\newcommand{\brighten}{\pos{0,0}{\begin{tikzpicture}[fill opacity=.5, opacity=.5]\pgfsetstrokecolor{white}\filldraw[fill=white] (0,0) rectangle (14,12);\end{tikzpicture}}} \newcommand{\stmtone}{(\vx_1,\vx_2) := (0,1)} \newcommand{\stmttwo}{\vx_1 \leq 8 ;\, (\vx_1,\vx_2) := (\vx_1 + 2, \vx_2 + 2)} %%% %%% %%% \title{{\bf Static Analysis \\ through \\Abstract Interpretation, \\Convex Optimization, and\\ Strategy Iteration}} \author{ {\bf Thomas Martin Gawlitza${}^1$} \\[3pt] joint work with \\[3pt] {\bf Helmut Seidl${}^2$} } \institute{ $\fourIdx{\text{{\large\bf 1}}}{}{}{}{\text{\includegraphics[height=15mm]{../logos/usyd.pdf}}}$ \qquad\qquad $\fourIdx{\text{{\large\bf 2}}}{}{}{}{\text{\includegraphics[height=15mm]{../logos/TUM.pdf}}}$ } \date{\bf SAPLING Meeting, November 2011} %%% %%% %%% \newcommand\partone{Abstract Interpretation using Zones} \newcommand\parttwo{Max-Strategy Iteration} \newcommand\partthree{Conclusion} \newcommand{\outline}[1]{ \frame{\Large\bf \frametitle{Outline} \begin{enumerate} \item \ifthenelse{\equal{#1}{1}}% {\partone}% {\Grey{\partone}} \bigskip \bigskip \item \ifthenelse{\equal{#1}{2}}% {\bf \parttwo}% {\bf\Grey{\parttwo}} \bigskip \bigskip \item \ifthenelse{\equal{#1}{3}}% {\bf\partthree}% {\Grey{\partthree}} \end{enumerate} } \ifthenelse{\equal{#1}{1}}{\section{\partone}}{} \ifthenelse{\equal{#1}{2}}{\section{\parttwo}}{} \ifthenelse{\equal{#1}{3}}{\section{\partthree}}{} } %%% %%% %%% \section{Title} %%% \frame[plain]{\titlepage} %%% \outline{1} %%% \begin{frame}{Abstract Domain: {\bf Zones} (1/2)} \uncover<2->{ \Green{\bf Goal}: \emph{Tight bounds} on the possible values of \emph{integer variables} \qquad\qquad (like $\vx_1 \leq 42, \; \vx_2 \leq 13$) \bigskip \qquad$\leadsto$ buffer overflows, worst-case execution times, etc. } \uncover<3->{ \bigskip \Green{\bf Definition}: Invariants of the form \begin{align*} \bigwedge_\vx \vx \leq b_{\vx} \wedge \bigwedge_\vx -\vx \leq b_{-\vx} \wedge \bigwedge_{\vx,\vy} \vx - \vy \leq b_{\vx-\vy} \end{align*} That is: \emph{bounds} on \emph{variables} and \emph{differences of variables}. } \uncover<4->{ \bigskip \Green{\bf Applications}: \smallskip Model-checking of timed automata \cite{DBLP:conf/eef/Yovine96,DBLP:conf/rtss/LarsenLPY97} \smallskip Static program analysis \cite{Sagiv01,DBLP:conf/pado/Mine01} } \end{frame} %%% \begin{frame}{Abstract Domain: {\bf Zones} (2/2)} \uncover<2->{ \Green{\bf Our point of view}: Zones are special \emph{template polyhedra} \smallskip \qquad$\leadsto$ template polyhedra: \cite{DBLP:conf/vmcai/SankaranarayananSM05} } \uncover<3->{ \bigskip \Green{\bf Given}: \emph{template constraint matrix} $T \in \{-1,0,1\}^{m\times n}$, where every row contains \emph{at most one $1$}, and \emph{at most one $-1$}. Then: \begin{align*} \gamma(b) &:= \{ x \in \Z^n \mid T x \leq b \} && \text{for all } b \in \CZ^m \\ \alpha(X) &:= \min \; \{ b \in \CZ^m \mid \gamma(b) \supseteq X \} && \text{for all } X \subseteq \Z^n \end{align*} } \uncover<4->{ \Green{\bf Example}: Let $ T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} $. Then: $ \gamma\left( \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \right) = \left\{ \begin{pmatrix} \vx_1 \\ \vx_2 \end{pmatrix} \in \Z^2 \mid T \begin{pmatrix} \vx_1 \\ \vx_2 \end{pmatrix} \leq \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \right\} = \begin{matrix}\mbox{\scalebox{0.5}{ \begin{tikzpicture}[show background grid,scale=1] \filldraw[fill=lightgray,color=lightgray] (-1,-1) -- (0-1,1-1) -- (1,2) -- (3,2) -- (3,-1) -- (-1,-1); \draw[thick, ->] (-1,0) -- (4.2,0) node[right] {$\vx_1$-axis}; \draw[thick, ->] (0,-1) -- (0,3.2) node[above] {$\vx_2$-axis}; \draw[ultra thick] (-1,2) -- (4,2) node[above] {$\vx_2 \leq 2$}; \draw[ultra thick] (-1,0) -- (2,3) node[above,xshift=2mm] {$\vx_2 \leq 1 {+} \vx_1$}; \draw[ultra thick] (3,-1) -- (3,3) node[right] {$\vx_1 \leq 3$}; \end{tikzpicture}}}\end{matrix} $ } \end{frame} %%% \begin{frame}{Zone-based Static Program Analysis} \uncover<2->{ \Green{\bf Goal}: Find minimal \emph{zones} that are \emph{invariants} } \uncover<3->{ \bigskip \Green{\bf Example}: \begin{center} $ \begin{matrix}\mbox{\scalebox{0.8}{\begin{tikzpicture} \node (start) [circle,draw] {$a$}; \node (null) [coordinate,right of = start] {}; \node (n1) [below of = start,circle,draw,yshift=-8mm]{$b$}; \path[ultra thick,->] (null) edge [] node [right] {} (start); \path[ultra thick,->] (start) edge [] node [right,yshift=1mm] {$\stmtone$} (n1); \path[ultra thick,->] (n1) edge [loop right,out=35,in=-35, distance=20mm] node [right] { $\stmttwo$ } (n1); \end{tikzpicture}}}\end{matrix} \qquad\quad T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} $ \end{center} } \uncover<4->{ \vspace*{-5mm} For program point $a$: \smallskip $ \gamma \left( \begin{pmatrix} \infty \\ \infty \\ \infty \end{pmatrix} \right) = \left\{  \begin{pmatrix} \vx_1\\\vx_2 \end{pmatrix} \mid \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \vx_1\\\vx_2 \end{pmatrix} \leq \begin{pmatrix} \infty \\ \infty \\ \infty \end{pmatrix} \right\} $ } \uncover<5->{ \bigskip For program point $b$: \smallskip $ \gamma \left( \begin{pmatrix} 10 \\ 11 \\ 1 \end{pmatrix} \right) = \left\{  \begin{pmatrix} \vx_1\\\vx_2 \end{pmatrix} \mid \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \vx_1\\\vx_2 \end{pmatrix} \leq \begin{pmatrix} 10 \\ 11 \\ 1 \end{pmatrix} \right\} $ } \end{frame} %%% \begin{frame}{How Can We Compute {\bf Small} Zones?} \begin{enumerate} \item<2-> À la \cite{Sagiv01,DBLP:conf/pado/Mine01} \smallskip Abstr.\ Interpr.\ / widening / narrowing à la \cite{DBLP:conf/popl/CousotC77} \smallskip \uncover<3->{\emph{Properties}:} \begin{itemize} \smallskip\item<4-> Abstract transformers can be implemented in \emph{strongly polynomial time} (based on the Floyd-Warshall algorithm) \smallskip\item<5-> \emph{Best} abstract transformers only for special classes of affine assignments (like $\vx = \vx + d$ and $\vx = \vy + d$). \smallskip\item<6-> Computed zones are \emph{not} necessarily \emph{minimal} \end{itemize} \bigskip\item<7-> À la \cite{DBLP:conf/csl/GawlitzaS07} \smallskip Abstr.