs within an <tt>extern "C"</tt> linkage specification,
+ it's name <i>will</i> be mangled in the same way as it would in
+ C.</li>
+</ul>
+
+<p>Query for this feature with __has_extension(attribute_overloadable).</p>
+
+<!-- ======================================================================= -->
+<h2 id="complex-list-init">Initializer lists for complex numbers in C</h2>
+<!-- ======================================================================= -->
+
+<p>clang supports an extension which allows the following in C:</p>
+
+<blockquote>
+<pre>
+#include &lt;math.h&gt;
+#include &lt;complex.h&gt;
+complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
+</pre>
+</blockquote>
+
+<p>This construct is useful because there is no way to separately
+initialize the real and imaginary parts of a complex variable in
+standard C, given that clang does not support <code>_Imaginary</code>.
+(clang also supports the <code>__real__</code> and <code>__imag__</code>
+extensions from gcc, which help in some cases, but are not usable in
+static initializers.)
+
+<p>Note that this extension does not allow eliding the braces; the
+meaning of the following two lines is different:</p>
+
+<blockquote>
+<pre>
+complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
+complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
+</pre>
+</blockquote>
+
+<p>This extension also works in C++ mode, as far as that goes, but does not
+ apply to the C++ <code>std::complex</code>. (In C++11, list
+ initialization allows the same syntax to be used with
+ <code>std::complex</code> with the same meaning.)
+
+<!-- ======================================================================= -->
+<h2 id="builtins">Builtin Functions</h2>
+<!-- ======================================================================= -->
+
+<p>Clang supports a number of builtin library functions with the same syntax as
+GCC, including things like <tt>__builtin_nan</tt>,
+<tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>,
+<tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc. In
+addition to the GCC builtins, Clang supports a number of builtins that GCC does
+not, which are listed here.</p>
+
+<p>Please note that Clang does not and will not support all of the GCC builtins
+for vector operations. Instead of using builtins, you should use the functions
+defined in target-specific header files like <tt>&lt;xmmintrin.h&gt;</tt>, which
+define portable wrappers for these. Many of the Clang versions of these
+functions are implemented directly in terms of <a href="#vectors">extended
+vector support</a> instead of builtins, in order to reduce the number of
+builtins that we need to implement.</p>
+
+<!-- ======================================================================= -->
+<h3><a name="__builtin_shufflevector">__builtin_shufflevector</a></h3>
+<!-- ======================================================================= -->
+
+<p><tt>__builtin_shufflevector</tt> is used to express generic vector
+permutation/shuffle/swizzle operations. This builtin is also very important for
+the implementation of various target-specific header files like
+<tt>&lt;xmmintrin.h&gt;</tt>.
+</p>
+
+<p><b>Syntax:</b></p>
+
+<pre>
+__builtin_shufflevector(vec1, vec2, index1, index2, ...)
+</pre>
+
+<p><b>Examples:</b></p>
+
+<pre>
+ // Identity operation - return 4-element vector V1.
+ __builtin_shufflevector(V1, V1, 0, 1, 2, 3)
+
+ // "Splat" element 0 of V1 into a 4-element result.
+ __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
+
+ // Reverse 4-element vector V1.
+ __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
+
+ // Concatenate every other element of 4-element vectors V1 and V2.
+ __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
+
+ // Concatenate every other element of 8-element vectors V1 and V2.
+ __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
+</pre>
+
+<p><b>Description:</b></p>
+
+<p>The first two arguments to __builtin_shufflevector are vectors that have the
+same element type. The remaining arguments are a list of integers that specify
+the elements indices of the first two vectors that should be extracted and
+returned in a new vector. These element indices are numbered sequentially
+starting with the first vector, continuing into the second vector. Thus, if
+vec1 is a 4-element vector, index 5 would refer to the second element of vec2.
+</p>
+
+<p>The result of __builtin_shufflevector is a vector
+with the same element type as vec1/vec2 but that has an element count equal to
+the number of indices specified.
+</p>
+
+<p>Query for this feature with __has_builtin(__builtin_shufflevector).</p>
+
+<!-- ======================================================================= -->
+<h3><a name="__builtin_unreachable">__builtin_unreachable</a></h3>
+<!-- ======================================================================= -->
+
+<p><tt>__builtin_unreachable</tt> is used to indicate that a specific point in
+the program cannot be reached, even if the compiler might otherwise think it
+can. This is useful to improve optimization and eliminates certain warnings.
+For example, without the <tt>__builtin_unreachable</tt> in the example below,
+the compiler assumes that the inline asm can fall through and prints a "function
+declared 'noreturn' should not return" warning.
