../logos/usyølpg6s/TUM.pdf

 \leq , \leq

 \leadsto

$$\leq$$
 , \leq

$$\bigwedge_{i} \leq i \wedge \bigwedge_{i} - \leq i - i \wedge \bigwedge_{i} - i \leq i - i$$

$$\leq$$
 , \leq

$$\bigwedge_{i} \leq i \wedge \bigwedge_{i} - \leq i - i \wedge \bigwedge_{i} - i \leq i - i$$

$$\in \{-,,\}^{\times}$$

$$\gamma() := \{ \in \mathbb{Z} \mid \leq \} \\
\alpha() := \{ \in \overline{\mathbb{Z}} \mid \gamma() \supseteq \} \\
\subseteq \mathbb{Z}$$

$$\in \{-,,\}^{\times}$$

 $\gamma() := \{ \in \mathbb{Z} \mid \leq \}$ $\alpha() := \{ \in \overline{\mathbb{Z}} \mid \gamma() \supseteq \}$

 $\in \overline{\mathbb{Z}}$

 $\subseteq \mathbb{Z}$

$$(,) := (,)$$
 $\leq : (,) := (+,+) = \begin{pmatrix} & & \\ & & \end{pmatrix}$

$$\gamma\left(\begin{pmatrix}\infty\\\infty\\\infty\\\infty\end{pmatrix}\right) = \left\{\begin{pmatrix}0\\1\\1\\1\end{pmatrix}\right\} \begin{pmatrix}\infty\\\infty\\\infty\end{pmatrix} = \left\{\begin{pmatrix}0\\1\\1\\1\end{pmatrix}\right\} \begin{pmatrix}\infty\\\infty\\\infty\\\infty\end{pmatrix}\right\}$$

$$\left\{ \left(\right. \right. \right.$$


$$\gamma\left(\begin{pmatrix} \infty \\ \infty \\ \infty \end{pmatrix}\right) = \left\{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1$$

$$\gamma\left(\begin{pmatrix}\infty\\\infty\\\infty\\\infty\end{pmatrix}\right) = \left\{\left(\right) \mid \begin{pmatrix}\\\\-\end{pmatrix}\right)\left(\right) \le \begin{pmatrix}\infty\\\infty\\\infty\\\infty\end{pmatrix}\right\}$$

$$\cap$$

$$\langle \cdot \rangle$$

$$(,) := (,)$$
 $\leq ; (,) := (+, +) = \begin{pmatrix} & & \\ & & \end{pmatrix}$


```
> = + = +
```

