summaryrefslogtreecommitdiff
path: root/lemon/lemon/planarity.h
diff options
context:
space:
mode:
Diffstat (limited to 'lemon/lemon/planarity.h')
-rw-r--r--lemon/lemon/planarity.h2755
1 files changed, 2755 insertions, 0 deletions
diff --git a/lemon/lemon/planarity.h b/lemon/lemon/planarity.h
new file mode 100644
index 0000000..c5edaea
--- /dev/null
+++ b/lemon/lemon/planarity.h
@@ -0,0 +1,2755 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2010
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_PLANARITY_H
+#define LEMON_PLANARITY_H
+
+/// \ingroup planar
+/// \file
+/// \brief Planarity checking, embedding, drawing and coloring
+
+#include <vector>
+#include <list>
+
+#include <lemon/dfs.h>
+#include <lemon/bfs.h>
+#include <lemon/radix_sort.h>
+#include <lemon/maps.h>
+#include <lemon/path.h>
+#include <lemon/bucket_heap.h>
+#include <lemon/adaptors.h>
+#include <lemon/edge_set.h>
+#include <lemon/color.h>
+#include <lemon/dim2.h>
+
+namespace lemon {
+
+ namespace _planarity_bits {
+
+ template <typename Graph>
+ struct PlanarityVisitor : DfsVisitor<Graph> {
+
+ TEMPLATE_GRAPH_TYPEDEFS(Graph);
+
+ typedef typename Graph::template NodeMap<Arc> PredMap;
+
+ typedef typename Graph::template EdgeMap<bool> TreeMap;
+
+ typedef typename Graph::template NodeMap<int> OrderMap;
+ typedef std::vector<Node> OrderList;
+
+ typedef typename Graph::template NodeMap<int> LowMap;
+ typedef typename Graph::template NodeMap<int> AncestorMap;
+
+ PlanarityVisitor(const Graph& graph,
+ PredMap& pred_map, TreeMap& tree_map,
+ OrderMap& order_map, OrderList& order_list,
+ AncestorMap& ancestor_map, LowMap& low_map)
+ : _graph(graph), _pred_map(pred_map), _tree_map(tree_map),
+ _order_map(order_map), _order_list(order_list),
+ _ancestor_map(ancestor_map), _low_map(low_map) {}
+
+ void reach(const Node& node) {
+ _order_map[node] = _order_list.size();
+ _low_map[node] = _order_list.size();
+ _ancestor_map[node] = _order_list.size();
+ _order_list.push_back(node);
+ }
+
+ void discover(const Arc& arc) {
+ Node source = _graph.source(arc);
+ Node target = _graph.target(arc);
+
+ _tree_map[arc] = true;
+ _pred_map[target] = arc;
+ }
+
+ void examine(const Arc& arc) {
+ Node source = _graph.source(arc);
+ Node target = _graph.target(arc);
+
+ if (_order_map[target] < _order_map[source] && !_tree_map[arc]) {
+ if (_low_map[source] > _order_map[target]) {
+ _low_map[source] = _order_map[target];
+ }
+ if (_ancestor_map[source] > _order_map[target]) {
+ _ancestor_map[source] = _order_map[target];
+ }
+ }
+ }
+
+ void backtrack(const Arc& arc) {
+ Node source = _graph.source(arc);
+ Node target = _graph.target(arc);
+
+ if (_low_map[source] > _low_map[target]) {
+ _low_map[source] = _low_map[target];
+ }
+ }
+
+ const Graph& _graph;
+ PredMap& _pred_map;
+ TreeMap& _tree_map;
+ OrderMap& _order_map;
+ OrderList& _order_list;
+ AncestorMap& _ancestor_map;
+ LowMap& _low_map;
+ };
+
+ template <typename Graph, bool embedding = true>
+ struct NodeDataNode {
+ int prev, next;
+ int visited;
+ typename Graph::Arc first;
+ bool inverted;
+ };
+
+ template <typename Graph>
+ struct NodeDataNode<Graph, false> {
+ int prev, next;
+ int visited;
+ };
+
+ template <typename Graph>
+ struct ChildListNode {
+ typedef typename Graph::Node Node;
+ Node first;
+ Node prev, next;
+ };
+
+ template <typename Graph>
+ struct ArcListNode {
+ typename Graph::Arc prev, next;
+ };
+
+ template <typename Graph>
+ class PlanarityChecking {
+ private:
+
+ TEMPLATE_GRAPH_TYPEDEFS(Graph);
+
+ const Graph& _graph;
+
+ private:
+
+ typedef typename Graph::template NodeMap<Arc> PredMap;
+
+ typedef typename Graph::template EdgeMap<bool> TreeMap;
+
+ typedef typename Graph::template NodeMap<int> OrderMap;
+ typedef std::vector<Node> OrderList;
+
+ typedef typename Graph::template NodeMap<int> LowMap;
+ typedef typename Graph::template NodeMap<int> AncestorMap;
+
+ typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode;
+ typedef std::vector<NodeDataNode> NodeData;
+
+ typedef _planarity_bits::ChildListNode<Graph> ChildListNode;
+ typedef typename Graph::template NodeMap<ChildListNode> ChildLists;
+
+ typedef typename Graph::template NodeMap<std::list<int> > MergeRoots;
+
+ typedef typename Graph::template NodeMap<bool> EmbedArc;
+
+ public:
+
+ PlanarityChecking(const Graph& graph) : _graph(graph) {}
+
+ bool run() {
+ typedef _planarity_bits::PlanarityVisitor<Graph> Visitor;
+
+ PredMap pred_map(_graph, INVALID);
+ TreeMap tree_map(_graph, false);
+
+ OrderMap order_map(_graph, -1);
+ OrderList order_list;
+
+ AncestorMap ancestor_map(_graph, -1);
+ LowMap low_map(_graph, -1);
+
+ Visitor visitor(_graph, pred_map, tree_map,
+ order_map, order_list, ancestor_map, low_map);
+ DfsVisit<Graph, Visitor> visit(_graph, visitor);
+ visit.run();
+
+ ChildLists child_lists(_graph);
+ createChildLists(tree_map, order_map, low_map, child_lists);
+
+ NodeData node_data(2 * order_list.size());
+
+ EmbedArc embed_arc(_graph, false);
+
+ MergeRoots merge_roots(_graph);
+
+ for (int i = order_list.size() - 1; i >= 0; --i) {
+
+ Node node = order_list[i];
+
+ Node source = node;
+ for (OutArcIt e(_graph, node); e != INVALID; ++e) {
+ Node target = _graph.target(e);
+
+ if (order_map[source] < order_map[target] && tree_map[e]) {
+ initFace(target, node_data, order_map, order_list);
+ }
+ }
+
+ for (OutArcIt e(_graph, node); e != INVALID; ++e) {
+ Node target = _graph.target(e);
+
+ if (order_map[source] < order_map[target] && !tree_map[e]) {
+ embed_arc[target] = true;