+</p>
+
+<p><b>Syntax:</b></p>
+
+<pre>
+__builtin_unreachable()
+</pre>
+
+<p><b>Example of Use:</b></p>
+
+<pre>
+void myabort(void) __attribute__((noreturn));
+void myabort(void) {
+ asm("int3");
+ __builtin_unreachable();
+}
+</pre>
+
+<p><b>Description:</b></p>
+
+<p>The __builtin_unreachable() builtin has completely undefined behavior. Since
+it has undefined behavior, it is a statement that it is never reached and the
+optimizer can take advantage of this to produce better code. This builtin takes
+no arguments and produces a void result.
+</p>
+
+<p>Query for this feature with __has_builtin(__builtin_unreachable).</p>
+
+<!-- ======================================================================= -->
+<h3><a name="__sync_swap">__sync_swap</a></h3>
+<!-- ======================================================================= -->
+
+<p><tt>__sync_swap</tt> is used to atomically swap integers or pointers in
+memory.
+</p>
+
+<p><b>Syntax:</b></p>
+
+<pre>
+<i>type</i> __sync_swap(<i>type</i> *ptr, <i>type</i> value, ...)
+</pre>
+
+<p><b>Example of Use:</b></p>
+
+<pre>
+int old_value = __sync_swap(&amp;value, new_value);
+</pre>
+
+<p><b>Description:</b></p>
+
+<p>The __sync_swap() builtin extends the existing __sync_*() family of atomic
+intrinsics to allow code to atomically swap the current value with the new
+value. More importantly, it helps developers write more efficient and correct
+code by avoiding expensive loops around __sync_bool_compare_and_swap() or
+relying on the platform specific implementation details of
+__sync_lock_test_and_set(). The __sync_swap() builtin is a full barrier.
+</p>
+
+<!-- ======================================================================= -->
+<h3><a name="__c11_atomic">__c11_atomic builtins</a></h3>
+<!-- ======================================================================= -->
+
+<p>Clang provides a set of builtins which are intended to be used to implement
+C11's <tt>&lt;stdatomic.h&gt;</tt> header. These builtins provide the semantics
+of the <tt>_explicit</tt> form of the corresponding C11 operation, and are named
+with a <tt>__c11_</tt> prefix. The supported operations are:</p>
+
+<ul>
+ <li><tt>__c11_atomic_init</tt></li>
+ <li><tt>__c11_atomic_thread_fence</tt></li>
+ <li><tt>__c11_atomic_signal_fence</tt></li>
+ <li><tt>__c11_atomic_is_lock_free</tt></li>
+ <li><tt>__c11_atomic_store</tt></li>
+ <li><tt>__c11_atomic_load</tt></li>
+ <li><tt>__c11_atomic_exchange</tt></li>
+ <li><tt>__c11_atomic_compare_exchange_strong</tt></li>
+ <li><tt>__c11_atomic_compare_exchange_weak</tt></li>
+ <li><tt>__c11_atomic_fetch_add</tt></li>
+ <li><tt>__c11_atomic_fetch_sub</tt></li>
+ <li><tt>__c11_atomic_fetch_and</tt></li>
+ <li><tt>__c11_atomic_fetch_or</tt></li>
+ <li><tt>__c11_atomic_fetch_xor</tt></li>
+</ul>
+
+
+<!-- ======================================================================= -->
+<h2 id="targetspecific">Target-Specific Extensions</h2>
+<!-- ======================================================================= -->
+
+<p>Clang supports some language features conditionally on some targets.</p>
+
+<!-- ======================================================================= -->
+<h3 id="x86-specific">X86/X86-64 Language Extensions</h3>
+<!-- ======================================================================= -->
+
+<p>The X86 backend has these language extensions:</p>
+
+<!-- ======================================================================= -->
+<h4 id="x86-gs-segment">Memory references off the GS segment</h4>
+<!-- ======================================================================= -->
+
+<p>Annotating a pointer with address space #256 causes it to be code generated
+relative to the X86 GS segment register, and address space #257 causes it to be
+relative to the X86 FS segment. Note that this is a very very low-level
+feature that should only be used if you know what you're doing (for example in
+an OS kernel).</p>
+
+<p>Here is an example:</p>
+
+<pre>
+#define GS_RELATIVE __attribute__((address_space(256)))
+int foo(int GS_RELATIVE *P) {
+ return *P;
+}
+</pre>
+
+<p>Which compiles to (on X86-32):</p>
+
+<pre>
+_foo:
+ movl 4(%esp), %eax
+ movl %gs:(%eax), %eax
+ ret
+</pre>
+
+<!-- ======================================================================= -->
+<h2 id="analyzerspecific">Static Analysis-Specific Extensions</h2>
+<!-- ======================================================================= -->