\ Interpr.\ / strategy iteration for \emph{template polyhedra} \smallskip \uncover<8->{\emph{Properties}:} \begin{itemize} \smallskip\item<9-> Computed the \emph{minimal} zones that are invariant \smallskip\item<10-> Arbitrary affine assignments (like $\vx = c_1 \vx_1 + \cdots + c_k \vx_k + d$) \smallskip\item<11-> Proves that the corresponding decision problem is in $\mathbf{coNP}$. \qquad (it is also at least as hard as mean payoff games) \smallskip\item<12-> At most exp. many iterations, each of which can be performed in \emph{weakly polynomial time} through \emph{linear programming}. \end{itemize} \end{enumerate} \end{frame} %%% \begin{frame}{Obvious Question} \begin{center} \huge \uncover<2->{Can we do better?} \end{center} \begin{center} \uncover<3->{ \bigskip \Green{\bf\huge Idea} \bigskip max-strategy improvement algorithm for \emph{template polyhedra} \vspace*{-2mm} \scalebox{2}{\rotatebox{-90}{$\leadsto$}} \smallskip max-strategy improvement algorithm for \emph{zones} } \uncover<4->{ \bigskip \bigskip \Green{\bf\huge Hope} \bigskip improvement step in \emph{weakly} polynomial time \vspace*{-2mm} \scalebox{2}{\rotatebox{-90}{$\leadsto$}} \smallskip improvement step in \emph{strongly} polynomial time } \end{center} \end{frame} %%% \outline{2} %%% \begin{frame}{Abstract Transformers} \uncover<2->{ \emph{Statements} % % \begin{align*} T \vx \leq c \; \wedge \; \vx' = A \vx + d \end{align*} } \uncover<3->{ \emph{Collecting Semantics} % % \begin{align*} \sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d} (X) = \{ x' \mid x \in X \wedge Tx \leq c \wedge x' = Ax+d \} \end{align*} } \uncover<4->{ \emph{Abstract Semantics} % % \begin{align*} \sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d}^\sharp (b) &= \alpha(\sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d} (\gamma( b ))) \end{align*} } \end{frame} %%% \begin{frame}{First Step: {\bf Constraint System} over $\CZ$} \pos{1,1.0}{ $ \begin{matrix}\mbox{\scalebox{1}{\begin{tikzpicture} \node (start) [circle,draw] {$a$}; \node (null) [coordinate,right of = start] {}; \node (n1) [below of = start,circle,draw,yshift=-8mm]{$b$}; \uncover<2->{\path[ultra thick,->] (null) edge [] node [right] {} (start);} \uncover<6->{\path[ultra thick,->] (start) edge [] node [right,yshift=1mm] {$\stmtone$} (n1);} \uncover<10->{\path[ultra thick,->] (n1) edge [loop right,out=35,in=-35, distance=20mm] node [right] {$\stmttwo$} (n1);} \end{tikzpicture}}}\end{matrix} \qquad T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} $ } \pos{0.3,4}{\Green{\bf Least Solution of}} \pos{0.3,4.5}{ $ \begin{array}{@{}r@{}l} \uncover<3->{\vb^a_{1} &\geq \infty \\} \uncover<4->{\vb^a_{2} &\geq \infty \\} \uncover<5->{\vb^a_{3} &\geq \infty} \\[5pt] \uncover<7->{\vb^b_{1} &\geq \pi_{1}(\sem{\stmtone}^\sharp (\vb^a_{1}, \vb^a_{2}, \vb^a_{3})) \\} \uncover<8->{\vb^b_{2} &\geq \pi_{2}(\sem{\stmtone}^\sharp (\vb^a_{1}, \vb^a_{2}, \vb^a_{3})) \\} \uncover<9->{\vb^b_{3} &\geq \pi_{3}(\sem{\stmtone}^\sharp (\vb^a_{1}, \vb^a_{2}, \vb^a_{3}))} \\[5pt] \uncover<11->{\vb^b_{1} &\geq \pi_{1}(\sem{\stmttwo}^\sharp (\vb^b_{1}, \vb^b_{2}, \vb^b_{3})) \\} \uncover<12->{\vb^b_{2} &\geq \pi_{2}(\sem{\stmttwo}^\sharp (\vb^b_{1}, \vb^b_{2}, \vb^b_{3})) \\} \uncover<13->{\vb^b_{3} &\geq \pi_{3}(\sem{\stmttwo}^\sharp (\vb^b_{1}, \vb^b_{2}, \vb^b_{3})) } \end{array} $ } \end{frame} %%% \begin{frame}{Properties of the Abstract Semantics} \Green{\bf Observation}: % \only<1-10>{% \begin{align*} &\pi_{k}(\sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d}^\sharp (b)) \\ \uncover<2->{=\;& \pi_{k}( \alpha(\sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d} (\gamma( b ))) ) \\} \uncover<3->{=\;& \pi_{k}( \alpha(\sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d} ( \{ \vx \in \Z^n \mid T\vx \leq b \} )) ) \\} \uncover<4->{=\;& \pi_{k}( \alpha( \{ \vx' \mid \vx, \vx' \in \Z^n \;\wedge\; T \vx \leq b, c \; \wedge \; \vx' = A \vx + d \} ) ) \\} \uncover<5->{=\;& \pi_{k}( \alpha( \{ A \vx + d \mid \vx \in \Z^n \;\wedge\; T \vx \leq \min(b, c) \} ) ) \\} \uncover<6->{=\;& \sup \; \{ T_k(A \vx + d) \mid \vx \in \Z^n \;\wedge\; T \vx \leq \min(b, c) \} \\} \uncover<7->{=\;& T_k d + \sup \; \{ T_k A \vx \mid \vx \in \Z^n \;\wedge\; T \vx \leq \min ( b, c ) \} \\} \uncover<8->{=\;& T_k d + \sup \; \{ T_k A \vx \mid \vx \in \R^n \;\wedge\; T \vx \leq \min ( b, c ) \} \\} \uncover<9->{=\;& T_k d + \inf \; \{ (\min( b, c ))^\top \vy \mid \vy \in \R_{\geq 0}^n \wedge T^\top \vy = (T_1A)^\top \vy \} \\} \uncover<10->{=\;& T_k d + \inf \; \{ (\min( b, c ))^\top \vy \mid \vy \in \Z_{\geq 0}^n \wedge T^\top \vy = (T_1A)^\top \vy \} \\} \end{align*}% }% \only<11->{% \begin{align*} &\pi_{k}(\sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d}^\sharp (b)) \\ \uncover<10->{=\;& T_k d + \inf \; \{ (\min( b, c ))^\top \vy \mid \vy \in \Z_{\geq 0}^n \wedge T^\top \vy = (T_1A)^\top \vy \} \\} \end{align*} }% \uncover<12->{ \Green{\bf Consequences}: \bigskip $\pi_k \circ \sem{T \vx \leq c \; \wedge \; \vx' = A \vx + d}^\sharp : \CZ^m \to \CZ$ \begin{enumerate} \smallskip\item<13-> is a point-wise \emph{minimum} of finitely many \emph{monotone} and \emph{affine} functions from the set $\CZ^M \to \CZ$. \smallskip\item<14-> can be evaluated in \emph{strongly polynomial time}. \smallskip \qquad$\leadsto$ minimum cost flow network problem \qquad$\leadsto$ $\mathcal{O}( m \cdot \log m \cdot ( n + m \cdot \log m ))$ \end{enumerate} } % \uncover<15>{ % \bigskip % \Green{\bf So What?