
Implementing and Evaluating a Strategy-Iteration
Based Static Analyser within the LLVM

framework

Carlo Zancanaro

November 12, 2012



Bugs are bad

I Money - recently Knight Capital, US$440 million lost in a day

I Time - 50% of development time is spent debugging[5]

I Security - buffer overflows and other security flaws

I Lives - X-ray machines, helicopters, cars
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Static analysis is good

I The more bugs we can catch at compile time, the better

I We can’t catch all bugs - Rice’s theorem[4]
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Modelling programs

x = 0
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while x < 8 . value at start of this line
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Modelling programs

x = 0
y = 1
while x < 8 . value at start of this line

x = x + 2
y = y + 2

endwhile

x = {0, 2, 4, 6, 8}
y = {1, 3, 5, 7, 9}



Abstract interpretation

Basic idea: simplify your domain
Instead of arbitrary subsets of Z, something less precise:

I signs[1]: x ∈ {Z,Z+,Z−, 0}
I ranges[1]: x ≤ a;−x ≤ b, a, b ∈ Z
I zones[3]: x − y ≤ c ;±x ≤ c c ∈ Z



Abstract interpretation
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Figure: Comparison between concrete and abstract domains



max-strategy improvement

I Transform a program into equations

I Solve equations



max-strategy example

x = 0 . A
while x ≤ 8 . B

x = x + 2
endwhile
print(x) . C

ub(x)A ≥ ∞
ub(x)B ≥ 0

ub(x)B ≥ min(ub(x)B , 8) + 2

ub(x)C ≥ ub(x)B
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max-strategies

A max-strategy is a decision about which argument in a
max-expression to choose.
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Solver

Maximiser
improve strategy

Minimiser
find assignment

variable assignment max-strategy

Figure: The high-level structure of the solver presented in [2]



Solver - enhancements

The big idea: take into account data-dependencies

x = max(0,min(x − 1, y))

y = max(0, x + 5, x)

z = max(0, z + 1, x)
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Solver - enhancements

Maximiser
improve strategy

Minimiser
find assignment

variable assignment
change set

max-strategy
change set

Figure: The high-level structure of our enhanced solver



Implementation

I Implemented in C++

I Integrated into the LLVM/Clang static analysis framework



Example system

x0 = max(−∞, 0)

x1 = max(−∞, x0)

x2 = max(−∞, x1)

... ...

xn = max(−∞, xn−1)



Runtime improvements
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Figure: Performance of the naive algorithm
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Figure: Performance of our improved algorithm



Future work

I Still slightly over-approximating dependencies

I LLVM/Clang integration is only a proof-of-concept
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Contributions

I Improvement of max-strategy iteration algorithm, leveraging
sparsity of variable dependencies

I Implementation of a max-strategy iteration based static
analyser in the LLVM/Clang framework
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