+
+<p>Clang supports additional attributes that are useful for documenting program
+invariants and rules for static analysis tools. The extensions documented here
+are used by the <a
+href="http://clang.llvm.org/StaticAnalysis.html">path-sensitive static analyzer
+engine</a> that is part of Clang's Analysis library.</p>
+
+<h3 id="attr_analyzer_noreturn">The <tt>analyzer_noreturn</tt> attribute</h3>
+
+<p>Clang's static analysis engine understands the standard <tt>noreturn</tt>
+attribute. This attribute, which is typically affixed to a function prototype,
+indicates that a call to a given function never returns. Function prototypes for
+common functions like <tt>exit</tt> are typically annotated with this attribute,
+as well as a variety of common assertion handlers. Users can educate the static
+analyzer about their own custom assertion handles (thus cutting down on false
+positives due to false paths) by marking their own &quot;panic&quot; functions
+with this attribute.</p>
+
+<p>While useful, <tt>noreturn</tt> is not applicable in all cases. Sometimes
+there are special functions that for all intents and purposes should be
+considered panic functions (i.e., they are only called when an internal program
+error occurs) but may actually return so that the program can fail gracefully.
+The <tt>analyzer_noreturn</tt> attribute allows one to annotate such functions
+as being interpreted as &quot;no return&quot; functions by the analyzer (thus
+pruning bogus paths) but will not affect compilation (as in the case of
+<tt>noreturn</tt>).</p>
+
+<p><b>Usage</b>: The <tt>analyzer_noreturn</tt> attribute can be placed in the
+same places where the <tt>noreturn</tt> attribute can be placed. It is commonly
+placed at the end of function prototypes:</p>
+
+<pre>
+ void foo() <b>__attribute__((analyzer_noreturn))</b>;
+</pre>
+
+<p>Query for this feature with
+<tt>__has_attribute(analyzer_noreturn)</tt>.</p>
+
+<h3 id="attr_method_family">The <tt>objc_method_family</tt> attribute</h3>
+
+<p>Many methods in Objective-C have conventional meanings determined
+by their selectors. For the purposes of static analysis, it is
+sometimes useful to be able to mark a method as having a particular
+conventional meaning despite not having the right selector, or as not
+having the conventional meaning that its selector would suggest.
+For these use cases, we provide an attribute to specifically describe
+the <q>method family</q> that a method belongs to.</p>
+
+<p><b>Usage</b>: <tt>__attribute__((objc_method_family(X)))</tt>,
+where <tt>X</tt> is one of <tt>none</tt>, <tt>alloc</tt>, <tt>copy</tt>,
+<tt>init</tt>, <tt>mutableCopy</tt>, or <tt>new</tt>. This attribute
+can only be placed at the end of a method declaration:</p>
+
+<pre>
+ - (NSString*) initMyStringValue <b>__attribute__((objc_method_family(none)))</b>;
+</pre>
+
+<p>Users who do not wish to change the conventional meaning of a
+method, and who merely want to document its non-standard retain and
+release semantics, should use the
+<a href="#attr_retain_release">retaining behavior attributes</a>
+described below.</p>
+
+<p>Query for this feature with
+<tt>__has_attribute(objc_method_family)</tt>.</p>
+
+<h3 id="attr_retain_release">Objective-C retaining behavior attributes</h3>
+
+<p>In Objective-C, functions and methods are generally assumed to take
+and return objects with +0 retain counts, with some exceptions for
+special methods like <tt>+alloc</tt> and <tt>init</tt>. However,
+there are exceptions, and so Clang provides attributes to allow these
+exceptions to be documented, which helps the analyzer find leaks (and
+ignore non-leaks). Some exceptions may be better described using
+the <a href="#attr_method_family"><tt>objc_method_family</tt></a>
+attribute instead.</p>
+
+<p><b>Usage</b>: The <tt>ns_returns_retained</tt>, <tt>ns_returns_not_retained</tt>,
+<tt>ns_returns_autoreleased</tt>, <tt>cf_returns_retained</tt>,
+and <tt>cf_returns_not_retained</tt> attributes can be placed on
+methods and functions that return Objective-C or CoreFoundation
+objects. They are commonly placed at the end of a function prototype
+or method declaration:</p>
+
+<pre>
+ id foo() <b>__attribute__((ns_returns_retained))</b>;
+
+ - (NSString*) bar: (int) x <b>__attribute__((ns_returns_retained))</b>;
+</pre>
+
+<p>The <tt>*_returns_retained</tt> attributes specify that the
+returned object has a +1 retain count.
