Implementing and Evaluating a Strategy-Iteration
Based Static Analyser within the LLVM
framework

Carlo Zancanaro

November 12, 2012

Bugs are bad

» Money - recently Knight Capital, US$440 million lost in a day

Bugs are bad

» Money - recently Knight Capital, US$440 million lost in a day
» Time - 50% of development time is spent debugging|5]

Bugs are bad

» Money - recently Knight Capital, US$440 million lost in a day
» Time - 50% of development time is spent debugging|5]

» Security - buffer overflows and other security flaws

Bugs are bad

» Money - recently Knight Capital, US$440 million lost in a day
Time - 50% of development time is spent debugging[5]

v

v

Security - buffer overflows and other security flaws

v

Lives - X-ray machines, helicopters, cars

Static analysis is good

» The more bugs we can catch at compile time, the better

Static analysis is good

» The more bugs we can catch at compile time, the better

» We can't catch all bugs - Rice's theorem[4]

Modelling programs

x=0

y=1

while x < 8 > value at start of this line
X=x+2
y=y+2

endwhile

Modelling programs

x=0

y=1

while x < 8 > value at start of this line
X=x+2
y=y+2

endwhile

x = {0}
y={1}

Modelling programs

x=0

y=1

while x < 8 > value at start of this line
X=x+2
y=y+2

endwhile

x = {0,2}
Yy = {1’3}

Modelling programs

x=0

y=1

while x < 8 > value at start of this line
X=x+2
y=y+2

endwhile

x ={0,2,4}
y =1{1,3,5}

Modelling programs

x=0

y=1

while x < 8 > value at start of this line
X=x+2
y=y+2

endwhile

X = {0’ 2’47 6}
y =1{1,3,5,7}

Modelling programs

x=0

y=1

while x < 8 > value at start of this line
X=x+2
y=y+2

endwhile

x={0,2,4,6,8}
y = {17375’7?9}

Abstract interpretation

Basic idea: simplify your domain
Instead of arbitrary subsets of Z, something less precise:

» signs[l]: x € {Z,Z*,Z~,0}
» ranges[l]: x < a;,—x<b, a,beZ
» zones[3]: x—y <c;tx<cceZ

Abstract interpretation

107

O H N W & 01 O N 00 O
°

01 2 3 45 6 7 8 910

Figure: Comparison between concrete and abstract domains

max-strategy improvement

» Transform a program into equations

» Solve equations

max-strategy example

x=0

while x < 8
X=x4+2

endwhile

print(x)

> A
> B

> C

o

c

I~

<

oS- o O

o
—

X

—~ o~

X

X

x

— ~— ~—

A T ® >

VvV IV IV IV

g

3 ©

in(ub(x)g,8) + 2
ub(x)p

max-strategy example

x=0

while x < 8
X=x4+2

endwhile

print(x)

> A
> B

> C

ub(x)a = o0
ub(x)g = max(0, min(ub(x)g, 8) + 2)
ub(x)c = ub(x)p

max-strategies

A max-strategy is a decision about which argument in a
max-expression to choose.

ub(x)a = o0
ub(x)g = max(0, min(ub(x)g,8) + 2)
ub(x)c = ub(x)p

max-strategies

A max-strategy is a decision about which argument in a
max-expression to choose.

ub(x)a = o0
ub(x)g = max(0, min(ub(x)g,8) + 2)
ub(x)c = ub(x)p

max-strategies

A max-strategy is a decision about which argument in a
max-expression to choose.

ub(x)a = o0
ub(x)g = max(0, min(ub(x)g,8) + 2)
ub(x)c = ub(x)p

Solver

Maximiser
improve strategy

variable assignment max-strategy

Minimiser
find assignment

Figure: The high-level structure of the solver presented in [2]

Solver - enhancements

The big idea: take into account data-dependencies

x = max(0, min(x — 1, y))
y = max(0,x + 5, x)

z=max(0,z+ 1, x)

Solver - enhancements

The big idea: take into account data-dependencies

x = max(0, min(x — 1, y))
y = max(0,x + 5, x)

z=max(0,z+ 1, x)

Solver - enhancements

The big idea: take into account data-dependencies

x = max(0, min(x — 1, y))
y = max(0,x + 5, x)

z=max(0,z+ 1, x)

Solver - enhancements

The big idea: take into account data-dependencies

x = max(0, min(x — 1, y))
y = max(0,x + 5, x)

z=max(0,z+ 1, x)

Solver - enhancements

Maximiser
improve strategy

variable assignment max-strategy
change set change set
Minimiser

find assignment

Figure: The high-level structure of our enhanced solver

Implementation

» Implemented in C++
» Integrated into the LLVM/Clang static analysis framework

Example system

Runtime improvements

time (in seconds)

10!
10°
1071
1072
10-3
1074

1072
100

T XTI 1 A M TTT| AW NY 1] AW AN W=

101 102 103
size of equation system

Figure: Performance of the naive algorithm

10%

Runtime improvements

time (in seconds)
[y
o
.

10° 101 102 103 10*
size of equation system

Figure: Performance of our improved algorithm

Future work

» Still slightly over-approximating dependencies

» LLVM/Clang integration is only a proof-of-concept

References |

[1]

2]

P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238-252, Los Angeles,
California, 1977. ACM Press, New York, NY.

T. Gawlitza and H. Seidl. Precise fixpoint computation through
strategy iteration. In Proceedings of the 16th European
conference on Programming, ESOP'07, pages 300-315, Berlin,
Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-71314-2.
URL
http://dl.acm.org/citation.cfm?id=1762174.1762203.

http://dl.acm.org/citation.cfm?id=1762174.1762203

References |l

[3] A. Miné. A new numerical abstract domain based on
difference-bound matrices. In Proc. of the 2d Symp. on
Programs as Data Objects (PADO 1), volume 2053 of Lecture
Notes in Computer Science, pages 155-172. Springer, May
2001. http://www.di.ens.fr/~mine/publi/
article-mine-padoIl.pdf.

[4] H. Rice. Classes of recursively enumerable sets and their
decision problems. Transactions of the American Mathematical
Society, 83, 1953.

[5] A. Zeller. Why Programs Fail: A Guide to Systematic
Debugging.

http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf

Contributions

» Improvement of max-strategy iteration algorithm, leveraging
sparsity of variable dependencies

» Implementation of a max-strategy iteration based static
analyser in the LLVM/Clang framework

	Introduction
	Prior work
	Contribution
	Results
	Future work

