
Fig. 1. An harmonic oscillator, its Euler integration scheme and the loop invariant
found at control point 2

x = [ 0 , 1 ] ;
v : = [ 0 , 1 ] ;
h = 0 . 0 1 ;
whi l e ( t rue ) { [ 2 ]

w = v ;
v = v∗(1−h)−h∗x ;
x = x+h∗w; [ 3 ] } {−1.8708 ≤ x ≤ 1.8708, −1.5275 ≤ v ≤ 1.5275, 2x2 + 3v2 + 2xv ≤ 7}

these quantities. This means that we consider the linear templates based on
{x,−x, v,−v}, i.e. intervals for each variable of the program, together with the
non-linear template 2x2 + 3v2 + 2xv. The last template comes from the Lya-
punov function that the designer of the algorithm may have considered to prove
the stability of his scheme, before it has been implemented. In view of proving
the implementation correct, one is naturally led to considering such templates1.
Last but not least, it is to be noted that the loop invariant using intervals, zones,
octagons or even polyhedra (hence with any linear template) is the very disap-
pointing invariant h = 0.01 (the variables v and x cannot be bounded.) However,
the main interest of the present method is to carry over to the non-linear set-
ting. For instance, we include in our benchmarks a computation of invariants (of
the same quality) for an implementation of the Arrow-Hurwicz algorithm, which
is essentially an harmonic oscillator limited by a non-linear saturation term (a
projection on the positive cone), or a highly degenerate example (a symplec-
tic integration scheme, for which alternative methods fail due to the absence of
stability margin).

Contributions of the paper We describe the lattice theoretical operations in terms
of Galois connections and generalized convexity in Section 2. We also show that
in the case of a basis of quadratic functions, good over-approximations FR of ab-
stractions F ! of semantic functionals can be computed in polynomial time (Sec-
tion 3). Such over-approximations are obtained using Shor’s relaxation, which is
based on semi-definite programming. Moreover, we show in Subsection 4.3 that
the multipliers produced by this relaxation are naturally “policies”, in a policy
iteration technique for finding the fixpoints of FR, precisely over-approximating
the fixpoints of F !. Finally, we illustrate on examples (linear recursive filters, nu-
merical integration schemes) that policy iteration on such quadratic templates is
extremely efficient and precise in practice, compared with Kleene iteration with
widenings/narrowings. The fact that quadratic templates are efficient on such
algorithms is generally due to the existence of (quadratic) Lyapunov functions
that prove their stability. The method has been implemented as a set of Matlab
programs.

1 Of course, as for the templates of [SSM05,SCSM06], we can be interested in automat-
ically finding or refining the set of templates considered to achieve a good precision
of the abstract analysis, but this is outside the scope of this article.