+ walkUp(target, source, i, pred_map, low_map,
+ order_map, order_list, node_data, merge_roots);
+ }
+ }
+
+ for (typename MergeRoots::Value::iterator it =
+ merge_roots[node].begin();
+ it != merge_roots[node].end(); ++it) {
+ int rn = *it;
+ walkDown(rn, i, node_data, order_list, child_lists,
+ ancestor_map, low_map, embed_arc, merge_roots);
+ }
+ merge_roots[node].clear();
+
+ for (OutArcIt e(_graph, node); e != INVALID; ++e) {
+ Node target = _graph.target(e);
+
+ if (order_map[source] < order_map[target] && !tree_map[e]) {
+ if (embed_arc[target]) {
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+ }
+
+ private:
+
+ void createChildLists(const TreeMap& tree_map, const OrderMap& order_map,
+ const LowMap& low_map, ChildLists& child_lists) {
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ Node source = n;
+
+ std::vector<Node> targets;
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ Node target = _graph.target(e);
+
+ if (order_map[source] < order_map[target] && tree_map[e]) {
+ targets.push_back(target);
+ }
+ }
+
+ if (targets.size() == 0) {
+ child_lists[source].first = INVALID;
+ } else if (targets.size() == 1) {
+ child_lists[source].first = targets[0];
+ child_lists[targets[0]].prev = INVALID;
+ child_lists[targets[0]].next = INVALID;
+ } else {
+ radixSort(targets.begin(), targets.end(), mapToFunctor(low_map));
+ for (int i = 1; i < int(targets.size()); ++i) {
+ child_lists[targets[i]].prev = targets[i - 1];
+ child_lists[targets[i - 1]].next = targets[i];
+ }
+ child_lists[targets.back()].next = INVALID;
+ child_lists[targets.front()].prev = INVALID;
+ child_lists[source].first = targets.front();
+ }
+ }
+ }
+
+ void walkUp(const Node& node, Node root, int rorder,
+ const PredMap& pred_map, const LowMap& low_map,
+ const OrderMap& order_map, const OrderList& order_list,
+ NodeData& node_data, MergeRoots& merge_roots) {
+
+ int na, nb;
+ bool da, db;
+
+ na = nb = order_map[node];
+ da = true; db = false;
+
+ while (true) {
+
+ if (node_data[na].visited == rorder) break;
+ if (node_data[nb].visited == rorder) break;
+
+ node_data[na].visited = rorder;
+ node_data[nb].visited = rorder;
+
+ int rn = -1;
+
+ if (na >= int(order_list.size())) {
+ rn = na;
+ } else if (nb >= int(order_list.size())) {
+ rn = nb;
+ }
+
+ if (rn == -1) {
+ int nn;
+
+ nn = da ? node_data[na].prev : node_data[na].next;
+ da = node_data[nn].prev != na;
+ na = nn;
+
+ nn = db ? node_data[nb].prev : node_data[nb].next;
+ db = node_data[nn].prev != nb;
+ nb = nn;
+
+ } else {
+
+ Node rep = order_list[rn - order_list.size()];
+ Node parent = _graph.source(pred_map[rep]);
+
+ if (low_map[rep] < rorder) {
+ merge_roots[parent].push_back(rn);
+ } else {
+ merge_roots[parent].push_front(rn);
+ }
+
+ if (parent != root) {
+ na = nb = order_map[parent];
+ da = true; db = false;
+ } else {
+ break;
+ }
+ }
+ }
+ }
+
+ void walkDown(int rn, int rorder, NodeData& node_data,
+ OrderList& order_list, ChildLists& child_lists,
+ AncestorMap& ancestor_map, LowMap& low_map,
+ EmbedArc& embed_arc, MergeRoots& merge_roots) {
+
+ std::vector<std::pair<int, bool> > merge_stack;
+
+ for (int di = 0; di < 2; ++di) {
+ bool rd = di == 0;
+ int pn = rn;
+ int n = rd ? node_data[rn].next : node_data[rn].prev;
+
+ while (n != rn) {
+
+ Node node = order_list[n];
+
+ if (embed_arc[node]) {
+
+ // Merging components on the critical path
+ while (!merge_stack.empty()) {
+
+ // Component root
+ int cn = merge_stack.back().first;
+ bool cd = merge_stack.back().second;
+ merge_stack.pop_back();
+
+ // Parent of component
+ int dn = merge_stack.back().first;
+ bool dd = merge_stack.back().second;
+ merge_stack.pop_back();
+
+ Node parent = order_list[dn];
+
+ // Erasing from merge_roots
+ merge_roots[parent].pop_front();
+
+ Node child = order_list[cn - order_list.size()];
+
+ // Erasing from child_lists
+ if (child_lists[child].prev != INVALID) {
+ child_lists[child_lists[child].prev].next =
+ child_lists[child].next;
+ } else {
+ child_lists[parent].first = child_lists[child].next;
+ }
+
+ if (child_lists[child].next != INVALID) {
+ child_lists[child_lists[child].next].prev =
+ child_lists[child].prev;
+ }
+
+ // Merging external faces
+ {
+ int en = cn;
+ cn = cd ? node_data[cn].prev : node_data[cn].next;
+ cd = node_data[cn].next == en;
+
+ }
+
+ if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn;
+ if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn;
+
+ }
+
+ bool d = pn == node_data[n].prev;
+
+ if (node_data[n].prev == node_data[n].next &&
+ node_data[n].inverted) {
+ d = !d;
+ }
+
+ // Embedding arc into external face
+ if (rd) node_data[rn].next = n; else node_data[rn].prev = n;
+ if (d) node_data[n].prev = rn; else node_data[n].next = rn;
+ pn = rn;
+
+ embed_arc[order_list[n]] = false;
+ }
+
+ if (!merge_roots[node].empty()) {
+
+ bool d = pn == node_data[n].prev;
+
+ merge_stack.push_back(std::make_pair(n, d));
+
+ int rn = merge_roots[node].front();
+
+ int xn = node_data[rn].next;
+ Node xnode = order_list[xn];
+
+ int yn = node_data[rn].prev;
+ Node ynode = order_list[yn];
+
+ bool rd;
+ if (!external(xnode, rorder, child_lists,
+ ancestor_map, low_map)) {
+ rd = true;
+ } else if (!external(ynode, rorder, child_lists,
+ ancestor_map, low_map)) {
+ rd = false;
+ } else if (pertinent(xnode, embed_arc, merge_roots)) {
+ rd = true;
+ } else {
+ rd = false;
+ }
+
+ merge_stack.push_back(std::make_pair(rn, rd));
+
+ pn = rn;
+ n = rd ? xn : yn;
+
+ } else if (!external(node, rorder, child_lists,
+ ancestor_map, low_map)) {
+ int nn = (node_data[n].next != pn ?
