/*--------------------------------------------------------------------------*/ /*---------------------------- File MCFSimplex.C ---------------------------*/ /*--------------------------------------------------------------------------*/ /*-- --*/ /*-- Linear and Quadratic Min Cost Flow problems solver based on the --*/ /*-- (primal and dual) simplex algorithm. Conforms to the standard MCF --*/ /*-- interface defined in MCFClass.h. --*/ /*-- --*/ /*-- VERSION 1.00 --*/ /*-- 29 - 08 - 2011 --*/ /*-- --*/ /*-- Implementation: --*/ /*-- --*/ /*-- Alessandro Bertolini --*/ /*-- Antonio Frangioni --*/ /*-- --*/ /*-- Operations Research Group --*/ /*-- Dipartimento di Informatica --*/ /*-- Universita' di Pisa --*/ /*-- --*/ /*-- Copyright (C) 2008 - 2011 by Alessandro Bertolini, Antonio Frangioni --*/ /*-- --*/ /*--------------------------------------------------------------------------*/ /*--------------------------------------------------------------------------*/ /*--------------------------- IMPLEMENTATION -------------------------------*/ /*--------------------------------------------------------------------------*/ /*--------------------------------------------------------------------------*/ /*--------------------------------------------------------------------------*/ /*------------------------------ INCLUDES ----------------------------------*/ /*--------------------------------------------------------------------------*/ #include "MCFSimplex.h" #include #include #include #include /*--------------------------------------------------------------------------*/ /*-------------------------------- USING -----------------------------------*/ /*--------------------------------------------------------------------------*/ #if( OPT_USE_NAMESPACES ) using namespace MCFClass_di_unipi_it; #endif /*--------------------------------------------------------------------------*/ /*-------------------------------- MACROS ----------------------------------*/ /*--------------------------------------------------------------------------*/ #define LIMITATEPRECISION 1 /* If LIMITATEPRECISION is 1, in the quadratic case the Primal Simplex accepts entering arc in base only if the decrease of the o.f. value is bigger than a fixed thresold (EpsOpt * oldFOValue / n). Otherwise, any strict decrease in the o.f. value is accepted. */ #define UNIPI_PRIMAL_INITIAL_SHOW 0 /* If UNIPI_PRIMAL_INITIAL_SHOW = 1, Primal Simplex shows the initial condition (arcs and nodes) of the network. */ #define UNIPI_PRIMAL_ITER_SHOW 0 /* If UNIPI_PRIMAL_FINAL_SHOW = x with x > 0, Primal Simplex shows the condition (arcs and nodes) of the network every x iterations. */ #define UNIPI_PRIMAL_FINAL_SHOW 0 /* If UNIPI_PRIMAL_FINAL_SHOW = 1, Primal Simplex shows the final condition (arcs and nodes) of the network. */ #define UNIPI_DUAL_INITIAL_SHOW 0 /* If UNIPI_DUAL_INITIAL_SHOW = 1, Dual Simplex shows the initial condition (arcs and nodes) of the network. */ #define UNIPI_DUAL_ITER_SHOW 0 /* If UNIPI_DUAL_FINAL_SHOW = x with x > 0, Dual Simplex shows the condition (arcs and nodes) of the network every x iterations. */ #define UNIPI_DUAL_FINAL_SHOW 0 /* If UNIPI_DUAL_FINAL_SHOW = 1, Dual Simplex shows the final condition (arcs and nodes) of the network. */ #define UNIPI_VIS_DUMMY_ARCS 1 /* If UNIPI_VIS_DUMMY_ARCS = 1, Primal Simplex or Dual Simplex shows the conditions of the dummy arcs. */ #define UNIPI_VIS_ARC_UPPER 1 #define UNIPI_VIS_ARC_COST 1 #define UNIPI_VIS_ARC_Q_COST 1 #define UNIPI_VIS_ARC_REDUCT_COST 1 #define UNIPI_VIS_ARC_STATE 1 #define UNIPI_VIS_NODE_BASIC_ARC 1 /* When Primal Simplex or Dual Simplex shows the conditions of the network, for every arcs the algorithm shows the flow, for every nodes it shows balance and potential. These 6 flags decide if the algorithm shows a particular value of the arcs/nodes; for example if UNIPI_VIS_ARC_UPPER == 1, the algorithm shows the upper bounds of all arcs. */ #define FOSHOW 0 /* If FOSHOW is 1, the algorithm shows the f.o. value every x iterations (x = UNIPI_PRIMAL_ITER_SHOW or x = UNIPI_DUAL_ITER_SHOW). */ #define OPTQUADRATIC 0 /* If OPTQUADRATIC is 1 the Primal Simplex, in the quadratic case, tries to optimize the update of the potential. Unfortunately this doesn't work well: for this reason it is set to 0. */ #ifndef throw // QUICK HACK #define throw(x) assert(false); #endif /*--------------------------------------------------------------------------*/ /*--------------------------- FUNCTIONS ------------------------------------*/ /*--------------------------------------------------------------------------*/ template inline T ABS( const T x ) { return( x >= T( 0 ) ? x : - x ); } /*--------------------------------------------------------------------------*/ template inline void Swap( T &v1 , T &v2 ) { T temp = v1; v1 = v2; v2 = temp; } /*--------------------------------------------------------------------------*/ /*--------------------------- CONSTANTS ------------------------------------*/ /*--------------------------------------------------------------------------*/ #if( QUADRATICCOST == 0 ) static const char DELETED = -2; // ident for deleted arcs static const char CLOSED = -1; // ident for closed arcs static const char BASIC = 0; // ident for basis arcs static const char AT_LOWER = 1; // ident for arcs in L static const char AT_UPPER = 2; // ident for arcs in U #endif /* These macros will be used by method MemAllocCandidateList() to set the values of numCandidateList and hotListSize. There are different macros, according to: - the used Simplex - the size of the network - (obviously) the different variables This set of values tries to improve the performance of the two algorithms according to diversified situations. */ static const int PRIMAL_LOW_NUM_CANDIDATE_LIST = 30; static const int PRIMAL_MEDIUM_NUM_CANDIDATE_LIST = 50; static const int PRIMAL_HIGH_NUM_CANDIDATE_LIST = 200; static const int PRIMAL_LOW_HOT_LIST_SIZE = 5; static const int PRIMAL_MEDIUM_HOT_LIST_SIZE = 10; static const int PRIMAL_HIGH_HOT_LIST_SIZE = 20; static const int DUAL_LOW_NUM_CANDIDATE_LIST = 6; static const int DUAL_HIGH_NUM_CANDIDATE_LIST = 10; static const int DUAL_LOW_HOT_LIST_SIZE = 1; static const int DUAL_HIGH_HOT_LIST_SIZE = 2; /*--------------------------------------------------------------------------*/ /*--------------------------- COSTRUCTOR -----------------------------------*/ /*--------------------------------------------------------------------------*/ MCFSimplex::MCFSimplex( cIndex nmx , cIndex mmx ) : MCFClass( nmx , mmx ) { #if( QUADRATICCOST ) if( numeric_limits::is_integer ) throw( MCFException( "FNumber must be float if QUADRATICCOST == 1" ) ); if( numeric_limits::is_integer ) throw( MCFException( "CNumber must be float if QUADRATICCOST == 1" ) ); #endif usePrimalSimplex = true; newSession = true; if( nmax && mmax ) MemAlloc(); else nmax = mmax = 0; #if( QUADRATICCOST ) recomputeFOLimits = 100; // recomputeFOLimits represents the limit of the iteration in which // quadratic Primal Simplex computes "manually" the f.o. value EpsOpt = 1e-13; // EpsOpt is the fixed precision of the quadratic Primal Simplex #endif pricingRule = kCandidateListPivot; forcedNumCandidateList = 0; forcedHotListSize = 0; usePrimalSimplex = true; nodesP = NULL; nodesD = NULL; arcsP = NULL; arcsD = NULL; candP = NULL; candD = NULL; if( numeric_limits::is_integer ) MAX_ART_COST = CNumber( 1e7 ); else MAX_ART_COST = CNumber( 1e10 ); } // end( MCFSimplex ) /*--------------------------------------------------------------------------*/ /*-------------------------- OTHER INITIALIZATIONS -------------------------*/ /*--------------------------------------------------------------------------*/ void MCFSimplex::LoadNet( cIndex nmx , cIndex mmx , cIndex pn , cIndex pm , cFRow pU , cCRow pC , cFRow pDfct , cIndex_Set pSn , cIndex_Set pEn ) { MemDeAllocCandidateList(); if( ( nmx != nmax ) || ( mmx != mmax ) ) { // if the size of the allocated memory changes if( nmax && mmax ) { // if the memory was already allocated MemDeAlloc(true); // deallocate the Primal MemDeAlloc(false); // and the Dual data structures nmax = mmax = 0; } if( nmx && mmx ) { // if the new dimensions of the memory are correct nmax = nmx; mmax = mmx; MemAlloc(); } } if( ( ! nmax ) || ( ! mmax ) ) // if one of the two dimension of the memory isn't correct nmax = mmax = 0; if( nmax ) { // if the new dimensions of the memory are correct n = pn; m = pm; if( usePrimalSimplex ) { stopNodesP = nodesP + n; dummyRootP = nodesP + nmax; for( nodePType *node = nodesP ; node != stopNodesP ; node++ ) node->balance = pDfct[ node - nodesP ]; // initialize nodes stopArcsP = arcsP + m; dummyArcsP = arcsP + mmax; stopDummyP = dummyArcsP + n; for( arcPType *arc = arcsP ; arc != stopArcsP ; arc++ ) { // initialize real arcs if (pC) arc->cost = pC[ arc - arcsP ]; else arc->cost = 0; #if( QUADRATICCOST ) arc->quadraticCost = 0; #endif if (pU) arc->upper = pU[ arc - arcsP ]; else arc->upper = Inf(); arc->tail = nodesP + pSn[ arc - arcsP ] - 1; arc->head = nodesP + pEn[ arc - arcsP ] - 1; } } else { stopNodesD = nodesD + n; dummyRootD = nodesD + nmax; for( nodeDType *node = nodesD ; node != stopNodesD ; node++ ) node->balance = pDfct[ node - nodesD ]; // initialize nodes stopArcsD = arcsD + m; dummyArcsD = arcsD + mmax; stopDummyD = dummyArcsD + n; for( arcDType *arc = arcsD ; arc != stopArcsD ; arc++ ) { // initialize real arcs arc->cost = pC[ arc - arcsD ]; #if( QUADRATICCOST ) arc->quadraticCost = 0; #endif arc->upper = pU[ arc - arcsD ]; arc->tail = nodesD + pSn[ arc - arcsD ] - 1; arc->head = nodesD + pEn[ arc - arcsD ] - 1; } CreateAdditionalDualStructures(); } if( pricingRule == kCandidateListPivot ) MemAllocCandidateList(); status = kUnSolved; } } // end( MCFSimplex::LoadNet ) /*-------------------------------------------------------------------------*/ void MCFSimplex::SetAlg( bool UsPrml , char WhchPrc ) { bool newUsePrimalSimplex = UsPrml; bool oldUsePrimalSimplex = usePrimalSimplex; char newPricingRule = WhchPrc; char oldPricingRule = pricingRule; usePrimalSimplex = newUsePrimalSimplex; pricingRule = newPricingRule; if( ( ! usePrimalSimplex ) && ( pricingRule == kDantzig) ) { pricingRule = kFirstEligibleArc; newPricingRule = pricingRule; } if( ( newUsePrimalSimplex != oldUsePrimalSimplex ) || ( newPricingRule != oldPricingRule ) ) { MemDeAllocCandidateList(); if( newUsePrimalSimplex != oldUsePrimalSimplex ) { #if( QUADRATICCOST ) throw( MCFException( "Primal Simplex is the only option if QUADRATICCOST == 1" ) ); } #else MemAlloc(); nodePType *nP = nodesP; nodeDType *nD = nodesD; arcPType *aP = arcsP; arcDType *aD = arcsD; if( newUsePrimalSimplex ) { // from Dual to Primal if( nodesD == NULL ) return; if( newSession ) CreateInitialDualBase(); dummyRootP = nodesP + nmax; stopNodesP = nodesP + n; dummyArcsP = arcsP + mmax; stopArcsP = arcsP + m; stopDummyP = dummyArcsP + n; // Copy the old Dual data structure in a new Primal data structure while( nD != stopNodesD ) { nP->prevInT = nodesP + ( nD->prevInT - nodesD ); nP->nextInT = nodesP + ( nD->nextInT - nodesD ); nP->enteringTArc = arcsP + ( nD->enteringTArc - arcsD ); nP->balance = nD->balance; nP->potential = nD->potential; nP->subTreeLevel = nD->subTreeLevel; nP++; nD++; } dummyRootP->prevInT = NULL; dummyRootP->nextInT = nodesP + ( dummyRootD->nextInT - nodesD ); dummyRootP->enteringTArc = arcsP + ( dummyRootD->enteringTArc - arcsD ); dummyRootP->balance = dummyRootD->balance; dummyRootP->potential = dummyRootD->potential; dummyRootP->subTreeLevel = dummyRootD->subTreeLevel; while( aD != stopArcsD ) { aP->tail = nodesP + ( aD->tail - nodesD ); aP->head = nodesP + ( aD->head - nodesD ); aP->flow = aD->flow; aP->cost = aD->cost; aP->ident = aD->ident; aP->upper = aD->upper; aP++; aD++; } aP = dummyArcsP; aD = dummyArcsD; while( aD != stopDummyD ) { aP->tail = nodesP + ( aD->tail - nodesD ); aP->head = nodesP + ( aD->head - nodesD ); aP->flow = aD->flow; aP->cost = aD->cost; aP->ident = aD->ident; if( ( ETZ(aP->flow, EpsFlw) ) && (aP->ident == AT_UPPER) ) aP->ident = AT_LOWER; aP->upper = Inf(); aP++; aD++; } MemDeAlloc(false); if( Senstv && ( status != kUnSolved ) ) { nodePType *node = dummyRootP; for( int i = 0 ; i < n ; i++ ) node = node->nextInT; node->nextInT = NULL; dummyRootP->prevInT = NULL; dummyRootP->enteringTArc = NULL; // balance the flow CreateInitialPModifiedBalanceVector(); PostPVisit( dummyRootP ); // restore the primal admissibility BalanceFlow( dummyRootP ); ComputePotential( dummyRootP ); } else status = kUnSolved; } else { // from Primal to Dual if( nodesP == NULL ) return; if( newSession ) CreateInitialPrimalBase(); dummyRootD = nodesD + nmax; stopNodesD = nodesD + n; dummyArcsD = arcsD + mmax; stopArcsD = arcsD + m; stopDummyD = dummyArcsD + n; // Copy the old Primal data structure in a new Dual data structure while( nP != stopNodesP ) { nD->prevInT = nodesD + ( nP->prevInT - nodesP ); nD->nextInT = nodesD + ( nP->nextInT - nodesP ); nD->enteringTArc = arcsD + ( nP->enteringTArc - arcsP ); nD->balance = nP->balance; nD->potential = nP->potential; nD->subTreeLevel = nP->subTreeLevel; nP++; nD++; } dummyRootD->prevInT = NULL; dummyRootD->nextInT = nodesD + ( dummyRootP->nextInT - nodesP ); dummyRootD->enteringTArc = NULL; dummyRootD->balance = dummyRootP->balance; dummyRootD->potential = dummyRootP->potential; dummyRootD->subTreeLevel = dummyRootP->subTreeLevel; while( aP != stopArcsP ) { aD->tail = nodesD + ( aP->tail - nodesP ); aD->head = nodesD + ( aP->head - nodesP ); aD->flow = aP->flow; aD->cost = aP->cost; aD->ident = aP->ident; aD->upper = aP->upper; aP++; aD++; } aP = dummyArcsP; aD = dummyArcsD; while( aP != stopDummyP ) { aD->tail = nodesD + ( aP->tail - nodesP ); aD->head = nodesD + ( aP->head - nodesP ); aD->flow = aP->flow; aD->cost = aP->cost; aD->ident = aP->ident; aD->upper = 0; aP++; aD++; } CreateAdditionalDualStructures(); MemDeAlloc(true); nodeDType *node = dummyRootD; for( int i = 0 ; i < n ; i++ ) node = node->nextInT; node->nextInT = NULL; dummyRootD->enteringTArc = NULL; dummyRootD->prevInT = NULL; if( Senstv && ( status != kUnSolved ) ) { // fix every flow arc according to its reduct cost for( arcDType *arc = arcsD ; arc != stopArcsD ; arc++ ) { if( (arc->ident == AT_LOWER) && LTZ( ReductCost( arc ) , EpsCst ) ) { arc->flow = arc->upper; arc->ident = AT_UPPER; } if( ( arc->ident == AT_UPPER ) && GTZ( ReductCost( arc ) , EpsCst ) ) { arc->flow = 0; arc->ident = AT_LOWER; } } // balance the flow CreateInitialDModifiedBalanceVector(); PostDVisit( dummyRootD ); } else status = kUnSolved; } //#endif } #endif if( newPricingRule == kFirstEligibleArc ) if( newUsePrimalSimplex ) arcToStartP = arcsP; else arcToStartD = arcsD; if( ( nmax && mmax ) && ( newPricingRule == kCandidateListPivot ) ) MemAllocCandidateList(); } } // end( SetAlg ) /*-------------------------------------------------------------------------*/ void MCFSimplex::SetPar( int par, int val ) { switch( par ) { case kAlgPrimal: if( val == kYes ) SetAlg( true , pricingRule); if( val == kNo ) SetAlg( false, pricingRule ); break; case kAlgPricing: if( ( val == kDantzig ) || ( val == kFirstEligibleArc ) || ( val == kCandidateListPivot ) ) SetAlg( usePrimalSimplex , val ); break; case kNumCandList: MemDeAllocCandidateList(); forcedNumCandidateList = val; MemAllocCandidateList(); forcedNumCandidateList = 0; forcedHotListSize = 0; break; case kHotListSize: MemDeAllocCandidateList(); forcedHotListSize = val; MemAllocCandidateList(); forcedNumCandidateList = 0; forcedHotListSize = 0; break; case kRecomputeFOLimits: recomputeFOLimits = val; break; default: MCFClass::SetPar(par, val); } } // end( SetPar( int ) ) /*-------------------------------------------------------------------------*/ void MCFSimplex::SetPar( int par , double val ) { switch( par ) { case kEpsOpt: EpsOpt = val; break; default: MCFClass::SetPar( par , val ); } } // end( SetPar( double ) /*-------------------------------------------------------------------------*/ /*--------------- METHODS FOR SOLVING THE PROBLEM -------------------------*/ /*-------------------------------------------------------------------------*/ void MCFSimplex::SolveMCF( void ) { if( MCFt ) MCFt->Start(); //if( status == kUnSolved ) if(usePrimalSimplex ) CreateInitialPrimalBase(); else CreateInitialDualBase(); newSession = false; if( usePrimalSimplex ) PrimalSimplex(); else DualSimplex(); if( MCFt ) MCFt->Stop(); } // end( MCFSimplex::SolveMCF ) /*--------------------------------------------------------------------------*/ /*---------------------- METHODS FOR READING RESULTS -----------------------*/ /*--------------------------------------------------------------------------*/ void MCFSimplex::MCFGetX( FRow F , Index_Set nms , cIndex strt , Index stp ) { if( stp > m ) stp = m; if( nms ) { if( usePrimalSimplex ) for( Index i = strt ; i < stp ; i++ ) { FNumber tXi = ( arcsP + i )->flow; if( GTZ( tXi , EpsFlw ) ) { *(F++) = tXi; *(nms++) = i; } } else for( Index i = strt ; i < stp ; i++ ) { FNumber tXi = ( arcsD + i )->flow; if( GTZ( tXi , EpsFlw ) ) { *(F++) = tXi; *(nms++) = i; } } *nms = Inf(); } else if( usePrimalSimplex ) for( Index i = strt; i < stp; i++ ) *(F++) = ( arcsP + i )->flow; else for( Index i = strt; i < stp; i++ ) *(F++) = ( arcsD + i )->flow; } // end( MCFSimplex::MCFGetX( some ) ) /*--------------------------------------------------------------------------*/ void MCFSimplex::MCFGetRC( CRow CR , cIndex_Set nms , cIndex strt , Index stp ) { if( nms ) { while( *nms < strt ) nms++; if( usePrimalSimplex ) for( Index h ; ( h = *(nms++) ) < stp ; ) *(CR++) = CNumber( ReductCost( arcsP + h ) ); else for( Index h ; ( h = *(nms++) ) < stp ; ) *(CR++) = ReductCost( arcsD + h ); } else { if( stp > m ) stp = m; if( usePrimalSimplex ) for( arcPType* arc = arcsP + strt ; arc < arcsP + stp ; arc++ ) *(CR++) = CNumber( ReductCost( arc ) ); else for( arcDType* arc = arcsD + strt ; arc < arcsD + stp ; arc++ ) *(CR++) = ReductCost( arc ); } } // end( MCFSimplex::MCFGetRC( some ) ) /*--------------------------------------------------------------------------*/ MCFSimplex::CNumber MCFSimplex::MCFGetRC( cIndex i ) { if( usePrimalSimplex ) return CNumber( ReductCost( arcsP + i ) ); else return( ReductCost( arcsD + i ) ); } // end( MCFSimplex::MCFGetRC( i ) ) /*--------------------------------------------------------------------------*/ void MCFSimplex::MCFGetPi( CRow P , cIndex_Set nms , cIndex strt , Index stp ) { if( stp > n ) stp = n; if( nms ) { while( *nms < strt ) nms++; if( usePrimalSimplex ) for( Index h ; ( h = *(nms++) ) < stp ; ) *(P++) = CNumber( (nodesP + h)->potential ); else for( Index h ; ( h = *(nms++) ) < stp ; ) *(P++) = (nodesD + h )->potential; } else if( usePrimalSimplex ) for( nodePType *node = nodesP + strt ; node < ( nodesP + stp ) ; node++ ) *(P++) = CNumber( node->potential ); else for( nodeDType *node = nodesD + strt ; node++ < ( nodesD + stp ) ; node++ ) *(P++) = node->potential; } // end( MCFSimplex::MCFGetPi( some ) ) /*--------------------------------------------------------------------------*/ MCFSimplex::FONumber MCFSimplex::MCFGetFO( void ) { if( status == kOK ) return( (FONumber) GetFO() ); else if( status == kUnbounded ) return( - Inf() ); else return( Inf() ); } // end( MCFSimplex::MCFGetFO ) /*-------------------------------------------------------------------------*/ /*----------METHODS FOR READING THE DATA OF THE PROBLEM--------------------*/ /*-------------------------------------------------------------------------*/ void MCFSimplex::MCFArcs( Index_Set Startv , Index_Set Endv , cIndex_Set nms , cIndex strt , Index stp ) { if( stp > m ) stp = m; if( nms ) { while( *nms < strt ) nms++; if( usePrimalSimplex ) for( Index h ; ( h = *(nms++) ) < stp ; ) { if( Startv ) *(Startv++) = Index( (arcsP + h)->tail - nodesP) - USENAME0; if( Endv ) *(Endv++) = Index( (arcsP + h)->head - nodesP ) - USENAME0; } else for( Index h ; ( h = *(nms++) ) < stp ; ) { if( Startv ) *(Startv++) = Index( (arcsD + h)->tail - nodesD) - USENAME0; if( Endv ) *(Endv++) = Index( (arcsD + h)->head - nodesD ) - USENAME0; } } else if( usePrimalSimplex ) for( arcPType* arc = arcsP + strt ; arc < (arcsP + stp) ; arc++ ) { if( Startv ) *(Startv++) = Index( arc->tail - nodesP ) - USENAME0; if( Endv ) *(Endv++) = Index( arc->head - nodesP ) - USENAME0; } else for( arcDType* arc = arcsD + strt ; arc < (arcsD + stp) ; arc++ ) { if( Startv ) *(Startv++) = Index( arc->tail - nodesD ) - USENAME0; if( Endv ) *(Endv++) = Index( arc->head - nodesD ) - USENAME0; } } // end( MCFSimplex::MCFArcs ) /*-------------------------------------------------------------------------*/ void MCFSimplex::MCFCosts( CRow Costv , cIndex_Set nms , cIndex strt , Index stp ) { if( stp > m ) stp = m; if( nms ) { while( *nms < strt ) nms++; if( usePrimalSimplex ) for( Index h ; ( h = *(nms++) ) < stp ; ) *(Costv++) = (arcsP + h)->cost; else for( Index h ; ( h = *(nms++) ) < stp ; ) *(Costv++) = (arcsD + h)->cost; } else if( usePrimalSimplex ) for( arcPType* arc = arcsP + strt ; arc < (arcsP + stp) ; arc++ ) *(Costv++) = arc->cost; else for( arcDType* arc = arcsD + strt ; arc < (arcsD + stp) ; arc++ ) *(Costv++) = arc->cost; } // end( MCFSimplex::MCFCosts ( some ) ) /*-------------------------------------------------------------------------*/ void MCFSimplex::MCFQCoef( CRow Qv , cIndex_Set nms , cIndex strt , Index stp ) { if( stp > m ) stp = m; if( nms ) { while( *nms < strt ) nms++; #if( QUADRATICCOST ) if( usePrimalSimplex ) for( Index h ; ( h = *(nms++) ) < stp ; ) *(Qv++) = (arcsP + h)->quadraticCost; else for( Index h ; ( h = *(nms++) ) < stp ; ) *(Qv++) = (arcsD + h)->quadraticCost; #else for( Index h ; ( h = *(nms++) ) < stp ; ) *(Qv++) = 0; #endif } else #if( QUADRATICCOST ) if( usePrimalSimplex ) for( arcPType* arc = arcsP + strt ; arc < ( arcsP + stp ) ; arc++ ) *(Qv++) = arc->quadraticCost; else for( arcDType* arc = arcsD + strt ; arc < ( arcsD + stp ) ; arc++ ) *(Qv++) = arc->quadraticCost; #else for( Index h = strt ; h++ < stp ; ) *(Qv++) = 0; #endif } // end( MCFSimplex::MCFQCoef ( some ) ) /*-------------------------------------------------------------------------*/ void MCFSimplex::MCFUCaps( FRow UCapv , cIndex_Set nms , cIndex strt , Index stp ) { if( stp > m ) stp = m; if( nms ) { while( *nms < strt ) nms++; if( usePrimalSimplex ) for( Index h ; ( h = *(nms++) ) < stp ; ) *(UCapv++) = (arcsP + h)->upper; else for( Index h ; ( h = *(nms++) ) < stp ; ) *(UCapv++) = (arcsD + h)->upper; } else if( usePrimalSimplex ) for( arcPType* arc = arcsP + strt ; arc < (arcsP + stp ) ; arc++ ) *(UCapv++) = arc->upper; else for( arcDType* arc = arcsD + strt ; arc < ( arcsD + stp ) ; arc++ ) *(UCapv++) = arc->upper; } // end( MCFSimplex::MCFUCaps ( some ) ) /*-------------------------------------------------------------------------*/ void MCFSimplex::MCFDfcts( FRow Dfctv , cIndex_Set nms , cIndex strt , Index stp ) { if( stp > n ) stp = n; if( nms ) { while( *nms < strt ) nms++; if( usePrimalSimplex ) for( Index h ; ( h = *(nms++) ) < stp ; ) *(Dfctv++) = ( nodesP + h )->balance; else for( Index h ; ( h = *(nms++) ) < stp ; ) *(Dfctv++) = (nodesD + h )->balance; } else if( usePrimalSimplex ) for( nodePType* node = nodesP + strt ; node < ( nodesP + stp ) ; node++ ) *(Dfctv++) = node->balance; else for( nodeDType* node = nodesD + strt ; node < ( nodesD + stp ) ; node++ ) *(Dfctv++) = node->balance; } // end( MCFSimplex::MCFDfcts ) /*-------------------------------------------------------------------------*/ /*--------- METHODS FOR ADDING / REMOVING / CHANGING DATA -----------------*/ /*-------------------------------------------------------------------------*/ void MCFSimplex::ChgCosts( cCRow NCost , cIndex_Set nms , cIndex strt , Index stp ) { if( stp > m ) stp = m; if( nms ) { while( *nms < strt ) { nms++; NCost++; } cIndex_Set tnms = nms; // nms may be needed below if( usePrimalSimplex ) for( Index h ; ( h = *(tnms++) ) < stp ; ) arcsP[ h ].cost = *(NCost++); else for( Index h ; ( h = *(tnms++) ) < stp ; ) arcsD[ h ].cost = *(NCost++); } else if( usePrimalSimplex ) for( arcPType *arc = arcsP + strt ; arc < (arcsP + stp) ; arc++ ) arc->cost = *(NCost++); else for( arcDType *arc = arcsD + strt ; arc < (arcsD + stp) ; arc++ ) arc->cost = *(NCost++); if( Senstv && ( status != kUnSolved ) ) if( usePrimalSimplex ) ComputePotential( dummyRootP ); else { #if( QUADRATICCOST == 0 ) for( arcDType *arc = arcsD ; arc != stopArcsD ; arc++ ) if( arc->ident > BASIC ) if( GTZ( ReductCost( arc ) , EpsCst ) ) { arc->flow = 0; arc->ident = AT_LOWER; } else { arc->flow = arc->upper; arc->ident = AT_UPPER; } CreateInitialDModifiedBalanceVector(); PostDVisit( dummyRootD ); #endif } else status = kUnSolved; } // end( MCFSimplex::ChgCosts ) /*-------------------------------------------------------------------------*/ void MCFSimplex::ChgCost( Index arc , cCNumber NCost ) { if( arc >= m ) return; if( usePrimalSimplex ) ( arcsP + arc )->cost = NCost; else ( arcsD + arc )->cost = NCost; if( Senstv && ( status != kUnSolved ) ) { if( usePrimalSimplex ) { nodePType *node = ( arcsP + arc )->tail; if( ( ( arcsP + arc )->head)->subTreeLevel < node->subTreeLevel ) node = ( arcsP + arc )->head; ComputePotential( dummyRootP ); } else { #if( QUADRATICCOST == 0 ) nodeDType *node = ( arcsD + arc )->tail; if( ( ( arcsD + arc )->head )->subTreeLevel < node->subTreeLevel ) node = ( arcsD + arc )->head; ComputePotential( dummyRootD ); for( arcDType *a = arcsD ; a != stopArcsD ; a++) if( a->ident > BASIC ) if( GTZ( ReductCost( a ) , EpsCst ) ) { a->flow = 0; a->ident = AT_LOWER; } else { a->flow = a->upper; a->ident = AT_UPPER; } CreateInitialDModifiedBalanceVector(); PostDVisit( dummyRootD ); #endif } } else status = kUnSolved; } // end( MCFSimplex::ChgCost ) /*-------------------------------------------------------------------------*/ void MCFSimplex::ChgQCoef( cCRow NQCoef , cIndex_Set nms , cIndex strt , Index stp ) { if( stp > m ) stp = m; #if( QUADRATICCOST ) if( nms ) { while( *nms < strt ) { nms++; NQCoef++; } cIndex_Set tnms = nms; // nms may be needed below if( usePrimalSimplex ) for( Index h ; ( h = *(tnms++) ) < stp ; ) arcsP[ h ].quadraticCost = *(NQCoef++); else for( Index h ; ( h = *(tnms++) ) < stp ; ) arcsD[ h ].quadraticCost = *(NQCoef++); } else if( usePrimalSimplex ) for( arcPType *arc = arcsP + strt ; arc < ( arcsP + stp ) ; arc++ ) arc->quadraticCost = *(NQCoef++); else for( arcDType *arc = arcsD + strt ; arc < ( arcsD + stp ) ; arc++ ) arc->quadraticCost = *(NQCoef++); if( Senstv && (status != kUnSolved ) ) ComputePotential( dummyRootP ); else status = kUnSolved; #else if( NQCoef ) throw( MCFException( "ChgQCoef: nonzero coefficients not allowed" ) ); #endif } // end( MCFSimplex::ChgQCoef ) /*-------------------------------------------------------------------------*/ void MCFSimplex::ChgQCoef( Index arc , cCNumber NQCoef ) { #if( QUADRATICCOST ) if( arc >= m ) return; if( usePrimalSimplex ) ( arcsP + arc )->quadraticCost = NQCoef; else ( arcsD + arc )->quadraticCost = NQCoef; if( Senstv && ( status != kUnSolved ) ) { nodePType *node = ( arcsP + arc )->tail; if( ( ( arcsP + arc )->head )->subTreeLevel < node->subTreeLevel ) node = ( arcsP + arc )->head; ComputePotential( node ); } else status = kUnSolved; #else if( NQCoef ) throw( MCFException( "ChgQCoef: nonzero coefficients not allowed" ) ); #endif } // end( MCFSimplex::ChgQCoef ) /*-------------------------------------------------------------------------*/ void MCFSimplex::ChgDfcts( cFRow NDfct , cIndex_Set nms , cIndex strt , Index stp ) { if( stp > m ) stp = m; if( nms ) { while( *nms < strt ) { nms++; NDfct++; } cIndex_Set tnms = nms; // nms may be needed below if( usePrimalSimplex ) for( Index h ; ( h = *(tnms++) ) < stp ; ) nodesP[ h ].balance = *(NDfct++); else for( Index h ; ( h = *(tnms++) ) < stp ; ) nodesD[ h ].balance = *(NDfct++); } else if( usePrimalSimplex ) for( nodePType *node = nodesP + strt ; node < ( nodesP + stp ) ; node++ ) node->balance = *(NDfct++); else for( nodeDType *node = nodesD + strt ; node < ( nodesD + stp ) ; node++ ) node->balance = *(NDfct++); if( Senstv && (status != kUnSolved ) ) if( usePrimalSimplex ) { CreateInitialPModifiedBalanceVector(); PostPVisit( dummyRootP ); BalanceFlow( dummyRootP ); ComputePotential( dummyRootP ); } else { CreateInitialDModifiedBalanceVector(); PostDVisit( dummyRootD ); } else status = kUnSolved; } // end( MCFSimplex::ChgDfcts ) /*-------------------------------------------------------------------------*/ void MCFSimplex::ChgDfct( Index nod , cFNumber NDfct ) { if( nod > n ) return; if( usePrimalSimplex ) ( nodesP + nod - 1 )->balance = NDfct; else ( nodesD + nod - 1 )->balance = NDfct; if( Senstv && (status != kUnSolved ) ) if( usePrimalSimplex ) { CreateInitialPModifiedBalanceVector(); PostPVisit( dummyRootP ); BalanceFlow( dummyRootP ); ComputePotential( dummyRootP ); } else { CreateInitialDModifiedBalanceVector(); PostDVisit( dummyRootD ); } else status = kUnSolved; } // end( MCFSimplex::ChgDfct ) /*-------------------------------------------------------------------------*/ void MCFSimplex::ChgUCaps( cFRow NCap , cIndex_Set nms , cIndex strt , Index stp ) { if( stp > m ) stp = m; if( nms ) { while( *nms < strt ) { nms++; NCap++; } cIndex_Set tnms = nms; // nms may be needed below if( usePrimalSimplex ) for( Index h ; ( h = *(tnms++) ) < stp ; ) arcsP[ h ].upper = *(NCap++); else for( Index h ; ( h = *(tnms++) ) < stp ; ) arcsD[ h ].upper = *(NCap++); } else if( usePrimalSimplex ) for( arcPType *arc = arcsP + strt ; arc < ( arcsP + stp ) ; arc++ ) arc->upper = *(NCap++); else for( arcDType *arc = arcsD + strt ; arc < ( arcsD + stp ) ; arc++ ) arc->upper = *(NCap++); if( Senstv && (status != kUnSolved ) ) { if( usePrimalSimplex ) { for( arcPType *arc = arcsP ; arc != stopArcsP ; arc++) #if( QUADRATICCOST ) if( GT( arc->flow , arc->upper , EpsFlw ) ) arc->flow = arc->upper; #else if( GT(arc->flow , arc->upper , EpsFlw ) || ( ( arc->ident == AT_UPPER ) && ( ! ETZ( arc->flow - arc->upper , EpsFlw ) ) ) ) arc->flow = arc->upper; #endif CreateInitialPModifiedBalanceVector(); PostPVisit( dummyRootP ); BalanceFlow( dummyRootP ); ComputePotential( dummyRootP ); } else { #if( QUADRATICCOST == 0 ) for( arcDType *arc = arcsD ; arc != stopArcsD ; arc++ ) if( ( GT( arc->flow , arc->upper , EpsFlw ) && ( arc->ident != BASIC ) ) || ( ( arc->ident == AT_UPPER ) && ( ! ETZ( arc->flow - arc->upper , EpsFlw ) ) ) ) arc->flow = arc->upper; CreateInitialDModifiedBalanceVector(); PostDVisit( dummyRootD ); ComputePotential( dummyRootD ); #endif } } else status = kUnSolved; } // end( MCFSimplex::ChgUCaps ) /*-------------------------------------------------------------------------*/ void MCFSimplex::ChgUCap( Index arc , cFNumber NCap ) { if( arc >= m ) return; if( usePrimalSimplex ) ( arcsP + arc )->upper = NCap; else ( arcsD + arc )->upper = NCap; if( Senstv && (status != kUnSolved ) ) { if( usePrimalSimplex ) { #if( QUADRATICCOST ) if( GT( ( arcsP + arc )->flow , ( arcsP + arc )->upper , EpsFlw ) ) ( arcsP + arc )->flow = ( arcsP + arc )->upper; #else if( GT( ( arcsP + arc )->flow , ( arcsP + arc )->upper , EpsFlw ) || ( ( ( arcsP + arc )->ident == AT_UPPER ) && ( ! ETZ( ( arcsP + arc )->flow - ( arcsP + arc )->upper , EpsFlw ) ) ) ) ( arcsP + arc )->flow = ( arcsP + arc )->upper; #endif CreateInitialPModifiedBalanceVector(); PostPVisit( dummyRootP ); BalanceFlow( dummyRootP ); ComputePotential( dummyRootP ); } else { #if( QUADRATICCOST == 0 ) if( ( GT( ( arcsD + arc )->flow , ( arcsD + arc )->upper , EpsFlw ) && ( ( ( arcsD + arc )->ident != BASIC ) ) ) || ( ( ( arcsD + arc )->ident == AT_UPPER ) && ( ! ETZ( ( arcsD + arc )->flow - ( arcsD + arc )->upper , EpsFlw ) ) ) ) { ( arcsD + arc )->flow = ( arcsD + arc )->upper; ( arcsD + arc )->ident = AT_UPPER; } CreateInitialDModifiedBalanceVector(); PostDVisit( dummyRootD ); ComputePotential( dummyRootD ); #endif } } else status = kUnSolved; } // end( MCFSimplex::ChgUCap ) /*-------------------------------------------------------------------------*/ bool MCFSimplex::IsClosedArc( cIndex name ) { if( name >= m ) return( false ); #if( QUADRATICCOST ) return( ( arcsP + name )->cost == Inf() ); #else if( usePrimalSimplex ) return( ( ( arcsP + name )->ident < BASIC) ); else return( ( ( arcsD + name )->ident < BASIC) ); #endif } /*-------------------------------------------------------------------------*/ void MCFSimplex::CloseArc( cIndex name ) { if( name >= m ) return; if( usePrimalSimplex ) { arcPType *arc = arcsP + name; #if( QUADRATICCOST ) if( arc->cost == Inf() ) return; arc->cost = Inf(); #else if( arc->ident < BASIC ) return; arc->ident = CLOSED; #endif arc->flow = 0; if( Senstv && ( status != kUnSolved ) ) { nodePType *node = NULL; if( (arc->tail)->enteringTArc == arc ) node = arc->tail; if( (arc->head)->enteringTArc == arc ) node = arc->head; if( node ) { node->enteringTArc = dummyArcsP + ( node - nodesP ); nodePType *last = CutAndUpdateSubtree( node , -node->subTreeLevel + 1 ); PasteSubtree( node , last , dummyRootP ); node->enteringTArc = dummyArcsP + ( node - nodesP ); } CreateInitialPModifiedBalanceVector(); PostPVisit(dummyRootP); BalanceFlow(dummyRootP); ComputePotential(dummyRootP); } else status = kUnSolved; } else { #if( QUADRATICCOST == 0 ) arcDType *arc = arcsD + name; if( arc->ident < BASIC ) return; arc->flow = 0; arc->ident = CLOSED; if( Senstv && ( status != kUnSolved ) ) { nodeDType *node = NULL; if( ( arc->tail )->enteringTArc == arc) node = arc->tail; if( ( arc->head )->enteringTArc == arc ) node = arc->head; if( node ) { node->enteringTArc = dummyArcsD + ( node - nodesD ); nodeDType *last = CutAndUpdateSubtree( node , -node->subTreeLevel + 1 ); PasteSubtree( node , last , dummyRootD ); node->enteringTArc = dummyArcsD + ( node - nodesD ); ComputePotential( dummyRootD ); for( arcDType *a = arcsD ; a != stopArcsD ; a++ ) if( a->ident > BASIC ) if( GTZ( ReductCost( a ) , EpsCst ) ) { a->flow = 0; a->ident = AT_LOWER; } else { a->flow = a->upper; a->ident = AT_UPPER; } } CreateInitialDModifiedBalanceVector(); PostDVisit(dummyRootD); ComputePotential(dummyRootD); } else status = kUnSolved; #endif } } // end( MCFSimplex::CloseArc ) /*--------------------------------------------------------------------------*/ void MCFSimplex::DelNode( cIndex name ) { if( name >= n ) return; if( usePrimalSimplex ) { nodePType *node = nodesP + name; nodePType *last = CutAndUpdateSubtree(node, -node->subTreeLevel); nodePType *n = node->nextInT; while( n ) { if( n->subTreeLevel == 1 ) n->enteringTArc = dummyArcsP + ( n - nodesP ); n = n->nextInT; } PasteSubtree( node , last , dummyRootP ); n = node->nextInT; dummyRootP->nextInT = n; n->prevInT = dummyRootP; for( arcPType *arc = arcsP ; arc != stopArcsP ; arc++ ) { if( ( ( arc->tail ) == node) || ( ( arc->head ) == node ) ) { arc->flow = 0; #if( QUADRATICCOST ) arc->cost = Inf(); #else arc->ident = CLOSED; #endif } } for( arcPType *arc = dummyArcsP ; arc != stopDummyP ; arc++ ) { if( ( ( arc->tail ) == node ) || ( ( arc->head ) == node ) ) { arc->flow = 0; #if( QUADRATICCOST ) arc->cost = Inf(); #else arc->ident = CLOSED; #endif } } CreateInitialPModifiedBalanceVector(); PostPVisit( dummyRootP ); BalanceFlow( dummyRootP ); ComputePotential( dummyRootP ); } else { #if( QUADRATICCOST == 0 ) nodeDType *node = nodesD + name; nodeDType *last = CutAndUpdateSubtree( node , -node->subTreeLevel ); nodeDType *n = node->nextInT; while( n ) { if( n->subTreeLevel == 1 ) n->enteringTArc = dummyArcsD + ( n - nodesD ); n = n->nextInT; } PasteSubtree( node , last , dummyRootD ); n = node->nextInT; dummyRootD->nextInT = n; n->prevInT = dummyRootD; for( arcDType *arc = arcsD ; arc != stopArcsD ; arc++ ) if( ( ( arc->tail ) == node) || ( ( arc->head ) == node ) ) { arc->flow = 0; arc->ident = CLOSED; } for( arcDType *arc = dummyArcsD ; arc != stopDummyD ; arc++ ) if( ( ( arc->tail ) == node ) || ( ( arc->head ) == node ) ) { arc->flow = 0; arc->ident = CLOSED; } CreateInitialDModifiedBalanceVector(); PostDVisit( dummyRootD ); ComputePotential( dummyRootD ); #endif } } // end( MCFSimplex::DelNode ) /*--------------------------------------------------------------------------*/ void MCFSimplex::OpenArc( cIndex name ) { if( name >= m ) return; if( usePrimalSimplex ) { /* Quadratic case is not implemented for a theory bug. Infact a closed arc in the quadratic case has its cost fixed to infinity, and it's impossible to restore the old value. */ #if( QUADRATICCOST == 0 ) arcPType *arc = arcsP + name; if( arc->ident == CLOSED ) { arc->ident = AT_LOWER; arc->flow = 0; } #endif } else { #if( QUADRATICCOST == 0 ) arcDType *arc = arcsD + name; if( arc->ident == CLOSED ) { if( GTZ( ReductCost( arc ) , EpsCst ) ) arc->ident = AT_LOWER; else { arc->ident = AT_UPPER; arc->flow = arc->upper; if( Senstv && ( status != kUnSolved ) ) { CreateInitialDModifiedBalanceVector(); PostDVisit( dummyRootD ); } else status = kUnSolved; } } #endif } } // end( MCFSimplex:OpenArc ) /*--------------------------------------------------------------------------*/ MCFSimplex::Index MCFSimplex::AddNode( cFNumber aDfct ) { if( n >= nmax ) return( Inf() ); n++; if( usePrimalSimplex ) { nodePType *newNode = nodesP + n - 1; stopArcsP->tail = newNode; stopArcsP->head = dummyRootP; stopArcsP->upper = Inf(); stopArcsP->flow = 0; stopArcsP->cost = Inf(); #if( QUADRATICCOST ) stopArcsP->quadraticCost = 0; #else stopArcsP->ident = BASIC; #endif stopArcsP++; newNode->balance = aDfct; newNode->prevInT = dummyRootP; newNode->nextInT = dummyRootP->nextInT; (dummyRootP->nextInT)->prevInT = newNode; dummyRootP->nextInT = newNode; newNode->enteringTArc = stopArcsP--; newNode->potential = 0; #if(QUADRATICCOST) newNode->sumQuadratic = 0; #endif } else { #if( QUADRATICCOST == 0 ) nodeDType *newNode = nodesD + n - 1; stopArcsD->tail = newNode; stopArcsD->head = dummyRootD; stopArcsD->upper = 0; stopArcsD->flow = 0; stopArcsD->cost = Inf(); stopArcsD->ident = BASIC; newNode->balance = aDfct; newNode->prevInT = dummyRootD; newNode->nextInT = dummyRootD->nextInT; (dummyRootD->nextInT)->prevInT = newNode; dummyRootD->nextInT = newNode; newNode->enteringTArc = stopArcsD; newNode->potential = 0; newNode->firstFs = stopArcsD; newNode->firstBs = NULL; stopArcsD->nextFs = NULL; stopArcsD->nextBs = dummyRootD->firstBs; dummyRootD->firstBs = stopArcsD; stopArcsD++; #endif } return( n ); } // end( MCFSimplex::AddNode ) /*--------------------------------------------------------------------------*/ void MCFSimplex::ChangeArc( cIndex name , cIndex nSN , cIndex nEN ) { if( name >= m ) return; CloseArc( name ); if( usePrimalSimplex ) { if( nSN <= n ) (arcsP + name)->tail = (nodesP + nSN + USENAME0 - 1); if( nEN <= n ) (arcsP + name)->head = (nodesP + nEN + USENAME0 - 1); } else { if( nSN <= n ) (arcsD + name)->tail = (nodesD + nSN + USENAME0 - 1); if( nEN <= n ) (arcsD + name)->head = (nodesD + nEN + USENAME0 - 1); } OpenArc( name ); } // end( MCFSimplex::ChangeArc ) /*--------------------------------------------------------------------------*/ void MCFSimplex::DelArc( cIndex name ) { if( name >= m ) return; if( usePrimalSimplex ) { arcPType *arc = arcsP + name; #if( QUADRATICCOST ) if( arc->upper == -Inf() ) return; if( arc->cost < Inf() ) #else if( arc->cost == DELETED ) return; if( arc->cost >= BASIC ) #endif CloseArc( name ); #if( QUADRATICCOST ) arc->upper = -Inf(); #else arc->ident = DELETED; #endif } else { #if( QUADRATICCOST == 0 ) arcDType *arc = arcsD + name; if( arc->cost == DELETED ) return; if( arc->cost >= BASIC ) CloseArc( name ); arc->ident = DELETED; #endif } } // end( MCFSimplex::DelArc ) /*--------------------------------------------------------------------------*/ MCFSimplex::Index MCFSimplex::AddArc( cIndex Start , cIndex End , cFNumber aU , cCNumber aC ) { if( usePrimalSimplex ) { arcPType *arc = arcsP; #if( QUADRATICCOST ) while( ( arc->upper != -Inf() ) && ( arc != stopArcsP ) ) #else while( ( arc->ident > DELETED ) && ( arc != stopArcsP ) ) #endif arc++; if( arc == stopArcsP ) { if( m >= mmax ) return( Inf() ); m++; stopArcsP++; } Index pos = ( arc - arcsP ) + 1; arc->tail = nodesP + Start + USENAME0 - 1; arc->head = nodesP + End + USENAME0 - 1; arc->upper = aU; arc->cost = aC; arc->flow = 0; #if( QUADRATICCOST ) arc->quadraticCost = 0; #else arc->ident = AT_LOWER; #endif ComputePotential( dummyRootP ); return( pos ); } else { #if( QUADRATICCOST == 0 ) arcDType *arc = arcsD; while( ( arc->ident > DELETED ) && ( arc != stopArcsD ) ) arc++; if( arc == stopArcsD ) { if( m >= mmax ) return( Inf() ); m++; stopArcsD++; } Index pos = ( arc - arcsD ) + 1; arc->tail = nodesD + Start + USENAME0 - 1; arc->head = nodesD + End + USENAME0 - 1; arc->upper = aU; arc->cost = aC; if( GEZ( ReductCost( arc ) , EpsCst ) ) { arc->flow = 0; arc->ident = AT_LOWER; if( Senstv && ( status != kUnSolved ) ) { CreateInitialDModifiedBalanceVector(); PostDVisit( dummyRootD ); ComputePotential( dummyRootD ); } else status = kUnSolved; } else { arc->flow = arc->upper; arc->ident = AT_UPPER; if( Senstv && ( status != kUnSolved ) ) { CreateInitialDModifiedBalanceVector(); PostDVisit( dummyRootD ); ComputePotential( dummyRootD ); } else status = kUnSolved; } ComputePotential( dummyRootD ); return( pos ); #endif } } // end( MCFSimplex::AddArc ) /*--------------------------------------------------------------------------*/ bool MCFSimplex::IsDeletedArc( cIndex name ) { if( name >= m ) return( false ); #if( QUADRATICCOST ) return( ( ( arcsP + name )->upper == -Inf() ) ); #else if( usePrimalSimplex ) return( ( arcsP + name )->ident == DELETED ); else return( ( arcsD + name )->ident == DELETED ); #endif } /*--------------------------------------------------------------------------*/ /*------------------------------ DESTRUCTOR --------------------------------*/ /*--------------------------------------------------------------------------*/ MCFSimplex::~MCFSimplex() { MemDeAllocCandidateList(); MemDeAlloc(true); MemDeAlloc(false); } /*--------------------------------------------------------------------------*/ /*---------------------------- PRIVATE METHODS -----------------------------*/ /*--------------------------------------------------------------------------*/ void MCFSimplex::MemAlloc( void ) { if( usePrimalSimplex ) { nodesP = new nodePType[ nmax + 1 ]; // array of nodes arcsP = new arcPType[ mmax + nmax ]; // array of arcs dummyArcsP = arcsP + mmax; // artificial arcs are in the last // nmax positions of the array arcs[] } else { nodesD = new nodeDType[ nmax + 1 ]; // array of nodes arcsD = new arcDType[ mmax + nmax ]; // array of arcs dummyArcsD = arcsD + mmax; // artificial arcs are in the last nmax // positions of the array arcs[] } } /*--------------------------------------------------------------------------*/ void MCFSimplex::MemDeAlloc( bool whatDeAlloc ) { if( whatDeAlloc ) { delete[] nodesP; delete[] arcsP; nodesP = NULL; arcsP = NULL; } else { delete[] nodesD; delete[] arcsD; nodesD = NULL; arcsD = NULL; } MemDeAllocCandidateList( ); } /*--------------------------------------------------------------------------*/ void MCFSimplex::MemAllocCandidateList( void ) { if( usePrimalSimplex ) { if( m < 10000 ) { numCandidateList = PRIMAL_LOW_NUM_CANDIDATE_LIST; hotListSize = PRIMAL_LOW_HOT_LIST_SIZE; } else if( m > 100000 ) { numCandidateList = PRIMAL_HIGH_NUM_CANDIDATE_LIST; hotListSize = PRIMAL_HIGH_HOT_LIST_SIZE ; } else { numCandidateList = PRIMAL_MEDIUM_NUM_CANDIDATE_LIST; hotListSize = PRIMAL_MEDIUM_HOT_LIST_SIZE; } #if( QUADRATICCOST ) int coef = 1; // If the number of the arcs is more than 10000, numCandidateList and hotListSize // are increased to improve the performance of the Quadratic Primal Simplex if( m > 10000 ) coef = 10; numCandidateList = numCandidateList * coef; hotListSize = hotListSize * coef; #endif if( forcedNumCandidateList > 0 ) numCandidateList = forcedNumCandidateList; if( forcedHotListSize > 0 ) hotListSize = forcedHotListSize; candP = new primalCandidType[ hotListSize + numCandidateList + 1 ]; } else { if( n < 10000 ) { numCandidateList = DUAL_LOW_NUM_CANDIDATE_LIST; hotListSize = DUAL_LOW_HOT_LIST_SIZE; } else { numCandidateList = DUAL_HIGH_NUM_CANDIDATE_LIST; hotListSize = DUAL_HIGH_HOT_LIST_SIZE; } if( forcedNumCandidateList > 0 ) numCandidateList = forcedNumCandidateList; if( forcedHotListSize > 0 ) hotListSize = forcedHotListSize; candD = new dualCandidType[ hotListSize + numCandidateList + 1 ]; } } /*--------------------------------------------------------------------------*/ void MCFSimplex::MemDeAllocCandidateList( void ) { delete[] candP; candP = NULL; delete[] candD; candD = NULL; } /*--------------------------------------------------------------------------*/ void MCFSimplex::CreateInitialPrimalBase( void ) { arcPType *arc; nodePType *node; for( arc = arcsP ; arc != stopArcsP ; arc++ ) { // initialize real arcs arc->flow = 0; #if( QUADRATICCOST == 0 ) arc->ident = AT_LOWER; #endif } for( arc = dummyArcsP ; arc != stopDummyP ; arc++ ) { // initialize dummy arcs node = nodesP + ( arc - dummyArcsP ); if( node->balance > 0 ) { // sink nodes arc->tail = dummyRootP; arc->head = node; arc->flow = node->balance; } else { // source nodes or transit node arc->tail = node; arc->head = dummyRootP; arc->flow = -node->balance; } arc->cost = MAX_ART_COST; #if( QUADRATICCOST ) arc->quadraticCost = 0; #else arc->ident = BASIC; #endif arc->upper = Inf(); } dummyRootP->balance = 0; dummyRootP->prevInT = NULL; dummyRootP->nextInT = nodesP; dummyRootP->enteringTArc = NULL; #if( QUADRATICCOST ) dummyRootP->sumQuadratic = 0; #endif dummyRootP->potential = MAX_ART_COST; dummyRootP->subTreeLevel = 0; for( node = nodesP ; node != stopNodesP ; node++) { // initialize nodes node->prevInT = node - 1; node->nextInT = node + 1; node->enteringTArc = dummyArcsP + (node - nodesP); #if( QUADRATICCOST ) node->sumQuadratic = (node->enteringTArc)->quadraticCost; #endif if( node->balance > 0 ) // sink nodes node->potential = 2 * MAX_ART_COST; else // source nodes or transit node node->potential = 0; node->subTreeLevel = 1; } nodesP->prevInT = dummyRootP; ( nodesP + n - 1 )->nextInT = NULL; } /*--------------------------------------------------------------------------*/ void MCFSimplex::CreateInitialDualBase( void ) { arcDType *arc; nodeDType *node; for( arc = dummyArcsD ; arc != stopDummyD ; arc++ ) { // initialize dummy arcs node = nodesD + ( arc - dummyArcsD ); arc->tail = node; arc->head = dummyRootD; arc->flow = -node->balance; arc->cost = MAX_ART_COST; #if( QUADRATICCOST ) arc->quadraticCost = 0; #else arc->ident = BASIC; #endif arc->upper = 0; } for( arc = arcsD ; arc != stopArcsD ; arc++ ) { // initialize real arcs if( GTZ( arc->cost , EpsCst ) ) { arc->flow = 0; #if( QUADRATICCOST == 0 ) arc->ident = AT_LOWER; #endif } else { #if( QUADRATICCOST == 0 ) arc->ident = AT_UPPER; #endif arc->flow = arc->upper; ( dummyArcsD + ( ( arc->tail ) - nodesD ) )->flow = ( dummyArcsD + ( ( arc->tail ) - nodesD ) )->flow - arc->upper; ( dummyArcsD + ( ( arc->head ) - nodesD ) )->flow = ( dummyArcsD + ( ( arc->head ) - nodesD ) )->flow + arc->upper; } } dummyRootD->balance = 0; dummyRootD->prevInT = NULL; dummyRootD->nextInT = nodesD; dummyRootD->enteringTArc = NULL; #if( QUADRATICCOST ) dummyRootD->sumQuadratic = 0; #endif dummyRootD->potential = MAX_ART_COST; dummyRootD->subTreeLevel = 0; for( node = nodesD ; node != stopNodesD ; node++ ) { // initialize nodes node->prevInT = node - 1; node->nextInT = node + 1; node->enteringTArc = dummyArcsD + ( node - nodesD ); #if( QUADRATICCOST ) node->sumQuadratic = ( node->enteringTArc )->quadraticCost; #endif node->potential = 0; node->subTreeLevel = 1; node->whenInT2 = 0; } nodesD->prevInT = dummyRootD; ( nodesD + n - 1 )->nextInT = NULL; } /*--------------------------------------------------------------------------*/ void MCFSimplex::CreateAdditionalDualStructures( void ) { // this method creates, in a Dual context, the Backward Star and the // Forward Star of every node for( nodeDType *node = nodesD ; node != stopNodesD ; node++) { // initialize nodes node->firstBs = NULL; node->firstFs = NULL; node->numArcs = 0; } dummyRootD->firstBs = NULL; dummyRootD->firstFs = NULL; dummyRootD->numArcs = 0; for( arcDType *arc = arcsD ; arc != stopArcsD ; arc++ ) { // initialize real arcs arc->nextFs = ( arc->tail )->firstFs; ( arc->tail )->firstFs = arc; arc->nextBs = ( arc->head )->firstBs; ( arc->head )->firstBs = arc; ( arc->tail )->numArcs++; ( arc->head )->numArcs++; } ResetWhenInT2(); } /*--------------------------------------------------------------------------*/ void MCFSimplex::PrimalSimplex( void ) { #if( UNIPI_PRIMAL_INITIAL_SHOW == 0 ) #if( UNIPI_PRIMAL_ITER_SHOW == 0 ) #if( UNIPI_PRIMAL_FINAL_SHOW == 0 ) //cout << endl; #endif #endif #endif #if( UNIPI_PRIMAL_INITIAL_SHOW ) cout << endl; for( int t = 0; t < 3; t++ ) cout << "\t"; cout << "PRIMALE MCFSimplex: ARCHI E NODI ALL' INIZIO" << endl; ShowSituation( 3 ); #endif #if( QUADRATICCOST ) #if( LIMITATEPRECISION ) foValue = GetFO(); int cont = 0; #endif #endif status = kUnSolved; if( pricingRule != kCandidateListPivot ) arcToStartP = arcsP; iterator = 0; // setting the initial arc for the Dantzig or First Elibigle Rule arcPType *enteringArc; arcPType *leavingArc; if( pricingRule == kCandidateListPivot ) InitializePrimalCandidateList(); while( status == kUnSolved ) { iterator++; switch( pricingRule ) { case( kDantzig ): enteringArc = RuleDantzig(); break; case( kFirstEligibleArc ): enteringArc = PRuleFirstEligibleArc(); break; case( kCandidateListPivot ): enteringArc = RulePrimalCandidateListPivot(); break; } #if( QUADRATICCOST ) #if( LIMITATEPRECISION ) /* In the quadratic case with LIMITATEPRECISION == 1, the entering arcs are selected according to a thresold. This thresold is definited according to the old f.o. value. If Primal Simplex doesn't find an entering arc, it calculates again the f.o. value, and try again. */ if( enteringArc == NULL ) { foValue = GetFO(); switch( pricingRule ) { case( kDantzig ): enteringArc = RuleDantzig(); break; case( kFirstEligibleArc ): enteringArc = PRuleFirstEligibleArc(); break; case( kCandidateListPivot ): enteringArc = RulePrimalCandidateListPivot(); break; } } #endif #endif if( pricingRule != kCandidateListPivot ) { // in every iteration the algorithm changes the initial arc for // Dantzig and First Eligible Rule. arcToStartP++; if( arcToStartP == stopArcsP ) arcToStartP = arcsP; } if( enteringArc ) { arcPType *arc; nodePType *k1; nodePType *k2; /* If the reduced cost of the entering arc is > 0, the Primal Simplex pushes flow in the cycle determinated by T and entering arc for decreases flow in the entering arc: in the linear case entering arc's flow goes to 0, in the quadratic case it decreases while it's possibile. If the reduced cost of the entering arc is < 0, the Primal Simplex pushes flow in the cycle determinated by T and entering arc for increases flow in the entering arc: in the linear case entering arc's flow goes to upper bound, in the quadratic case it increases while it's possibile. */ #if( QUADRATICCOST ) FONumber t; FONumber theta; FONumber deltaFO; FNumber theta2; CNumber Q = ( enteringArc->tail )->sumQuadratic + ( enteringArc->head )->sumQuadratic + enteringArc->quadraticCost; // Q is the sum of the quadratic coefficient in the cycle determinated by T // and entering arc. FONumber rc = ReductCost( enteringArc ); if( ETZ( Q, EpsCst ) ) theta = Inf(); // This value will be certainly decreased else theta = ABS( rc / Q ); // This is the best theta value (with best f.o. value decrease) leavingArc = enteringArc; nodePType *cycleRoot; // The radix of