ightharpoonup = +···+ +

```
> = + = +
```

▶ = + · · · + +

▶ = +···+ +

 \leq \wedge ' = +

$$\leq$$
 \wedge $'$ = +

 $\leq \wedge' = +() = \{' \mid \in \wedge \leq \wedge' = +\}$

$$\leq$$
 \wedge $'$ = +

 $\leq \wedge' = +() = \{' \mid \in \wedge \leq \wedge' = +\}$

 $\leq \wedge' = +^{\sharp}() = \alpha(\leq \wedge' = +(\gamma()))$

$$\overline{\mathbb{Z}}$$

$$=\begin{pmatrix} & \\ - & \end{pmatrix}$$

$$\overline{\mathbb{Z}}$$
 \longleftarrow

$$=\begin{pmatrix} & \\ - & \end{pmatrix}$$

$$\overline{\mathbb{Z}}$$

$$=\begin{pmatrix} & \\ - & \end{pmatrix}$$

$$\geq \infty$$

$$\overline{\mathbb{Z}}$$
 \leftarrow

 $= \begin{pmatrix} & \\ - & \end{pmatrix}$

$$\geq \infty$$

 $\geq \infty$

$$\overline{\mathbb{Z}}$$
 \longleftarrow

 $= \begin{pmatrix} & \\ - & \end{pmatrix}$

$$\geq \infty$$

$$(,) := (,)$$

$$\geq \infty$$

 $\geq \infty$
 $\geq \infty$

$$(,) := (,)$$

$$=\begin{pmatrix} \cdot \\ - \end{pmatrix}$$

$$\geq \infty$$

 $\geq \infty$

$$\stackrel{-}{\geq} \infty$$

 $\stackrel{\geq}{\geq} \infty$

$$\geq \infty$$

$$\geq \pi((,) := (,)^{\sharp}(,,))$$

$$(,) := (,)$$

$$\geq \infty$$

$$\geq \pi((,) := (,)^{\sharp}(,,))$$

 $\geq \infty$ $\geq \infty$

$$\geq \pi((,) := (,)^{\sharp} (,,))$$

 $\geq \pi((,) := (,)^{\sharp} (,,))$

$$(,) := (,)$$

$$=\begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$$

$$\geq \infty$$

$$\geq \pi((,) := (,)^{\sharp}(,,))$$

 $\geq \infty$ $\geq \infty$

$$\geq \pi((,) := (,)^{\sharp}(,,))$$

$$\geq \pi((,) := (,)^{\sharp}(,,))$$

$$\geq \pi((,) := (,)^{*}(, ,))$$

 $\geq \pi((,) := (,)^{\sharp}(, ,))$

$$(,) := (,)$$

$$\leq ; (,) := (+, +) = \begin{pmatrix} \\ \\ \end{pmatrix}$$

$$\geq \infty \geq \infty \geq \pi((,) := (,)^{\sharp}(,,)) \geq \pi((,) := (,)^{\sharp}(,,)) \geq \pi((,) := (,)^{\sharp}(,,))$$

 $\geq \infty$

$$(,) := (,)$$

$$\leq ; (,) := (+, +) = \begin{pmatrix} \\ \\ \end{pmatrix}$$

$$\geq \infty$$

 $\geq \infty$

 $\geq \infty$

$$\geq \pi((,) := (,)^{\sharp}(,,))$$

 $\geq \pi((,) := (,)^{\sharp}(,,))$

$$\geq \pi((,)) := (,)^{\sharp}(,,)$$

$$\geq \pi (\leq; (,) := (+,+)^{\sharp} (,,))$$

$$\overline{\mathbb{Z}}$$
 $(,) := (,)$
 $\leq ; (,) := (+, +) = \begin{pmatrix} \\ \\ \end{pmatrix}$

$$\geq \infty$$

 $\geq \pi((,) := (,)^{\sharp}(,,))$
 $\geq \pi((,) := (,)^{\sharp}(,,))$

 $\geq \infty$ $> \infty$

$$\geq \pi((,) := (,)^{\sharp} (,,))$$

$$\geq \pi(\leq ; (,) := (+, +)^{\sharp} (,,))$$

$$\geq \pi(\leq ; (,) := (+, +)^{\sharp} (,,))$$

$$\overline{\mathbb{Z}}$$

$$(,) := (,)$$

$$\leq ; (,) := (+, +) = \begin{pmatrix} \\ \\ - \end{pmatrix}$$

$$\geq \infty$$

$$\geq \infty$$

$$\geq \pi((,) := (,)^{\sharp}(,,))$$

 $\geq \infty$

$$\geq \pi((,) := (,)^{*}(,,))$$

 $\geq \pi((,) := (,)^{\sharp}(,,))$
 $\geq \pi((,) := (,)^{\sharp}(,,))$

$$\geq \pi(\leq;(,):=(+,+)^{\sharp}(,,)) \geq \pi(\leq;(,):=(+,+)^{\sharp}(,,)) \geq \pi(\leq;(,):=(+,+)^{\sharp}(,,))$$

$$\pi$$
(\leq \wedge ' $=$ $+$ \sharp ())

 $\pi(\leq \wedge' = +^{\sharp}())$ $=\pi(\alpha(\leq \wedge'=+(\gamma())))$

$$= \pi(\alpha(\leq \wedge' = + (\gamma())))$$

= $\pi(\alpha(\leq \wedge' = + (\{\in \mathbb{Z})\})$

$$=\pi(\alpha(\leq \wedge' = +(\{\in \mathbb{Z} \mid \leq \})))$$

 $\pi(\leq \wedge'=+^{\sharp}())$

$$=\pi(\alpha(\leq \wedge' = + (\gamma())))$$
$$-\pi(\alpha(\leq \wedge' - + (\beta \in \mathbb{Z}))$$