+ node_data[n].next : node_data[n].prev);
+
+ bool nd = n == node_data[nn].prev;
+
+ if (nd) node_data[nn].prev = pn;
+ else node_data[nn].next = pn;
+
+ if (n == node_data[pn].prev) node_data[pn].prev = nn;
+ else node_data[pn].next = nn;
+
+ node_data[nn].inverted =
+ (node_data[nn].prev == node_data[nn].next && nd != rd);
+
+ n = nn;
+ }
+ else break;
+
+ }
+
+ if (!merge_stack.empty() || n == rn) {
+ break;
+ }
+ }
+ }
+
+ void initFace(const Node& node, NodeData& node_data,
+ const OrderMap& order_map, const OrderList& order_list) {
+ int n = order_map[node];
+ int rn = n + order_list.size();
+
+ node_data[n].next = node_data[n].prev = rn;
+ node_data[rn].next = node_data[rn].prev = n;
+
+ node_data[n].visited = order_list.size();
+ node_data[rn].visited = order_list.size();
+
+ }
+
+ bool external(const Node& node, int rorder,
+ ChildLists& child_lists, AncestorMap& ancestor_map,
+ LowMap& low_map) {
+ Node child = child_lists[node].first;
+
+ if (child != INVALID) {
+ if (low_map[child] < rorder) return true;
+ }
+
+ if (ancestor_map[node] < rorder) return true;
+
+ return false;
+ }
+
+ bool pertinent(const Node& node, const EmbedArc& embed_arc,
+ const MergeRoots& merge_roots) {
+ return !merge_roots[node].empty() || embed_arc[node];
+ }
+
+ };
+
+ }
+
+ /// \ingroup planar
+ ///
+ /// \brief Planarity checking of an undirected simple graph
+ ///
+ /// This function implements the Boyer-Myrvold algorithm for
+ /// planarity checking of an undirected simple graph. It is a simplified
+ /// version of the PlanarEmbedding algorithm class because neither
+ /// the embedding nor the Kuratowski subdivisons are computed.
+ template <typename GR>
+ bool checkPlanarity(const GR& graph) {
+ _planarity_bits::PlanarityChecking<GR> pc(graph);
+ return pc.run();
+ }
+
+ /// \ingroup planar
+ ///
+ /// \brief Planar embedding of an undirected simple graph
+ ///
+ /// This class implements the Boyer-Myrvold algorithm for planar
+ /// embedding of an undirected simple graph. The planar embedding is an
+ /// ordering of the outgoing edges of the nodes, which is a possible
+ /// configuration to draw the graph in the plane. If there is not
+ /// such ordering then the graph contains a K<sub>5</sub> (full graph
+ /// with 5 nodes) or a K<sub>3,3</sub> (complete bipartite graph on
+ /// 3 Red and 3 Blue nodes) subdivision.
+ ///
+ /// The current implementation calculates either an embedding or a
+ /// Kuratowski subdivision. The running time of the algorithm is O(n).
+ ///
+ /// \see PlanarDrawing, checkPlanarity()
+ template <typename Graph>
+ class PlanarEmbedding {
+ private:
+
+ TEMPLATE_GRAPH_TYPEDEFS(Graph);
+
+ const Graph& _graph;
+ typename Graph::template ArcMap<Arc> _embedding;
+
+ typename Graph::template EdgeMap<bool> _kuratowski;
+
+ private:
+
+ typedef typename Graph::template NodeMap<Arc> PredMap;
+
+ typedef typename Graph::template EdgeMap<bool> TreeMap;
+
+ typedef typename Graph::template NodeMap<int> OrderMap;
+ typedef std::vector<Node> OrderList;
+
+ typedef typename Graph::template NodeMap<int> LowMap;
+ typedef typename Graph::template NodeMap<int> AncestorMap;
+
+ typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode;
+ typedef std::vector<NodeDataNode> NodeData;
+
+ typedef _planarity_bits::ChildListNode<Graph> ChildListNode;
+ typedef typename Graph::template NodeMap<ChildListNode> ChildLists;
+
+ typedef typename Graph::template NodeMap<std::list<int> > MergeRoots;
+
+ typedef typename Graph::template NodeMap<Arc> EmbedArc;
+
+ typedef _planarity_bits::ArcListNode<Graph> ArcListNode;
+ typedef typename Graph::template ArcMap<ArcListNode> ArcLists;
+
+ typedef typename Graph::template NodeMap<bool> FlipMap;
+
+ typedef typename Graph::template NodeMap<int> TypeMap;
+
+ enum IsolatorNodeType {
+ HIGHX = 6, LOWX = 7,
+ HIGHY = 8, LOWY = 9,
+ ROOT = 10, PERTINENT = 11,
+ INTERNAL = 12
+ };
+
+ public:
+
+ /// \brief The map type for storing the embedding
+ ///
+ /// The map type for storing the embedding.
+ /// \see embeddingMap()
+ typedef typename Graph::template ArcMap<Arc> EmbeddingMap;
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ /// \pre The graph must be simple, i.e. it should not
+ /// contain parallel or loop arcs.
+ PlanarEmbedding(const Graph& graph)
+ : _graph(graph), _embedding(_graph), _kuratowski(graph, false) {}
+
+ /// \brief Run the algorithm.
+ ///
+ /// This function runs the algorithm.