+The <tt>*_returns_not_retained</tt> attributes specify that the return
+object has a +0 retain count, even if the normal convention for its
+selector would be +1. <tt>ns_returns_autoreleased</tt> specifies that the
+returned object is +0, but is guaranteed to live at least as long as the
+next flush of an autorelease pool.</p>
+
+<p><b>Usage</b>: The <tt>ns_consumed</tt> and <tt>cf_consumed</tt>
+attributes can be placed on an parameter declaration; they specify
+that the argument is expected to have a +1 retain count, which will be
+balanced in some way by the function or method.
+The <tt>ns_consumes_self</tt> attribute can only be placed on an
+Objective-C method; it specifies that the method expects
+its <tt>self</tt> parameter to have a +1 retain count, which it will
+balance in some way.</p>
+
+<pre>
+ void <b>foo(__attribute__((ns_consumed))</b> NSString *string);
+
+ - (void) bar <b>__attribute__((ns_consumes_self))</b>;
+ - (void) baz: (id) <b>__attribute__((ns_consumed))</b> x;
+</pre>
+
+<p>Query for these features with <tt>__has_attribute(ns_consumed)</tt>,
+<tt>__has_attribute(ns_returns_retained)</tt>, etc.</p>
+
+<!-- ======================================================================= -->
+<h2 id="dynamicanalyzerspecific">Dynamic Analysis-Specific Extensions</h2>
+<!-- ======================================================================= -->
+<h3 id="address_sanitizer">AddressSanitizer</h3>
+<p> Use <code>__has_feature(address_sanitizer)</code>
+to check if the code is being built with <a
+ href="AddressSanitizer.html">AddressSanitizer</a>.
+</p>
+<p>Use <tt>__attribute__((no_address_safety_analysis))</tt> on a function
+declaration to specify that address safety instrumentation (e.g.
+AddressSanitizer) should not be applied to that function.
+</p>
+
+<!-- ======================================================================= -->
+<h2 id="threadsafety">Thread-Safety Annotation Checking</h2>
+<!-- ======================================================================= -->
+
+<p>Clang supports additional attributes for checking basic locking policies in
+multithreaded programs.
+Clang currently parses the following list of attributes, although
+<b>the implementation for these annotations is currently in development.</b>
+For more details, see the
+<a href="http://gcc.gnu.org/wiki/ThreadSafetyAnnotation">GCC implementation</a>.
+</p>
+
+<h4 id="ts_noanal">no_thread_safety_analysis</h4>
+
+<p>Use <tt>__attribute__((no_thread_safety_analysis))</tt> on a function
+declaration to specify that the thread safety analysis should not be run on that
+function. This attribute provides an escape hatch (e.g. for situations when it
+is difficult to annotate the locking policy). </p>
+
+<h4 id="ts_lockable">lockable</h4>
+
+<p>Use <tt>__attribute__((lockable))</tt> on a class definition to specify
+that it has a lockable type (e.g. a Mutex class). This annotation is primarily
+used to check consistency.</p>
+
+<h4 id="ts_scopedlockable">scoped_lockable</h4>
+
+<p>Use <tt>__attribute__((scoped_lockable))</tt> on a class definition to
+specify that it has a "scoped" lockable type. Objects of this type will acquire
+the lock upon construction and release it upon going out of scope.