} % } \end{frame} %%% \begin{frame}{Minimum Cost Flow Network Problem} \begin{align*} \min \;\; b^\top \begin{pmatrix} \vy_1 \\ \vy_2 \\ \vy_3 \end{pmatrix} \qquad\qquad \\[10pt] % \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1\\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} \vy_1 \\ \vy_2 \\ \vy_3 \end{pmatrix} &= \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} & \begin{pmatrix} \vy_1 \\ \vy_2 \\ \vy_3 \end{pmatrix} &\geq 0 \end{align*} \bigskip \begin{center} $ \begin{matrix}\mbox{\scalebox{1}{\begin{tikzpicture} \node (c1) [circle,draw] {$c_1$}; \node (c2) [circle,draw,right of = c1, xshift=10mm] {$c_2$}; \node (c3) [below of = c2,circle,draw,yshift=-8mm]{$c_3$}; \uncover{\path[ultra thick,->] (c1) edge [] node [left] {$\vy_1$} (c3);} \uncover{\path[ultra thick,->] (c2) edge [] node [right] {$\vy_2$} (c3);} \uncover{\path[ultra thick,->] (c1) edge [] node [above] {$\vy_3$} (c2);} \end{tikzpicture}}}\end{matrix} $ \end{center} \end{frame} %%% \begin{frame}{} \vfill \begin{center} \huge\bf And now? \end{center} \vfill \end{frame} %%% \begin{frame}{A Simple Example} \pos{0,1.3}{ $ \begin{array}{@{}p{8mm}@{\quad}r@{\,}l@{\qquad}r@{\,}l@{\quad}r@{\,}l@{\quad}} \centering $\Rot{\only<4-6>\neginfty\only<7-19>0\only<20->{42}}$ & \uncover<1->{\vx_1^+ &\geq \neginfty & \vx_1^+ &\geq 0 \qquad \vx_1^+ \geq \vx_3^+ + 1 } \\[0.2mm] \centering $\Rot{\only<4-6>\neginfty\only<7->0}$ & \uncover<1->{\vx_1^- &\geq \neginfty & \vx_1^- &\geq 0 \qquad \vx_1^- \geq \vx_3^- + (-1)} \\[0.2mm] \centering $\Rot{\only<4-10>\neginfty\only<11-19>0\only<20->{41}}$ & \uncover<1->{\vx_2^+ &\geq \neginfty & \vx_2^+ &\geq (\vx_1^- \geq -41) \;?\; \min \{ \vx_1^+, 41 \} } \\[0.2mm] \centering $\Rot{\only<4-10>\neginfty\only<11->0}$ & \uncover<1->{\vx_2^- &\geq \neginfty & \vx_2^- &\geq (\vx_1^- \geq -41) \;?\; \vx_1^-} \\[0.2mm] \centering $\Rot{\only<4-15>\neginfty\only<16-19>0\only<20->{41}}$ & \uncover<1->{\vx_3^+ &\geq \neginfty & \vx_3^+ &\geq (\vx_2^- \geq -41 \;\&\; \vx_2^+ \geq 0 ) \;?\; \min \{ \vx_2^+, 41 \}} \\[0.2mm] \centering $\Rot{\only<4-15>\neginfty\only<16->0}$ & \uncover<1->{\vx_3^- &\geq \neginfty & \vx_3^- &\geq (\vx_2^- \geq -41 \;\&\; \vx_2^+ \geq 0 ) \;?\; \min \{ \vx_2^-, 0 \} } \end{array} $} \pos{1,4.8}{\emph{Greatest Fixpoint Iteration:}} \pos{1,5.4}{ $ \begin{array}{|r||p{10mm}|p{10mm}|p{10mm}|p{10mm}|p{10mm}|p{10mm}|p{10mm}|@{}l@{}} & \centering 0 & \centering 1 & \centering 2 & \centering 3 & \centering 4 & \centering 5 & \centering 6 & \\ \hline \hline \vx_1^+ & \centering $\infty$ & \centering $\only<3>\neginfty\only<6,9-10,13-15>0\only<18-19>\infty$ & \centering $\only<10,14-15>0\only<19>{42}$ & \centering $\only<15>0$ & \centering & \centering & \centering &\\[0mm]\hline \vx_1^- & \centering $\infty$ & \centering $\only<3>\neginfty\only<6,9-10,13-15,18-19>0$ & \centering $\only<10,14-15,19>0$ & \centering $\only<15>0$ & \centering & \centering & \centering &\\[0mm]\hline \vx_2^+ & \centering $\infty$ & \centering $\only<3,6>\neginfty\only<9-10,13-15,18-19>{41}$ & \centering $\only<10,14-15>0\only<19>{41}$ & \centering $\only<15>0$ & \centering & \centering & \centering &\\[0mm]\hline \vx_2^- & \centering $\infty$ & \centering $\only<3,6>\neginfty\only<9-10,13-15,18-19>\infty$ & \centering $\only<10,14-15,19>0$ & \centering $\only<15>0$ & \centering & \centering & \centering &\\[0mm]\hline \vx_3^+ & \centering $\infty$ & \centering $\only<3,6,9-10>\neginfty\only<13-15,18-19>{41}$ & \centering $\only<10>\neginfty\only<14-15,19>{41}$ & \centering $\only<15>0$ & \centering & \centering & \centering &\\[0mm]\hline \vx_3^- & \centering $\infty$ & \centering $\only<3,6,9-10>\neginfty\only<13-15,18-19>0$ & \centering $\only<10>\neginfty\only<14-15,19>0$ & \centering $\only<15>0$ & \centering & \centering & \centering &\\[0mm]\hline \end{array} $} \pos{1,1.3}{\uncover<2-4>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2,0.5);\end{tikzpicture}}} \pos{3.4,1.3}{\uncover<5-16>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (1.6,0.5);\end{tikzpicture}}} \pos{5.3,1.3}{\uncover<17->{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2.5,0.5);\end{tikzpicture}}} % \pos{1,1.8}{\uncover<2-4>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2,0.5);\end{tikzpicture}}} \pos{3.4,1.8}{\uncover<5->{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (1.6,0.5);\end{tikzpicture}}} % \pos{1,2.3}{\uncover<2-7>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2,0.5);\end{tikzpicture}}} \pos{3.4,2.3}{\uncover<8->{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (6.0,0.5);\end{tikzpicture}}} % \pos{1,2.8}{\uncover<2-7>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2,0.5);\end{tikzpicture}}} \pos{3.4,2.8}{\uncover<8->{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (6,0.5);\end{tikzpicture}}} % \pos{1,3.3}{\uncover<2-11>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2,0.5);\end{tikzpicture}}} \pos{3.4,3.3}{\uncover<12->{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (7.5,0.5);\end{tikzpicture}}} % \pos{1,3.8}{\uncover<2-11>{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (2,0.5);\end{tikzpicture}}} \pos{3.4,3.8}{\uncover<12->{\begin{tikzpicture}[fill opacity=0.25, opacity=0.25]\pgfsetstrokecolor{blue}\filldraw[fill=blue] (0,0) rectangle (7.5,0.5);\end{tikzpicture}}} \only<21,22>{\brighten\brighten} \only<21>{\pos{1,1}{{\bf\huge \hspace*{1.1cm}\scalebox{2}[3]{\Rot{No further}} \bigskip \scalebox{2}[3]{\Rot{Improvement}} \bigskip \hspace*{1.2cm}\scalebox{2}[3]{\Rot{possible!}} }}} \only<22>{\pos{0.3,1.5}{{\bf\huge \bigskip \scalebox{2}[3.5]{\Rot{Least Solution}} \bigskip \bigskip \hspace*{3.5cm}\scalebox{2}[3.5]{\Rot{FOUND!