+ /// \param kuratowski If this parameter is set to \c false, then the
+ /// algorithm does not compute a Kuratowski subdivision.
+ /// \return \c true if the graph is planar.
+ bool run(bool kuratowski = true) {
+ typedef _planarity_bits::PlanarityVisitor<Graph> Visitor;
+
+ PredMap pred_map(_graph, INVALID);
+ TreeMap tree_map(_graph, false);
+
+ OrderMap order_map(_graph, -1);
+ OrderList order_list;
+
+ AncestorMap ancestor_map(_graph, -1);
+ LowMap low_map(_graph, -1);
+
+ Visitor visitor(_graph, pred_map, tree_map,
+ order_map, order_list, ancestor_map, low_map);
+ DfsVisit<Graph, Visitor> visit(_graph, visitor);
+ visit.run();
+
+ ChildLists child_lists(_graph);
+ createChildLists(tree_map, order_map, low_map, child_lists);
+
+ NodeData node_data(2 * order_list.size());
+
+ EmbedArc embed_arc(_graph, INVALID);
+
+ MergeRoots merge_roots(_graph);
+
+ ArcLists arc_lists(_graph);
+
+ FlipMap flip_map(_graph, false);
+
+ for (int i = order_list.size() - 1; i >= 0; --i) {
+
+ Node node = order_list[i];
+
+ node_data[i].first = INVALID;
+
+ Node source = node;
+ for (OutArcIt e(_graph, node); e != INVALID; ++e) {
+ Node target = _graph.target(e);
+
+ if (order_map[source] < order_map[target] && tree_map[e]) {
+ initFace(target, arc_lists, node_data,
+ pred_map, order_map, order_list);
+ }
+ }
+
+ for (OutArcIt e(_graph, node); e != INVALID; ++e) {
+ Node target = _graph.target(e);
+
+ if (order_map[source] < order_map[target] && !tree_map[e]) {
+ embed_arc[target] = e;
+ walkUp(target, source, i, pred_map, low_map,
+ order_map, order_list, node_data, merge_roots);
+ }
+ }
+
+ for (typename MergeRoots::Value::iterator it =
+ merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
+ int rn = *it;
+ walkDown(rn, i, node_data, arc_lists, flip_map, order_list,
+ child_lists, ancestor_map, low_map, embed_arc, merge_roots);
+ }
+ merge_roots[node].clear();
+
+ for (OutArcIt e(_graph, node); e != INVALID; ++e) {
+ Node target = _graph.target(e);
+
+ if (order_map[source] < order_map[target] && !tree_map[e]) {
+ if (embed_arc[target] != INVALID) {
+ if (kuratowski) {
+ isolateKuratowski(e, node_data, arc_lists, flip_map,
+ order_map, order_list, pred_map, child_lists,
+ ancestor_map, low_map,
+ embed_arc, merge_roots);
+ }
+ return false;
+ }
+ }
+ }
+ }
+
+ for (int i = 0; i < int(order_list.size()); ++i) {
+
+ mergeRemainingFaces(order_list[i], node_data, order_list, order_map,
+ child_lists, arc_lists);
+ storeEmbedding(order_list[i], node_data, order_map, pred_map,
+ arc_lists, flip_map);
+ }
+
+ return true;
+ }
+
+ /// \brief Give back the successor of an arc
+ ///
+ /// This function gives back the successor of an arc. It makes
+ /// possible to query the cyclic order of the outgoing arcs from
+ /// a node.
+ Arc next(const Arc& arc) const {
+ return _embedding[arc];
+ }
+
+ /// \brief Give back the calculated embedding map
+ ///
+ /// This function gives back the calculated embedding map, which
+ /// contains the successor of each arc in the cyclic order of the
+ /// outgoing arcs of its source node.
+ const EmbeddingMap& embeddingMap() const {
+ return _embedding;
+ }
+
+ /// \brief Give back \c true if the given edge is in the Kuratowski
+ /// subdivision
+ ///
+ /// This function gives back \c true if the given edge is in the found
+ /// Kuratowski subdivision.
+ /// \pre The \c run() function must be called with \c true parameter
+ /// before using this function.
+ bool kuratowski(const Edge& edge) const {
+ return _kuratowski[edge];
+ }
+
+ private:
+
+ void createChildLists(const TreeMap& tree_map, const OrderMap& order_map,
+ const LowMap& low_map, ChildLists& child_lists) {
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ Node source = n;
+
+ std::vector<Node> targets;
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ Node target = _graph.target(e);
+
+ if (order_map[source] < order_map[target] && tree_map[e]) {
+ targets.push_back(target);
+ }
+ }
+
+ if (targets.size() == 0) {
+ child_lists[source].first = INVALID;
+ } else if (targets.size() == 1) {
+ child_lists[source].first = targets[0];
+ child_lists[targets[0]].prev = INVALID;
+ child_lists[targets[0]].next = INVALID;
+ } else {
+ radixSort(targets.begin(), targets.end(), mapToFunctor(low_map));
+ for (int i = 1; i < int(targets.size()); ++i) {
+ child_lists[targets[i]].prev = targets[i - 1];
+ child_lists[targets[i - 1]].next = targets[i];
+ }
+ child_lists[targets.back()].next = INVALID;
+ child_lists[targets.front()].prev = INVALID;
+ child_lists[source].first = targets.front();
+ }
+ }
+ }
+
+ void walkUp(const Node& node, Node root, int rorder,
+ const PredMap& pred_map, const LowMap& low_map,
+ const OrderMap& order_map, const OrderList& order_list,
+ NodeData& node_data, MergeRoots& merge_roots) {
+
+ int na, nb;
+ bool da, db;
+
+ na = nb = order_map[node];
+ da = true; db = false;
+
+ while (true) {
+