+ This annotation is primarily used to check
+consistency.</p>
+
+<h4 id="ts_guardedvar">guarded_var</h4>
+
+<p>Use <tt>__attribute__((guarded_var))</tt> on a variable declaration to
+specify that the variable must be accessed while holding some lock.</p>
+
+<h4 id="ts_ptguardedvar">pt_guarded_var</h4>
+
+<p>Use <tt>__attribute__((pt_guarded_var))</tt> on a pointer declaration to
+specify that the pointer must be dereferenced while holding some lock.</p>
+
+<h4 id="ts_guardedby">guarded_by(l)</h4>
+
+<p>Use <tt>__attribute__((guarded_by(l)))</tt> on a variable declaration to
+specify that the variable must be accessed while holding lock <tt>l</tt>.</p>
+
+<h4 id="ts_ptguardedby">pt_guarded_by(l)</h4>
+
+<p>Use <tt>__attribute__((pt_guarded_by(l)))</tt> on a pointer declaration to
+specify that the pointer must be dereferenced while holding lock <tt>l</tt>.</p>
+
+<h4 id="ts_acquiredbefore">acquired_before(...)</h4>
+
+<p>Use <tt>__attribute__((acquired_before(...)))</tt> on a declaration
+of a lockable variable to specify that the lock must be acquired before all
+attribute arguments. Arguments must be lockable type, and there must be at
+least one argument.</p>
+
+<h4 id="ts_acquiredafter">acquired_after(...)</h4>
+
+<p>Use <tt>__attribute__((acquired_after(...)))</tt> on a declaration
+of a lockable variable to specify that the lock must be acquired after all
+attribute arguments. Arguments must be lockable type, and there must be at
+least one argument.</p>
+
+<h4 id="ts_elf">exclusive_lock_function(...)</h4>
+
+<p>Use <tt>__attribute__((exclusive_lock_function(...)))</tt> on a function
+declaration to specify that the function acquires all listed locks
+exclusively. This attribute takes zero or more arguments: either of lockable
+type or integers indexing into function parameters of lockable type. If no
+arguments are given, the acquired lock is implicitly <tt>this</tt> of the
+enclosing object.</p>
+
+<h4 id="ts_slf">shared_lock_function(...)</h4>
+
+<p>Use <tt>__attribute__((shared_lock_function(...)))</tt> on a function
+declaration to specify that the function acquires all listed locks, although
+ the locks may be shared (e.g. read locks). This attribute takes zero or more
+arguments: either of lockable type or integers indexing into function
+parameters of lockable type. If no arguments are given, the acquired lock is
+implicitly <tt>this</tt> of the enclosing object.</p>
+
+<h4 id="ts_etf">exclusive_trylock_function(...)</h4>
+
+<p>Use <tt>__attribute__((exclusive_lock_function(...)))</tt> on a function
+declaration to specify that the function will try (without blocking) to acquire
+all listed locks exclusively. This attribute takes one or more arguments. The
+first argument is an integer or boolean value specifying the return value of a
+successful lock acquisition. The remaining arugments are either of lockable type
+or integers indexing into function parameters of lockable type. If only one
+argument is given, the acquired lock is implicitly <tt>this</tt> of the
+enclosing object.</p>
+
+<h4 id="ts_stf">shared_trylock_function(...)</h4>
+
+<p>Use <tt>__attribute__((shared_lock_function(...)))</tt> on a function
+declaration to specify that the function will try (without blocking) to acquire
+all listed locks, although the locks may be shared (e.g. read locks). This
+attribute takes one or more arguments. The first argument is an integer or
+boolean value specifying the return value of a successful lock acquisition. The
+remaining arugments are either of lockable type or integers indexing into
+function parameters of lockable type. If only one argument is given, the
+acquired lock is implicitly <tt>this</tt> of the enclosing object.</p>
+
+<h4 id="ts_uf">unlock_function(...)</h4>
+
+<p>Use <tt>__attribute__((unlock_function(...)))</tt> on a function
+declaration to specify that the function release all listed locks. This
+attribute takes zero or more arguments: either of lockable type or integers
+indexing into function parameters of lockable type. If no arguments are given,
+the acquired lock is implicitly <tt>this</tt> of the enclosing object.</p>
+
+<h4 id="ts_lr">lock_returned(l)</h4>
+
+<p>Use <tt>__attribute__((lock_returned(l)))</tt> on a function
+declaration to specify that the function returns lock <tt>l</tt> (<tt>l</tt>
+must be of lockable type). This annotation is used to aid in resolving lock
+expressions.</p>
+
+<h4 id="ts_le">locks_excluded(...)</h4>
+
+<p>Use <tt>__attribute__((locks_excluded(...)))</tt> on a function declaration
+to specify that the function must not be called with the listed locks. Arguments
+must be lockable type, and there must be at least one argument.</p>
+
+<h4 id="ts_elr">exclusive_locks_required(...)</h4>
+
+<p>Use <tt>__attribute__((exclusive_locks_required(...)))</tt> on a function
+declaration to specify that the function must be called while holding the listed
+exclusive locks. Arguments must be lockable type, and there must be at
+least one argument.</p>
+
+<h4 id="ts_slr">shared_locks_required(...)</h4>
+
+<p>Use <tt>__attribute__((shared_locks_required(...)))</tt> on a function
+declaration to specify that the function must be called while holding the listed
+shared locks. Arguments must be lockable type, and there must be at
+least one argument.</p>
+
+</div>
+</body>
+</html>