}} }}} \end{frame} \frame{\frametitle{Theorem} \begin{itemize} \item<2-> Our \emph{strategy improvement algorithm} computes \emph{least solutions}. %of certain fixpoint equation systems over $\mathbb{Z} \cup \{ \neginfty, \infty \}$. \bigskip \item<3-> It can be used for performing \emph{precise zone analysis}. % i.e., no widening. \bigskip \item<4-> The number of \emph{strategy improvement steps} is at most exponential. \bigskip \item<5-> Each \emph{strategy improvement step} can be carried out by \emph{ordinary greatest fixpoint iteration}. \bigskip \item<6-> The greatest fixpoint iterations can be performed in \emph{strongly polynomial time} using a reduction to the \emph{minimum cost flow network problem}. \end{itemize} } %%% \outline{3} %%% \begin{frame}{Conclusion} \begin{itemize} \pause\item \emph{Strategy iteration} is an interesting alternative to valued-based Approaches. \pause\bigskip\item Computes \emph{minimal zones} instead of some small \emph{zones}. \pause\bigskip\item Extensions: \begin{itemize} \medskip \item[$\bullet$] \emph{Template-based} analysis: \emph{Linear}: \includegraphics[height=6mm]{figs/region_convex_poly}, i.e., $\vx + 2\vy \leq b_1 \wedge -\vy \leq b_2$ (ESOP'07) \emph{Quadratic}: \includegraphics[height=6mm]{figs/region_convex} \; \includegraphics[height=6mm]{figs/region_general}, i.e., $\vx^2 + 2\vx\vy \leq b_1 \wedge \vy^2 \leq b_2$ (SAS'10) \bigskip \item[$\bullet$] Strategy Iteration + \emph{SMT solving} (ESOP'11) \smallskip \quad From \; % $\begin{matrix}\text{ \scalebox{0.3}{ \begin{tikzpicture} \node (n1) [coordinate]{}; \node (n2) [coordinate,below of = n1,yshift=-10mm]{}; \node (n3) [coordinate,below of = n2,yshift=-10mm]{}; \path[-,ultra thick] (n1) edge [bend right] node [left,xshift=-2mm] {\huge $\mathbf{abstr.} (s_{1})$} (n2); \path[-,ultra thick] (n1) edge [bend left] node [right,xshift=2mm] {\huge $\mathbf{abstr.} (s_{1}')$} (n2); \path[->,ultra thick] (n2) edge [bend right] node [left,xshift=-2mm] {\huge $\mathbf{abstr.} (s_{2})$} (n3); \path[->,ultra thick] (n2) edge [bend left] node [right,xshift=2mm] {\huge $\mathbf{abstr.} (s_{2}')$} (n3); \end{tikzpicture} }}\end{matrix}$ % \; to \; % $\mathbf{abstr.} \begin{pmatrix}\text{ \scalebox{0.3}{ \begin{tikzpicture} \node (n1) [coordinate]{}; \node (n2) [coordinate,below of = n1,yshift=-10mm]{}; \node (n3) [coordinate,below of = n2,yshift=-10mm]{}; \path[-,ultra thick] (n1) edge [bend right] node [left,xshift=-2mm] {\huge $s_{1}$} (n2); \path[-,ultra thick] (n1) edge [bend left] node [right,xshift=2mm] {\huge $s_{1}'$} (n2); \path[->,ultra thick] (n2) edge [bend right] node [left,xshift=-2mm] {\huge $s_{2}$} (n3); \path[->,ultra thick] (n2) edge [bend left] node [right,xshift=2mm] {\huge $s_{2}'$} (n3); \end{tikzpicture} }}\end{pmatrix}$ % \medskip\item[$\bullet$] \emph{Unbounded Time} Verification for \emph{Cyber-Physical Systems} through Abstract Interpretation (ATVA'11, APLAS'11, Current Work) \end{itemize} \end{itemize} \vspace*{-2mm} \begin{center} \Large\bf \pause Thanks for Your Attention! \pause Questions? \end{center} \end{frame} %%% \begin{frame}[allowframebreaks]{References} \bibliographystyle{apalike2} \bibliography{bib} \end{frame}