+ if (node_data[na].visited == rorder) break;
+ if (node_data[nb].visited == rorder) break;
+
+ node_data[na].visited = rorder;
+ node_data[nb].visited = rorder;
+
+ int rn = -1;
+
+ if (na >= int(order_list.size())) {
+ rn = na;
+ } else if (nb >= int(order_list.size())) {
+ rn = nb;
+ }
+
+ if (rn == -1) {
+ int nn;
+
+ nn = da ? node_data[na].prev : node_data[na].next;
+ da = node_data[nn].prev != na;
+ na = nn;
+
+ nn = db ? node_data[nb].prev : node_data[nb].next;
+ db = node_data[nn].prev != nb;
+ nb = nn;
+
+ } else {
+
+ Node rep = order_list[rn - order_list.size()];
+ Node parent = _graph.source(pred_map[rep]);
+
+ if (low_map[rep] < rorder) {
+ merge_roots[parent].push_back(rn);
+ } else {
+ merge_roots[parent].push_front(rn);
+ }
+
+ if (parent != root) {
+ na = nb = order_map[parent];
+ da = true; db = false;
+ } else {
+ break;
+ }
+ }
+ }
+ }
+
+ void walkDown(int rn, int rorder, NodeData& node_data,
+ ArcLists& arc_lists, FlipMap& flip_map,
+ OrderList& order_list, ChildLists& child_lists,
+ AncestorMap& ancestor_map, LowMap& low_map,
+ EmbedArc& embed_arc, MergeRoots& merge_roots) {
+
+ std::vector<std::pair<int, bool> > merge_stack;
+
+ for (int di = 0; di < 2; ++di) {
+ bool rd = di == 0;
+ int pn = rn;
+ int n = rd ? node_data[rn].next : node_data[rn].prev;
+
+ while (n != rn) {
+
+ Node node = order_list[n];
+
+ if (embed_arc[node] != INVALID) {
+
+ // Merging components on the critical path
+ while (!merge_stack.empty()) {
+
+ // Component root
+ int cn = merge_stack.back().first;
+ bool cd = merge_stack.back().second;
+ merge_stack.pop_back();
+
+ // Parent of component
+ int dn = merge_stack.back().first;
+ bool dd = merge_stack.back().second;
+ merge_stack.pop_back();
+
+ Node parent = order_list[dn];
+
+ // Erasing from merge_roots
+ merge_roots[parent].pop_front();
+
+ Node child = order_list[cn - order_list.size()];
+
+ // Erasing from child_lists
+ if (child_lists[child].prev != INVALID) {
+ child_lists[child_lists[child].prev].next =
+ child_lists[child].next;
+ } else {
+ child_lists[parent].first = child_lists[child].next;
+ }
+
+ if (child_lists[child].next != INVALID) {
+ child_lists[child_lists[child].next].prev =
+ child_lists[child].prev;
+ }
+
+ // Merging arcs + flipping
+ Arc de = node_data[dn].first;
+ Arc ce = node_data[cn].first;
+
+ flip_map[order_list[cn - order_list.size()]] = cd != dd;
+ if (cd != dd) {
+ std::swap(arc_lists[ce].prev, arc_lists[ce].next);
+ ce = arc_lists[ce].prev;
+ std::swap(arc_lists[ce].prev, arc_lists[ce].next);
+ }
+
+ {
+ Arc dne = arc_lists[de].next;
+ Arc cne = arc_lists[ce].next;
+
+ arc_lists[de].next = cne;
+ arc_lists[ce].next = dne;
+
+ arc_lists[dne].prev = ce;
+ arc_lists[cne].prev = de;
+ }
+
+ if (dd) {
+ node_data[dn].first = ce;
+ }
+
+ // Merging external faces
+ {
+ int en = cn;
+ cn = cd ? node_data[cn].prev : node_data[cn].next;
+ cd = node_data[cn].next == en;
+
+ if (node_data[cn].prev == node_data[cn].next &&
+ node_data[cn].inverted) {
+ cd = !cd;
+ }
+ }
+
+ if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn;
+ if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn;
+
+ }
+
+ bool d = pn == node_data[n].prev;
+
+ if (node_data[n].prev == node_data[n].next &&
+ node_data[n].inverted) {
+ d = !d;
+ }
+
+ // Add new arc
+ {
+ Arc arc = embed_arc[node];
+ Arc re = node_data[rn].first;
+
+ arc_lists[arc_lists[re].next].prev = arc;
+ arc_lists[arc].next = arc_lists[re].next;
+ arc_lists[arc].prev = re;
+ arc_lists[re].next = arc;
+
+ if (!rd) {
+ node_data[rn].first = arc;
+ }
+
+ Arc rev = _graph.oppositeArc(arc);
+ Arc e = node_data[n].first;
+
+ arc_lists[arc_lists[e].next].prev = rev;
+ arc_lists[rev].next = arc_lists[e].next;
+ arc_lists[rev].prev = e;
+ arc_lists[e].next = rev;
+
+ if (d) {
+ node_data[n].first = rev;
+ }
+
+ }
+
+ // Embedding arc into external face
+ if (rd) node_data[rn].next = n; else node_data[rn].prev = n;
+ if (d) node_data[n].prev = rn; else node_data[n].next = rn;
+ pn = rn;
+
+ embed_arc[order_list[n]] = INVALID;
+ }
+
+ if (!merge_roots[node].empty()) {
+
+ bool d = pn == node_data[n].prev;
+ if (node_data[n].prev == node_data[n].next &&
+ node_data[n].inverted) {
+ d = !d;
+ }
+
+ merge_stack.push_back(std::make_pair(n, d));
+
+ int rn = merge_roots[node].front();
+
+ int xn = node_data[rn].next;
+ Node xnode = order_list[xn];
+
+ int yn = node_data[rn].prev;
+ Node ynode = order_list[yn];
+
+ bool rd;
+ if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
+ rd = true;
+ } else if (!external(ynode, rorder, child_lists,
+ ancestor_map, low_map)) {
+ rd = false;
+ } else if (pertinent(xnode, embed_arc, merge_roots)) {
+ rd = true;
+ } else {
+ rd = false;
+ }
+
+ merge_stack.push_back(std::make_pair(rn, rd));
+
+ pn = rn;
+ n = rd ? xn : yn;
+
+ } else if (!external(node, rorder, child_lists,
+ ancestor_map, low_map)) {
+ int nn = (node_data[n].next != pn ?