$$= 7$$

$$= 7$$

$$=\pi(\alpha(\leq \wedge' = +(\{\in \mathbb{Z} \mid \leq \})))$$

$$=\pi$$
 $=\pi$

$$=\pi(\alpha(\{'\mid ,'\in\mathbb{Z}\ \land\ \leq\ ,\ \land\ '=+\}))$$

$$= 7$$

 $\pi(\leq \wedge'=+^{\sharp}())$

$$\pi(\leq \wedge ' = + ^{\sharp}())$$
 $= \pi(\alpha(\leq \wedge ' = + (\gamma())))$
 $= \pi(\alpha(\leq \wedge ' = + (\{ \in \mathbb{Z} \mid \leq \})))$
 $= \pi(\alpha(\{' \mid ,' \in \mathbb{Z} \land \leq , \wedge ' = + \}))$

 $=\pi(\alpha(\{+\mid \in \mathbb{Z} \land \leq (,)\}))$

$$\pi(\leq \wedge' = + \sharp())$$

$$= \pi(\alpha(\leq \wedge' = + (\gamma())))$$

$$= \pi(\alpha(\leq \wedge' = + (\{ \in \mathbb{Z} \mid \leq \})))$$

$$= \pi(\alpha(\{' \mid ,' \in \mathbb{Z} \land \leq , \land ' = + \}))$$

$$= \pi(\alpha(\{ + \mid \in \mathbb{Z} \land \leq (,) \}))$$

 $= \{(+) \mid \in \mathbb{Z} \land < (,)\}$

$$\pi(\leq \wedge ' = + ^{\sharp}())$$

$$= \pi(\alpha(\leq \wedge ' = + (\gamma())))$$

$$= \pi(\alpha(\leq \wedge ' = + (\{ \in \mathbb{Z} \mid \leq \})))$$

$$= \pi(\alpha(\{' \mid , ' \in \mathbb{Z} \land \leq , \land ' = + \}))$$

$$= \pi(\alpha(\{ + \mid \in \mathbb{Z} \land \leq (,) \}))$$

$$= \{(+) \mid \in \mathbb{Z} \land \leq (,) \}$$

 $= + \{ | \in \mathbb{Z} \land < (,) \}$

$$\pi(\leq \wedge ' = + ^{\sharp}())$$

$$= \pi(\alpha(\leq \wedge ' = + (\gamma())))$$

$$= \pi(\alpha(\leq \wedge ' = + (\{ \in \mathbb{Z} \mid \leq \})))$$

$$= \pi(\alpha(\{' \mid ,' \in \mathbb{Z} \land \leq , \land ' = + \}))$$

$$= \pi(\alpha(\{ + \mid \in \mathbb{Z} \land \leq (,) \}))$$

$$= \{(+) \mid \in \mathbb{Z} \land \leq (,) \}$$

$$= + \{ \mid \in \mathbb{Z} \land \leq (,) \}$$

 $= + \{ \mid \in \mathbb{R} \land < (,) \}$

$$\pi(\leq \wedge ' = + ^{\sharp}())$$

$$= \pi(\alpha(\leq \wedge ' = + (\gamma())))$$

$$= \pi(\alpha(\leq \wedge ' = + (\{ \in \mathbb{Z} \mid \leq \})))$$

$$= \pi(\alpha(\{' \mid ,' \in \mathbb{Z} \land \leq , \land ' = + \}))$$

$$= \pi(\alpha(\{ + \mid \in \mathbb{Z} \land \leq (,) \}))$$

$$= \{(+) \mid \in \mathbb{Z} \land \leq (,) \}$$

$$= + \{ \mid \in \mathbb{Z} \land \leq (,) \}$$

 $= + \{ \mid \in \mathbb{R} \land < (,) \}$

 $= + \{((,))^{\top} \mid \in \mathbb{R}_{>} \wedge^{\top} = ()^{\top} \}$

$$\pi(\leq \wedge ' = + ^{\sharp}())$$

$$= \pi(\alpha(\leq \wedge ' = + (\gamma())))$$

$$= \pi(\alpha(\leq \wedge ' = + (\{ \in \mathbb{Z} \mid \leq \})))$$

$$= \pi(\alpha(\{' \mid ,' \in \mathbb{Z} \land \leq , \land ' = + \}))$$

$$= \pi(\alpha(\{ + \mid \in \mathbb{Z} \land \leq (,) \}))$$

$$= \{(+) \mid \in \mathbb{Z} \land \leq (,) \}$$

$$= + \{ \mid \in \mathbb{Z} \land \leq (,) \}$$

$$= + \{ \mid \in \mathbb{R} \land \leq (,) \}$$

 $= + \{((,))^{\top} \mid \in \mathbb{R}_{\geq} \wedge^{\top} = ()^{\top} \}$ $= + \{((,))^{\top} \mid \in \mathbb{Z}_{>} \wedge^{\top} = ()^{\top} \}$