the cycle determinated by T and entering arc. if( GTZ( rc , EpsCst ) ) { #else FNumber t; FNumber theta; if( enteringArc->ident == AT_UPPER ) { #endif /* Primal Simplex increases or decreases entering arc's flow. "theta" is a positive value. For this reason the algorithm uses two nodes ("k1" and "k2") to push flow ("theta") from "k1" to "k2". According to entering arc's reduct cost, the algorithm determinates "k1" and "k2" */ k1 = enteringArc->head; k2 = enteringArc->tail; #if( QUADRATICCOST ) theta = min( theta , enteringArc->flow ); // The best value for theta is compared with the entering arc's bound theta2 = - theta; #else theta = enteringArc->flow; #endif } else { k1 = enteringArc->tail; k2 = enteringArc->head; #if( QUADRATICCOST ) theta = min( theta , enteringArc->upper - enteringArc->flow ); // The best value for theta is compared with the entering arc's bound theta2 = theta; #else theta = enteringArc->upper - enteringArc->flow; #endif } nodePType *memK1 = k1; nodePType *memK2 = k2; leavingArc = NULL; #if( QUADRATICCOST ) #if( LIMITATEPRECISION ) deltaFO = rc * theta2 + Q * theta2 * theta2 / 2; #endif bool leavingReducesFlow = GTZ( rc , EpsCst ); #else bool leavingReducesFlow = GTZ( ReductCost( enteringArc ) , EpsCst ); #endif // Compute "theta", find outgoing arc and "root" of the cycle bool leave; // Actual "theta" is compared with the bounds of the other cycle's arcs while( k1 != k2 ) { if( k1->subTreeLevel > k2->subTreeLevel ) { arc = k1->enteringTArc; if( arc->tail != k1 ) { t = arc->upper - arc->flow; leave = false; } else { t = arc->flow; leave = true; } if( t < theta ) { // The algorithm has found a possible leaving arc theta = t; leavingArc = arc; leavingReducesFlow = leave; // If "leavingReducesFlow" == true, if this arc is selected to exit the base, // it decreases its flow } k1 = Father( k1 , arc ); } else { arc = k2->enteringTArc; if( arc->tail == k2 ) { t = arc->upper - arc->flow; leave = false; } else { t = arc->flow; leave = true; } if( t <= theta ) { // The algorithm has found a possible leaving arc theta = t; leavingArc = arc; leavingReducesFlow = leave; // If "leavingReducesFlow" == true, if this arc is selected to exit the base, // it decreases its flow } k2 = Father(k2, arc); } } #if( QUADRATICCOST ) cycleRoot = k1; #endif if( leavingArc == NULL ) leavingArc = enteringArc; if( theta >= Inf() ) { status = kUnbounded; break; } // Update flow with "theta" k1 = memK1; k2 = memK2; #if( QUADRATICCOST ) if( enteringArc->tail == k1 ) theta2 = theta; else theta2 = -theta; // "theta" is a positive value in every case. // "theta2" is the real theta value according to the real // direction of the entering arc #if( LIMITATEPRECISION ) deltaFO = rc * theta2 + Q * theta2 * theta2 / 2; // The decrease of the f.o. value in the quadratic case #endif #endif if( ! ETZ(theta , EpsFlw ) ) { if( enteringArc->tail == k1 ) enteringArc->flow = enteringArc->flow + theta; else enteringArc->flow = enteringArc->flow - theta; while( k1 != k2 ) { if( k1->subTreeLevel > k2->subTreeLevel ) { arc = k1->enteringTArc; if( arc->tail != k1 ) arc->flow = arc->flow + theta; else arc->flow = arc->flow - theta; k1 = Father(k1, k1->enteringTArc); } else { arc = k2->enteringTArc; if( arc->tail == k2 ) arc->flow = arc->flow + theta; else arc->flow = arc->flow - theta; k2 = Father(k2, k2->enteringTArc); } } } if( enteringArc != leavingArc ) { bool leavingBringFlowInT2 = ( leavingReducesFlow == ( ( leavingArc->tail )->subTreeLevel > ( leavingArc->head )->subTreeLevel ) ); // "leavingBringFlowInT2" == true if leaving arc brings flow to the subtree T2 if( leavingBringFlowInT2 == ( memK1 == enteringArc->tail ) ) { k2 = enteringArc->tail; k1 = enteringArc->head; } else { k2 = enteringArc->head; k1 = enteringArc->tail; } } #if( QUADRATICCOST == 0 ) if( leavingReducesFlow ) leavingArc->ident = AT_LOWER; else leavingArc->ident = AT_UPPER; if( leavingArc != enteringArc ) { enteringArc->ident = BASIC; nodePType *h1; nodePType *h2; // "h1" is the node in the leaving arc with smaller tree's level if( ( leavingArc->tail )->subTreeLevel < ( leavingArc->head )->subTreeLevel ) { h1 = leavingArc->tail; h2 = leavingArc->head; } else { h1 = leavingArc->head; h2 = leavingArc->tail; } UpdateT(leavingArc, enteringArc, h1, h2, k1, k2); // Update potential of the subtree T2 k2 = enteringArc->head; CNumber delta = ReductCost(enteringArc); if( ( enteringArc->tail )->subTreeLevel > ( enteringArc->head )->subTreeLevel ) { delta = -delta; k2 = enteringArc->tail; } AddPotential( k2 , delta ); // In the linear case Primal Simplex only updates the potential of the nodes of // subtree T2 } #else if( leavingArc != enteringArc ) { nodePType *h1; nodePType *h2; // "h1" is the node in the leaving arc with smaller tree's level if( ( leavingArc->tail )->subTreeLevel < ( leavingArc->head )->subTreeLevel ) { h1 = leavingArc->tail; h2 = leavingArc->head; } else { h1 = leavingArc->head; h2 = leavingArc->tail; } // Update the basic tree UpdateT( leavingArc , enteringArc , h1 , h2 , k1 , k2 ); } #if( OPTQUADRATIC ) nodePType *h1; nodePType *h2; if( ( leavingArc->tail )->subTreeLevel < ( leavingArc->head )->subTreeLevel ) { h1 = leavingArc->tail; h2 = leavingArc->head; } else { h1 = leavingArc->head; h2 = leavingArc->tail; } nodePType *node = h1; nodePType *updateNode = h1; if( h1 == cycleRoot ) ComputePotential( cycleRoot ); else { while( node != cycleRoot ) { arcPType *entArc = node->enteringTArc; if( ! ETZ( entArc->quadraticCost , EpsCst ) ) updateNode = node; node = Father( node , entArc ); } ComputePotential( updateNode ); node = h2; updateNode = h2; while( node != cycleRoot ) { arcPType *entArc = node->enteringTArc; if( ! ETZ( entArc->quadraticCost , EpsCst ) ) updateNode = node; node = Father( node , entArc ); } ComputePotential( updateNode ); } #else // Update the potential of the node "manually" ComputePotential( cycleRoot ); #endif #if( LIMITATEPRECISION ) cont = cont + 1; if( cont == recomputeFOLimits ) { cont = 0; foValue = GetFO(); // Calculate f.o. value manually } else foValue = foValue + deltaFO; // Calculate the f.o. value with the estimated decrease #endif #endif } else { status = kOK; // If one of dummy arcs has flow bigger than 0, the solution is unfeasible. for( arcPType *arc = dummyArcsP ; arc != stopDummyP ; arc++ ) if( GTZ( arc->flow , EpsFlw ) ) status = kUnfeasible; } if( ( status == kUnSolved ) && MaxTime && MCFt ) { double tu, ts; TimeMCF( tu , ts ); if( MaxTime < tu + ts ) status = kStopped; } if( ( status == kUnSolved ) && MaxIter) if( MaxIter < (int) iterator ) status = kStopped; #if( UNIPI_PRIMAL_ITER_SHOW ) int it = (int) iterator; if( it % UNIPI_PRIMAL_ITER_SHOW == 0 ) { cout << endl; for( int t = 0; t < 3; t++ ) cout << "\t"; cout << "PRIMALE MCFSimplex: ARCHI E NODI ALLA " << it << " ITERAZIONE" << endl; ShowSituation( 3 ); #if( FOSHOW ) if( (int) iterator % FOSHOW == 0 ) clog << "Iteration = " << iterator << " of = " #if( LIMITATEPRECISION && QUADRATICCOST ) << foValue #else << GetFO() #endif << endl; #endif } #endif } #if( UNIPI_PRIMAL_FINAL_SHOW ) cout << endl; for( int t = 0; t < 3; t++ ) cout << "\t"; cout << "PRIMALE UniPi: ARCHI E NODI ALLA FINE" << endl; ShowSituation( 3 ); #endif } // end( PrimalSimplex ) /*--------------------------------------------------------------------------*/ void MCFSimplex::DualSimplex( void ) { #if( UNIPI_PRIMAL_INITIAL_SHOW == 0 ) #if( UNIPI_PRIMAL_ITER_SHOW == 0 ) #if( UNIPI_PRIMAL_FINAL_SHOW == 0 ) cout << endl; #endif #endif #endif #if( UNIPI_DUAL_INITIAL_SHOW ) cout << endl; for( int t = 0; t < 3; t++ ) cout << "\t"; cout << "DUALE MCFSimplex: ARCHI E NODI ALL' INIZIO" << endl; ShowSituation( 3 ); #endif if( pricingRule != kCandidateListPivot ) arcToStartD = arcsD; iterator = 0; arcDType *enteringArc; arcDType *leavingArc; if( pricingRule == kCandidateListPivot ) InitializeDualCandidateList(); status = kUnSolved; while( status == kUnSolved ) { iterator++; if( iterator == Inf() ) { ResetWhenInT2(); // Restore to 0 every nodes' field "whenInT2" iterator = 1; } switch( pricingRule ) { case( kDantzig ): leavingArc = DRuleFirstEligibleArc(); break; // si esegue cmq FEA case( kFirstEligibleArc ): leavingArc = DRuleFirstEligibleArc(); break; case( kCandidateListPivot ): leavingArc = RuleDualCandidateListPivot(); break; } if( pricingRule != kCandidateListPivot ) { arcToStartD++; if( arcToStartD == stopArcsD ) arcToStartD = dummyArcsD; if( arcToStartD == stopDummyD ) arcToStartD = arcsD; // Setting the initial arc for the Dantzig or First Elibigle Rule } if( leavingArc ) { bool leavingArcInL = false; bool leavingArcFromT1toT2; if( LTZ( leavingArc->flow , EpsFlw ) ) leavingArcInL = true; nodeDType *h1; nodeDType *h2; if( ( leavingArc->tail )->subTreeLevel < ( leavingArc->head )->subTreeLevel ) { h1 = leavingArc->tail; h2 = leavingArc->head; leavingArcFromT1toT2 = true; } else { h1 = leavingArc->head; h2 = leavingArc->tail; leavingArcFromT1toT2 = false; } Index numOfT2Arcs = 0; int level = h2->subTreeLevel; nodeDType *node = h2; node->whenInT2 = iterator; nodeDType *lastNodeOfT2 = h2; numOfT2Arcs = node->numArcs; while( node->nextInT && ( ( node->nextInT )->subTreeLevel > level ) ) { node = node->nextInT; lastNodeOfT2 = node; numOfT2Arcs = numOfT2Arcs + node->numArcs; node->whenInT2 = iterator; } /* The Dual Simplex has determinated the leaving arc, and so the subtrees T1 and T2. Dual Simplex scans T2 to fix the fields "whenInT2" of T2's nodes to the iteration value, and counts the entering and outgoing arcs from these nodes. According to this number, it decides to scan the Backward and Forward of the subtree (T1 or T2) with the minor number of entering/outgoing arcs from its nodes. */ enteringArc = NULL; bool lv = ( leavingArcFromT1toT2 == leavingArcInL ); CNumber maxRc = Inf(); //Search arc in the Forward Star and Backward Star of nodes of T1 if( numOfT2Arcs > m ) { // Dual Simplex starts from the node which follows the dummy root. node = dummyRootD->nextInT; bool fine = false; while( fine == false ) { /* If node is the root of subtree T2, Dual Simplex jumps to the node (if exists) which follows the last node of T2 */ if( node == h2 ) if( lastNodeOfT2->nextInT ) node = lastNodeOfT2->nextInT; else break; // Search arc in the Backward Star of nodes of T1 arcDType *arc = node->firstBs; while( arc ) { if( ( arc->tail )->whenInT2 == iterator ) { // Evaluate each arc from T2 to T1 which isn't in T if( arc->ident == AT_LOWER ) { if( lv ) { CNumber rc = ABS( ReductCost( arc ) ); if( LT( rc , maxRc , EpsCst ) ) { enteringArc = arc; maxRc = rc; /* If arc is appropriate to enter in T and its reduct cost is 0, search is ended: this is the arc which enters in T */ if( ETZ( rc , EpsCst) ) { fine = true; break; } } } } if( arc->ident == AT_UPPER ) { if( ! lv ) { CNumber rc = ABS( ReductCost( arc ) ); if( LT( rc , maxRc , EpsCst ) ) { enteringArc = arc; maxRc = rc; /* If arc is appropriate to enter in T and its reduct cost is 0, search is ended: this is the arc which enters in T */ if( ETZ( rc , EpsCst ) ) { fine = true; break; } } } } } arc = arc->nextBs; } // Search arc in the Forward Star of nodes of T1 arc = node->firstFs; while( arc ) { if( ( arc->head )->whenInT2 == iterator ) { // Evaluate each arc from T1 to T2 which isn't in T if( arc->ident == AT_LOWER ) { if( ! lv ) { CNumber rc = ABS( ReductCost( arc ) ); if( LT( rc , maxRc , EpsCst ) ) { enteringArc = arc; maxRc = rc; /* If arc is appropriate to enter in T and its reduct cost is 0, search is ended: this is the arc which enters in T */ if( ETZ( rc , EpsCst ) ) { fine = true; break; } } } } if( arc->ident == AT_UPPER ) { if( lv ) { CNumber rc = ABS( ReductCost( arc ) ); if( LT( rc , maxRc , EpsCst ) ) { enteringArc = arc; maxRc = rc; /* If arc is appropriate to enter in T and its reduct cost is 0, search is ended: this is the arc which enters in T */ if( ETZ( rc , EpsCst ) ) { fine = true; break; } } } } } arc = arc->nextFs; } node = node->nextInT; if( node == NULL ) fine = true; } } // Search arc in the Forward Star and Backward Star of nodes of T2 else { node = h2; bool fine = false; while( fine == false ) { // Search arc in the Backward Star of nodes of T2 arcDType *arc = node->firstBs; CNumber rc; while( arc ) { if( ( arc->tail )->whenInT2 != iterator ) { // Evaluate each arc from T1 to T2 which isn't in T if( arc->ident == AT_LOWER ) { if( ! lv ) { rc = ABS( ReductCost( arc ) ); if( LT( rc , maxRc , EpsCst ) ) { enteringArc = arc; maxRc = rc; /* If arc is appropriate to enter in T and its reduct cost is 0, search is ended: this is the arc which enters in T */ if( ETZ( rc , EpsCst ) ) { fine = true; break; } } } } if( arc->ident == AT_UPPER ) { if( lv ) { rc = ABS( ReductCost( arc ) ); if( LT( rc , maxRc , EpsCst ) ) { enteringArc = arc; maxRc = rc; /* If arc is appropriate to enter in T and its reduct cost is 0, search is ended: this is the arc which enters in T */ if( ETZ( rc , EpsCst ) ) { fine = true; break; } } } } } arc = arc->nextBs; } // Search arc in the Forward Star of nodes of T2 arc = node->firstFs; while( arc ) { if( ( arc->head )->whenInT2 != iterator ) { // Evaluate each arc from T2 to T1 which isn't in T if( arc->ident == AT_LOWER ) { if( lv ) { rc = ABS( ReductCost( arc ) ); if( LT( rc , maxRc , EpsCst ) ) { enteringArc = arc; maxRc = rc; /* If arc is appropriate to enter in T and its reduct cost is 0, search is ended: this is the arc which enters in T */ if( ETZ( rc , EpsCst ) ) { fine = true; break; } } } } if( arc->ident == AT_UPPER ) { if( ! lv ) { rc = ABS( ReductCost( arc ) ); if( LT( rc , maxRc , EpsCst ) ) { enteringArc = arc; maxRc = rc; /* If arc is appropriate to enter in T and its reduct cost is 0, search is ended: this is the arc which enters in T */ if( ETZ( rc , EpsCst) ) { fine = true; break; } } } } } arc = arc->nextFs; } if( node == lastNodeOfT2 ) fine = true; else node = node->nextInT; } } if( enteringArc ) { FNumber theta = -leavingArc->flow; if( GTZ( leavingArc->flow , EpsFlw ) ) theta = leavingArc->flow - leavingArc->upper; // Initial value of theta is the infeasibility of the leaving arc FNumber t; nodeDType *k1; nodeDType *k2; /* if entering arc is in U, Dual Simplex pushs flow in the cycle determinated by T and entering arc for decreases flow in the entering arc: if entering arc is in L, Dual Simplex pushs flow in the cycle determinated by T and entering arc for increases flow in the entering arc: Dual Simplex increases or decreases entering arc's flow. theta is a positive value. For this reason the algorithm uses two nodes (k1 and k2) to push flow (theta) from k1 to k2. According to entering arc's reduct cost, the algorithm determinates k1 and k2 */ if( enteringArc->ident == AT_UPPER ) { k1 = enteringArc->head; k2 = enteringArc->tail; } else { k1 = enteringArc->tail; k2 = enteringArc->head; } nodeDType *memK1 = k1; nodeDType *memK2 = k2; arcDType *arc; k1 = memK1; k2 = memK2; // Update the flow while( k1 != k2 ) { if( k1->subTreeLevel > k2->subTreeLevel ) { arc = k1->enteringTArc; if( arc->tail != k1 ) arc->flow = arc->flow + theta; else arc->flow = arc->flow - theta; k1 = Father(k1, k1->enteringTArc); } else { arc = k2->enteringTArc; if( arc->tail == k2 ) arc->flow = arc->flow + theta; else arc->flow = arc->flow - theta; k2 = Father( k2 , k2->enteringTArc ); } } if(leavingArcInL ) leavingArc->ident = AT_LOWER; else leavingArc->ident = AT_UPPER; bool leavingBringFlowInT2 = ( leavingArcInL == ( ( leavingArc->tail )->subTreeLevel > ( leavingArc->head )->subTreeLevel ) ); // leavingBringFlowInT2 == true if leaving arc brings flow to the subtree T2 if( leavingBringFlowInT2 != ( memK1 == enteringArc->tail ) ) { k2 = enteringArc->tail; k1 = enteringArc->head; } else { k2 = enteringArc->head; k1 = enteringArc->tail; } if( enteringArc->ident == AT_LOWER ) enteringArc->flow = enteringArc->flow + theta; else enteringArc->flow = enteringArc->flow - theta; enteringArc->ident = BASIC; UpdateT( leavingArc , enteringArc , h1 , h2 , k1 , k2 ); // update potential of the subtree T2 k2 = enteringArc->head; CNumber delta = ReductCost( enteringArc ); if( ( enteringArc->tail) ->subTreeLevel > ( enteringArc->head )->subTreeLevel ) { delta = -delta; k2 = enteringArc->tail; } // Dual Simplex only updates the potential of the T2's nodes AddPotential( k2 , delta ); } else status = kUnfeasible; /* If Dual Simplex finds a leaving arc but it doesn't find an entering arc, the algorithm stops. At this point Dual Simplex has an unfeasible primal solution. */ } else { status = kOK; // If one of dummy arcs has flow different than 0, the solution is unfeasible. for( arcDType *arc = dummyArcsD ; arc != stopDummyD ; arc++ ) if( ! ETZ( arc->flow , EpsFlw ) ) { status = kUnfeasible; break; } } if( ( status == kUnSolved ) && MaxTime ) { double tu, ts; TimeMCF( tu , ts ); if( MaxTime < tu + ts ) status = kStopped; } if( ( status == kUnSolved ) && MaxIter && MCFt ) if( MaxIter < (int) iterator ) status = kStopped; #if( UNIPI_DUAL_ITER_SHOW ) if( (int) iterator % UNIPI_DUAL_ITER_SHOW == 0 ) { cout << endl; for( int t = 0; t < 3; t++ ) cout << "\t"; cout << "DUALE MCFSimplex: ARCHI E NODI ALLA " << iterator << " ITERAZIONE" << endl; ShowSituation( 3 ); #if( FOSHOW ) cout << "of = " << GetFO() << endl; #endif } #endif } #if( UNIPI_DUAL_ITER_SHOW ) int it = (int) iterator; if( it % UNIPI_DUAL_ITER_SHOW == 0 ) { cout << endl; for( int t = 0; t < 3; t++ ) cout << "\t"; cout << "DUALE MCFSimplex: ARCHI E NODI ALLA " << iterator << " ITERAZIONE" << endl; Showsituation( 3 ); } #endif } // end( DualSimplex ) /*--------------------------------------------------------------------------*/ template void MCFSimplex::UpdateT( A *h , A *k , N *h1 , N *h2 , N *k1 , N *k2 ) { /* In subtree T2 there is a path from node h2 (deepest node of the leaving arc h and root of T2) to node k2 (deepest node of the leaving arc h and coming root of T2). With the update of T, this path will be overturned: node k2 will become the root of T2... The subtree T2 must be reordered and the field "subTreeLevel", which represents the depth in T of every node, of every T2's nodes is changed. Variable delta represents the increase of "subTreeLevel" value for node k2 and its descendants: probably this value is a negative value. */ int delta = (k1->subTreeLevel) + 1 - (k2->subTreeLevel); N *root = k2; N *dad; /*To reorder T2, the method analyses every nodes of the path h2->k2, starting from k2. For every node, it moves the node's subtree from its original position to a new appropriate position. In particular k2 and its subtree (k2 is the new root of T2, so the first nodes of the new T2) will be moved next to node k1 (new father of k2), the next subtree will be moved beside the last node of k2's subtree.... "previousNode" represents the node where the new subtree will be moved beside in this iterative action. At the start "previousNode" is the node k1 (T2 will be at the right of k1). */ N *previousNode = k1; N *lastNode; /* "arc1" is the entering arc in T (passed by parameters). For every analysed node of path h2->k2, the method changes "enteringTArc" but it must remember the old arc, which will be the "enteringTArc" of the next analysed node. At the start "arc1" is k (the new "enteringTArc" of k2). */ A *arc1 = k; A *arc2; bool fine = false; while( fine == false ) { // If analysed node is h2, this is the last iteration if( root == h2 ) fine = true; dad = Father( root , root->enteringTArc ); // Cut the root's subtree from T and update the "subLevelTree" of its nodes lastNode = CutAndUpdateSubtree( root , delta ); // Paste the root's subtree in the right position; PasteSubtree( root , lastNode , previousNode ); // In the next iteration the subtree will be moved beside the last node of // the actual analysed subtree. previousNode = lastNode; /* The increase of the subtree in the next iteration is different from the actual increase: in particual the increase increases itself (+2 at every iteration). */ delta = delta + 2; /* A this point "enteringTArc" of actual root is stored in "arc2" and changed; then "arc1" and "root" are changed. */ arc2 = root->enteringTArc; root->enteringTArc = arc1; arc1 = arc2; root = dad; } } /*--------------------------------------------------------------------------*/ template N* MCFSimplex::CutAndUpdateSubtree( N *root , int delta ) { int level = root->subTreeLevel; N *node = root; // The root of this subtree is passed by parameters, the last node is searched. while ( ( node->nextInT ) && ( ( node->nextInT )->subTreeLevel > level ) ) { node = node->nextInT; // The "subTreeLevel" of every nodes of subtree is updated node->subTreeLevel = node->subTreeLevel + delta; } root->subTreeLevel = root->subTreeLevel + delta; /* The 2 neighbouring nodes of the subtree (the node at the left of the root and the node at the right of the last node) is joined. */ if( root->prevInT ) ( root->prevInT )->nextInT = node->nextInT; if( node->nextInT ) ( node->nextInT )->prevInT = root->prevInT; return( node ); // the method returns the last node of the subtree } /*--------------------------------------------------------------------------*/ template void MCFSimplex::PasteSubtree( N *root , N *lastNode , N *previousNode ) { /* The method inserts subtree ("root" and "lastNode" are the extremity of the subtree) after "previousNode". The method starts to identify the next node of "previousNode" ("nextNode"), so it joins "root" with "previousNode" and "lastNode" with "nextNode" (if exists). */ N *nextNode = previousNode->nextInT; root->prevInT = previousNode; previousNode->nextInT = root; lastNode->nextInT = nextNode; if( nextNode ) nextNode->prevInT = lastNode; } /*--------------------------------------------------------------------------*/ MCFSimplex::arcPType* MCFSimplex::RuleDantzig( void ) { arcPType *arc = arcToStartP; arcPType *enteringArc = NULL; #if( QUADRATICCOST ) /* In the quadratic case used type for reduct cost is FONumber. Value "lim" is the fixed thresold for the decrease of the f.o. value */ FONumber lim = EpsOpt * foValue / n; FONumber RC; FONumber maxValue = 0; #else CNumber RC; CNumber maxValue = 0; #endif do { // The method analyses every arc #if( QUADRATICCOST ) RC = ReductCost( arc ); FNumber theta; /* If reduct cost of arc is lower than 0, the flow of the arc must increase. If reduct cost of arc is bigger than 0, the flow of the arc must decrease. "theta" is the difference between lower (upper) bound and the actual flow. */ if( LTZ( RC , EpsCst ) ) theta = arc->upper - arc->flow; if( GTZ( RC , EpsCst ) ) theta = -arc->flow; // If it's possible to increase (or decrease) the flow in this arc if( ! ETZ( theta , EpsFlw ) ) { /* "Q" is the sum of the quadratic coefficient of the arc belonging the T path from tail's arc to head's arc "Q" is always bigger than 0 or equals to 0. If "Q" > 0, the value - RC / Q is the increase (decrease) of the flow with the best decrease of f.o. value. - RC/ Q must be compare with "theta" to avoid that the best increase (decrease) of the flow violates the bounds of the arc. This confront determines "theta". */ CNumber Q = ( arc->tail )->sumQuadratic + ( arc->head )->sumQuadratic + arc->quadraticCost; if( GTZ( Q , EpsCst ) ) if( GTZ( theta , EpsFlw ) ) theta = min( theta , - RC / Q ); else theta = max( theta , - RC / Q ); /* Calculate the estimate decrease of the f.o. value if this arc is selected and flow is increased (decreased) by "theta" */ CNumber deltaFO = RC * theta + Q * theta * theta / 2; // if deltaFO < 0 this arc is appropriate; if deltaFO is lower than // old decrease value, arc is the best arc. if( deltaFO < maxValue ) { maxValue = deltaFO; enteringArc = arc; } } #else if( arc->ident > BASIC ) { RC = ReductCost( arc ); if( ( LTZ( RC , EpsCst ) && ( arc->ident == AT_LOWER ) ) || ( GTZ( RC , EpsCst ) && ( arc->ident == AT_UPPER ) ) ) { if( RC < 0 ) RC = -RC; if( RC > maxValue ) { maxValue = RC; enteringArc = arc; } } } #endif arc++; if( arc == stopArcsP ) arc = arcsP; } while( arc != arcToStartP ); #if( ( LIMITATEPRECISION ) && ( QUADRATICCOST ) ) if( -maxValue <= lim ) enteringArc = NULL; #endif return( enteringArc ); } /*--------------------------------------------------------------------------*/ MCFSimplex::arcPType* MCFSimplex::PRuleFirstEligibleArc( void ) { arcPType *arc = arcToStartP; arcPType *enteringArc = NULL; #if( QUADRATICCOST ) FONumber RC; #else CNumber RC; #endif do { #if( QUADRATICCOST ) // In this method the "decrease f.o. value" criterion is not used. RC = ReductCost( arc ); if( ( LTZ( RC , EpsCst ) && LT( arc->flow , arc->upper , EpsFlw ) ) || ( GTZ( RC , EpsCst ) && GTZ( arc->flow , EpsFlw ) ) ) enteringArc = arc; #else if( arc->ident > BASIC ) { RC = ReductCost( arc ); if( ( LTZ( RC , EpsCst ) && ( arc->ident == AT_LOWER ) ) || ( GTZ( RC , EpsCst ) && ( arc->ident == AT_UPPER ) ) ) enteringArc = arc; } #endif arc++; if( arc == stopArcsP ) arc = dummyArcsP; if( arc == stopDummyP ) arc = arcsP; } while( ( enteringArc == NULL ) && ( arc != arcToStartP ) ); return( enteringArc ); } /*--------------------------------------------------------------------------*/ MCFSimplex::arcDType* MCFSimplex::DRuleFirstEligibleArc( void ) { arcDType *arc = arcToStartD; arcDType *leavingArc = NULL; do { if( GT( arc->flow , arc->upper , EpsFlw ) || LTZ( arc->flow , EpsFlw ) ) leavingArc = arc; arc++; if( arc == stopArcsD ) arc = dummyArcsD; if( arc == stopDummyD ) arc = arcsD; } while( ( leavingArc == NULL ) && ( arc != arcToStartD ) ); return(leavingArc); } /*--------------------------------------------------------------------------*/ MCFSimplex::arcPType* MCFSimplex::RulePrimalCandidateListPivot( void ) { Index next = 0; Index i; Index minimeValue; if( hotListSize < tempCandidateListSize ) minimeValue = hotListSize; else minimeValue = tempCandidateListSize; #if( QUADRATICCOST ) // Check if the left arcs in the list continue to violate the dual