+ node_data[n].next : node_data[n].prev);
+
+ bool nd = n == node_data[nn].prev;
+
+ if (nd) node_data[nn].prev = pn;
+ else node_data[nn].next = pn;
+
+ if (n == node_data[pn].prev) node_data[pn].prev = nn;
+ else node_data[pn].next = nn;
+
+ node_data[nn].inverted =
+ (node_data[nn].prev == node_data[nn].next && nd != rd);
+
+ n = nn;
+ }
+ else break;
+
+ }
+
+ if (!merge_stack.empty() || n == rn) {
+ break;
+ }
+ }
+ }
+
+ void initFace(const Node& node, ArcLists& arc_lists,
+ NodeData& node_data, const PredMap& pred_map,
+ const OrderMap& order_map, const OrderList& order_list) {
+ int n = order_map[node];
+ int rn = n + order_list.size();
+
+ node_data[n].next = node_data[n].prev = rn;
+ node_data[rn].next = node_data[rn].prev = n;
+
+ node_data[n].visited = order_list.size();
+ node_data[rn].visited = order_list.size();
+
+ node_data[n].inverted = false;
+ node_data[rn].inverted = false;
+
+ Arc arc = pred_map[node];
+ Arc rev = _graph.oppositeArc(arc);
+
+ node_data[rn].first = arc;
+ node_data[n].first = rev;
+
+ arc_lists[arc].prev = arc;
+ arc_lists[arc].next = arc;
+
+ arc_lists[rev].prev = rev;
+ arc_lists[rev].next = rev;
+
+ }
+
+ void mergeRemainingFaces(const Node& node, NodeData& node_data,
+ OrderList& order_list, OrderMap& order_map,
+ ChildLists& child_lists, ArcLists& arc_lists) {
+ while (child_lists[node].first != INVALID) {
+ int dd = order_map[node];
+ Node child = child_lists[node].first;
+ int cd = order_map[child] + order_list.size();
+ child_lists[node].first = child_lists[child].next;
+
+ Arc de = node_data[dd].first;
+ Arc ce = node_data[cd].first;
+
+ if (de != INVALID) {
+ Arc dne = arc_lists[de].next;
+ Arc cne = arc_lists[ce].next;
+
+ arc_lists[de].next = cne;
+ arc_lists[ce].next = dne;
+
+ arc_lists[dne].prev = ce;
+ arc_lists[cne].prev = de;
+ }
+
+ node_data[dd].first = ce;
+
+ }
+ }
+
+ void storeEmbedding(const Node& node, NodeData& node_data,
+ OrderMap& order_map, PredMap& pred_map,
+ ArcLists& arc_lists, FlipMap& flip_map) {
+
+ if (node_data[order_map[node]].first == INVALID) return;
+
+ if (pred_map[node] != INVALID) {
+ Node source = _graph.source(pred_map[node]);
+ flip_map[node] = flip_map[node] != flip_map[source];
+ }
+
+ Arc first = node_data[order_map[node]].first;
+ Arc prev = first;
+
+ Arc arc = flip_map[node] ?
+ arc_lists[prev].prev : arc_lists[prev].next;
+
+ _embedding[prev] = arc;
+
+ while (arc != first) {
+ Arc next = arc_lists[arc].prev == prev ?
+ arc_lists[arc].next : arc_lists[arc].prev;
+ prev = arc; arc = next;
+ _embedding[prev] = arc;
+ }
+ }
+
+
+ bool external(const Node& node, int rorder,
+ ChildLists& child_lists, AncestorMap& ancestor_map,
+ LowMap& low_map) {
+ Node child = child_lists[node].first;
+
+ if (child != INVALID) {
+ if (low_map[child] < rorder) return true;
+ }
+
+ if (ancestor_map[node] < rorder) return true;
+
+ return false;
+ }
+
+ bool pertinent(const Node& node, const EmbedArc& embed_arc,
+ const MergeRoots& merge_roots) {
+ return !merge_roots[node].empty() || embed_arc[node] != INVALID;
+ }
+
+ int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists,
+ AncestorMap& ancestor_map, LowMap& low_map) {
+ int low_point;
+
+ Node child = child_lists[node].first;
+
+ if (child != INVALID) {
+ low_point = low_map[child];
+ } else {
+ low_point = order_map[node];
+ }
+
+ if (low_point > ancestor_map[node]) {
+ low_point = ancestor_map[node];
+ }
+
+ return low_point;
+ }
+
+ int findComponentRoot(Node root, Node node, ChildLists& child_lists,
+ OrderMap& order_map, OrderList& order_list) {
+
+ int order = order_map[root];
+ int norder = order_map[node];
+
+ Node child = child_lists[root].first;
+ while (child != INVALID) {
+ int corder = order_map[child];
+ if (corder > order && corder < norder) {
+ order = corder;
+ }
+ child = child_lists[child].next;
+ }
+ return order + order_list.size();
+ }
+
+ Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data,
+ EmbedArc& embed_arc, MergeRoots& merge_roots) {
+ Node wnode =_graph.target(node_data[order_map[node]].first);
+ while (!pertinent(wnode, embed_arc, merge_roots)) {
+ wnode = _graph.target(node_data[order_map[wnode]].first);
+ }
+ return wnode;
+ }
+
+
+ Node findExternal(Node node, int rorder, OrderMap& order_map,
+ ChildLists& child_lists, AncestorMap& ancestor_map,
+ LowMap& low_map, NodeData& node_data) {
+ Node wnode =_graph.target(node_data[order_map[node]].first);
+ while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
+ wnode = _graph.target(node_data[order_map[wnode]].first);
+ }
+ return wnode;
+ }
+
+ void markCommonPath(Node node, int rorder, Node& wnode, Node& znode,
+ OrderList& order_list, OrderMap& order_map,
+ NodeData& node_data, ArcLists& arc_lists,
+ EmbedArc& embed_arc, MergeRoots& merge_roots,
+ ChildLists& child_lists, AncestorMap& ancestor_map,
+ LowMap& low_map) {
+
+ Node cnode = node;
+ Node pred = INVALID;
+
+ while (true) {
+
+ bool pert = pertinent(cnode, embed_arc, merge_roots);
+ bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map);
+
+ if (pert && ext) {
+ if (!merge_roots[cnode].empty()) {
