From 222e2a7620e6520ffaf4fc4e69d79c18da31542e Mon Sep 17 00:00:00 2001 From: "Zancanaro; Carlo" Date: Mon, 24 Sep 2012 09:58:17 +1000 Subject: Add the clang library to the repo (with some of my changes, too). --- clang/lib/CodeGen/CGExpr.cpp | 3256 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3256 insertions(+) create mode 100644 clang/lib/CodeGen/CGExpr.cpp (limited to 'clang/lib/CodeGen/CGExpr.cpp') diff --git a/clang/lib/CodeGen/CGExpr.cpp b/clang/lib/CodeGen/CGExpr.cpp new file mode 100644 index 0000000..5f2b1f0 --- /dev/null +++ b/clang/lib/CodeGen/CGExpr.cpp @@ -0,0 +1,3256 @@ +//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Expr nodes as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenFunction.h" +#include "CodeGenModule.h" +#include "CGCall.h" +#include "CGCXXABI.h" +#include "CGDebugInfo.h" +#include "CGRecordLayout.h" +#include "CGObjCRuntime.h" +#include "TargetInfo.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/DeclObjC.h" +#include "clang/Frontend/CodeGenOptions.h" +#include "llvm/Intrinsics.h" +#include "llvm/LLVMContext.h" +#include "llvm/Support/MDBuilder.h" +#include "llvm/Target/TargetData.h" +using namespace clang; +using namespace CodeGen; + +//===--------------------------------------------------------------------===// +// Miscellaneous Helper Methods +//===--------------------------------------------------------------------===// + +llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { + unsigned addressSpace = + cast(value->getType())->getAddressSpace(); + + llvm::PointerType *destType = Int8PtrTy; + if (addressSpace) + destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); + + if (value->getType() == destType) return value; + return Builder.CreateBitCast(value, destType); +} + +/// CreateTempAlloca - This creates a alloca and inserts it into the entry +/// block. +llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, + const Twine &Name) { + if (!Builder.isNamePreserving()) + return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); + return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); +} + +void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, + llvm::Value *Init) { + llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); + llvm::BasicBlock *Block = AllocaInsertPt->getParent(); + Block->getInstList().insertAfter(&*AllocaInsertPt, Store); +} + +llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, + const Twine &Name) { + llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); + // FIXME: Should we prefer the preferred type alignment here? + CharUnits Align = getContext().getTypeAlignInChars(Ty); + Alloc->setAlignment(Align.getQuantity()); + return Alloc; +} + +llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, + const Twine &Name) { + llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); + // FIXME: Should we prefer the preferred type alignment here? + CharUnits Align = getContext().getTypeAlignInChars(Ty); + Alloc->setAlignment(Align.getQuantity()); + return Alloc; +} + +/// EvaluateExprAsBool - Perform the usual unary conversions on the specified +/// expression and compare the result against zero, returning an Int1Ty value. +llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { + if (const MemberPointerType *MPT = E->getType()->getAs()) { + llvm::Value *MemPtr = EmitScalarExpr(E); + return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); + } + + QualType BoolTy = getContext().BoolTy; + if (!E->getType()->isAnyComplexType()) + return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); + + return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); +} + +/// EmitIgnoredExpr - Emit code to compute the specified expression, +/// ignoring the result. +void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { + if (E->isRValue()) + return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); + + // Just emit it as an l-value and drop the result. + EmitLValue(E); +} + +/// EmitAnyExpr - Emit code to compute the specified expression which +/// can have any type. The result is returned as an RValue struct. +/// If this is an aggregate expression, AggSlot indicates where the +/// result should be returned. +RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, + bool IgnoreResult) { + if (!hasAggregateLLVMType(E->getType())) + return RValue::get(EmitScalarExpr(E, IgnoreResult)); + else if (E->getType()->isAnyComplexType()) + return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); + + EmitAggExpr(E, AggSlot, IgnoreResult); + return AggSlot.asRValue(); +} + +/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will +/// always be accessible even if no aggregate location is provided. +RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { + AggValueSlot AggSlot = AggValueSlot::ignored(); + + if (hasAggregateLLVMType(E->getType()) && + !E->getType()->isAnyComplexType()) + AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); + return EmitAnyExpr(E, AggSlot); +} + +/// EmitAnyExprToMem - Evaluate an expression into a given memory +/// location. +void CodeGenFunction::EmitAnyExprToMem(const Expr *E, + llvm::Value *Location, + Qualifiers Quals, + bool IsInit) { + // FIXME: This function should take an LValue as an argument. + if (E->getType()->isAnyComplexType()) { + EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); + } else if (hasAggregateLLVMType(E->getType())) { + CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); + EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, + AggValueSlot::IsDestructed_t(IsInit), + AggValueSlot::DoesNotNeedGCBarriers, + AggValueSlot::IsAliased_t(!IsInit))); + } else { + RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); + LValue LV = MakeAddrLValue(Location, E->getType()); + EmitStoreThroughLValue(RV, LV); + } +} + +namespace { +/// \brief An adjustment to be made to the temporary created when emitting a +/// reference binding, which accesses a particular subobject of that temporary. + struct SubobjectAdjustment { + enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; + + union { + struct { + const CastExpr *BasePath; + const CXXRecordDecl *DerivedClass; + } DerivedToBase; + + FieldDecl *Field; + }; + + SubobjectAdjustment(const CastExpr *BasePath, + const CXXRecordDecl *DerivedClass) + : Kind(DerivedToBaseAdjustment) { + DerivedToBase.BasePath = BasePath; + DerivedToBase.DerivedClass = DerivedClass; + } + + SubobjectAdjustment(FieldDecl *Field) + : Kind(FieldAdjustment) { + this->Field = Field; + } + }; +} + +static llvm::Value * +CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, + const NamedDecl *InitializedDecl) { + if (const VarDecl *VD = dyn_cast_or_null(InitializedDecl)) { + if (VD->hasGlobalStorage()) { + SmallString<256> Name; + llvm::raw_svector_ostream Out(Name); + CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); + Out.flush(); + + llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); + + // Create the reference temporary. + llvm::GlobalValue *RefTemp = + new llvm::GlobalVariable(CGF.CGM.getModule(), + RefTempTy, /*isConstant=*/false, + llvm::GlobalValue::InternalLinkage, + llvm::Constant::getNullValue(RefTempTy), + Name.str()); + return RefTemp; + } + } + + return CGF.CreateMemTemp(Type, "ref.tmp"); +} + +static llvm::Value * +EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, + llvm::Value *&ReferenceTemporary, + const CXXDestructorDecl *&ReferenceTemporaryDtor, + QualType &ObjCARCReferenceLifetimeType, + const NamedDecl *InitializedDecl) { + // Look through single-element init lists that claim to be lvalues. They're + // just syntactic wrappers in this case. + if (const InitListExpr *ILE = dyn_cast(E)) { + if (ILE->getNumInits() == 1 && ILE->isGLValue()) + E = ILE->getInit(0); + } + + // Look through expressions for materialized temporaries (for now). + if (const MaterializeTemporaryExpr *M + = dyn_cast(E)) { + // Objective-C++ ARC: + // If we are binding a reference to a temporary that has ownership, we + // need to perform retain/release operations on the temporary. + if (CGF.getContext().getLangOpts().ObjCAutoRefCount && + E->getType()->isObjCLifetimeType() && + (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || + E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || + E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) + ObjCARCReferenceLifetimeType = E->getType(); + + E = M->GetTemporaryExpr(); + } + + if (const CXXDefaultArgExpr *DAE = dyn_cast(E)) + E = DAE->getExpr(); + + if (const ExprWithCleanups *EWC = dyn_cast(E)) { + CGF.enterFullExpression(EWC); + CodeGenFunction::RunCleanupsScope Scope(CGF); + + return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), + ReferenceTemporary, + ReferenceTemporaryDtor, + ObjCARCReferenceLifetimeType, + InitializedDecl); + } + + RValue RV; + if (E->isGLValue()) { + // Emit the expression as an lvalue. + LValue LV = CGF.EmitLValue(E); + + if (LV.isSimple()) + return LV.getAddress(); + + // We have to load the lvalue. + RV = CGF.EmitLoadOfLValue(LV); + } else { + if (!ObjCARCReferenceLifetimeType.isNull()) { + ReferenceTemporary = CreateReferenceTemporary(CGF, + ObjCARCReferenceLifetimeType, + InitializedDecl); + + + LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, + ObjCARCReferenceLifetimeType); + + CGF.EmitScalarInit(E, dyn_cast_or_null(InitializedDecl), + RefTempDst, false); + + bool ExtendsLifeOfTemporary = false; + if (const VarDecl *Var = dyn_cast_or_null(InitializedDecl)) { + if (Var->extendsLifetimeOfTemporary()) + ExtendsLifeOfTemporary = true; + } else if (InitializedDecl && isa(InitializedDecl)) { + ExtendsLifeOfTemporary = true; + } + + if (!ExtendsLifeOfTemporary) { + // Since the lifetime of this temporary isn't going to be extended, + // we need to clean it up ourselves at the end of the full expression. + switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { + case Qualifiers::OCL_None: + case Qualifiers::OCL_ExplicitNone: + case Qualifiers::OCL_Autoreleasing: + break; + + case Qualifiers::OCL_Strong: { + assert(!ObjCARCReferenceLifetimeType->isArrayType()); + CleanupKind cleanupKind = CGF.getARCCleanupKind(); + CGF.pushDestroy(cleanupKind, + ReferenceTemporary, + ObjCARCReferenceLifetimeType, + CodeGenFunction::destroyARCStrongImprecise, + cleanupKind & EHCleanup); + break; + } + + case Qualifiers::OCL_Weak: + assert(!ObjCARCReferenceLifetimeType->isArrayType()); + CGF.pushDestroy(NormalAndEHCleanup, + ReferenceTemporary, + ObjCARCReferenceLifetimeType, + CodeGenFunction::destroyARCWeak, + /*useEHCleanupForArray*/ true); + break; + } + + ObjCARCReferenceLifetimeType = QualType(); + } + + return ReferenceTemporary; + } + + SmallVector Adjustments; + while (true) { + E = E->IgnoreParens(); + + if (const CastExpr *CE = dyn_cast(E)) { + if ((CE->getCastKind() == CK_DerivedToBase || + CE->getCastKind() == CK_UncheckedDerivedToBase) && + E->getType()->isRecordType()) { + E = CE->getSubExpr(); + CXXRecordDecl *Derived + = cast(E->getType()->getAs()->getDecl()); + Adjustments.push_back(SubobjectAdjustment(CE, Derived)); + continue; + } + + if (CE->getCastKind() == CK_NoOp) { + E = CE->getSubExpr(); + continue; + } + } else if (const MemberExpr *ME = dyn_cast(E)) { + if (!ME->isArrow() && ME->getBase()->isRValue()) { + assert(ME->getBase()->getType()->isRecordType()); + if (FieldDecl *Field = dyn_cast(ME->getMemberDecl())) { + E = ME->getBase(); + Adjustments.push_back(SubobjectAdjustment(Field)); + continue; + } + } + } + + if (const OpaqueValueExpr *opaque = dyn_cast(E)) + if (opaque->getType()->isRecordType()) + return CGF.EmitOpaqueValueLValue(opaque).getAddress(); + + // Nothing changed. + break; + } + + // Create a reference temporary if necessary. + AggValueSlot AggSlot = AggValueSlot::ignored(); + if (CGF.hasAggregateLLVMType(E->getType()) && + !E->getType()->isAnyComplexType()) { + ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), + InitializedDecl); + CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); + AggValueSlot::IsDestructed_t isDestructed + = AggValueSlot::IsDestructed_t(InitializedDecl != 0); + AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, + Qualifiers(), isDestructed, + AggValueSlot::DoesNotNeedGCBarriers, + AggValueSlot::IsNotAliased); + } + + if (InitializedDecl) { + // Get the destructor for the reference temporary. + if (const RecordType *RT = E->getType()->getAs()) { + CXXRecordDecl *ClassDecl = cast(RT->getDecl()); + if (!ClassDecl->hasTrivialDestructor()) + ReferenceTemporaryDtor = ClassDecl->getDestructor(); + } + } + + RV = CGF.EmitAnyExpr(E, AggSlot); + + // Check if need to perform derived-to-base casts and/or field accesses, to + // get from the temporary object we created (and, potentially, for which we + // extended the lifetime) to the subobject we're binding the reference to. + if (!Adjustments.empty()) { + llvm::Value *Object = RV.getAggregateAddr(); + for (unsigned I = Adjustments.size(); I != 0; --I) { + SubobjectAdjustment &Adjustment = Adjustments[I-1]; + switch (Adjustment.Kind) { + case SubobjectAdjustment::DerivedToBaseAdjustment: + Object = + CGF.GetAddressOfBaseClass(Object, + Adjustment.DerivedToBase.DerivedClass, + Adjustment.DerivedToBase.BasePath->path_begin(), + Adjustment.DerivedToBase.BasePath->path_end(), + /*NullCheckValue=*/false); + break; + + case SubobjectAdjustment::FieldAdjustment: { + LValue LV = CGF.MakeAddrLValue(Object, E->getType()); + LV = CGF.EmitLValueForField(LV, Adjustment.Field); + if (LV.isSimple()) { + Object = LV.getAddress(); + break; + } + + // For non-simple lvalues, we actually have to create a copy of + // the object we're binding to. + QualType T = Adjustment.Field->getType().getNonReferenceType() + .getUnqualifiedType(); + Object = CreateReferenceTemporary(CGF, T, InitializedDecl); + LValue TempLV = CGF.MakeAddrLValue(Object, + Adjustment.Field->getType()); + CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); + break; + } + + } + } + + return Object; + } + } + + if (RV.isAggregate()) + return RV.getAggregateAddr(); + + // Create a temporary variable that we can bind the reference to. + ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), + InitializedDecl); + + + unsigned Alignment = + CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); + if (RV.isScalar()) + CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, + /*Volatile=*/false, Alignment, E->getType()); + else + CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, + /*Volatile=*/false); + return ReferenceTemporary; +} + +RValue +CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, + const NamedDecl *InitializedDecl) { + llvm::Value *ReferenceTemporary = 0; + const CXXDestructorDecl *ReferenceTemporaryDtor = 0; + QualType ObjCARCReferenceLifetimeType; + llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, + ReferenceTemporaryDtor, + ObjCARCReferenceLifetimeType, + InitializedDecl); + if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) + return RValue::get(Value); + + // Make sure to call the destructor for the reference temporary. + const VarDecl *VD = dyn_cast_or_null(InitializedDecl); + if (VD && VD->hasGlobalStorage()) { + if (ReferenceTemporaryDtor) { + llvm::Constant *DtorFn = + CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); + EmitCXXGlobalDtorRegistration(DtorFn, + cast(ReferenceTemporary)); + } else { + assert(!ObjCARCReferenceLifetimeType.isNull()); + // Note: We intentionally do not register a global "destructor" to + // release the object. + } + + return RValue::get(Value); + } + + if (ReferenceTemporaryDtor) + PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); + else { + switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { + case Qualifiers::OCL_None: + llvm_unreachable( + "Not a reference temporary that needs to be deallocated"); + case Qualifiers::OCL_ExplicitNone: + case Qualifiers::OCL_Autoreleasing: + // Nothing to do. + break; + + case Qualifiers::OCL_Strong: { + bool precise = VD && VD->hasAttr(); + CleanupKind cleanupKind = getARCCleanupKind(); + pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, + precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, + cleanupKind & EHCleanup); + break; + } + + case Qualifiers::OCL_Weak: { + // __weak objects always get EH cleanups; otherwise, exceptions + // could cause really nasty crashes instead of mere leaks. + pushDestroy(NormalAndEHCleanup, ReferenceTemporary, + ObjCARCReferenceLifetimeType, destroyARCWeak, true); + break; + } + } + } + + return RValue::get(Value); +} + + +/// getAccessedFieldNo - Given an encoded value and a result number, return the +/// input field number being accessed. +unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, + const llvm::Constant *Elts) { + return cast(Elts->getAggregateElement(Idx)) + ->getZExtValue(); +} + +void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { + if (!CatchUndefined) + return; + + // This needs to be to the standard address space. + Address = Builder.CreateBitCast(Address, Int8PtrTy); + + llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); + + // In time, people may want to control this and use a 1 here. + llvm::Value *Arg = Builder.getFalse(); + llvm::Value *C = Builder.CreateCall2(F, Address, Arg); + llvm::BasicBlock *Cont = createBasicBlock(); + llvm::BasicBlock *Check = createBasicBlock(); + llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); + Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); + + EmitBlock(Check); + Builder.CreateCondBr(Builder.CreateICmpUGE(C, + llvm::ConstantInt::get(IntPtrTy, Size)), + Cont, getTrapBB()); + EmitBlock(Cont); +} + + +CodeGenFunction::ComplexPairTy CodeGenFunction:: +EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, + bool isInc, bool isPre) { + ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), + LV.isVolatileQualified()); + + llvm::Value *NextVal; + if (isa(InVal.first->getType())) { + uint64_t AmountVal = isInc ? 1 : -1; + NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); + + // Add the inc/dec to the real part. + NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); + } else { + QualType ElemTy = E->getType()->getAs()->getElementType(); + llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); + if (!isInc) + FVal.changeSign(); + NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); + + // Add the inc/dec to the real part. + NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); + } + + ComplexPairTy IncVal(NextVal, InVal.second); + + // Store the updated result through the lvalue. + StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); + + // If this is a postinc, return the value read from memory, otherwise use the + // updated value. + return isPre ? IncVal : InVal; +} + + +//===----------------------------------------------------------------------===// +// LValue Expression Emission +//===----------------------------------------------------------------------===// + +RValue CodeGenFunction::GetUndefRValue(QualType Ty) { + if (Ty->isVoidType()) + return RValue::get(0); + + if (const ComplexType *CTy = Ty->getAs()) { + llvm::Type *EltTy = ConvertType(CTy->getElementType()); + llvm::Value *U = llvm::UndefValue::get(EltTy); + return RValue::getComplex(std::make_pair(U, U)); + } + + // If this is a use of an undefined aggregate type, the aggregate must have an + // identifiable address. Just because the contents of the value are undefined + // doesn't mean that the address can't be taken and compared. + if (hasAggregateLLVMType(Ty)) { + llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); + return RValue::getAggregate(DestPtr); + } + + return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); +} + +RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, + const char *Name) { + ErrorUnsupported(E, Name); + return GetUndefRValue(E->getType()); +} + +LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, + const char *Name) { + ErrorUnsupported(E, Name); + llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); + return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); +} + +LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { + LValue LV = EmitLValue(E); + if (!isa(E) && !LV.isBitField() && LV.isSimple()) + EmitCheck(LV.getAddress(), + getContext().getTypeSizeInChars(E->getType()).getQuantity()); + return LV; +} + +/// EmitLValue - Emit code to compute a designator that specifies the location +/// of the expression. +/// +/// This can return one of two things: a simple address or a bitfield reference. +/// In either case, the LLVM Value* in the LValue structure is guaranteed to be +/// an LLVM pointer type. +/// +/// If this returns a bitfield reference, nothing about the pointee type of the +/// LLVM value is known: For example, it may not be a pointer to an integer. +/// +/// If this returns a normal address, and if the lvalue's C type is fixed size, +/// this method guarantees that the returned pointer type will point to an LLVM +/// type of the same size of the lvalue's type. If the lvalue has a variable +/// length type, this is not possible. +/// +LValue CodeGenFunction::EmitLValue(const Expr *E) { + switch (E->getStmtClass()) { + default: return EmitUnsupportedLValue(E, "l-value expression"); + + case Expr::ObjCPropertyRefExprClass: + llvm_unreachable("cannot emit a property reference directly"); + + case Expr::ObjCSelectorExprClass: + return EmitObjCSelectorLValue(cast(E)); + case Expr::ObjCIsaExprClass: + return EmitObjCIsaExpr(cast(E)); + case Expr::BinaryOperatorClass: + return EmitBinaryOperatorLValue(cast(E)); + case Expr::CompoundAssignOperatorClass: + if (!E->getType()->isAnyComplexType()) + return EmitCompoundAssignmentLValue(cast(E)); + return EmitComplexCompoundAssignmentLValue(cast(E)); + case Expr::CallExprClass: + case Expr::CXXMemberCallExprClass: + case Expr::CXXOperatorCallExprClass: + case Expr::UserDefinedLiteralClass: + return EmitCallExprLValue(cast(E)); + case Expr::VAArgExprClass: + return EmitVAArgExprLValue(cast(E)); + case Expr::DeclRefExprClass: + return EmitDeclRefLValue(cast(E)); + case Expr::ParenExprClass: + return EmitLValue(cast(E)->getSubExpr()); + case Expr::GenericSelectionExprClass: + return EmitLValue(cast(E)->getResultExpr()); + case Expr::PredefinedExprClass: + return EmitPredefinedLValue(cast(E)); + case Expr::StringLiteralClass: + return EmitStringLiteralLValue(cast(E)); + case Expr::ObjCEncodeExprClass: + return EmitObjCEncodeExprLValue(cast(E)); + case Expr::PseudoObjectExprClass: + return EmitPseudoObjectLValue(cast(E)); + case Expr::InitListExprClass: + assert(cast(E)->getNumInits() == 1 && + "Only single-element init list can be lvalue."); + return EmitLValue(cast(E)->getInit(0)); + + case Expr::CXXTemporaryObjectExprClass: + case Expr::CXXConstructExprClass: + return EmitCXXConstructLValue(cast(E)); + case Expr::CXXBindTemporaryExprClass: + return EmitCXXBindTemporaryLValue(cast(E)); + case Expr::LambdaExprClass: + return EmitLambdaLValue(cast(E)); + + case Expr::ExprWithCleanupsClass: { + const ExprWithCleanups *cleanups = cast(E); + enterFullExpression(cleanups); + RunCleanupsScope Scope(*this); + return EmitLValue(cleanups->getSubExpr()); + } + + case Expr::CXXScalarValueInitExprClass: + return EmitNullInitializationLValue(cast(E)); + case Expr::CXXDefaultArgExprClass: + return EmitLValue(cast(E)->getExpr()); + case Expr::CXXTypeidExprClass: + return EmitCXXTypeidLValue(cast(E)); + + case Expr::ObjCMessageExprClass: + return EmitObjCMessageExprLValue(cast(E)); + case Expr::ObjCIvarRefExprClass: + return EmitObjCIvarRefLValue(cast(E)); + case Expr::StmtExprClass: + return EmitStmtExprLValue(cast(E)); + case Expr::UnaryOperatorClass: + return EmitUnaryOpLValue(cast(E)); + case Expr::ArraySubscriptExprClass: + return EmitArraySubscriptExpr(cast(E)); + case Expr::ExtVectorElementExprClass: + return EmitExtVectorElementExpr(cast(E)); + case Expr::MemberExprClass: + return EmitMemberExpr(cast(E)); + case Expr::CompoundLiteralExprClass: + return EmitCompoundLiteralLValue(cast(E)); + case Expr::ConditionalOperatorClass: + return EmitConditionalOperatorLValue(cast(E)); + case Expr::BinaryConditionalOperatorClass: + return EmitConditionalOperatorLValue(cast(E)); + case Expr::ChooseExprClass: + return EmitLValue(cast(E)->getChosenSubExpr(getContext())); + case Expr::OpaqueValueExprClass: + return EmitOpaqueValueLValue(cast(E)); + case Expr::SubstNonTypeTemplateParmExprClass: + return EmitLValue(cast(E)->getReplacement()); + case Expr::ImplicitCastExprClass: + case Expr::CStyleCastExprClass: + case Expr::CXXFunctionalCastExprClass: + case Expr::CXXStaticCastExprClass: + case Expr::CXXDynamicCastExprClass: + case Expr::CXXReinterpretCastExprClass: + case Expr::CXXConstCastExprClass: + case Expr::ObjCBridgedCastExprClass: + return EmitCastLValue(cast(E)); + + case Expr::MaterializeTemporaryExprClass: + return EmitMaterializeTemporaryExpr(cast(E)); + } +} + +/// Given an object of the given canonical type, can we safely copy a +/// value out of it based on its initializer? +static bool isConstantEmittableObjectType(QualType type) { + assert(type.isCanonical()); + assert(!type->isReferenceType()); + + // Must be const-qualified but non-volatile. + Qualifiers qs = type.getLocalQualifiers(); + if (!qs.hasConst() || qs.hasVolatile()) return false; + + // Otherwise, all object types satisfy this except C++ classes with + // mutable subobjects or non-trivial copy/destroy behavior. + if (const RecordType *RT = dyn_cast(type)) + if (const CXXRecordDecl *RD = dyn_cast(RT->getDecl())) + if (RD->hasMutableFields() || !RD->isTrivial()) + return false; + + return true; +} + +/// Can we constant-emit a load of a reference to a variable of the +/// given type? This is different from predicates like +/// Decl::isUsableInConstantExpressions because we do want it to apply +/// in situations that don't necessarily satisfy the language's rules +/// for this (e.g. C++'s ODR-use rules). For example, we want to able +/// to do this with const float variables even if those variables +/// aren't marked 'constexpr'. +enum ConstantEmissionKind { + CEK_None, + CEK_AsReferenceOnly, + CEK_AsValueOrReference, + CEK_AsValueOnly +}; +static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { + type = type.getCanonicalType(); + if (const ReferenceType *ref = dyn_cast(type)) { + if (isConstantEmittableObjectType(ref->getPointeeType())) + return CEK_AsValueOrReference; + return CEK_AsReferenceOnly; + } + if (isConstantEmittableObjectType(type)) + return CEK_AsValueOnly; + return CEK_None; +} + +/// Try to emit a reference to the given value without producing it as +/// an l-value. This is actually more than an optimization: we can't +/// produce an l-value for variables that we never actually captured +/// in a block or lambda, which means const int variables or constexpr +/// literals or similar. +CodeGenFunction::ConstantEmission +CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { + ValueDecl *value = refExpr->getDecl(); + + // The value needs to be an enum constant or a constant variable. + ConstantEmissionKind CEK; + if (isa(value)) { + CEK = CEK_None; + } else if (VarDecl *var = dyn_cast(value)) { + CEK = checkVarTypeForConstantEmission(var->getType()); + } else if (isa(value)) { + CEK = CEK_AsValueOnly; + } else { + CEK = CEK_None; + } + if (CEK == CEK_None) return ConstantEmission(); + + Expr::EvalResult result; + bool resultIsReference; + QualType resultType; + + // It's best to evaluate all the way as an r-value if that's permitted. + if (CEK != CEK_AsReferenceOnly && + refExpr->EvaluateAsRValue(result, getContext())) { + resultIsReference = false; + resultType = refExpr->getType(); + + // Otherwise, try to evaluate as an l-value. + } else if (CEK != CEK_AsValueOnly && + refExpr->EvaluateAsLValue(result, getContext())) { + resultIsReference = true; + resultType = value->getType(); + + // Failure. + } else { + return ConstantEmission(); + } + + // In any case, if the initializer has side-effects, abandon ship. + if (result.HasSideEffects) + return ConstantEmission(); + + // Emit as a constant. + llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); + + // Make sure we emit a debug reference to the global variable. + // This should probably fire even for + if (isa(value)) { + if (!getContext().DeclMustBeEmitted(cast(value))) + EmitDeclRefExprDbgValue(refExpr, C); + } else { + assert(isa(value)); + EmitDeclRefExprDbgValue(refExpr, C); + } + + // If we emitted a reference constant, we need to dereference that. + if (resultIsReference) + return ConstantEmission::forReference(C); + + return ConstantEmission::forValue(C); +} + +llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { + return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), + lvalue.getAlignment().getQuantity(), + lvalue.getType(), lvalue.getTBAAInfo()); +} + +static bool hasBooleanRepresentation(QualType Ty) { + if (Ty->isBooleanType()) + return true; + + if (const EnumType *ET = Ty->getAs()) + return ET->getDecl()->getIntegerType()->isBooleanType(); + + if (const AtomicType *AT = Ty->getAs()) + return hasBooleanRepresentation(AT->getValueType()); + + return false; +} + +llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { + const EnumType *ET = Ty->getAs(); + bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET && + CGM.getCodeGenOpts().StrictEnums && + !ET->getDecl()->isFixed()); + bool IsBool = hasBooleanRepresentation(Ty); + llvm::Type *LTy; + if (!IsBool && !IsRegularCPlusPlusEnum) + return NULL; + + llvm::APInt Min; + llvm::APInt End; + if (IsBool) { + Min = llvm::APInt(8, 0); + End = llvm::APInt(8, 2); + LTy = Int8Ty; + } else { + const EnumDecl *ED = ET->getDecl(); + LTy = ConvertTypeForMem(ED->getIntegerType()); + unsigned Bitwidth = LTy->getScalarSizeInBits(); + unsigned NumNegativeBits = ED->getNumNegativeBits(); + unsigned NumPositiveBits = ED->getNumPositiveBits(); + + if (NumNegativeBits) { + unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); + assert(NumBits <= Bitwidth); + End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); + Min = -End; + } else { + assert(NumPositiveBits <= Bitwidth); + End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; + Min = llvm::APInt(Bitwidth, 0); + } + } + + llvm::MDBuilder MDHelper(getLLVMContext()); + return MDHelper.createRange(Min, End); +} + +llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, + unsigned Alignment, QualType Ty, + llvm::MDNode *TBAAInfo) { + llvm::LoadInst *Load = Builder.CreateLoad(Addr); + if (Volatile) + Load->setVolatile(true); + if (Alignment) + Load->setAlignment(Alignment); + if (TBAAInfo) + CGM.DecorateInstruction(Load, TBAAInfo); + // If this is an atomic type, all normal reads must be atomic + if (Ty->isAtomicType()) + Load->setAtomic(llvm::SequentiallyConsistent); + + if (CGM.getCodeGenOpts().OptimizationLevel > 0) + if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) + Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); + + return EmitFromMemory(Load, Ty); +} + +llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { + // Bool has a different representation in memory than in registers. + if (hasBooleanRepresentation(Ty)) { + // This should really always be an i1, but sometimes it's already + // an i8, and it's awkward to track those cases down. + if (Value->getType()->isIntegerTy(1)) + return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); + assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); + } + + return Value; +} + +llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { + // Bool has a different representation in memory than in registers. + if (hasBooleanRepresentation(Ty)) { + assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); + return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); + } + + return Value; +} + +void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, + bool Volatile, unsigned Alignment, + QualType Ty, + llvm::MDNode *TBAAInfo, + bool isInit) { + Value = EmitToMemory(Value, Ty); + + llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); + if (Alignment) + Store->setAlignment(Alignment); + if (TBAAInfo) + CGM.DecorateInstruction(Store, TBAAInfo); + if (!isInit && Ty->isAtomicType()) + Store->setAtomic(llvm::SequentiallyConsistent); +} + +void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, + bool isInit) { + EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), + lvalue.getAlignment().getQuantity(), lvalue.getType(), + lvalue.getTBAAInfo(), isInit); +} + +/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this +/// method emits the address of the lvalue, then loads the result as an rvalue, +/// returning the rvalue. +RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { + if (LV.isObjCWeak()) { + // load of a __weak object. + llvm::Value *AddrWeakObj = LV.getAddress(); + return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, + AddrWeakObj)); + } + if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) + return RValue::get(EmitARCLoadWeak(LV.getAddress())); + + if (LV.isSimple()) { + assert(!LV.getType()->isFunctionType()); + + // Everything needs a load. + return RValue::get(EmitLoadOfScalar(LV)); + } + + if (LV.isVectorElt()) { + llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), + LV.isVolatileQualified()); + Load->setAlignment(LV.getAlignment().getQuantity()); + return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), + "vecext")); + } + + // If this is a reference to a subset of the elements of a vector, either + // shuffle the input or extract/insert them as appropriate. + if (LV.isExtVectorElt()) + return EmitLoadOfExtVectorElementLValue(LV); + + assert(LV.isBitField() && "Unknown LValue type!"); + return EmitLoadOfBitfieldLValue(LV); +} + +RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { + const CGBitFieldInfo &Info = LV.getBitFieldInfo(); + + // Get the output type. + llvm::Type *ResLTy = ConvertType(LV.getType()); + unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); + + // Compute the result as an OR of all of the individual component accesses. + llvm::Value *Res = 0; + for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { + const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); + + // Get the field pointer. + llvm::Value *Ptr = LV.getBitFieldBaseAddr(); + + // Only offset by the field index if used, so that incoming values are not + // required to be structures. + if (AI.FieldIndex) + Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); + + // Offset by the byte offset, if used. + if (!AI.FieldByteOffset.isZero()) { + Ptr = EmitCastToVoidPtr(Ptr); + Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), + "bf.field.offs"); + } + + // Cast to the access type. + llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, + CGM.getContext().getTargetAddressSpace(LV.getType())); + Ptr = Builder.CreateBitCast(Ptr, PTy); + + // Perform the load. + llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); + if (!AI.AccessAlignment.isZero()) + Load->setAlignment(AI.AccessAlignment.getQuantity()); + + // Shift out unused low bits and mask out unused high bits. + llvm::Value *Val = Load; + if (AI.FieldBitStart) + Val = Builder.CreateLShr(Load, AI.FieldBitStart); + Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, + AI.TargetBitWidth), + "bf.clear"); + + // Extend or truncate to the target size. + if (AI.AccessWidth < ResSizeInBits) + Val = Builder.CreateZExt(Val, ResLTy); + else if (AI.AccessWidth > ResSizeInBits) + Val = Builder.CreateTrunc(Val, ResLTy); + + // Shift into place, and OR into the result. + if (AI.TargetBitOffset) + Val = Builder.CreateShl(Val, AI.TargetBitOffset); + Res = Res ? Builder.CreateOr(Res, Val) : Val; + } + + // If the bit-field is signed, perform the sign-extension. + // + // FIXME: This can easily be folded into the load of the high bits, which + // could also eliminate the mask of high bits in some situations. + if (Info.isSigned()) { + unsigned ExtraBits = ResSizeInBits - Info.getSize(); + if (ExtraBits) + Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), + ExtraBits, "bf.val.sext"); + } + + return RValue::get(Res); +} + +// If this is a reference to a subset of the elements of a vector, create an +// appropriate shufflevector. +RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { + llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), + LV.isVolatileQualified()); + Load->setAlignment(LV.getAlignment().getQuantity()); + llvm::Value *Vec = Load; + + const llvm::Constant *Elts = LV.getExtVectorElts(); + + // If the result of the expression is a non-vector type, we must be extracting + // a single element. Just codegen as an extractelement. + const VectorType *ExprVT = LV.getType()->getAs(); + if (!ExprVT) { + unsigned InIdx = getAccessedFieldNo(0, Elts); + llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); + return RValue::get(Builder.CreateExtractElement(Vec, Elt)); + } + + // Always use shuffle vector to try to retain the original program structure + unsigned NumResultElts = ExprVT->getNumElements(); + + SmallVector Mask; + for (unsigned i = 0; i != NumResultElts; ++i) + Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); + + llvm::Value *MaskV = llvm::ConstantVector::get(Mask); + Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), + MaskV); + return RValue::get(Vec); +} + + + +/// EmitStoreThroughLValue - Store the specified rvalue into the specified +/// lvalue, where both are guaranteed to the have the same type, and that type +/// is 'Ty'. +void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { + if (!Dst.isSimple()) { + if (Dst.isVectorElt()) { + // Read/modify/write the vector, inserting the new element. + llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), + Dst.isVolatileQualified()); + Load->setAlignment(Dst.getAlignment().getQuantity()); + llvm::Value *Vec = Load; + Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), + Dst.getVectorIdx(), "vecins"); + llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), + Dst.isVolatileQualified()); + Store->setAlignment(Dst.getAlignment().getQuantity()); + return; + } + + // If this is an update of extended vector elements, insert them as + // appropriate. + if (Dst.isExtVectorElt()) + return EmitStoreThroughExtVectorComponentLValue(Src, Dst); + + assert(Dst.isBitField() && "Unknown LValue type"); + return EmitStoreThroughBitfieldLValue(Src, Dst); + } + + // There's special magic for assigning into an ARC-qualified l-value. + if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { + switch (Lifetime) { + case Qualifiers::OCL_None: + llvm_unreachable("present but none"); + + case Qualifiers::OCL_ExplicitNone: + // nothing special + break; + + case Qualifiers::OCL_Strong: + EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); + return; + + case Qualifiers::OCL_Weak: + EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); + return; + + case Qualifiers::OCL_Autoreleasing: + Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), + Src.getScalarVal())); + // fall into the normal path + break; + } + } + + if (Dst.isObjCWeak() && !Dst.isNonGC()) { + // load of a __weak object. + llvm::Value *LvalueDst = Dst.getAddress(); + llvm::Value *src = Src.getScalarVal(); + CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); + return; + } + + if (Dst.isObjCStrong() && !Dst.isNonGC()) { + // load of a __strong object. + llvm::Value *LvalueDst = Dst.getAddress(); + llvm::Value *src = Src.getScalarVal(); + if (Dst.isObjCIvar()) { + assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); + llvm::Type *ResultType = ConvertType(getContext().LongTy); + llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); + llvm::Value *dst = RHS; + RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); + llvm::Value *LHS = + Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); + llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); + CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, + BytesBetween); + } else if (Dst.isGlobalObjCRef()) { + CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, + Dst.isThreadLocalRef()); + } + else + CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); + return; + } + + assert(Src.isScalar() && "Can't emit an agg store with this method"); + EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); +} + +void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, + llvm::Value **Result) { + const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); + + // Get the output type. + llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); + unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); + + // Get the source value, truncated to the width of the bit-field. + llvm::Value *SrcVal = Src.getScalarVal(); + + if (hasBooleanRepresentation(Dst.getType())) + SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); + + SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, + Info.getSize()), + "bf.value"); + + // Return the new