- $= \ + \ \{((x,y))^\top \ | \ \in \mathbb{Z}_{>} \wedge^\top = (y)^\top \}$

 $\pi(\leq \wedge' = +^{\sharp}())$

 $\pi(\leq \wedge'=+^{\sharp}())$

 $= \ + \ \{((x,y))^\top \ | \ \in \mathbb{Z}_{>} \wedge^\top = (y)^\top \}$

$$\pi \circ \leq \wedge' = +^{\sharp} : \overline{\mathbb{Z}} \to \overline{\mathbb{Z}}$$

$$= + \{((x, y))^{\top} \mid x \in \mathbb{Z}_{\geq 0} \wedge x^{\top} = (y)^{\top} \}$$

 π (\leq \wedge ' = + $^{\sharp}$ ())

 $\pi \circ \langle \wedge' = +^{\sharp} : \overline{\mathbb{Z}} \to \overline{\mathbb{Z}}$

 $\overline{\mathbb{Z}} \to \overline{\mathbb{Z}}$

 $\pi(\le \wedge ' = + ^{\sharp}()) = + \{((,))^{\top} \mid \in \mathbb{Z}_{\ge} \wedge^{\top} = ()^{\top}\}$

 $\overline{\mathbb{Z}} \to \overline{\mathbb{Z}}$

$$\rightsquigarrow \mathcal{O}(\ \cdot \ \cdot (\ + \ \cdot \))$$

 $\pi \circ \langle \wedge' = +^{\sharp} : \overline{\mathbb{Z}} \to \overline{\mathbb{Z}}$

$$\begin{pmatrix} & - \\ - & - \end{pmatrix} \begin{pmatrix} \end{pmatrix} = \begin{pmatrix} \end{pmatrix}$$

 \top $\left(\begin{array}{c} \end{array}\right)$

$$\begin{array}{l} + \geq -\infty^{+} \geq + \geq + + \\ - \geq -\infty^{-} \geq - \geq - + (-) \\ + \geq -\infty^{+} \geq (- \geq -) ? \ \{^{+}, \} \\ - \geq -\infty^{-} \geq (- \geq -) ? - \\ + \geq -\infty^{+} \geq (- \geq - \& + \geq) ? \ \{^{+}, \} \\ - \geq -\infty^{-} \geq (- \geq - \& + \geq) ? \ \{^{-}, \} \end{array}$$

+	∞			
-	∞			
+	∞			
_	∞			
+	∞			
_	∞			

$$\begin{array}{l}
+ \ge -\infty^{+} \ge + \ge + + \\
- \ge -\infty^{-} \ge - \ge - + (-) \\
+ \ge -\infty^{+} \ge (- \ge -)? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge -)? - \\
+ \ge -\infty^{+} \ge (- \ge - \& + \ge)? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge - \& + \ge)? \{-, \}
\end{array}$$

+	∞			
_	∞			
+	∞			
	∞			
+	∞			
_	∞			

$$\begin{array}{l}
+ \ge -\infty^{+} \ge + \ge + + \\
- \ge -\infty^{-} \ge - \ge - + (-) \\
+ \ge -\infty^{+} \ge (- \ge -)? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge -)? - \\
+ \ge -\infty^{+} \ge (- \ge - \& + \ge)? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge - \& + \ge)? \{-, \}
\end{array}$$

+	∞	$-\infty$			
-	∞	$-\infty$			
+	∞	$-\infty$			
-	∞	$-\infty$			
+	∞	$-\infty$			
_	∞	$-\infty$			

$$\begin{array}{l}
-\infty + \ge -\infty^{+} \ge + \ge + + \\
-\infty - \ge -\infty^{-} \ge - \ge - + (-) \\
-\infty + \ge -\infty^{+} \ge (- \ge -)? \{+, \} \\
-\infty - \ge -\infty^{-} \ge (- \ge -)? \\
-\infty + \ge -\infty^{+} \ge (- \ge - \& + \ge)? \{+, \} \\
-\infty - \ge -\infty^{-} \ge (- \ge - \& + \ge)? \{-, \}
\end{array}$$