+ int cn = merge_roots[cnode].back();
+
+ if (low_map[order_list[cn - order_list.size()]] < rorder) {
+ Arc arc = node_data[cn].first;
+ _kuratowski.set(arc, true);
+
+ pred = cnode;
+ cnode = _graph.target(arc);
+
+ continue;
+ }
+ }
+ wnode = znode = cnode;
+ return;
+
+ } else if (pert) {
+ wnode = cnode;
+
+ while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) {
+ Arc arc = node_data[order_map[cnode]].first;
+
+ if (_graph.target(arc) == pred) {
+ arc = arc_lists[arc].next;
+ }
+ _kuratowski.set(arc, true);
+
+ Node next = _graph.target(arc);
+ pred = cnode; cnode = next;
+ }
+
+ znode = cnode;
+ return;
+
+ } else if (ext) {
+ znode = cnode;
+
+ while (!pertinent(cnode, embed_arc, merge_roots)) {
+ Arc arc = node_data[order_map[cnode]].first;
+
+ if (_graph.target(arc) == pred) {
+ arc = arc_lists[arc].next;
+ }
+ _kuratowski.set(arc, true);
+
+ Node next = _graph.target(arc);
+ pred = cnode; cnode = next;
+ }
+
+ wnode = cnode;
+ return;
+
+ } else {
+ Arc arc = node_data[order_map[cnode]].first;
+
+ if (_graph.target(arc) == pred) {
+ arc = arc_lists[arc].next;
+ }
+ _kuratowski.set(arc, true);
+
+ Node next = _graph.target(arc);
+ pred = cnode; cnode = next;
+ }
+
+ }
+
+ }
+
+ void orientComponent(Node root, int rn, OrderMap& order_map,
+ PredMap& pred_map, NodeData& node_data,
+ ArcLists& arc_lists, FlipMap& flip_map,
+ TypeMap& type_map) {
+ node_data[order_map[root]].first = node_data[rn].first;
+ type_map[root] = 1;
+
+ std::vector<Node> st, qu;
+
+ st.push_back(root);
+ while (!st.empty()) {
+ Node node = st.back();
+ st.pop_back();
+ qu.push_back(node);
+
+ Arc arc = node_data[order_map[node]].first;
+
+ if (type_map[_graph.target(arc)] == 0) {
+ st.push_back(_graph.target(arc));
+ type_map[_graph.target(arc)] = 1;
+ }
+
+ Arc last = arc, pred = arc;
+ arc = arc_lists[arc].next;
+ while (arc != last) {
+
+ if (type_map[_graph.target(arc)] == 0) {
+ st.push_back(_graph.target(arc));
+ type_map[_graph.target(arc)] = 1;
+ }
+
+ Arc next = arc_lists[arc].next != pred ?
+ arc_lists[arc].next : arc_lists[arc].prev;
+ pred = arc; arc = next;
+ }
+
+ }
+
+ type_map[root] = 2;
+ flip_map[root] = false;
+
+ for (int i = 1; i < int(qu.size()); ++i) {
+
+ Node node = qu[i];
+
+ while (type_map[node] != 2) {
+ st.push_back(node);
+ type_map[node] = 2;
+ node = _graph.source(pred_map[node]);
+ }
+
+ bool flip = flip_map[node];
+
+ while (!st.empty()) {
+ node = st.back();
+ st.pop_back();
+
+ flip_map[node] = flip != flip_map[node];
+ flip = flip_map[node];
+
+ if (flip) {
+ Arc arc = node_data[order_map[node]].first;
+ std::swap(arc_lists[arc].prev, arc_lists[arc].next);
+ arc = arc_lists[arc].prev;
+ std::swap(arc_lists[arc].prev, arc_lists[arc].next);
+ node_data[order_map[node]].first = arc;
+ }
+ }
+ }
+
+ for (int i = 0; i < int(qu.size()); ++i) {
+
+ Arc arc = node_data[order_map[qu[i]]].first;
+ Arc last = arc, pred = arc;
+
+ arc = arc_lists[arc].next;
+ while (arc != last) {
+
+ if (arc_lists[arc].next == pred) {
+ std::swap(arc_lists[arc].next, arc_lists[arc].prev);
+ }
+ pred = arc; arc = arc_lists[arc].next;
+ }
+
+ }
+ }
+
+ void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode,
+ OrderMap& order_map, NodeData& node_data,
+ TypeMap& type_map) {
+ Node node = _graph.target(node_data[order_map[root]].first);
+
+ while (node != ynode) {
+ type_map[node] = HIGHY;
+ node = _graph.target(node_data[order_map[node]].first);
+ }
+
+ while (node != wnode) {
+ type_map[node] = LOWY;
+ node = _graph.target(node_data[order_map[node]].first);
+ }
+
+ node = _graph.target(node_data[order_map[wnode]].first);
+
+ while (node != xnode) {
+ type_map[node] = LOWX;
+ node = _graph.target(node_data[order_map[node]].first);
+ }
+ type_map[node] = LOWX;
+
+ node = _graph.target(node_data[order_map[xnode]].first);
+ while (node != root) {
+ type_map[node] = HIGHX;
+ node = _graph.target(node_data[order_map[node]].first);
+ }
+
+ type_map[wnode] = PERTINENT;
+ type_map[root] = ROOT;
+ }
+
+ void findInternalPath(std::vector<Arc>& ipath,
+ Node wnode, Node root, TypeMap& type_map,
+ OrderMap& order_map, NodeData& node_data,
+ ArcLists& arc_lists) {
+ std::vector<Arc> st;
+
+ Node node = wnode;
+
+ while (node != root) {
+ Arc arc = arc_lists[node_data[order_map[node]].first].next;
+ st.push_back(arc);
+ node = _graph.target(arc);
+ }
+
+ while (true) {
+ Arc arc = st.back();
+ if (type_map[_graph.target(arc)] == LOWX ||
+ type_map[_graph.target(arc)] == HIGHX) {
+ break;
+ }
+ if (type_map[_graph.target(arc)] == 2) {
+ type_map[_graph.target(arc)] = 3;
+
+ arc = arc_lists[_graph.oppositeArc(arc)].next;
+ st.push_back(arc);
+ } else {
+ st.pop_back();
+ arc = arc_lists[arc].next;
+
+ while (_graph.oppositeArc(arc) == st.back()) {
+ arc = st.back();
+ st.pop_back();
+ arc = arc_lists[arc].next;
+ }
+ st.push_back(arc);
+ }
+ }
+
+ for (int i = 0; i < int(st.size()); ++i) {
+ if (type_map[_graph.target(st[i])] != LOWY &&
+ type_map[_graph.target(st[i])] != HIGHY) {
+ for (; i < int(st.size()); ++i) {
+ ipath.push_back(st[i]);
+ }
+ }
+ }
+ }
+
+ void setInternalFlags(std::vector<Arc>& ipath, TypeMap& type_map) {