value of the bit-field, if requested. + if (Result) { + // Cast back to the proper type for result. + llvm::Type *SrcTy = Src.getScalarVal()->getType(); + llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, + "bf.reload.val"); + + // Sign extend if necessary. + if (Info.isSigned()) { + unsigned ExtraBits = ResSizeInBits - Info.getSize(); + if (ExtraBits) + ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), + ExtraBits, "bf.reload.sext"); + } + + *Result = ReloadVal; + } + + // Iterate over the components, writing each piece to memory. + for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { + const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); + + // Get the field pointer. + llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); + unsigned addressSpace = + cast(Ptr->getType())->getAddressSpace(); + + // Only offset by the field index if used, so that incoming values are not + // required to be structures. + if (AI.FieldIndex) + Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); + + // Offset by the byte offset, if used. + if (!AI.FieldByteOffset.isZero()) { + Ptr = EmitCastToVoidPtr(Ptr); + Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), + "bf.field.offs"); + } + + // Cast to the access type. + llvm::Type *AccessLTy = + llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); + + llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); + Ptr = Builder.CreateBitCast(Ptr, PTy); + + // Extract the piece of the bit-field value to write in this access, limited + // to the values that are part of this access. + llvm::Value *Val = SrcVal; + if (AI.TargetBitOffset) + Val = Builder.CreateLShr(Val, AI.TargetBitOffset); + Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, + AI.TargetBitWidth)); + + // Extend or truncate to the access size. + if (ResSizeInBits < AI.AccessWidth) + Val = Builder.CreateZExt(Val, AccessLTy); + else if (ResSizeInBits > AI.AccessWidth) + Val = Builder.CreateTrunc(Val, AccessLTy); + + // Shift into the position in memory. + if (AI.FieldBitStart) + Val = Builder.CreateShl(Val, AI.FieldBitStart); + + // If necessary, load and OR in bits that are outside of the bit-field. + if (AI.TargetBitWidth != AI.AccessWidth) { + llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); + if (!AI.AccessAlignment.isZero()) + Load->setAlignment(AI.AccessAlignment.getQuantity()); + + // Compute the mask for zeroing the bits that are part of the bit-field. + llvm::APInt InvMask = + ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, + AI.FieldBitStart + AI.TargetBitWidth); + + // Apply the mask and OR in to the value to write. + Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); + } + + // Write the value. + llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, + Dst.isVolatileQualified()); + if (!AI.AccessAlignment.isZero()) + Store->setAlignment(AI.AccessAlignment.getQuantity()); + } +} + +void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, + LValue Dst) { + // This access turns into a read/modify/write of the vector. Load the input + // value now. + llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), + Dst.isVolatileQualified()); + Load->setAlignment(Dst.getAlignment().getQuantity()); + llvm::Value *Vec = Load; + const llvm::Constant *Elts = Dst.getExtVectorElts(); + + llvm::Value *SrcVal = Src.getScalarVal(); + + if (const VectorType *VTy = Dst.getType()->getAs()) { + unsigned NumSrcElts = VTy->getNumElements(); + unsigned NumDstElts = + cast(Vec->getType())->getNumElements(); + if (NumDstElts == NumSrcElts) { + // Use shuffle vector is the src and destination are the same number of + // elements and restore the vector mask since it is on the side it will be + // stored. + SmallVector Mask(NumDstElts); + for (unsigned i = 0; i != NumSrcElts; ++i) + Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); + + llvm::Value *MaskV = llvm::ConstantVector::get(Mask); + Vec = Builder.CreateShuffleVector(SrcVal, + llvm::UndefValue::get(Vec->getType()), + MaskV); + } else if (NumDstElts > NumSrcElts) { + // Extended the source vector to the same length and then shuffle it + // into the destination. + // FIXME: since we're shuffling with undef, can we just use the indices + // into that? This could be simpler. + SmallVector ExtMask; + for (unsigned i = 0; i != NumSrcElts; ++i) + ExtMask.push_back(Builder.getInt32(i)); + ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); + llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); + llvm::Value *ExtSrcVal = + Builder.CreateShuffleVector(SrcVal, + llvm::UndefValue::get(SrcVal->getType()), + ExtMaskV); + // build identity + SmallVector Mask; + for (unsigned i = 0; i != NumDstElts; ++i) + Mask.push_back(Builder.getInt32(i)); + + // modify when what gets shuffled in + for (unsigned i = 0; i != NumSrcElts; ++i) + Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); + llvm::Value *MaskV = llvm::ConstantVector::get(Mask); + Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); + } else { + // We should never shorten the vector + llvm_unreachable("unexpected shorten vector length"); + } + } else { + // If the Src is a scalar (not a vector) it must be updating one element. + unsigned InIdx = getAccessedFieldNo(0, Elts); + llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); + Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); + } + + llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), + Dst.isVolatileQualified()); + Store->setAlignment(Dst.getAlignment().getQuantity()); +} + +// setObjCGCLValueClass - sets class of he lvalue for the purpose of +// generating write-barries API. It is currently a global, ivar, +// or neither. +static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, + LValue &LV, + bool IsMemberAccess=false) { + if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) + return; + + if (isa(E)) { + QualType ExpTy = E->getType(); + if (IsMemberAccess && ExpTy->isPointerType()) { + // If ivar is a structure pointer, assigning to field of + // this struct follows gcc's behavior and makes it a non-ivar + // writer-barrier conservatively. + ExpTy = ExpTy->getAs()->getPointeeType(); + if (ExpTy->isRecordType()) { + LV.setObjCIvar(false); + return; + } + } + LV.setObjCIvar(true); + ObjCIvarRefExpr *Exp = cast(const_cast(E)); + LV.setBaseIvarExp(Exp->getBase()); + LV.setObjCArray(E->getType()->isArrayType()); + return; + } + + if (const DeclRefExpr *Exp = dyn_cast(E)) { + if (const VarDecl *VD = dyn_cast(Exp->getDecl())) { + if (VD->hasGlobalStorage()) { + LV.setGlobalObjCRef(true); + LV.setThreadLocalRef(VD->isThreadSpecified()); + } + } + LV.setObjCArray(E->getType()->isArrayType()); + return; + } + + if (const UnaryOperator *Exp = dyn_cast(E)) { + setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); + return; + } + + if (const ParenExpr *Exp = dyn_cast(E)) { + setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); + if (LV.isObjCIvar()) { + // If cast is to a structure pointer, follow gcc's behavior and make it + // a non-ivar write-barrier. + QualType ExpTy = E->getType(); + if (ExpTy->isPointerType()) + ExpTy = ExpTy->getAs()->getPointeeType(); + if (ExpTy->isRecordType()) + LV.setObjCIvar(false); + } + return; + } + + if (const GenericSelectionExpr *Exp = dyn_cast(E)) { + setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); + return; + } + + if (const ImplicitCastExpr *Exp = dyn_cast(E)) { + setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); + return; + } + + if (const CStyleCastExpr *Exp = dyn_cast(E)) { + setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); + return; + } + + if (const ObjCBridgedCastExpr *Exp = dyn_cast(E)) { + setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); + return; + } + + if (const ArraySubscriptExpr *Exp = dyn_cast(E)) { + setObjCGCLValueClass(Ctx, Exp->getBase(), LV); + if (LV.isObjCIvar() && !LV.isObjCArray()) + // Using array syntax to assigning to what an ivar points to is not + // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; + LV.setObjCIvar(false); + else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) + // Using array syntax to assigning to what global points to is not + // same as assigning to the global itself. {id *G;} G[i] = 0; + LV.setGlobalObjCRef(false); + return; + } + + if (const MemberExpr *Exp = dyn_cast(E)) { + setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); + // We don't know if member is an 'ivar', but this flag is looked at + // only in the context of LV.isObjCIvar(). + LV.setObjCArray(E->getType()->isArrayType()); + return; + } +} + +static llvm::Value * +EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, + llvm::Value *V, llvm::Type *IRType, + StringRef Name = StringRef()) { + unsigned AS = cast(V->getType())->getAddressSpace(); + return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); +} + +static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, + const Expr *E, const VarDecl *VD) { + assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && + "Var decl must have external storage or be a file var decl!"); + + llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); + llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); + V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); + CharUnits Alignment = CGF.getContext().getDeclAlign(VD); + QualType T = E->getType(); + LValue LV; + if (VD->getType()->isReferenceType()) { + llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); + LI->setAlignment(Alignment.getQuantity()); + V = LI; + LV = CGF.MakeNaturalAlignAddrLValue(V, T); + } else { + LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); + } + setObjCGCLValueClass(CGF.getContext(), E, LV); + return LV; +} + +static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, + const Expr *E, const FunctionDecl *FD) { + llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); + if (!FD->hasPrototype()) { + if (const FunctionProtoType *Proto = + FD->getType()->getAs()) { + // Ugly case: for a K&R-style definition, the type of the definition + // isn't the same as the type of a use. Correct for this with a + // bitcast. + QualType NoProtoType = + CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); + NoProtoType = CGF.getContext().getPointerType(NoProtoType); + V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); + } + } + CharUnits Alignment = CGF.getContext().getDeclAlign(FD); + return CGF.MakeAddrLValue(V, E->getType(), Alignment); +} + +LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { + const NamedDecl *ND = E->getDecl(); + CharUnits Alignment = getContext().getDeclAlign(ND); + QualType T = E->getType(); + + // FIXME: We should be able to assert this for FunctionDecls as well! + // FIXME: We should be able to assert this for all DeclRefExprs, not just + // those with a valid source location. + assert((ND->isUsed(false) || !isa(ND) || + !E->getLocation().isValid()) && + "Should not use decl without marking it used!"); + + if (ND->hasAttr()) { + const ValueDecl *VD = cast(ND); + llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); + return MakeAddrLValue(Aliasee, E->getType(), Alignment); + } + + if (const VarDecl *VD = dyn_cast(ND)) { + // Check if this is a global variable. + if (VD->hasExternalStorage() || VD->isFileVarDecl()) + return EmitGlobalVarDeclLValue(*this, E, VD); + + bool isBlockVariable = VD->hasAttr(); + + bool NonGCable = VD->hasLocalStorage() && + !VD->getType()->isReferenceType() && + !isBlockVariable; + + llvm::Value *V = LocalDeclMap[VD]; + if (!V && VD->isStaticLocal()) + V = CGM.getStaticLocalDeclAddress(VD); + + // Use special handling for lambdas. + if (!V) { + if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { + QualType LambdaTagType = getContext().getTagDeclType(FD->getParent()); + LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, + LambdaTagType); + return EmitLValueForField(LambdaLV, FD); + } + + assert(isa(CurCodeDecl) && E->refersToEnclosingLocal()); + CharUnits alignment = getContext().getDeclAlign(VD); + return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), + E->getType(), alignment); + } + + assert(V && "DeclRefExpr not entered in LocalDeclMap?"); + + if (isBlockVariable) + V = BuildBlockByrefAddress(V, VD); + + LValue LV; + if (VD->getType()->isReferenceType()) { + llvm::LoadInst *LI = Builder.CreateLoad(V); + LI->setAlignment(Alignment.getQuantity()); + V = LI; + LV = MakeNaturalAlignAddrLValue(V, T); + } else { + LV = MakeAddrLValue(V, T, Alignment); + } + + if (NonGCable) { + LV.getQuals().removeObjCGCAttr(); + LV.setNonGC(true); + } + setObjCGCLValueClass(getContext(), E, LV); + return LV; + } + + if (const FunctionDecl *fn = dyn_cast(ND)) + return EmitFunctionDeclLValue(*this, E, fn); + + llvm_unreachable("Unhandled DeclRefExpr"); +} + +LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { + // __extension__ doesn't affect lvalue-ness. + if (E->getOpcode() == UO_Extension) + return EmitLValue(E->getSubExpr()); + + QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); + switch (E->getOpcode()) { + default: llvm_unreachable("Unknown unary operator lvalue!"); + case UO_Deref: { + QualType T = E->getSubExpr()->getType()->getPointeeType(); + assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); + + LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); + LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); + + // We should not generate __weak write barrier on indirect reference + // of a pointer to object; as in void foo (__weak id *param); *param = 0; + // But, we continue to generate __strong write barrier on indirect write + // into a pointer to object. + if (getContext().getLangOpts().ObjC1 && + getContext().getLangOpts().getGC() != LangOptions::NonGC && + LV.isObjCWeak()) + LV.setNonGC(!E->isOBJCGCCandidate(getContext())); + return LV; + } + case UO_Real: + case UO_Imag: { + LValue LV = EmitLValue(E->getSubExpr()); + assert(LV.isSimple() && "real/imag on non-ordinary l-value"); + llvm::Value *Addr = LV.getAddress(); + + // __real is valid on scalars. This is a faster way of testing that. + // __imag can only produce an rvalue on scalars. + if (E->getOpcode() == UO_Real && + !cast(Addr->getType()) + ->getElementType()->isStructTy()) { + assert(E->getSubExpr()->getType()->isArithmeticType()); + return LV; + } + + assert(E->getSubExpr()->getType()->isAnyComplexType()); + + unsigned Idx = E->getOpcode() == UO_Imag; + return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), + Idx, "idx"), + ExprTy); + } + case UO_PreInc: + case UO_PreDec: { + LValue LV = EmitLValue(E->getSubExpr()); + bool isInc = E->getOpcode() == UO_PreInc; + + if (E->getType()->isAnyComplexType()) + EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); + else + EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); + return LV; + } + } +} + +LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { + return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), + E->getType()); +} + +LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { + return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), + E->getType()); +} + + +LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { + switch (E->getIdentType()) { + default: + return EmitUnsupportedLValue(E, "predefined expression"); + + case PredefinedExpr::Func: + case PredefinedExpr::Function: + case PredefinedExpr::PrettyFunction: { + unsigned Type = E->getIdentType(); + std::string GlobalVarName; + + switch (Type) { + default: llvm_unreachable("Invalid type"); + case PredefinedExpr::Func: + GlobalVarName = "__func__."; + break; + case PredefinedExpr::Function: + GlobalVarName = "__FUNCTION__."; + break; + case PredefinedExpr::PrettyFunction: + GlobalVarName = "__PRETTY_FUNCTION__."; + break; + } + + StringRef FnName = CurFn->getName(); + if (FnName.startswith("\01")) + FnName = FnName.substr(1); + GlobalVarName += FnName; + + const Decl *CurDecl = CurCodeDecl; + if (CurDecl == 0) + CurDecl = getContext().getTranslationUnitDecl(); + + std::string FunctionName = + (isa(CurDecl) + ? FnName.str() + : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); + + llvm::Constant *C = + CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); + return MakeAddrLValue(C, E->getType()); + } + } +} + +llvm::BasicBlock *CodeGenFunction::getTrapBB() { + const CodeGenOptions &GCO = CGM.getCodeGenOpts(); + + // If we are not optimzing, don't collapse all calls to trap in the function + // to the same call, that way, in the debugger they can see which operation + // did in fact fail. If we are optimizing, we collapse all calls to trap down + // to just one per function to save on codesize. + if (GCO.OptimizationLevel && TrapBB) + return TrapBB; + + llvm::BasicBlock *Cont = 0; + if (HaveInsertPoint()) { + Cont = createBasicBlock("cont"); + EmitBranch(Cont); + } + TrapBB = createBasicBlock("trap"); + EmitBlock(TrapBB); + + llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); + llvm::CallInst *TrapCall = Builder.CreateCall(F); + TrapCall->setDoesNotReturn(); + TrapCall->setDoesNotThrow(); + Builder.CreateUnreachable(); + + if (Cont) + EmitBlock(Cont); + return TrapBB; +} + +/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an +/// array to pointer, return the array subexpression. +static const Expr *isSimpleArrayDecayOperand(const Expr *E) { + // If this isn't just an array->pointer decay, bail out. + const CastExpr *CE = dyn_cast(E); + if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) + return 0; + + // If this is a decay from variable width array, bail out. + const Expr *SubExpr = CE->getSubExpr(); + if (SubExpr->getType()->isVariableArrayType()) + return 0; + + return SubExpr; +} + +LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { + // The index must always be an integer, which is not an aggregate. Emit it. + llvm::Value *Idx = EmitScalarExpr(E->getIdx()); + QualType IdxTy = E->getIdx()->getType(); + bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); + + // If the base is a vector type, then we are forming a vector element lvalue + // with this subscript. + if (E->getBase()->getType()->isVectorType()) { + // Emit the vector as an lvalue to get its address. + LValue LHS = EmitLValue(E->getBase()); + assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); + Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); + return LValue::MakeVectorElt(LHS.getAddress(), Idx, + E->getBase()->getType(), LHS.getAlignment()); + } + + // Extend or truncate the index type to 32 or 64-bits. + if (Idx->getType() != IntPtrTy) + Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); + + // FIXME: As llvm implements the object size checking, this can come out. + if (CatchUndefined) { + if (const ImplicitCastExpr *ICE = dyn_cast(E->getBase())){ + if (const DeclRefExpr *DRE = dyn_cast(ICE->getSubExpr())) { + if (ICE->getCastKind() == CK_ArrayToPointerDecay) { + if (const ConstantArrayType *CAT + = getContext().getAsConstantArrayType(DRE->getType())) { + llvm::APInt Size = CAT->getSize(); + llvm::BasicBlock *Cont = createBasicBlock("cont"); + Builder.CreateCondBr(Builder.CreateICmpULE(Idx, + llvm::ConstantInt::get(Idx->getType(), Size)), + Cont, getTrapBB()); + EmitBlock(Cont); + } + } + } + } + } + + // We know that the pointer points to a type of the correct size, unless the + // size is a VLA or Objective-C interface. + llvm::Value *Address = 0; + CharUnits ArrayAlignment; + if (const VariableArrayType *vla = + getContext().getAsVariableArrayType(E->getType())) { + // The base must be a pointer, which is not an aggregate. Emit + // it. It needs to be emitted first in case it's what captures + // the VLA bounds. + Address = EmitScalarExpr(E->getBase()); + + // The element count here is the total number of non-VLA elements. + llvm::Value *numElements = getVLASize(vla).first; + + // Effectively, the multiply by the VLA size is part of the GEP. + // GEP indexes are signed, and scaling an index isn't permitted to + // signed-overflow, so we use the same semantics for our explicit + // multiply. We suppress this if overflow is not undefined behavior. + if (getLangOpts().isSignedOverflowDefined()) { + Idx = Builder.CreateMul(Idx, numElements); + Address = Builder.CreateGEP(Address, Idx, "arrayidx"); + } else { + Idx = Builder.CreateNSWMul(Idx, numElements); + Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); + } + } else if (const ObjCObjectType *OIT = E->getType()->getAs()){ + // Indexing over an interface, as in "NSString *P; P[4];" + llvm::Value *InterfaceSize = + llvm::ConstantInt::get(Idx->getType(), + getContext().getTypeSizeInChars(OIT).getQuantity()); + + Idx = Builder.CreateMul(Idx, InterfaceSize); + + // The base must be a pointer, which is not an aggregate. Emit it. + llvm::Value *Base = EmitScalarExpr(E->getBase()); + Address = EmitCastToVoidPtr(Base); + Address = Builder.CreateGEP(Address, Idx, "arrayidx"); + Address = Builder.CreateBitCast(Address, Base->getType()); + } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { + // If this is A[i] where A is an array, the frontend will have decayed the + // base to be a ArrayToPointerDecay implicit cast. While correct, it is + // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a + // "gep x, i" here. Emit one "gep A, 0, i". + assert(Array->getType()->isArrayType() && + "Array to pointer decay must have array source type!"); + LValue ArrayLV = EmitLValue(Array); + llvm::Value *ArrayPtr = ArrayLV.getAddress(); + llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); + llvm::Value *Args[] = { Zero, Idx }; + + // Propagate the alignment from the array itself to the result. + ArrayAlignment = ArrayLV.getAlignment(); + + if (getContext().getLangOpts().isSignedOverflowDefined()) + Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); + else + Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); + } else { + // The base must be a pointer, which is not an aggregate. Emit it. + llvm::Value *Base = EmitScalarExpr(E->getBase()); + if (getContext().getLangOpts().isSignedOverflowDefined()) + Address = Builder.CreateGEP(Base, Idx, "arrayidx"); + else + Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); + } + + QualType T = E->getBase()->getType()->getPointeeType(); + assert(!T.isNull() && + "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); + + + // Limit the alignment to that of the result type. + LValue LV; + if (!ArrayAlignment.isZero()) { + CharUnits Align = getContext().getTypeAlignInChars(T); + ArrayAlignment = std::min(Align, ArrayAlignment); + LV = MakeAddrLValue(Address, T, ArrayAlignment); + } else { + LV = MakeNaturalAlignAddrLValue(Address, T); + } + + LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); + + if (getContext().getLangOpts().ObjC1 && + getContext().getLangOpts().getGC() != LangOptions::NonGC) { + LV.setNonGC(!E->isOBJCGCCandidate(getContext())); + setObjCGCLValueClass(getContext(), E, LV); + } + return LV; +} + +static +llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, + SmallVector &Elts) { + SmallVector CElts; + for (unsigned i = 0, e = Elts.size(); i != e; ++i) + CElts.push_back(Builder.getInt32(Elts[i])); + + return llvm::ConstantVector::get(CElts); +} + +LValue CodeGenFunction:: +EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { + // Emit the base vector as an l-value. + LValue Base; + + // ExtVectorElementExpr's base can either be a vector or pointer to vector. + if (E->isArrow()) { + // If it is a pointer to a vector, emit the address and form an lvalue with + // it. + llvm::Value *Ptr = EmitScalarExpr(E->getBase()); + const PointerType *PT = E->getBase()->getType()->getAs(); + Base = MakeAddrLValue(Ptr, PT->getPointeeType()); + Base.getQuals().removeObjCGCAttr(); + } else if (E->getBase()->isGLValue()) { + // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), + // emit the base as an lvalue. + assert(E->getBase()->getType()->isVectorType()); + Base = EmitLValue(E->getBase()); + } else { + // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. + assert(E->getBase()->getType()->isVectorType() && + "Result must be a vector"); + llvm::Value *Vec = EmitScalarExpr(E->getBase()); + + // Store the vector to memory (because LValue wants an address). + llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); + Builder.CreateStore(Vec, VecMem); + Base = MakeAddrLValue(VecMem, E->getBase()->getType()); + } + + QualType type = + E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); + + // Encode the element access list into a vector of unsigned indices. + SmallVector Indices; + E->getEncodedElementAccess(Indices); + + if (Base.isSimple()) { + llvm::Constant *CV = GenerateConstantVector(Builder, Indices); + return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, + Base.getAlignment()); + } + assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); + + llvm::Constant *BaseElts = Base.getExtVectorElts(); + SmallVector CElts; + + for (unsigned i = 0, e = Indices.size(); i != e; ++i) + CElts.push_back(BaseElts->getAggregateElement(Indices[i])); + llvm::Constant *CV = llvm::ConstantVector::get(CElts); + return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, + Base.getAlignment()); +} + +LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { + Expr *BaseExpr = E->getBase(); + + // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. + LValue BaseLV; + if (E->isArrow()) + BaseLV = MakeNaturalAlignAddrLValue(EmitScalarExpr(BaseExpr), + BaseExpr->getType()->getPointeeType()); + else + BaseLV = EmitLValue(BaseExpr); + + NamedDecl *ND = E->getMemberDecl(); + if (FieldDecl *Field = dyn_cast(ND)) { + LValue LV = EmitLValueForField(BaseLV, Field); + setObjCGCLValueClass(getContext(), E, LV); + return LV; + } + + if (VarDecl *VD = dyn_cast(ND)) + return EmitGlobalVarDeclLValue(*this, E, VD); + + if (const FunctionDecl *FD = dyn_cast(ND)) + return EmitFunctionDeclLValue(*this, E, FD); + + llvm_unreachable("Unhandled member declaration!"); +} + +LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, + const FieldDecl *Field, + unsigned CVRQualifiers) { + const CGRecordLayout &RL = + CGM.getTypes().getCGRecordLayout(Field->getParent()); + const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); + return LValue::MakeBitfield(BaseValue, Info, + Field->getType().withCVRQualifiers(CVRQualifiers)); +} + +/// EmitLValueForAnonRecordField - Given that the field is a member of +/// an anonymous struct or union buried inside a record, and given +/// that the base value is a pointer to the enclosing record, derive +/// an lvalue for the ultimate field. +LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, + const IndirectFieldDecl *Field, + unsigned CVRQualifiers) { + IndirectFieldDecl::chain_iterator I = Field->chain_begin(), + IEnd = Field->chain_end(); + while (true) { + QualType RecordTy = + getContext().getTypeDeclType(cast(*I)->getParent()); + LValue LV = EmitLValueForField(MakeAddrLValue(BaseValue, RecordTy), + cast(*I)); + if (++I == IEnd) return LV; + + assert(LV.isSimple()); + BaseValue = LV.getAddress(); + CVRQualifiers |= LV.getVRQualifiers(); + } +} + +LValue CodeGenFunction::EmitLValueForField(LValue base, + const FieldDecl *field) { + if (field->isBitField()) + return EmitLValueForBitfield(base.getAddress(), field, + base.getVRQualifiers()); + + const RecordDecl *rec = field->getParent(); + QualType