1 1	I			
+	∞			
_	∞			
+	∞			
_	∞			
+	∞			
_	∞			

$$\begin{array}{l}
-\infty^{+} \geq -\infty^{+} \geq ^{+} \geq ^{+} + \\
-\infty^{-} \geq -\infty^{-} \geq ^{-} \geq ^{-} + (-) \\
-\infty^{+} \geq -\infty^{+} \geq (^{-} \geq ^{-})? \{^{+}, \} \\
-\infty^{-} \geq -\infty^{-} \geq (^{-} \geq ^{-})? \\
-\infty^{+} \geq -\infty^{+} \geq (^{-} \geq ^{-} \geq ^{+} \geq)? \{^{+}, \} \\
-\infty^{-} \geq -\infty^{-} \geq (^{-} \geq ^{-} \geq ^{+} \geq)? \{^{-}, \}
\end{array}$$

1 1	I			1	1
+	∞				
_	∞				
+	∞				
_	∞				
+	∞				
_	∞				

$$\begin{array}{l}
-\infty^{+} \geq -\infty^{+} \geq ^{+} \geq ^{+} + \\
-\infty^{-} \geq -\infty^{-} \geq ^{-} \geq ^{-} + (-) \\
-\infty^{+} \geq -\infty^{+} \geq (^{-} \geq ^{-})? \{^{+}, \} \\
-\infty^{-} \geq -\infty^{-} \geq (^{-} \geq ^{-})? \\
-\infty^{+} \geq -\infty^{+} \geq (^{-} \geq ^{-} \wedge ^{+} \geq)? \{^{+}, \} \\
-\infty^{-} \geq -\infty^{-} \geq (^{-} \geq ^{-} \wedge ^{+} \geq)? \{^{-}, \}
\end{array}$$

1 1	1	l.	I	I	I	I	I
+	∞						
	∞						
+	∞	$-\infty$					
_	∞	$-\infty$					
+	∞	$-\infty$					
_	∞	$-\infty$					

+	∞			
-	∞			
+	∞			
-	∞			
+	∞			
_	∞			

		ı	i	ı	ı	İ	i
+	∞						
_	∞						
+	∞						
_	∞						
+	∞						
_	∞						

		1	1		ı	
+	∞					
-	∞					
+	∞					
_	∞	∞				
+	∞	$-\infty$				
_	∞	$-\infty$				

		1	1		ı	1
+	∞					
-	∞					
+	∞					
-	∞	∞				
+	∞	$-\infty$	$-\infty$			
_	∞	$-\infty$	$-\infty$			

+	∞			
	∞			
+	∞			
_	∞			
+	∞			
_	∞			

+	∞			
_	∞			
+	∞			
_	∞			
+	∞			
_	∞			

1 1	I		l	1	1]
+	∞					
	∞					
+	∞					
_	∞	∞				
+	∞					
_	∞					

1 1	I		l	1	1	1
+	∞					
	∞					
+	∞					
_	∞	∞				
+	∞					
_	∞					

1 1	I		l	1	1	1
+	∞					
	∞					
+	∞					
_	∞	∞				
+	∞					
_	∞					

$$\begin{array}{l}
+ \ge -\infty^{+} \ge + \ge + + \\
- \ge -\infty^{-} \ge - \ge - + (-) \\
+ \ge -\infty^{+} \ge (- \ge -)? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge -)? - \\
+ \ge -\infty^{+} \ge (- \ge - \& + \ge)? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge - \& + \ge)? \{-, \}
\end{array}$$

+	∞			
-	∞			
+	∞			
-	∞			
+	∞			
_	∞			

$$\begin{array}{l}
+ \ge -\infty^{+} \ge + \ge + + \\
- \ge -\infty^{-} \ge - \ge - + (-) \\
+ \ge -\infty^{+} \ge (- \ge -)? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge -)? - \\
+ \ge -\infty^{+} \ge (- \ge - \& + \ge)? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge - \& + \ge)? \{-, \}
\end{array}$$

