
Implementing and Evaluating a Strategy-Iteration
Based Static Analyser within the LLVM

framework

Carlo Zancanaro

November 12, 2012

Bugs are bad

I Money - recently Knight Capital, US$440 million lost in a day

I Time - 50% of development time is spent debugging[5]

I Security - buffer overflows and other security flaws

I Lives - X-ray machines, helicopters, cars

Bugs are bad

I Money - recently Knight Capital, US$440 million lost in a day

I Time - 50% of development time is spent debugging[5]

I Security - buffer overflows and other security flaws

I Lives - X-ray machines, helicopters, cars

Bugs are bad

I Money - recently Knight Capital, US$440 million lost in a day

I Time - 50% of development time is spent debugging[5]

I Security - buffer overflows and other security flaws

I Lives - X-ray machines, helicopters, cars

Bugs are bad

I Money - recently Knight Capital, US$440 million lost in a day

I Time - 50% of development time is spent debugging[5]

I Security - buffer overflows and other security flaws

I Lives - X-ray machines, helicopters, cars

Static analysis is good

I The more bugs we can catch at compile time, the better

I We can’t catch all bugs - Rice’s theorem[4]

Static analysis is good

I The more bugs we can catch at compile time, the better

I We can’t catch all bugs - Rice’s theorem[4]

Modelling programs

x = 0
y = 1
while x < 8 . value at start of this line

x = x + 2
y = y + 2

endwhile

Modelling programs

x = 0
y = 1
while x < 8 . value at start of this line

x = x + 2
y = y + 2

endwhile

x = {0}
y = {1}

Modelling programs

x = 0
y = 1
while x < 8 . value at start of this line

x = x + 2
y = y + 2

endwhile

x = {0, 2}
y = {1, 3}

Modelling programs

x = 0
y = 1
while x < 8 . value at start of this line

x = x + 2
y = y + 2

endwhile

x = {0, 2, 4}
y = {1, 3, 5}

Modelling programs

x = 0
y = 1
while x < 8 . value at start of this line

x = x + 2
y = y + 2

endwhile

x = {0, 2, 4, 6}
y = {1, 3, 5, 7}

Modelling programs

x = 0
y = 1
while x < 8 . value at start of this line

x = x + 2
y = y + 2

endwhile

x = {0, 2, 4, 6, 8}
y = {1, 3, 5, 7, 9}

Abstract interpretation

Basic idea: simplify your domain
Instead of arbitrary subsets of Z, something less precise:

I signs[1]: x ∈ {Z,Z+,Z−, 0}
I ranges[1]: x ≤ a;−x ≤ b, a, b ∈ Z
I zones[3]: x − y ≤ c ;±x ≤ c c ∈ Z

Abstract interpretation

0 1 2 3 4 5 6 7 8 9 10
x0

1

2

3

4

5

6

7

8

9

10
y

Figure: Comparison between concrete and abstract domains

max-strategy improvement

I Transform a program into equations

I Solve equations

max-strategy example

x = 0 . A
while x ≤ 8 . B

x = x + 2
endwhile
print(x) . C

ub(x)A ≥ ∞
ub(x)B ≥ 0

ub(x)B ≥ min(ub(x)B , 8) + 2

ub(x)C ≥ ub(x)B

max-strategy example

x = 0 . A
while x ≤ 8 . B

x = x + 2
endwhile
print(x) . C

ub(x)A =∞
ub(x)B = max(0,min(ub(x)B , 8) + 2)

ub(x)C = ub(x)B

max-strategies

A max-strategy is a decision about which argument in a
max-expression to choose.

ub(x)A =∞
ub(x)B = max(0, min(ub(x)B , 8) + 2)

ub(x)C = ub(x)B

max-strategies

A max-strategy is a decision about which argument in a
max-expression to choose.

ub(x)A =∞
ub(x)B = max(0, min(ub(x)B , 8) + 2)

ub(x)C = ub(x)B

max-strategies

A max-strategy is a decision about which argument in a
max-expression to choose.

ub(x)A =∞
ub(x)B = max(0, min(ub(x)B , 8) + 2)

ub(x)C = ub(x)B

Solver

Maximiser
improve strategy

Minimiser
find assignment

variable assignment max-strategy

Figure: The high-level structure of the solver presented in [2]

Solver - enhancements

The big idea: take into account data-dependencies

x = max(0,min(x − 1, y))

y = max(0, x + 5, x)

z = max(0, z + 1, x)

Solver - enhancements

The big idea: take into account data-dependencies

x = max(0,min(x − 1, y))

y = max(0, x + 5, x)

z = max(0, z + 1, x)

Solver - enhancements

The big idea: take into account data-dependencies

x = max(0,min(x − 1, y))

y = max(0, x + 5, x)

z = max(0, z + 1, x)

Solver - enhancements

The big idea: take into account data-dependencies

x = max(0,min(x − 1, y))

y = max(0, x + 5, x)

z = max(0, z + 1, x)

Solver - enhancements

Maximiser
improve strategy

Minimiser
find assignment

variable assignment
change set

max-strategy
change set

Figure: The high-level structure of our enhanced solver

Implementation

I Implemented in C++

I Integrated into the LLVM/Clang static analysis framework

Example system

x0 = max(−∞, 0)

x1 = max(−∞, x0)

x2 = max(−∞, x1)

... ...

xn = max(−∞, xn−1)

Runtime improvements

100 101 102 103 104
10−5

10−4

10−3

10−2

10−1

100

101

size of equation system

ti
m

e
(i

n
se

co
n

d
s)

Figure: Performance of the naive algorithm

Runtime improvements

100 101 102 103 104

10−4

10−3

10−2

10−1

100

101

size of equation system

ti
m

e
(i

n
se

co
n

d
s)

Figure: Performance of our improved algorithm

Future work

I Still slightly over-approximating dependencies

I LLVM/Clang integration is only a proof-of-concept

References I

[1] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles,
California, 1977. ACM Press, New York, NY.

[2] T. Gawlitza and H. Seidl. Precise fixpoint computation through
strategy iteration. In Proceedings of the 16th European
conference on Programming, ESOP’07, pages 300–315, Berlin,
Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-71314-2.
URL
http://dl.acm.org/citation.cfm?id=1762174.1762203.

http://dl.acm.org/citation.cfm?id=1762174.1762203

References II

[3] A. Miné. A new numerical abstract domain based on
difference-bound matrices. In Proc. of the 2d Symp. on
Programs as Data Objects (PADO II), volume 2053 of Lecture
Notes in Computer Science, pages 155–172. Springer, May
2001. http://www.di.ens.fr/~mine/publi/

article-mine-padoII.pdf.

[4] H. Rice. Classes of recursively enumerable sets and their
decision problems. Transactions of the American Mathematical
Society, 83, 1953.

[5] A. Zeller. Why Programs Fail: A Guide to Systematic
Debugging.

http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf

Contributions

I Improvement of max-strategy iteration algorithm, leveraging
sparsity of variable dependencies

I Implementation of a max-strategy iteration based static
analyser in the LLVM/Clang framework

	Introduction
	Prior work
	Contribution
	Results
	Future work