type = field->getType(); + CharUnits alignment = getContext().getDeclAlign(field); + + // FIXME: It should be impossible to have an LValue without alignment for a + // complete type. + if (!base.getAlignment().isZero()) + alignment = std::min(alignment, base.getAlignment()); + + bool mayAlias = rec->hasAttr(); + + llvm::Value *addr = base.getAddress(); + unsigned cvr = base.getVRQualifiers(); + if (rec->isUnion()) { + // For unions, there is no pointer adjustment. + assert(!type->isReferenceType() && "union has reference member"); + } else { + // For structs, we GEP to the field that the record layout suggests. + unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); + addr = Builder.CreateStructGEP(addr, idx, field->getName()); + + // If this is a reference field, load the reference right now. + if (const ReferenceType *refType = type->getAs()) { + llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); + if (cvr & Qualifiers::Volatile) load->setVolatile(true); + load->setAlignment(alignment.getQuantity()); + + if (CGM.shouldUseTBAA()) { + llvm::MDNode *tbaa; + if (mayAlias) + tbaa = CGM.getTBAAInfo(getContext().CharTy); + else + tbaa = CGM.getTBAAInfo(type); + CGM.DecorateInstruction(load, tbaa); + } + + addr = load; + mayAlias = false; + type = refType->getPointeeType(); + if (type->isIncompleteType()) + alignment = CharUnits(); + else + alignment = getContext().getTypeAlignInChars(type); + cvr = 0; // qualifiers don't recursively apply to referencee + } + } + + // Make sure that the address is pointing to the right type. This is critical + // for both unions and structs. A union needs a bitcast, a struct element + // will need a bitcast if the LLVM type laid out doesn't match the desired + // type. + addr = EmitBitCastOfLValueToProperType(*this, addr, + CGM.getTypes().ConvertTypeForMem(type), + field->getName()); + + if (field->hasAttr()) + addr = EmitFieldAnnotations(field, addr); + + LValue LV = MakeAddrLValue(addr, type, alignment); + LV.getQuals().addCVRQualifiers(cvr); + + // __weak attribute on a field is ignored. + if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) + LV.getQuals().removeObjCGCAttr(); + + // Fields of may_alias structs act like 'char' for TBAA purposes. + // FIXME: this should get propagated down through anonymous structs + // and unions. + if (mayAlias && LV.getTBAAInfo()) + LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); + + return LV; +} + +LValue +CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, + const FieldDecl *Field) { + QualType FieldType = Field->getType(); + + if (!FieldType->isReferenceType()) + return EmitLValueForField(Base, Field); + + const CGRecordLayout &RL = + CGM.getTypes().getCGRecordLayout(Field->getParent()); + unsigned idx = RL.getLLVMFieldNo(Field); + llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); + assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); + + // Make sure that the address is pointing to the right type. This is critical + // for both unions and structs. A union needs a bitcast, a struct element + // will need a bitcast if the LLVM type laid out doesn't match the desired + // type. + llvm::Type *llvmType = ConvertTypeForMem(FieldType); + V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); + + CharUnits Alignment = getContext().getDeclAlign(Field); + + // FIXME: It should be impossible to have an LValue without alignment for a + // complete type. + if (!Base.getAlignment().isZero()) + Alignment = std::min(Alignment, Base.getAlignment()); + + return MakeAddrLValue(V, FieldType, Alignment); +} + +LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ + if (E->isFileScope()) { + llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); + return MakeAddrLValue(GlobalPtr, E->getType()); + } + + llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); + const Expr *InitExpr = E->getInitializer(); + LValue Result = MakeAddrLValue(DeclPtr, E->getType()); + + EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), + /*Init*/ true); + + return Result; +} + +LValue CodeGenFunction:: +EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { + if (!expr->isGLValue()) { + // ?: here should be an aggregate. + assert((hasAggregateLLVMType(expr->getType()) && + !expr->getType()->isAnyComplexType()) && + "Unexpected conditional operator!"); + return EmitAggExprToLValue(expr); + } + + OpaqueValueMapping binding(*this, expr); + + const Expr *condExpr = expr->getCond(); + bool CondExprBool; + if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { + const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); + if (!CondExprBool) std::swap(live, dead); + + if (!ContainsLabel(dead)) + return EmitLValue(live); + } + + llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); + llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); + llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); + + ConditionalEvaluation eval(*this); + EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); + + // Any temporaries created here are conditional. + EmitBlock(lhsBlock); + eval.begin(*this); + LValue lhs = EmitLValue(expr->getTrueExpr()); + eval.end(*this); + + if (!lhs.isSimple()) + return EmitUnsupportedLValue(expr, "conditional operator"); + + lhsBlock = Builder.GetInsertBlock(); + Builder.CreateBr(contBlock); + + // Any temporaries created here are conditional. + EmitBlock(rhsBlock); + eval.begin(*this); + LValue rhs = EmitLValue(expr->getFalseExpr()); + eval.end(*this); + if (!rhs.isSimple()) + return EmitUnsupportedLValue(expr, "conditional operator"); + rhsBlock = Builder.GetInsertBlock(); + + EmitBlock(contBlock); + + llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, + "cond-lvalue"); + phi->addIncoming(lhs.getAddress(), lhsBlock); + phi->addIncoming(rhs.getAddress(), rhsBlock); + return MakeAddrLValue(phi, expr->getType()); +} + +/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. +/// If the cast is a dynamic_cast, we can have the usual lvalue result, +/// otherwise if a cast is needed by the code generator in an lvalue context, +/// then it must mean that we need the address of an aggregate in order to +/// access one of its fields. This can happen for all the reasons that casts +/// are permitted with aggregate result, including noop aggregate casts, and +/// cast from scalar to union. +LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { + switch (E->getCastKind()) { + case CK_ToVoid: + return EmitUnsupportedLValue(E, "unexpected cast lvalue"); + + case CK_Dependent: + llvm_unreachable("dependent cast kind in IR gen!"); + + // These two casts are currently treated as no-ops, although they could + // potentially be real operations depending on the target's ABI. + case CK_NonAtomicToAtomic: + case CK_AtomicToNonAtomic: + + case CK_NoOp: + case CK_LValueToRValue: + if (!E->getSubExpr()->Classify(getContext()).isPRValue() + || E->getType()->isRecordType()) + return EmitLValue(E->getSubExpr()); + // Fall through to synthesize a temporary. + + case CK_BitCast: + case CK_ArrayToPointerDecay: + case CK_FunctionToPointerDecay: + case CK_NullToMemberPointer: + case CK_NullToPointer: + case CK_IntegralToPointer: + case CK_PointerToIntegral: + case CK_PointerToBoolean: + case CK_VectorSplat: + case CK_IntegralCast: + case CK_IntegralToBoolean: + case CK_IntegralToFloating: + case CK_FloatingToIntegral: + case CK_FloatingToBoolean: + case CK_FloatingCast: + case CK_FloatingRealToComplex: + case CK_FloatingComplexToReal: + case CK_FloatingComplexToBoolean: + case CK_FloatingComplexCast: + case CK_FloatingComplexToIntegralComplex: + case CK_IntegralRealToComplex: + case CK_IntegralComplexToReal: + case CK_IntegralComplexToBoolean: + case CK_IntegralComplexCast: + case CK_IntegralComplexToFloatingComplex: + case CK_DerivedToBaseMemberPointer: + case CK_BaseToDerivedMemberPointer: + case CK_MemberPointerToBoolean: + case CK_ReinterpretMemberPointer: + case CK_AnyPointerToBlockPointerCast: + case CK_ARCProduceObject: + case CK_ARCConsumeObject: + case CK_ARCReclaimReturnedObject: + case CK_ARCExtendBlockObject: + case CK_CopyAndAutoreleaseBlockObject: { + // These casts only produce lvalues when we're binding a reference to a + // temporary realized from a (converted) pure rvalue. Emit the expression + // as a value, copy it into a temporary, and return an lvalue referring to + // that temporary. + llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); + EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); + return MakeAddrLValue(V, E->getType()); + } + + case CK_Dynamic: { + LValue LV = EmitLValue(E->getSubExpr()); + llvm::Value *V = LV.getAddress(); + const CXXDynamicCastExpr *DCE = cast(E); + return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); + } + + case CK_ConstructorConversion: + case CK_UserDefinedConversion: + case CK_CPointerToObjCPointerCast: + case CK_BlockPointerToObjCPointerCast: + return EmitLValue(E->getSubExpr()); + + case CK_UncheckedDerivedToBase: + case CK_DerivedToBase: { + const RecordType *DerivedClassTy = + E->getSubExpr()->getType()->getAs(); + CXXRecordDecl *DerivedClassDecl = + cast(DerivedClassTy->getDecl()); + + LValue LV = EmitLValue(E->getSubExpr()); + llvm::Value *This = LV.getAddress(); + + // Perform the derived-to-base conversion + llvm::Value *Base = + GetAddressOfBaseClass(This, DerivedClassDecl, + E->path_begin(), E->path_end(), + /*NullCheckValue=*/false); + + return MakeAddrLValue(Base, E->getType()); + } + case CK_ToUnion: + return EmitAggExprToLValue(E); + case CK_BaseToDerived: { + const RecordType *DerivedClassTy = E->getType()->getAs(); + CXXRecordDecl *DerivedClassDecl = + cast(DerivedClassTy->getDecl()); + + LValue LV = EmitLValue(E->getSubExpr()); + + // Perform the base-to-derived conversion + llvm::Value *Derived = + GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, + E->path_begin(), E->path_end(), + /*NullCheckValue=*/false); + + return MakeAddrLValue(Derived, E->getType()); + } + case CK_LValueBitCast: { + // This must be a reinterpret_cast (or c-style equivalent). + const ExplicitCastExpr *CE = cast(E); + + LValue LV = EmitLValue(E->getSubExpr()); + llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), + ConvertType(CE->getTypeAsWritten())); + return MakeAddrLValue(V, E->getType()); + } + case CK_ObjCObjectLValueCast: { + LValue LV = EmitLValue(E->getSubExpr()); + QualType ToType = getContext().getLValueReferenceType(E->getType()); + llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), + ConvertType(ToType)); + return MakeAddrLValue(V, E->getType()); + } + } + + llvm_unreachable("Unhandled lvalue cast kind?"); +} + +LValue CodeGenFunction::EmitNullInitializationLValue( + const CXXScalarValueInitExpr *E) { + QualType Ty = E->getType(); + LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); + EmitNullInitialization(LV.getAddress(), Ty); + return LV; +} + +LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { + assert(OpaqueValueMappingData::shouldBindAsLValue(e)); + return getOpaqueLValueMapping(e); +} + +LValue CodeGenFunction::EmitMaterializeTemporaryExpr( + const MaterializeTemporaryExpr *E) { + RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); + return MakeAddrLValue(RV.getScalarVal(), E->getType()); +} + +RValue CodeGenFunction::EmitRValueForField(LValue LV, + const FieldDecl *FD) { + QualType FT = FD->getType(); + LValue FieldLV = EmitLValueForField(LV, FD); + if (FT->isAnyComplexType()) + return RValue::getComplex( + LoadComplexFromAddr(FieldLV.getAddress(), + FieldLV.isVolatileQualified())); + else if (CodeGenFunction::hasAggregateLLVMType(FT)) + return FieldLV.asAggregateRValue(); + + return EmitLoadOfLValue(FieldLV); +} + +//===--------------------------------------------------------------------===// +// Expression Emission +//===--------------------------------------------------------------------===// + +RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, + ReturnValueSlot ReturnValue) { + if (CGDebugInfo *DI = getDebugInfo()) + DI->EmitLocation(Builder, E->getLocStart()); + + // Builtins never have block type. + if (E->getCallee()->getType()->isBlockPointerType()) + return EmitBlockCallExpr(E, ReturnValue); + + if (const CXXMemberCallExpr *CE = dyn_cast(E)) + return EmitCXXMemberCallExpr(CE, ReturnValue); + + if (const CUDAKernelCallExpr *CE = dyn_cast(E)) + return EmitCUDAKernelCallExpr(CE, ReturnValue); + + const Decl *TargetDecl = E->getCalleeDecl(); + if (const FunctionDecl *FD = dyn_cast_or_null(TargetDecl)) { + if (unsigned builtinID = FD->getBuiltinID()) + return EmitBuiltinExpr(FD, builtinID, E); + } + + if (const CXXOperatorCallExpr *CE = dyn_cast(E)) + if (const CXXMethodDecl *MD = dyn_cast_or_null(TargetDecl)) + return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); + + if (const CXXPseudoDestructorExpr *PseudoDtor + = dyn_cast(E->getCallee()->IgnoreParens())) { + QualType DestroyedType = PseudoDtor->getDestroyedType(); + if (getContext().getLangOpts().ObjCAutoRefCount && + DestroyedType->isObjCLifetimeType() && + (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || + DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { + // Automatic Reference Counting: + // If the pseudo-expression names a retainable object with weak or + // strong lifetime, the object shall be released. + Expr *BaseExpr = PseudoDtor->getBase(); + llvm::Value *BaseValue = NULL; + Qualifiers BaseQuals; + + // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. + if (PseudoDtor->isArrow()) { + BaseValue = EmitScalarExpr(BaseExpr); + const PointerType *PTy = BaseExpr->getType()->getAs(); + BaseQuals = PTy->getPointeeType().getQualifiers(); + } else { + LValue BaseLV = EmitLValue(BaseExpr); + BaseValue = BaseLV.getAddress(); + QualType BaseTy = BaseExpr->getType(); + BaseQuals = BaseTy.getQualifiers(); + } + + switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { + case Qualifiers::OCL_None: + case Qualifiers::OCL_ExplicitNone: + case Qualifiers::OCL_Autoreleasing: + break; + + case Qualifiers::OCL_Strong: + EmitARCRelease(Builder.CreateLoad(BaseValue, + PseudoDtor->getDestroyedType().isVolatileQualified()), + /*precise*/ true); + break; + + case Qualifiers::OCL_Weak: + EmitARCDestroyWeak(BaseValue); + break; + } + } else { + // C++ [expr.pseudo]p1: + // The result shall only be used as the operand for the function call + // operator (), and the result of such a call has type void. The only + // effect is the evaluation of the postfix-expression before the dot or + // arrow. + EmitScalarExpr(E->getCallee()); + } + + return RValue::get(0); + } + + llvm::Value *Callee = EmitScalarExpr(E->getCallee()); + return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, + E->arg_begin(), E->arg_end(), TargetDecl); +} + +LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { + // Comma expressions just emit their LHS then their RHS as an l-value. + if (E->getOpcode() == BO_Comma) { + EmitIgnoredExpr(E->getLHS()); + EnsureInsertPoint(); + return EmitLValue(E->getRHS()); + } + + if (E->getOpcode() == BO_PtrMemD || + E->getOpcode() == BO_PtrMemI) + return EmitPointerToDataMemberBinaryExpr(E); + + assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); + + // Note that in all of these cases, __block variables need the RHS + // evaluated first just in case the variable gets moved by the RHS. + + if (!hasAggregateLLVMType(E->getType())) { + switch (E->getLHS()->getType().getObjCLifetime()) { + case Qualifiers::OCL_Strong: + return EmitARCStoreStrong(E, /*ignored*/ false).first; + + case Qualifiers::OCL_Autoreleasing: + return EmitARCStoreAutoreleasing(E).first; + + // No reason to do any of these differently. + case Qualifiers::OCL_None: + case Qualifiers::OCL_ExplicitNone: + case Qualifiers::OCL_Weak: + break; + } + + RValue RV = EmitAnyExpr(E->getRHS()); + LValue LV = EmitLValue(E->getLHS()); + EmitStoreThroughLValue(RV, LV); + return LV; + } + + if (E->getType()->isAnyComplexType()) + return EmitComplexAssignmentLValue(E); + + return EmitAggExprToLValue(E); +} + +LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { + RValue RV = EmitCallExpr(E); + + if (!RV.isScalar()) + return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); + + assert(E->getCallReturnType()->isReferenceType() && + "Can't have a scalar return unless the return type is a " + "reference type!"); + + return MakeAddrLValue(RV.getScalarVal(), E->getType()); +} + +LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { + // FIXME: This shouldn't require another copy. + return EmitAggExprToLValue(E); +} + +LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { + assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() + && "binding l-value to type which needs a temporary"); + AggValueSlot Slot = CreateAggTemp(E->getType()); + EmitCXXConstructExpr(E, Slot); + return MakeAddrLValue(Slot.getAddr(), E->getType()); +} + +LValue +CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { + return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); +} + +LValue +CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { + AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); + Slot.setExternallyDestructed(); + EmitAggExpr(E->getSubExpr(), Slot); + EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); + return MakeAddrLValue(Slot.getAddr(), E->getType()); +} + +LValue +CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { + AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); + EmitLambdaExpr(E, Slot); + return MakeAddrLValue(Slot.getAddr(), E->getType()); +} + +LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { + RValue RV = EmitObjCMessageExpr(E); + + if (!RV.isScalar()) + return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); + + assert(E->getMethodDecl()->getResultType()->isReferenceType() && + "Can't have a scalar return unless the return type is a " + "reference type!"); + + return MakeAddrLValue(RV.getScalarVal(), E->getType()); +} + +LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { + llvm::Value *V = + CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); + return MakeAddrLValue(V, E->getType()); +} + +llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, + const ObjCIvarDecl *Ivar) { + return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); +} + +LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, + llvm::Value *BaseValue, + const ObjCIvarDecl *Ivar, + unsigned CVRQualifiers) { + return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, + Ivar, CVRQualifiers); +} + +LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { + // FIXME: A lot of the code below could be shared with EmitMemberExpr. + llvm::Value *BaseValue = 0; + const Expr *BaseExpr = E->getBase(); + Qualifiers BaseQuals; + QualType ObjectTy; + if (E->isArrow()) { + BaseValue = EmitScalarExpr(BaseExpr); + ObjectTy = BaseExpr->getType()->getPointeeType(); + BaseQuals = ObjectTy.getQualifiers(); + } else { + LValue BaseLV = EmitLValue(BaseExpr); + // FIXME: this isn't right for bitfields. + BaseValue = BaseLV.getAddress(); + ObjectTy = BaseExpr->getType(); + BaseQuals = ObjectTy.getQualifiers(); + } + + LValue LV = + EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), + BaseQuals.getCVRQualifiers()); + setObjCGCLValueClass(getContext(), E, LV); + return LV; +} + +LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { + // Can only get l-value for message expression returning aggregate type + RValue RV = EmitAnyExprToTemp(E); + return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); +} + +RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, + ReturnValueSlot ReturnValue, + CallExpr::const_arg_iterator ArgBeg, + CallExpr::const_arg_iterator ArgEnd, + const Decl *TargetDecl) { + // Get the actual function type. The callee type will always be a pointer to + // function type or a block pointer type. + assert(CalleeType->isFunctionPointerType() && + "Call must have function pointer type!"); + + CalleeType = getContext().getCanonicalType(CalleeType); + + const FunctionType *FnType + = cast(cast(CalleeType)->getPointeeType()); + + CallArgList Args; + EmitCallArgs(Args, dyn_cast(FnType), ArgBeg, ArgEnd); + + const CGFunctionInfo &FnInfo = + CGM.getTypes().arrangeFunctionCall(Args, FnType); + + // C99 6.5.2.2p6: + // If the expression that denotes the called function has a type + // that does not include a prototype, [the default argument + // promotions are performed]. If the number of arguments does not + // equal the number of parameters, the behavior is undefined. If + // the function is defined with a type that includes a prototype, + // and either the prototype ends with an ellipsis (, ...) or the + // types of the arguments after promotion are not compatible with + // the types of the parameters, the behavior is undefined. If the + // function is defined with a type that does not include a + // prototype, and the types of the arguments after promotion are + // not compatible with those of the parameters after promotion, + // the behavior is undefined [except in some trivial cases]. + // That is, in the general case, we should assume that a call + // through an unprototyped function type works like a *non-variadic* + // call. The way we make this work is to cast to the exact type + // of the promoted arguments. + if (isa(FnType) && !FnInfo.isVariadic()) { + llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); + CalleeTy = CalleeTy->getPointerTo(); + Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); + } + + return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); +} + +LValue CodeGenFunction:: +EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { + llvm::Value *BaseV; + if (E->getOpcode() == BO_PtrMemI) + BaseV = EmitScalarExpr(E->getLHS()); + else + BaseV = EmitLValue(E->getLHS()).getAddress(); + + llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); + + const MemberPointerType *MPT + = E->getRHS()->getType()->getAs(); + + llvm::Value *AddV = + CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); + + return MakeAddrLValue(AddV, MPT->getPointeeType()); +} + +static void +EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, + llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, + uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { + llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; + llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; + + switch (E->getOp()) { + case AtomicExpr::AO__c11_atomic_init: + llvm_unreachable("Already handled!"); + + case AtomicExpr::AO__c11_atomic_compare_exchange_strong: + case AtomicExpr::AO__c11_atomic_compare_exchange_weak: + case AtomicExpr::AO__atomic_compare_exchange: + case AtomicExpr::AO__atomic_compare_exchange_n: { + // Note that cmpxchg only supports specifying one ordering and + // doesn't support weak cmpxchg, at least at the moment. + llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); + LoadVal1->setAlignment(Align); + llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); + LoadVal2->setAlignment(Align); + llvm::AtomicCmpXchgInst *CXI = + CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); + CXI->setVolatile(E->isVolatile()); + llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); + StoreVal1->setAlignment(Align); + llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); + CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); + return; + } + + case AtomicExpr::AO__c11_atomic_load: + case AtomicExpr::AO__atomic_load_n: + case AtomicExpr::AO__atomic_load: { + llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); + Load->setAtomic(Order); + Load->setAlignment(Size); + Load->setVolatile(E->isVolatile()); + llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); + StoreDest->setAlignment(Align); + return; + } + + case AtomicExpr::AO__c11_atomic_store: + case AtomicExpr::AO__atomic_store: + case AtomicExpr::AO__atomic_store_n: { + assert(!Dest && "Store does not return a value"); + llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); + LoadVal1->setAlignment(Align); + llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); + Store->setAtomic(Order); + Store->setAlignment(Size); + Store->setVolatile(E->isVolatile()); + return; + } + + case AtomicExpr::AO__c11_atomic_exchange: + case AtomicExpr::AO__atomic_exchange_n: + case AtomicExpr::AO__atomic_exchange: + Op = llvm::AtomicRMWInst::Xchg; + break; + + case AtomicExpr::AO__atomic_add_fetch: + PostOp = llvm::Instruction::Add; + // Fall through. + case AtomicExpr::AO__c11_atomic_fetch_add: + case AtomicExpr::AO__atomic_fetch_add: + Op = llvm::AtomicRMWInst::Add; + break; + + case AtomicExpr::AO__atomic_sub_fetch: + PostOp = llvm::Instruction::Sub; + // Fall through. + case AtomicExpr::AO__c11_atomic_fetch_sub: + case AtomicExpr::AO__atomic_fetch_sub: + Op = llvm::AtomicRMWInst::Sub; + break; + + case AtomicExpr::AO__atomic_and_fetch: + PostOp = llvm::Instruction::And; + // Fall through. + case AtomicExpr::AO__c11_atomic_fetch_and: + case AtomicExpr::AO__atomic_fetch_and: + Op = llvm::AtomicRMWInst::And; + break; + + case AtomicExpr::AO__atomic_or_fetch: + PostOp = llvm::Instruction::Or; + // Fall through. + case AtomicExpr::AO__c11_atomic_fetch_or: + case AtomicExpr::AO__atomic_fetch_or: + Op = llvm::AtomicRMWInst::Or; + break; + + case AtomicExpr::AO__atomic_xor_fetch: + PostOp = llvm::Instruction::Xor; + // Fall through. + case AtomicExpr::AO__c11_atomic_fetch_xor: + case AtomicExpr::AO__atomic_fetch_xor: + Op = llvm::AtomicRMWInst::Xor; + break; + + case AtomicExpr::AO__atomic_nand_fetch: + PostOp = llvm::Instruction::And; + // Fall through. + case AtomicExpr::AO__atomic_fetch_nand: + Op = llvm::AtomicRMWInst::Nand; + break; + } + + llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); + LoadVal1->setAlignment(Align); + llvm::AtomicRMWInst *RMWI = + CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); + RMWI->setVolatile(E->isVolatile()); + + // For __atomic_*_fetch operations, perform the operation again to + // determine the value which was written. + llvm::Value *Result = RMWI; + if (PostOp) + Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); + if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) + Result = CGF.Builder.CreateNot(Result); + llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); + StoreDest->setAlignment(Align); +} + +// This function emits any expression (scalar, complex, or aggregate) +// into a temporary alloca. +static llvm::Value * +EmitValToTemp(CodeGenFunction &CGF, Expr *E) { + llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); + CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), + /*Init*/ true); + return DeclPtr; +} + +static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, + llvm::Value *Dest) { + if (Ty->isAnyComplexType()) + return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); + if (CGF.hasAggregateLLVMType(Ty)) + return RValue::getAggregate(Dest); + return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); +} + +RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { + QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); + QualType MemTy = AtomicTy; + if (const AtomicType *AT = AtomicTy->getAs()) + MemTy = AT->getValueType(); + CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); + uint64_t Size = sizeChars.getQuantity(); + CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); + unsigned Align = alignChars.getQuantity(); + unsigned MaxInlineWidth = + getContext().getTargetInfo().getMaxAtomicInlineWidth(); + bool UseLibcall = (Size != Align || Size > MaxInlineWidth); + + + + llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; + Ptr = EmitScalarExpr(E->getPtr()); + + if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { + assert(!Dest && "Init does not return a value"); + if (!hasAggregateLLVMType(E->getVal1()->getType())) { + QualType PointeeType + = E->getPtr()->getType()->getAs()->getPointeeType(); + EmitScalarInit(EmitScalarExpr(E->getVal1()), + LValue::MakeAddr(Ptr, PointeeType, alignChars, + getContext())); + } else if (E->getType()->isAnyComplexType()) { + EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile()); + } else { + AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars, + AtomicTy.getQualifiers(), + AggValueSlot::IsNotDestructed, + AggValueSlot::DoesNotNeedGCBarriers, + AggValueSlot::IsNotAliased); + EmitAggExpr(E->getVal1(), Slot); + } + return RValue::get(0); + } + + Order = EmitScalarExpr(E->getOrder()); + + switch (E->getOp()) { + case AtomicExpr::AO__c11_atomic_init: + llvm_unreachable("Already handled!"); + + case AtomicExpr::AO__c11_atomic_load: + case AtomicExpr::AO__atomic_load_n: + break; + + case AtomicExpr::AO__atomic_load: + Dest = EmitScalarExpr(E->getVal1()); + break; + + case AtomicExpr::AO__atomic_store: + Val1 = EmitScalarExpr(E->getVal1()); + break; + + case AtomicExpr::AO__atomic_exchange: + Val1 = EmitScalarExpr(E->getVal1()); + Dest = EmitScalarExpr(E->getVal2()); + break; + + case AtomicExpr::AO__c11_atomic_compare_exchange_strong: + case AtomicExpr::AO__c11_atomic_compare_exchange_weak: + case AtomicExpr::AO__atomic_compare_exchange_n: + case AtomicExpr::AO__atomic_compare_exchange: + Val1 = EmitScalarExpr(E->getVal1()); + if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) + Val2 = EmitScalarExpr(E->getVal2()); + else + Val2 = EmitValToTemp(*this, E->getVal2()); + OrderFail = EmitScalarExpr(E->getOrderFail()); + // Evaluate and discard the 'weak' argument. + if (E->getNumSubExprs() == 6) + EmitScalarExpr(E->getWeak()); + break; + + case AtomicExpr::AO__c11_atomic_fetch_add: + case AtomicExpr::AO__c11_atomic_fetch_sub: + if (MemTy->isPointerType()) { + // For pointer arithmetic, we're required to do a bit of math: + // adding 1 to an int* is not the same as adding 1 to a uintptr_t. + // ... but only for the C11 builtins. The GNU builtins expect the + // user to multiply by sizeof(T). + QualType Val1Ty = E->getVal1()->getType(); + llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); + CharUnits PointeeIncAmt = + getContext().getTypeSizeInChars(MemTy->getPointeeType()); + Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); + Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); + EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); + break; + } + // Fall through. + case AtomicExpr::AO__atomic_fetch_add: + case AtomicExpr::AO__atomic_fetch_sub: + case AtomicExpr::AO__atomic_add_fetch: + case AtomicExpr::AO__atomic_sub_fetch: + case AtomicExpr::AO__c11_atomic_store: + case AtomicExpr::AO__c11_atomic_exchange: + case AtomicExpr::AO__atomic_store_n: + case AtomicExpr::AO__atomic_exchange_n: + case AtomicExpr::AO__c11_atomic_fetch_and: + case AtomicExpr::AO__c11_atomic_fetch_or: + case AtomicExpr::AO__c11_atomic_fetch_xor: + case AtomicExpr::AO__atomic_fetch_and: + case AtomicExpr::AO__atomic_fetch_or: + case AtomicExpr::AO__atomic_fetch_xor: + case AtomicExpr::AO__atomic_fetch_nand: + case AtomicExpr::AO__atomic_and_fetch: + case AtomicExpr::AO__atomic_or_fetch: + case AtomicExpr::AO__atomic_xor_fetch: + case AtomicExpr::AO__atomic_nand_fetch: + Val1 = EmitValToTemp(*this, E->getVal1()); + break; + } + + if (!E->getType()->isVoidType() && !Dest) + Dest = CreateMemTemp(E->getType(), ".atomicdst"); + + // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . + if (UseLibcall) { + + llvm::SmallVector Params; + CallArgList Args; + // Size is always the first parameter + Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), + getContext().getSizeType()); + // Atomic address is always the second parameter + Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), + getContext().VoidPtrTy); + + const char* LibCallName; + QualType RetTy = getContext().VoidTy; + switch (E->getOp()) { + // There is only one libcall for compare an exchange, because there is no + // optimisation benefit possible from a libcall version of a weak compare + // and exchange. + // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, + // void *desired, int success, int failure) + case AtomicExpr::AO__c11_atomic_compare_exchange_weak: + case AtomicExpr::AO__c11_atomic_compare_exchange_strong: + case AtomicExpr::AO__atomic_compare_exchange: + case AtomicExpr::AO__atomic_compare_exchange_n: + LibCallName = "__atomic_compare_exchange"; + RetTy = getContext().BoolTy; + Args.add(RValue::get(EmitCastToVoidPtr(Val1)), + getContext().VoidPtrTy); + Args.add(RValue::get(EmitCastToVoidPtr(Val2)), + getContext().VoidPtrTy); + Args.add(RValue::get(Order), + getContext().IntTy); + Order = OrderFail; + break; + // void __atomic_exchange(size_t size, void *mem, void *val, void *return, + // int order) + case AtomicExpr::AO__c11_atomic_exchange: + case AtomicExpr::AO__atomic_exchange_n: + case AtomicExpr::AO__atomic_exchange: + LibCallName = "__atomic_exchange"; + Args.add(RValue::get(EmitCastToVoidPtr(Val1)), + getContext().VoidPtrTy); + Args.add(RValue::get(EmitCastToVoidPtr(Dest)), + getContext().VoidPtrTy); + break; + // void __atomic_store(size_t size, void *mem, void *val, int order) + case AtomicExpr::AO__c11_atomic_store: + case AtomicExpr::AO__atomic_store: + case AtomicExpr::AO__atomic_store_n: + LibCallName = "__atomic_store"; + Args.add(RValue::get(EmitCastToVoidPtr(Val1)), + getContext().VoidPtrTy); + break; + // void __atomic_load(size_t size, void *mem, void *return, int order) + case AtomicExpr::AO__c11_atomic_load: + case AtomicExpr::AO__atomic_load: + case AtomicExpr::AO__atomic_load_n: + LibCallName = "__atomic_load"; + Args.add(RValue::get(EmitCastToVoidPtr(Dest)), + getContext().VoidPtrTy); + break; +#if 0 + // These are only defined for 1-16 byte integers. It is not clear what + // their semantics would be on anything else... + case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; + case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; + case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; + case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; + case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; +#endif + default: return EmitUnsupportedRValue(E, "atomic library call"); + } + // order is always the last parameter + Args.add(RValue::get(Order), + getContext().IntTy); + + const CGFunctionInfo &FuncInfo = + CGM.getTypes().arrangeFunctionCall(RetTy, Args, + FunctionType::ExtInfo(), RequiredArgs::All); + llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); + llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); + RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); + if (E->isCmpXChg()) + return Res; + if (E->getType()->isVoidType()) + return RValue::get(0); + return ConvertTempToRValue(*this, E->getType(), Dest); + } + + llvm::Type *IPtrTy = + llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); + llvm::Value *OrigDest = Dest; + Ptr = Builder.CreateBitCast(Ptr, IPtrTy); + if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); + if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); + if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); + + if (isa(Order)) { + int ord = cast(Order)->getZExtValue(); + switch (ord) { + case 0: // memory_order_relaxed + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::Monotonic); + break; + case 1: // memory_order_consume + case 2: // memory_order_acquire + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::Acquire); + break; + case 3: // memory_order_release + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::Release); + break; + case 4: // memory_order_acq_rel + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::AcquireRelease); + break; + case 5: // memory_order_seq_cst + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::SequentiallyConsistent); + break; + default: // invalid order + // We should not ever get here normally, but it's hard to + // enforce that in general. + break; + } + if (E->getType()->isVoidType()) + return RValue::get(0); + return ConvertTempToRValue(*this, E->getType(), OrigDest); + } + + // Long case, when Order isn't obviously constant. + + bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || + E->getOp() == AtomicExpr::AO__atomic_store || + E->getOp() == AtomicExpr::AO__atomic_store_n; + bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || + E->getOp() == AtomicExpr::AO__atomic_load || + E->getOp() == AtomicExpr::AO__atomic_load_n; + + // Create all the relevant BB's + llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, + *AcqRelBB = 0, *SeqCstBB = 0; + MonotonicBB = createBasicBlock("monotonic", CurFn); + if (!IsStore) + AcquireBB = createBasicBlock("acquire", CurFn); + if (!IsLoad) + ReleaseBB = createBasicBlock("release", CurFn); + if (!IsLoad && !IsStore) + AcqRelBB = createBasicBlock("acqrel", CurFn); + SeqCstBB = createBasicBlock("seqcst", CurFn); + llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); + + // Create the switch for the split + // MonotonicBB is arbitrarily chosen as the default case; in practice, this + // doesn't matter unless someone is crazy enough to use something that + // doesn't fold to a constant for the ordering. + Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); + llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); + + // Emit all the different atomics + Builder.SetInsertPoint(MonotonicBB); + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::Monotonic); + Builder.CreateBr(ContBB); + if (!IsStore) { + Builder.SetInsertPoint(AcquireBB); + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::Acquire); + Builder.CreateBr(ContBB); + SI->addCase(Builder.getInt32(1), AcquireBB); + SI->addCase(Builder.getInt32(2), AcquireBB); + } + if (!IsLoad) { + Builder.SetInsertPoint(ReleaseBB); + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::Release); + Builder.CreateBr(ContBB); + SI->addCase(Builder.getInt32(3), ReleaseBB); + } + if (!IsLoad && !IsStore) { + Builder.SetInsertPoint(AcqRelBB); + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::AcquireRelease); + Builder.CreateBr(ContBB); + SI->addCase(Builder.getInt32(4), AcqRelBB); + } + Builder.SetInsertPoint(SeqCstBB); + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::SequentiallyConsistent); + Builder.CreateBr(ContBB); + SI->addCase(Builder.getInt32(5), SeqCstBB); + + // Cleanup and return + Builder.SetInsertPoint(ContBB); + if (E->getType()->isVoidType()) + return RValue::get(0); + return ConvertTempToRValue(*this, E->getType(), OrigDest); +} + +void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { + assert(Val->getType()->isFPOrFPVectorTy()); + if (Accuracy == 0.0 || !isa(Val)) + return; + + llvm::MDBuilder MDHelper(getLLVMContext()); + llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); + + cast(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); +} + +namespace { + struct LValueOrRValue { + LValue LV; + RValue RV; + }; +} + +static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, + const PseudoObjectExpr *E, + bool forLValue, + AggValueSlot slot) { + llvm::SmallVector opaques; + + // Find the result expression, if any. + const Expr *resultExpr = E->getResultExpr(); + LValueOrRValue result; + + for (PseudoObjectExpr::const_semantics_iterator + i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { + const Expr *semantic = *i; + + // If this semantic expression is an opaque value, bind it + // to the result of its source expression. + if (const OpaqueValueExpr *ov = dyn_cast(semantic)) { + + // If this is the result expression, we may need to evaluate + // directly into the slot. + typedef CodeGenFunction::OpaqueValueMappingData OVMA; + OVMA opaqueData; + if (ov == resultExpr && ov->isRValue() && !forLValue && + CodeGenFunction::hasAggregateLLVMType(ov->getType()) && + !ov->getType()->isAnyComplexType()) { + CGF.EmitAggExpr(ov->getSourceExpr(), slot); + + LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); + opaqueData = OVMA::bind(CGF, ov, LV); + result.RV = slot.asRValue(); + + // Otherwise, emit as normal. + } else { + opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); + + // If this is the result, also evaluate the result now. + if (ov == resultExpr) { + if (forLValue) + result.LV = CGF.EmitLValue(ov); + else + result.RV = CGF.EmitAnyExpr(ov, slot); + } + } + + opaques.push_back(opaqueData); + + // Otherwise, if the expression is the result, evaluate it + // and remember the result. + } else if (semantic == resultExpr) { + if (forLValue) + result.LV = CGF.EmitLValue(semantic); + else + result.RV = CGF.EmitAnyExpr(semantic, slot); + + // Otherwise, evaluate the expression in an ignored context. + } else { + CGF.EmitIgnoredExpr(semantic); + } + } + + // Unbind all the opaques now. + for (unsigned i = 0, e = opaques.size(); i != e; ++i) + opaques[i].unbind(CGF); + + return result; +} + +RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, + AggValueSlot slot) { + return emitPseudoObjectExpr(*this, E, false, slot).RV; +} + +LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { + return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; +} -- cgit v1.2.3