condition for( i = 2 ; i <= minimeValue ; i++ ) { arcPType *arc = candP[ i ].arc; FONumber red_cost = ReductCost( arc ); FNumber theta = 0; /* If reduct cost of arc is lower than 0, the flow of the arc must increase. If reduct cost of arc is bigger than 0, the flow of the arc must decrease. "theta" is the difference between lower (upper) bound and the actual flow. */ if( LTZ( red_cost , EpsCst ) ) theta = arc->upper - arc->flow; else if( GTZ( red_cost , EpsCst ) ) theta = - arc->flow; // if it's possible to increase (or decrease) the flow in this arc if( theta != 0 ) { /* "Q" is the sum of the quadratic coefficient of the arc belonging the T path from tail's arc to head's arc "Q" is always bigger than 0 or equals to 0. If "Q" > 0, the value - RC / Q is the increase (decrease) of the flow with the best decrease of f.o. value. - RC/ Q must be compare with "theta" to avoid that the best increase (decrease) of the flow violates the bounds of the arc. This confront determines "theta". */ CNumber Q = ( arc->tail )->sumQuadratic + ( arc->head )->sumQuadratic + arc->quadraticCost; if( GTZ( Q , EpsCst ) ) if( GTZ( theta , EpsFlw ) ) theta = min( theta , - red_cost / Q ); else theta = max( theta , - red_cost / Q ); /* Calculate the estimate decrease of the f.o. value if this arc is selected and flow is increased (decreased) by "theta" */ CNumber deltaFO = red_cost * theta + Q * theta * theta / 2; #if( LIMITATEPRECISION ) // if deltaFO < 0 this arc is appropriate; if deltaFO is lower than // old decrease value, arc is the best arc. if( - deltaFO > ( EpsOpt * foValue / n ) ) { #else if( LTZ( deltaFO , EpsCst ) ) { #endif next++; candP[ next ].arc = arc; candP[ next ].absRC = -deltaFO; } } } tempCandidateListSize = next; Index oldGroupPos = groupPos; // Search other arcs to fill the list do { arcPType *arc; for( arc = arcsP + groupPos ; arc < stopArcsP ; arc += numGroup ) { FONumber red_cost = ReductCost( arc ); FNumber theta = 0; /* If reduced cost is lower than 0, the flow of the arc must increase. If reduced cost is larger than 0, the flow of the arc must decrease. "theta" is the difference between lower (upper) bound and the actual flow. */ if( LTZ( red_cost , EpsCst ) ) theta = arc->upper - arc->flow; else if( GTZ( red_cost , EpsCst ) ) theta = - arc->flow; // if it's possible to increase (or decrease) the flow in this arc if( theta != 0 ) { /* "Q" is the sum of the quadratic coefficient of the arc belonging the T path from tail's arc to head's arc "Q" is always bigger than 0 or equals to 0. If "Q" > 0, the value - RC / Q is the increase (decrease) of the flow with the best decrease of f.o. value. - RC/ Q must be compare with "theta" to avoid that the best increase (decrease) of the flow violates the bounds of the arc. This confront determines "theta". */ CNumber Q = ( arc->tail )->sumQuadratic + ( arc->head )->sumQuadratic + arc->quadraticCost; if( GTZ( Q , EpsCst ) ) if( GTZ( theta , EpsFlw ) ) theta = min( theta , - red_cost / Q ); else theta = max( theta , - red_cost / Q ); /* Calculate the estimate decrease of the f.o. value if this arc is selected and flow is increased (decreased) by "theta" */ CNumber deltaFO = red_cost * theta + Q * theta * theta / 2; #if( LIMITATEPRECISION ) // if deltaFO < 0 this arc is appropriate; if deltaFO is lower than // old decrease value, arc is the best arc. if( -deltaFO > ( EpsOpt * foValue / n ) ) { #else if( LTZ( deltaFO , EpsCst ) ) { #endif tempCandidateListSize++; candP[ tempCandidateListSize ].arc = arc; candP[ tempCandidateListSize ].absRC = -deltaFO; } } } groupPos++; if( groupPos == numGroup ) groupPos = 0; } while( ( tempCandidateListSize < hotListSize ) && ( groupPos != oldGroupPos ) ); #else // Check if the left arcs in the list continue to violate the dual condition for( i = 2 ; i <= minimeValue ; i++ ) { arcPType *arc = candP[i].arc; CNumber red_cost = ReductCost( arc ); if( ( LTZ( red_cost , EpsCst ) && ( arc->ident == AT_LOWER ) ) || ( GTZ( red_cost , EpsCst ) && ( arc->ident == AT_UPPER ) ) ) { next++; candP[ next ].arc = arc; candP[ next ].absRC = ABS( red_cost ); } } tempCandidateListSize = next; Index oldGroupPos = groupPos; // Search other arcs to fill the list do { arcPType *arc; for( arc = arcsP + groupPos ; arc < stopArcsP ; arc += numGroup ) { if( arc->ident == AT_LOWER ) { CNumber red_cost = ReductCost( arc ); if( LTZ( red_cost , EpsCst ) ) { tempCandidateListSize++; candP[ tempCandidateListSize ].arc = arc; candP[ tempCandidateListSize ].absRC = ABS( red_cost ); } } else if( arc->ident == AT_UPPER ) { CNumber red_cost = ReductCost( arc ); if( GTZ( red_cost , EpsCst ) ) { tempCandidateListSize++; candP[ tempCandidateListSize ].arc = arc; candP[ tempCandidateListSize ].absRC = ABS( red_cost ); } } } groupPos++; if( groupPos == numGroup ) groupPos = 0; } while( ( tempCandidateListSize < hotListSize ) && ( groupPos != oldGroupPos ) ); #endif if( tempCandidateListSize ) { SortPrimalCandidateList( 1 , tempCandidateListSize ); return( candP[ 1 ].arc ); } else return( NULL ); } /*--------------------------------------------------------------------------*/ inline void MCFSimplex::InitializePrimalCandidateList( void ) { numGroup = ( ( m - 1 ) / numCandidateList ) + 1; groupPos = 0; tempCandidateListSize = 0; } /*--------------------------------------------------------------------------*/ inline void MCFSimplex::SortPrimalCandidateList( Index min , Index max ) { Index left = min; Index right = max; #if( QUADRATICCOST ) FONumber cut = candP[ ( left + right ) / 2 ].absRC; #else CNumber cut = candP[ ( left + right ) / 2 ].absRC; #endif do { while( candP[ left ].absRC > cut) left++; while( cut > candP[ right ].absRC) right--; if( left < right ) Swap( candP[ left ] , candP[ right ] ); if(left <= right) { left++; right--; } } while( left <= right ); if( min < right ) SortPrimalCandidateList( min , right ); if( ( left < max ) && ( left <= hotListSize ) ) SortPrimalCandidateList( left , max ); } /*--------------------------------------------------------------------------*/ MCFSimplex::arcDType* MCFSimplex::RuleDualCandidateListPivot( void ) { Index next = 0; // Check if the left arcs in the list continue to violate the primal condition for( Index i = 2 ; ( i <= hotListSize ) && ( i <= tempCandidateListSize ) ; i++ ) { nodeDType *node = candD[ i ].node; arcDType *arc = node->enteringTArc; cFNumber flow = arc->flow; if( LTZ( flow , EpsFlw ) ) { next++; candD[ next ].node = node; candD[ next ].absInfeas = ABS( flow ); } if( GT( flow , arc->upper , EpsFlw ) ) { next++; candD[ next ].node = node; candD[ next ].absInfeas = flow - arc->upper; } } tempCandidateListSize = next; Index oldGroupPos = groupPos; // Search other arcs to fill the list do { nodeDType *node = nodesD + groupPos; for( node ; node < stopNodesD ; node += numGroup ) { arcDType *arc = node->enteringTArc; cFNumber flow = arc->flow; if( LTZ( flow , EpsFlw ) ) { tempCandidateListSize++; candD[ tempCandidateListSize ].node = node; candD[ tempCandidateListSize ].absInfeas = ABS( flow ); } if( GT( flow , arc->upper , EpsFlw) ) { tempCandidateListSize++; candD[ tempCandidateListSize ].node = node; candD[ tempCandidateListSize ].absInfeas = flow - arc->upper; } } groupPos++; if( groupPos == numGroup ) groupPos = 0; } while( ( tempCandidateListSize < hotListSize ) && ( groupPos != oldGroupPos ) ); if( tempCandidateListSize ) { SortDualCandidateList( 1 , tempCandidateListSize ); return( (candD[ 1 ].node)->enteringTArc ); } else return( NULL ); } /*--------------------------------------------------------------------------*/ inline void MCFSimplex::InitializeDualCandidateList( void ) { numGroup = ( ( n - 1 ) / numCandidateList ) + 1; groupPos = 0; tempCandidateListSize = 0; } /*--------------------------------------------------------------------------*/ inline void MCFSimplex::SortDualCandidateList(Index min, Index max) { Index left = min; Index right = max; FNumber cut = candD[ ( left + right ) / 2 ].absInfeas; do { while( candD[ left ].absInfeas > cut ) left++; while( cut > candD[ right ].absInfeas ) right--; if( left < right ) Swap( candD[left ] , candD[ right ] ); if( left <= right) { left++; right--; } } while( left <= right ); if( min < right ) SortDualCandidateList( min , right ); if( (left < max) && ( left <= hotListSize ) ) SortDualCandidateList( left , max ); } /*--------------------------------------------------------------------------*/ template inline void MCFSimplex::AddPotential( N *r , RCT delta ) { int level = r->subTreeLevel; N *n = r; do { n->potential = n->potential + delta; n = n->nextInT; } while ( ( n ) && ( n->subTreeLevel > level ) ); } /*--------------------------------------------------------------------------*/ template inline void MCFSimplex::ComputePotential( N *r ) { N *n = r; int level = r->subTreeLevel; FONumber cost; // If "n" is not the dummy root, the potential of "r" is computed. // If "n" is the dummy root, the potential of dummy root is a constant. do { if( n->enteringTArc ) { cost = ( n->enteringTArc )->cost; #if (QUADRATICCOST) // Also field "sumQuadratic" is updated n->sumQuadratic = ( Father( n , n->enteringTArc ) )->sumQuadratic + ( n->enteringTArc )->quadraticCost; if( ! ETZ( ( n->enteringTArc )->flow , EpsFlw ) ) cost = cost + ( ( n->enteringTArc )->quadraticCost * ( n->enteringTArc )->flow ); #endif if( n == ( n->enteringTArc )->head ) n->potential = ( Father( n , n->enteringTArc ) )->potential + cost; else n->potential = ( Father( n , n->enteringTArc ) )->potential - cost; } n = n->nextInT; } while( ( n ) && ( n->subTreeLevel > level ) ); } /*--------------------------------------------------------------------------*/ void MCFSimplex::CreateInitialPModifiedBalanceVector( void ) { int i = 0; delete[] modifiedBalance; modifiedBalance = new FNumber[ n ]; // Initialited every node's modifiedBalance to his balance for ( nodePType *node = nodesP ; node != stopNodesP ; node++ ) { modifiedBalance[i] = node->balance; i++; } // Modify the vector according to the arcs out of base with flow non zero // Scan the real arcs for( arcPType *arc = arcsP ; arc != stopArcsP ; arc++ ) { #if( QUADRATICCOST ) if( ( ! ETZ( arc->flow , EpsFlw ) ) && ( ( arc->tail )->enteringTArc != arc ) && ( ( arc->head )->enteringTArc != arc ) ) { i = (arc->tail) - nodesP; modifiedBalance[ i ] += arc->flow; i = (arc->head) - nodesP; modifiedBalance[ i ] -= arc->flow; } #else if( arc->ident == AT_UPPER ) { i = (arc->tail) - nodesP; modifiedBalance[ i ] += arc->upper; i = (arc->head) - nodesP; modifiedBalance[ i ] -= arc->upper; } #endif } // Scan the dummy arcs for( arcPType *arc = dummyArcsP ; arc != stopDummyP ; arc++ ) { #if( QUADRATICCOST ) if ( ( ! ETZ( arc->flow , EpsFlw ) ) && ( ( arc->tail )->enteringTArc != arc ) && ( ( arc->head )->enteringTArc != arc ) ) { i = (arc->tail) - nodesP; modifiedBalance[ i ] += arc->flow; i = (arc->head) - nodesP; modifiedBalance[ i ] -= arc->flow; } #else if (arc->ident == AT_UPPER) { i = (arc->tail) - nodesP; modifiedBalance[ i ] += arc->upper; i = (arc->head) - nodesP; modifiedBalance[ i ] -= arc->upper; } #endif } } /*--------------------------------------------------------------------------*/ void MCFSimplex::PostPVisit( nodePType *r ) { // The method controls if "r" is a leaf in T bool rLeaf = false; int i = r - nodesP; if( r->nextInT ) if( ( r->nextInT )->subTreeLevel <= r->subTreeLevel ) rLeaf = true; else rLeaf = true; if( rLeaf ) // If "r" is a leaf if( ( r->enteringTArc)->head == r ) // If enteringTArc of "r" goes in "r" ( r->enteringTArc )->flow = modifiedBalance[ i ]; else // If enteringTArc of "r" goes out "r" ( r->enteringTArc )->flow = - modifiedBalance[ i ]; else { // If "r" isn't a leaf nodePType *desc = r->nextInT; // Call PostPVisit for every child of "r" while( ( desc ) && ( desc->subTreeLevel > r->subTreeLevel ) ) { if( desc->subTreeLevel - 1 == r->subTreeLevel ) { // desc is a son of r PostPVisit( desc ); if( ( desc->enteringTArc )->head == r ) // enteringTArc of desc goes in r modifiedBalance[ i ] -= ( desc->enteringTArc )->flow; else // If enteringTArc of "desc" goes out "r" modifiedBalance[ i ] += ( desc->enteringTArc )->flow; } desc = desc->nextInT; } if( r != dummyRootP ) if( ( r->enteringTArc )->head == r ) // If enteringTArc of "r" goes in "r" ( r->enteringTArc )->flow = modifiedBalance[ i ]; else // If enteringTArc of "r" goes out "r" ( r->enteringTArc )->flow = - modifiedBalance[ i ]; } } /*--------------------------------------------------------------------------*/ void MCFSimplex::BalanceFlow( nodePType *r ) { // used only by Primal Simplex to restore a primal feasible solution. if( r == dummyRootP ) { nodePType *node = dummyRootP->nextInT; while( node ) { // call this function recursively for every son of dummy root if( node->subTreeLevel == 1 ) BalanceFlow( node ); node = node->nextInT; } } else { // The method controls if "r" is a leaf in T bool rLeaf = false; if( r->nextInT ) if( ( r->nextInT )->subTreeLevel <= r->subTreeLevel ) rLeaf = true; else rLeaf = true; if( rLeaf ) // If "r" is a leaf AdjustFlow( r ); // The method controls if entering basic arc in "r" is // not feasible; in case adjust its flow else { // If "r" isn't a leaf nodePType *node = r->nextInT; // Balance the flow of every child of "r" while ( ( node ) && ( node->subTreeLevel > r->subTreeLevel ) ) { if( node->subTreeLevel == r->subTreeLevel + 1 ) BalanceFlow( node ); node = node->nextInT; } // The method controls if entering basic arc in "r" is not feasible; //in case adjust its flow AdjustFlow( r ); } } } /*--------------------------------------------------------------------------*/ void MCFSimplex::AdjustFlow( nodePType *r ) { arcPType *arc = r->enteringTArc; if( arc >= dummyArcsP ) // If entering arc of "r" is a dummy arc if( LTZ( arc->flow , EpsFlw ) ) { // If this dummy arc has flow < 0, the algorithm overturns the arc nodePType *temp = arc->tail; arc->tail = arc->head; arc->head = temp; arc->flow = -arc->flow; } else { // If entering arc of "r" is not a dummy arc bool orientationDown = ( arc->head == r ); FNumber delta = 0; if( LTZ( arc->flow , EpsFlw ) ) { // If flow is < 0 delta = -arc->flow; arc->flow = 0; #if( ! QUADRATICCOST ) arc->ident = AT_LOWER; #endif } if( GT( arc->flow , arc->upper , EpsFlw ) ) { // If flow goes over the capacity of the arc delta = arc->upper - arc->flow; arc->flow = arc->upper; #if( ! QUADRATICCOST ) arc->ident = AT_UPPER; #endif } /* This arc goes out from the basis, and the relative dummy arc goes in T. Then the algorithm push flow in the cycle made by the arc and some arcs of T to balance the flow. */ if( ! ETZ( delta , EpsFlw ) ) { nodePType *node = Father( r , arc ); while( node != dummyRootP ) { arc = node->enteringTArc; if( ( arc->head == node ) == orientationDown ) arc->flow += delta; else arc->flow -= delta; node = Father( node , arc ); } arcPType *dummy = dummyArcsP + ( r - nodesP ); #if( ! QUADRATICCOST ) dummy->ident = BASIC; #endif /* Update the structure of the tree. If entering basic arc of "r" is changed, subtree of "r"is moved next dummy root. */ r->enteringTArc = dummy; int deltaLevel = 1 - r->subTreeLevel; nodePType *lastNode = CutAndUpdateSubtree( r , deltaLevel ); PasteSubtree( r , lastNode , dummyRootP ); if( ( dummy->head == r ) != orientationDown ) dummy->flow += delta; else dummy->flow -= delta; if( LTZ( dummy->flow , EpsFlw ) ) { nodePType *temp = dummy->tail; dummy->tail = dummy->head; dummy->head = temp; dummy->flow = -dummy->flow; } } } } /*--------------------------------------------------------------------------*/ void MCFSimplex::CreateInitialDModifiedBalanceVector( void ) { #if( ! QUADRATICCOST ) int i = 0; modifiedBalance = new FNumber[ n ]; // Initialited every node's modifiedBalance to his balance for( nodeDType *node = nodesD ; node != stopNodesD ; node++ ) { modifiedBalance[ i ] = node->balance; i++; } // Modify the vector according to the arcs out of base with flow non zero // Scan the real arcs for( arcDType *arc = arcsD ; arc != stopArcsD ; arc++ ) if( arc->ident == AT_UPPER ) { i = (arc->tail) - nodesD; modifiedBalance[ i ] += arc->upper; i = (arc->head) - nodesD; modifiedBalance[ i ] -= arc->upper; } // Scan the dummy arcs for( arcDType *arc = dummyArcsD ; arc != stopDummyD ; arc++ ) if( arc->ident == AT_UPPER ) { i = (arc->tail) - nodesD; modifiedBalance[ i ] += arc->upper; i = (arc->head) - nodesD; modifiedBalance[ i ] -= arc->upper; } #endif } /*--------------------------------------------------------------------------*/ void MCFSimplex::PostDVisit( nodeDType *r ) { #if( ! QUADRATICCOST ) // The method controls if "r" is a leaf in T bool rLeaf = false; int i = r - nodesD; if( r->nextInT ) if( ( r->nextInT )->subTreeLevel <= r->subTreeLevel ) rLeaf = true; else rLeaf = true; if( rLeaf ) // If "r" is a leaf if( ( r->enteringTArc)->head == r ) // If enteringTArc of "r" goes in "r" ( r->enteringTArc )->flow = modifiedBalance[ i ]; else // If enteringTArc of "r" goes out "r" ( r->enteringTArc )->flow = - modifiedBalance[ i ]; else { // If "r" isn't a leaf nodeDType *desc = r->nextInT; // Call PostDVisit for every child of "r" while( ( desc ) && ( desc->subTreeLevel > r->subTreeLevel ) ) { if( desc->subTreeLevel -1 == r->subTreeLevel ) { // desc is a son of r PostDVisit( desc ); if( ( desc->enteringTArc )->head == r ) // enteringTArc of desc goes in r modifiedBalance[ i ] -= ( desc->enteringTArc )->flow; else // If enteringTArc of "desc" goes out "r" modifiedBalance[ i ] += ( desc->enteringTArc )->flow; } desc = desc->nextInT; } if( r != dummyRootD ) if( ( r->enteringTArc )->head == r ) // If enteringTArc of "r" goes in "r" ( r->enteringTArc )->flow = modifiedBalance[ i ]; else // If enteringTArc of "r" goes out "r" ( r->enteringTArc )->flow = - modifiedBalance[ i ]; } #endif } /*--------------------------------------------------------------------------*/ inline void MCFSimplex::ResetWhenInT2( void ) { for( nodeDType *n = nodesD ; n != stopNodesD ; n++) n->whenInT2 = 0; } /*--------------------------------------------------------------------------*/ template inline N* MCFSimplex::Father( N *n , A *a ) { if( a == NULL ) return NULL; if( a->tail == n ) return( a->head ); else return( a->tail ); } /*-------------------------------------------------------------------------*/ inline MCFSimplex::FONumber MCFSimplex::GetFO( void ) { FONumber fo = 0; if( usePrimalSimplex ) { arcPType *arco; for( arco = arcsP ; arco != stopArcsP ; arco++ ) { #if( QUADRATICCOST ) if( ! ETZ( arco->flow , EpsFlw ) ) fo += arco->flow * ( arco->cost + arco->flow * arco->quadraticCost / 2 ); #else if( ( arco->ident == BASIC ) || ( arco->ident == AT_UPPER ) ) fo += arco->cost * arco->flow; #endif } for( arco = dummyArcsP ; arco != stopDummyP ; arco++ ) { #if( QUADRATICCOST ) if( ! ETZ( arco->flow , EpsFlw ) ) fo += arco->flow * ( arco->cost + arco->flow * arco->quadraticCost / 2 ); #else if( ( arco->ident == BASIC ) || ( arco->ident == AT_UPPER ) ) fo += arco->cost * arco->flow; #endif } } else { arcDType *a; for( a = arcsD ; a != stopArcsD ; a++ ) { #if (QUADRATICCOST) fo += ( a->cost * a->flow ) + ( a->quadraticCost * a->flow * a->flow ) / 2; #else if( ( a->ident == BASIC ) || (a->ident == AT_UPPER ) ) fo += a->cost * a->flow; #endif } for( a = dummyArcsD ; a != stopDummyD ; a++) { #if (QUADRATICCOST) fo += ( a->cost * a->flow ) + ( a->quadraticCost * a->flow * a->flow ) / 2; #else if( ( a->ident == BASIC ) || ( a->ident == AT_UPPER ) ) fo += a->cost * a->flow; #endif } } return( fo ); } /*-------------------------------------------------------------------------*/ void MCFSimplex::PrintPNode( nodePType *nodo ) { if( nodo ) if( nodo != dummyRootP ) cout << ( nodo - nodesP + 1 ); else cout << "r"; else cout << ".."; } /*--------------------------------------------------------------------------*/ void MCFSimplex::PrintPArc( arcPType *arc ) { if( arc ) { cout << "("; PrintPNode( arc->tail ); cout << ", "; PrintPNode( arc->head ); cout << ")"; } else cout << ".."; } /*--------------------------------------------------------------------------*/ void MCFSimplex::PrintDNode( nodeDType *nodo ) { if( nodo ) if( nodo != dummyRootD ) cout << ( nodo - nodesD + 1 ); else cout << "r"; else cout << ".."; } /*--------------------------------------------------------------------------*/ void MCFSimplex::PrintDArc( arcDType *arc ) { if( arc ) { cout << "("; PrintDNode( arc->tail ); cout << ", "; PrintDNode( arc->head ); cout << ")"; } else cout << ".."; } /*--------------------------------------------------------------------------*/ MCFSimplex::nodePType* MCFSimplex::RecoverPNode( Index ind ) { if( ( ind < 0 ) || ( ind > n ) ) return( NULL ); if( ind ) return( nodesP + ind - 1 ); else return( dummyRootP ); } /*--------------------------------------------------------------------------*/ MCFSimplex::arcPType* MCFSimplex::RecoverPArc( nodePType *tail , nodePType *head ) { if( ( tail == NULL ) || ( head == NULL ) ) return( NULL ); arcPType *arc = arcsP; while( ( arc->tail != tail ) || ( arc->head != head ) ) { arc++; if( arc == stopArcsP ) arc = dummyArcsP; if( arc == stopDummyP ) return( NULL ); } return( arc ); } /*--------------------------------------------------------------------------*/ MCFSimplex::nodeDType* MCFSimplex::RecoverDNode( Index ind ) { if( ( ind < 0 ) || ( ind > n ) ) return( NULL ); if( ind ) return( nodesD + ind - 1 ); else return( dummyRootD ); } /*--------------------------------------------------------------------------*/ MCFSimplex::arcDType* MCFSimplex::RecoverDArc( nodeDType *tail , nodeDType *head ) { if( ( tail == NULL ) || ( head == NULL ) ) return( NULL ); arcDType *arc = arcsD; while( ( arc->tail != tail ) || ( arc->head != head ) ) { arc++; if( arc == stopArcsD ) arc = dummyArcsD; if( arc == stopDummyD ) return( NULL ); } return( arc ); } /*--------------------------------------------------------------------------*/ void MCFSimplex::infoPNode( nodePType *node , int tab ) { for( int t = 0 ; t < tab ; t++ ) cout << "\t"; cout << "Nodo "; PrintPNode( node ); cout << ": b = " << node->balance << " y = " << node->potential << endl; #if( UNIPI_VIS_NODE_BASIC_ARC ) cout << ": TArc="; PrintPArc( node->enteringTArc ); cout << endl; #endif } /*--------------------------------------------------------------------------*/ void MCFSimplex::infoPArc( arcPType *arc , int ind , int tab ) { for( int t = 0 ; t < tab ; t++ ) cout << "\t"; cout << "Arco "; PrintPArc( arc ); cout << ": x = " << arc->flow; #if( UNIPI_VIS_ARC_UPPER ) cout << " u = " << arc->upper; #endif #if( UNIPI_VIS_ARC_COST ) cout << " c = " << arc->cost; #endif #if( QUADRATICCOST ) #if( UNIPI_VIS_ARC_Q_COST ) cout << " q = " << arc->quadraticCost; #endif cout << endl; for( int t = 0 ; t < tab ; t++ ) cout << "\t"; #if( UNIPI_VIS_ARC_REDUCT_COST ) cout << " rc = " << MCFGetRC( ind ); #endif #else cout << endl; for( int t = 0 ; t < tab ; t++ ) cout << "\t"; #if( UNIPI_VIS_ARC_REDUCT_COST ) cout << " rc = " << MCFGetRC( ind ); #endif #if( UNIPI_VIS_ARC_STATE ) switch( arc->ident ) { case( BASIC ): cout << " in T"; break; case( AT_LOWER ): cout << " in L"; break; case( AT_UPPER ): cout << " in U"; break; case( DELETED ): cout << " canceled"; break; case( CLOSED ): cout << " closed"; } #endif #endif cout << endl; } /*--------------------------------------------------------------------------*/ void MCFSimplex::infoDNode( nodeDType *node , int tab ) { for( int t = 0 ; t < tab; t++ ) cout << "\t"; cout << "Nodo "; PrintDNode( node ); cout << ": b = " << node->balance << " y = " << node->potential; #if( UNIPI_VIS_NODE_BASIC_ARC ) cout << ": TArc="; PrintDArc( node->enteringTArc ); cout << endl; #endif } /*--------------------------------------------------------------------------*/ void MCFSimplex::infoDArc( arcDType *arc , int ind , int tab ) { for( int t = 0 ; t < tab ; t++ ) cout << "\t"; cout << "Arco "; PrintDArc( arc ); cout << " x = " << arc->flow; #if( UNIPI_VIS_ARC_UPPER ) cout << " u = " << arc->upper; #endif #if( UNIPI_VIS_ARC_COST ) cout << " c = " << arc->cost; #endif #if( QUADRATICCOST ) #if( UNIPI_VIS_ARC_Q_COST ) cout << " q = " << arc->quadraticCost; #endif cout << endl; for( int t = 0 ; t < tab ; t++ ) cout << "\t"; #if( UNIPI_VIS_ARC_REDUCT_COST ) cout << " rc = " << MCFGetRC( ind ); #endif #else cout << endl; for( int t = 0 ; t < tab ; t++ ) cout << "\t"; #if( UNIPI_VIS_ARC_REDUCT_COST ) cout << " rc = " << MCFGetRC( ind ); #endif #if (UNIPI_VIS_ARC_STATE) switch( arc->ident ) { case( BASIC ): cout << " in T"; break; case( AT_LOWER ): cout << " in L"; break; case( AT_UPPER ): cout << " in U"; break; case( DELETED ): cout << " canceled"; break; case( CLOSED ): cout << " closed"; } #endif #endif cout << endl; } /*--------------------------------------------------------------------------*/ void MCFSimplex::ShowSituation( int tab ) { if( usePrimalSimplex ) { arcPType *arc; nodePType *node; int i = 0; for( arc = arcsP ; arc != stopArcsP ; arc++ ) { infoPArc( arc , i , tab ); i++; } cout << endl; #if( UNIPI_VIS_DUMMY_ARCS ) i = 0; for( arc = dummyArcsP ; arc != stopDummyP ; arc++ ) { infoPArc( arc , i , tab ); i++; } cout << endl; #endif infoPNode( dummyRootP , tab ); for( node = nodesP ; node != stopNodesP ; node++ ) infoPNode( node , tab ); } else { arcDType *arc; nodeDType *node; int i = 0; for( arc = arcsD ; arc != stopArcsD ; arc++ ) { infoDArc( arc , i , tab ); i++; } cout << endl; #if( UNIPI_VIS_DUMMY_ARCS ) i = 0; for( arc = dummyArcsD ; arc != stopDummyD ; arc++) { infoDArc( arc , i , tab ); i++; } cout << endl; #endif infoDNode( dummyRootD , tab ); for( node = nodesD ; node != stopNodesD ; node++ ) infoDNode( node , tab ); } } /*-------------------------------------------------------------------------*/ /*---------------------- End File MCFSimplex.C ----------------------------*/ /*-------------------------------------------------------------------------*/