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Lives - X-ray machines, helicopters, cars
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» The more bugs we can catch at compile time, the better



Static analysis is good

» The more bugs we can catch at compile time, the better

» We can't catch all bugs - Rice's theorem[4]
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Modelling programs

x=0

y=1

while x < 8 > value at start of this line
X=x+2
y=y+2

endwhile

x={0,2,4,6,8}
y = {17375’7?9}



Abstract interpretation

Basic idea: simplify your domain
Instead of arbitrary subsets of Z, something less precise:

» signs[l]: x € {Z,Z*,Z~,0}
» ranges[l]: x < a;,—x<b, a,beZ
» zones[3]: x—y <c;tx<cceZ



Abstract interpretation
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Figure: Comparison between concrete and abstract domains



max-strategy improvement

» Transform a program into equations

» Solve equations



max-strategy example

x=0

while x < 8
X=x4+2

endwhile

print(x)
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max-strategy example

x=0

while x < 8
X=x4+2

endwhile

print(x)

> A
> B

> C

ub(x)a = o0
ub(x)g = max(0, min(ub(x)g, 8) + 2)
ub(x)c = ub(x)p




max-strategies

A max-strategy is a decision about which argument in a
max-expression to choose.

ub(x)a = o0
ub(x)g = max(0, min(ub(x)g,8) + 2)
ub(x)c = ub(x)p
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A max-strategy is a decision about which argument in a
max-expression to choose.
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Solver

Maximiser
improve strategy

variable assignment max-strategy

Minimiser
find assignment

Figure: The high-level structure of the solver presented in [2]



Solver - enhancements

The big idea: take into account data-dependencies
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y = max(0,x + 5, x)

z=max(0,z+ 1, x)
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x = max(0, min(x — 1, y))
y = max(0,x + 5, x)

z=max(0,z+ 1, x)



Solver - enhancements

Maximiser
improve strategy

variable assignment max-strategy
change set change set
Minimiser

find assignment

Figure: The high-level structure of our enhanced solver



Implementation

» Implemented in C++
» Integrated into the LLVM/Clang static analysis framework



Example system



Runtime improvements
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Figure: Performance of the naive algorithm
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Runtime improvements
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Figure: Performance of our improved algorithm



Future work

» Still slightly over-approximating dependencies

» LLVM/Clang integration is only a proof-of-concept
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Contributions

» Improvement of max-strategy iteration algorithm, leveraging
sparsity of variable dependencies

» Implementation of a max-strategy iteration based static
analyser in the LLVM/Clang framework
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