diff options
Diffstat (limited to 'lemon/test/connectivity_test.cc')
-rw-r--r-- | lemon/test/connectivity_test.cc | 297 |
1 files changed, 297 insertions, 0 deletions
diff --git a/lemon/test/connectivity_test.cc b/lemon/test/connectivity_test.cc new file mode 100644 index 0000000..96c47c5 --- /dev/null +++ b/lemon/test/connectivity_test.cc @@ -0,0 +1,297 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2010 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#include <lemon/connectivity.h> +#include <lemon/list_graph.h> +#include <lemon/adaptors.h> + +#include "test_tools.h" + +using namespace lemon; + + +int main() +{ + typedef ListDigraph Digraph; + typedef Undirector<Digraph> Graph; + + { + Digraph d; + Digraph::NodeMap<int> order(d); + Graph g(d); + + check(stronglyConnected(d), "The empty digraph is strongly connected"); + check(countStronglyConnectedComponents(d) == 0, + "The empty digraph has 0 strongly connected component"); + check(connected(g), "The empty graph is connected"); + check(countConnectedComponents(g) == 0, + "The empty graph has 0 connected component"); + + check(biNodeConnected(g), "The empty graph is bi-node-connected"); + check(countBiNodeConnectedComponents(g) == 0, + "The empty graph has 0 bi-node-connected component"); + check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); + check(countBiEdgeConnectedComponents(g) == 0, + "The empty graph has 0 bi-edge-connected component"); + + check(dag(d), "The empty digraph is DAG."); + check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); + check(loopFree(d), "The empty digraph is loop-free."); + check(parallelFree(d), "The empty digraph is parallel-free."); + check(simpleGraph(d), "The empty digraph is simple."); + + check(acyclic(g), "The empty graph is acyclic."); + check(tree(g), "The empty graph is tree."); + check(bipartite(g), "The empty graph is bipartite."); + check(loopFree(g), "The empty graph is loop-free."); + check(parallelFree(g), "The empty graph is parallel-free."); + check(simpleGraph(g), "The empty graph is simple."); + } + + { + Digraph d; + Digraph::NodeMap<int> order(d); + Graph g(d); + Digraph::Node n = d.addNode(); + + check(stronglyConnected(d), "This digraph is strongly connected"); + check(countStronglyConnectedComponents(d) == 1, + "This digraph has 1 strongly connected component"); + check(connected(g), "This graph is connected"); + check(countConnectedComponents(g) == 1, + "This graph has 1 connected component"); + + check(biNodeConnected(g), "This graph is bi-node-connected"); + check(countBiNodeConnectedComponents(g) == 0, + "This graph has 0 bi-node-connected component"); + check(biEdgeConnected(g), "This graph is bi-edge-connected"); + check(countBiEdgeConnectedComponents(g) == 1, + "This graph has 1 bi-edge-connected component"); + + check(dag(d), "This digraph is DAG."); + check(checkedTopologicalSort(d, order), "This digraph is DAG."); + check(loopFree(d), "This digraph is loop-free."); + check(parallelFree(d), "This digraph is parallel-free."); + check(simpleGraph(d), "This digraph is simple."); + + check(acyclic(g), "This graph is acyclic."); + check(tree(g), "This graph is tree."); + check(bipartite(g), "This graph is bipartite."); + check(loopFree(g), "This graph is loop-free."); + check(parallelFree(g), "This graph is parallel-free."); + check(simpleGraph(g), "This graph is simple."); + } + + { + Digraph d; + Digraph::NodeMap<int> order(d); + Graph g(d); + + Digraph::Node n1 = d.addNode(); + Digraph::Node n2 = d.addNode(); + Digraph::Node n3 = d.addNode(); + Digraph::Node n4 = d.addNode(); + Digraph::Node n5 = d.addNode(); + Digraph::Node n6 = d.addNode(); + + d.addArc(n1, n3); + d.addArc(n3, n2); + d.addArc(n2, n1); + d.addArc(n4, n2); + d.addArc(n4, n3); + d.addArc(n5, n6); + d.addArc(n6, n5); + + check(!stronglyConnected(d), "This digraph is not strongly connected"); + check(countStronglyConnectedComponents(d) == 3, + "This digraph has 3 strongly connected components"); + check(!connected(g), "This graph is not connected"); + check(countConnectedComponents(g) == 2, + "This graph has 2 connected components"); + + check(!dag(d), "This digraph is not DAG."); + check(!checkedTopologicalSort(d, order), "This digraph is not DAG."); + check(loopFree(d), "This digraph is loop-free."); + check(parallelFree(d), "This digraph is parallel-free."); + check(simpleGraph(d), "This digraph is simple."); + + check(!acyclic(g), "This graph is not acyclic."); + check(!tree(g), "This graph is not tree."); + check(!bipartite(g), "This graph is not bipartite."); + check(loopFree(g), "This graph is loop-free."); + check(!parallelFree(g), "This graph is not parallel-free."); + check(!simpleGraph(g), "This graph is not simple."); + + d.addArc(n3, n3); + + check(!loopFree(d), "This digraph is not loop-free."); + check(!loopFree(g), "This graph is not loop-free."); + check(!simpleGraph(d), "This digraph is not simple."); + + d.addArc(n3, n2); + + check(!parallelFree(d), "This