+	∞			
_	∞			
+	∞			
_	∞			
+	∞			
_	∞			

$$\begin{array}{l}
+ \ge -\infty^{+} \ge + \ge + + \\
- \ge -\infty^{-} \ge - \ge - + (-) \\
+ \ge -\infty^{+} \ge (- \ge -) ? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge -) ? - \\
+ \ge -\infty^{+} \ge (- \ge - \& + \ge) ? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge - \& + \ge) ? \{-, \}
\end{array}$$

+	∞	∞			
-	∞				
+	∞				
-	∞	∞			
+	∞				
_	∞				

$$\begin{array}{l}
+ \ge -\infty^{+} \ge + \ge + + \\
- \ge -\infty^{-} \ge - \ge - + (-) \\
+ \ge -\infty^{+} \ge (- \ge -) ? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge -) ? - \\
+ \ge -\infty^{+} \ge (- \ge - \& + \ge) ? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge - \& + \ge) ? \{-, \}
\end{array}$$

+	∞	∞			
-	∞				
+	∞				
-	∞	∞			
+	∞				
_	∞				

$$\begin{array}{l}
+ \ge -\infty^{+} \ge + \ge + + \\
- \ge -\infty^{-} \ge - \ge - + (-) \\
+ \ge -\infty^{+} \ge (- \ge -)? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge -)? - \\
+ \ge -\infty^{+} \ge (- \ge - \& + \ge)? \{+, \} \\
- \ge -\infty^{-} \ge (- \ge - \& + \ge)? \{-, \}
\end{array}$$

+	∞			
_	∞			
+	∞			
_	∞			
+	∞			
_	∞			

$$\begin{array}{l} + \geq -\infty^{+} \geq ^{+} \geq ^{+} + \\ - \geq -\infty^{-} \geq ^{-} \geq ^{-} + (-) \\ + \geq -\infty^{+} \geq (^{-} \geq -) ? \{^{+}, \} \\ - \geq -\infty^{-} \geq (^{-} \geq -) ? ^{-} \\ + \geq -\infty^{+} \geq (^{-} \geq - \& ^{+} \geq) ? \{^{+}, \} \\ - \geq -\infty^{-} \geq (^{-} \geq - \& ^{+} \geq) ? \{^{-}, \} \end{array}$$

+	∞			
	∞			
+	∞			
	∞			
+	∞			
_	∞			

$$\begin{array}{l} + \geq -\infty^{+} \geq ^{+} \geq ^{+} + \\ - \geq -\infty^{-} \geq ^{-} \geq ^{-} + (-) \\ + \geq -\infty^{+} \geq (^{-} \geq -) ? \{^{+}, \} \\ - \geq -\infty^{-} \geq (^{-} \geq -) ? ^{-} \\ + \geq -\infty^{+} \geq (^{-} \geq - \& ^{+} \geq) ? \{^{+}, \} \\ - \geq -\infty^{-} \geq (^{-} \geq - \& ^{+} \geq) ? \{^{-}, \} \end{array}$$

+	∞			
	∞			
+	∞			
	∞			
+	∞			
_	∞			

$$\begin{array}{c} + \leq \wedge - \leq \\ + \leq \wedge \leq \end{array}$$

 $\begin{array}{c} A(x) \bigwedge_{i} A(x) \\ A(x) \bigwedge_{i} A(x) \end{array} \cdot \left(\begin{array}{c} \bigwedge_{i} Y \\ \bigvee_{i} Y \end{array} \right)$

$$\begin{array}{c} + \leq \wedge - \leq \\ + \leq \wedge \leq \end{array}$$

 $\begin{array}{c} A(x) \bigwedge_{i} A(x) \\ A(x) \bigwedge_{i} A(x) \end{array} \cdot \left(\begin{array}{c} \bigwedge_{i} Y \\ \bigvee_{i} Y \end{array} \right)$

$$\begin{array}{c} + \leq \wedge - \leq \\ + \leq \wedge \leq \end{array}$$

 $\begin{array}{c} A(x) \bigwedge_{i} A(x) \\ A(x) \bigwedge_{i} A(x) \end{array} \cdot \left(\begin{array}{c} \bigwedge_{i} Y \\ \bigvee_{i} Y \end{array} \right)$