digraph is not parallel-free."); + } + + { + Digraph d; + Digraph::ArcMap<bool> cutarcs(d, false); + Graph g(d); + + Digraph::Node n1 = d.addNode(); + Digraph::Node n2 = d.addNode(); + Digraph::Node n3 = d.addNode(); + Digraph::Node n4 = d.addNode(); + Digraph::Node n5 = d.addNode(); + Digraph::Node n6 = d.addNode(); + Digraph::Node n7 = d.addNode(); + Digraph::Node n8 = d.addNode(); + + d.addArc(n1, n2); + d.addArc(n5, n1); + d.addArc(n2, n8); + d.addArc(n8, n5); + d.addArc(n6, n4); + d.addArc(n4, n6); + d.addArc(n2, n5); + d.addArc(n1, n8); + d.addArc(n6, n7); + d.addArc(n7, n6); + + check(!stronglyConnected(d), "This digraph is not strongly connected"); + check(countStronglyConnectedComponents(d) == 3, + "This digraph has 3 strongly connected components"); + Digraph::NodeMap<int> scomp1(d); + check(stronglyConnectedComponents(d, scomp1) == 3, + "This digraph has 3 strongly connected components"); + check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] && + scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()"); + check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] && + scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()"); + check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7], + "Wrong stronglyConnectedComponents()"); + Digraph::ArcMap<bool> scut1(d, false); + check(stronglyConnectedCutArcs(d, scut1) == 0, + "This digraph has 0 strongly connected cut arc."); + for (Digraph::ArcIt a(d); a != INVALID; ++a) { + check(!scut1[a], "Wrong stronglyConnectedCutArcs()"); + } + + check(!connected(g), "This graph is not connected"); + check(countConnectedComponents(g) == 3, + "This graph has 3 connected components"); + Graph::NodeMap<int> comp(g); + check(connectedComponents(g, comp) == 3, + "This graph has 3 connected components"); + check(comp[n1] != comp[n3] && comp[n1] != comp[n4] && + comp[n3] != comp[n4], "Wrong connectedComponents()"); + check(comp[n1] == comp[n2] && comp[n1] == comp[n5] && + comp[n1] == comp[n8], "Wrong connectedComponents()"); + check(comp[n4] == comp[n6] && comp[n4] == comp[n7], + "Wrong connectedComponents()"); + + cutarcs[d.addArc(n3, n1)] = true; + cutarcs[d.addArc(n3, n5)] = true; + cutarcs[d.addArc(n3, n8)] = true; + cutarcs[d.addArc(n8, n6)] = true; + cutarcs[d.addArc(n8, n7)] = true; + + check(!stronglyConnected(d), "This digraph is not strongly connected"); + check(countStronglyConnectedComponents(d) == 3, + "This digraph has 3 strongly connected components"); + Digraph::NodeMap<int> scomp2(d); + check(stronglyConnectedComponents(d, scomp2) == 3, + "This digraph has 3 strongly connected components"); + check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()"); + check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 && + scomp2[n8] == 1, "Wrong stronglyConnectedComponents()"); + check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2, + "Wrong stronglyConnectedComponents()"); + Digraph::ArcMap<bool> scut2(d, false); + check(stronglyConnectedCutArcs(d, scut2) == 5, + "This digraph has 5 strongly connected cut arcs."); + for (Digraph::ArcIt a(d); a != INVALID; ++a) { + check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()"); + } + } + + { + // DAG example for topological sort from the book New Algorithms + // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) + Digraph d; + Digraph::NodeMap<int> order(d); + + Digraph::Node belt = d.addNode(); + Digraph::Node trousers = d.addNode(); + Digraph::Node necktie = d.addNode(); + Digraph::Node coat = d.addNode(); + Digraph::Node socks = d.addNode(); + Digraph::Node shirt = d.addNode(); + Digraph::Node shoe = d.addNode(); + Digraph::Node watch = d.addNode(); + Digraph::Node pants = d.addNode(); + + d.addArc(socks, shoe); + d.addArc(pants, shoe); + d.addArc(pants, trousers); + d.addArc(trousers, shoe); + d.addArc(trousers, belt); + d.addArc(belt, coat); + d.addArc(shirt, belt); + d.addArc(shirt, necktie); + d.addArc(necktie, coat); + + check(dag(d), "This digraph is DAG."); + topologicalSort(d, order); + for (Digraph::ArcIt a(d); a != INVALID; ++a) { + check(order[d.source(a)] < order[d.target(a)], + "Wrong topologicalSort()"); + } + } + + { + ListGraph g; + ListGraph::NodeMap<bool> map(g); + + ListGraph::Node n1 = g.addNode(); + ListGraph::Node n2 = g.addNode(); + ListGraph::Node n3 = g.addNode(); + ListGraph::Node n4 = g.addNode(); + ListGraph::Node n5 = g.addNode(); + ListGraph::Node n6 = g.addNode(); + ListGraph::Node n7 = g.addNode(); + + g.addEdge(n1, n3); + g.addEdge(n1, n4); + g.addEdge(n2, n5); + g.addEdge(n3, n6); + g.addEdge(n4, n6); + g.addEdge(n4, n7); + g.addEdge(n5, n7); + + check(bipartite(g), "This graph is bipartite"); + check(bipartitePartitions(g, map), "This graph is bipartite"); + + check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], + "Wrong bipartitePartitions()"); + check(map[n3] == map[n4] && map[n3] == map[n5], + "Wrong bipartitePartitions()"); + } + + return 0; +} |