+ for (int i = 1; i < int(ipath.size()); ++i) {
+ type_map[_graph.source(ipath[i])] = INTERNAL;
+ }
+ }
+
+ void findPilePath(std::vector<Arc>& ppath,
+ Node root, TypeMap& type_map, OrderMap& order_map,
+ NodeData& node_data, ArcLists& arc_lists) {
+ std::vector<Arc> st;
+
+ st.push_back(_graph.oppositeArc(node_data[order_map[root]].first));
+ st.push_back(node_data[order_map[root]].first);
+
+ while (st.size() > 1) {
+ Arc arc = st.back();
+ if (type_map[_graph.target(arc)] == INTERNAL) {
+ break;
+ }
+ if (type_map[_graph.target(arc)] == 3) {
+ type_map[_graph.target(arc)] = 4;
+
+ arc = arc_lists[_graph.oppositeArc(arc)].next;
+ st.push_back(arc);
+ } else {
+ st.pop_back();
+ arc = arc_lists[arc].next;
+
+ while (!st.empty() && _graph.oppositeArc(arc) == st.back()) {
+ arc = st.back();
+ st.pop_back();
+ arc = arc_lists[arc].next;
+ }
+ st.push_back(arc);
+ }
+ }
+
+ for (int i = 1; i < int(st.size()); ++i) {
+ ppath.push_back(st[i]);
+ }
+ }
+
+
+ int markExternalPath(Node node, OrderMap& order_map,
+ ChildLists& child_lists, PredMap& pred_map,
+ AncestorMap& ancestor_map, LowMap& low_map) {
+ int lp = lowPoint(node, order_map, child_lists,
+ ancestor_map, low_map);
+
+ if (ancestor_map[node] != lp) {
+ node = child_lists[node].first;
+ _kuratowski[pred_map[node]] = true;
+
+ while (ancestor_map[node] != lp) {
+ for (OutArcIt e(_graph, node); e != INVALID; ++e) {
+ Node tnode = _graph.target(e);
+ if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) {
+ node = tnode;
+ _kuratowski[e] = true;
+ break;
+ }
+ }
+ }
+ }
+
+ for (OutArcIt e(_graph, node); e != INVALID; ++e) {
+ if (order_map[_graph.target(e)] == lp) {
+ _kuratowski[e] = true;
+ break;
+ }
+ }
+
+ return lp;
+ }
+
+ void markPertinentPath(Node node, OrderMap& order_map,
+ NodeData& node_data, ArcLists& arc_lists,
+ EmbedArc& embed_arc, MergeRoots& merge_roots) {
+ while (embed_arc[node] == INVALID) {
+ int n = merge_roots[node].front();
+ Arc arc = node_data[n].first;
+
+ _kuratowski.set(arc, true);
+
+ Node pred = node;
+ node = _graph.target(arc);
+ while (!pertinent(node, embed_arc, merge_roots)) {
+ arc = node_data[order_map[node]].first;
+ if (_graph.target(arc) == pred) {
+ arc = arc_lists[arc].next;
+ }
+ _kuratowski.set(arc, true);
+ pred = node;
+ node = _graph.target(arc);
+ }
+ }
+ _kuratowski.set(embed_arc[node], true);
+ }
+
+ void markPredPath(Node node, Node snode, PredMap& pred_map) {
+ while (node != snode) {
+ _kuratowski.set(pred_map[node], true);
+ node = _graph.source(pred_map[node]);
+ }
+ }
+
+ void markFacePath(Node ynode, Node xnode,
+ OrderMap& order_map, NodeData& node_data) {
+ Arc arc = node_data[order_map[ynode]].first;
+ Node node = _graph.target(arc);
+ _kuratowski.set(arc, true);
+
+ while (node != xnode) {
+ arc = node_data[order_map[node]].first;
+ _kuratowski.set(arc, true);
+ node = _graph.target(arc);
+ }
+ }
+
+ void markInternalPath(std::vector<Arc>& path) {
+ for (int i = 0; i < int(path.size()); ++i) {
+ _kuratowski.set(path[i], true);
+ }
+ }
+
+ void markPilePath(std::vector<Arc>& path) {
+ for (int i = 0; i < int(path.size()); ++i) {
+ _kuratowski.set(path[i], true);
+ }
+ }
+
+ void isolateKuratowski(Arc arc, NodeData& node_data,
+ ArcLists& arc_lists, FlipMap& flip_map,
+ OrderMap& order_map, OrderList& order_list,
+ PredMap& pred_map, ChildLists& child_lists,
+ AncestorMap& ancestor_map, LowMap& low_map,
+ EmbedArc& embed_arc, MergeRoots& merge_roots) {
+
+ Node root = _graph.source(arc);
+ Node enode = _graph.target(arc);
+
+ int rorder = order_map[root];
+
+ TypeMap type_map(_graph, 0);
+
+ int rn = findComponentRoot(root, enode, child_lists,
+ order_map, order_list);
+
+ Node xnode = order_list[node_data[rn].next];
+ Node ynode = order_list[node_data[rn].prev];
+
+ // Minor-A
+ {
+ while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) {
+
+ if (!merge_roots[xnode].empty()) {
+ root = xnode;
+ rn = merge_roots[xnode].front();
+ } else {
+ root = ynode;
+ rn = merge_roots[ynode].front();
+ }
+
+ xnode = order_list[node_data[rn].next];
+ ynode = order_list[node_data[rn].prev];
+ }
+
+ if (root != _graph.source(arc)) {
+ orientComponent(root, rn, order_map, pred_map,
+ node_data, arc_lists, flip_map, type_map);
+ markFacePath(root, root, order_map, node_data);
+ int xlp = markExternalPath(xnode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ int ylp = markExternalPath(ynode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
+ Node lwnode = findPertinent(ynode, order_map, node_data,
+ embed_arc, merge_roots);
+
+ markPertinentPath(lwnode, order_map, node_data, arc_lists,
+ embed_arc, merge_roots);
+
+ return;
+ }
+ }
+
+ orientComponent(root, rn, order_map, pred_map,
+ node_data, arc_lists, flip_map, type_map);
+
+ Node wnode = findPertinent(ynode, order_map, node_data,
+ embed_arc, merge_roots);
+ setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map);
+
+
+ //Minor-B
+ if (!merge_roots[wnode].empty()) {
+ int cn = merge_roots[wnode].back();
+ Node rep = order_list[cn - order_list.size()];
+ if (low_map[rep] < rorder) {
+ markFacePath(root, root, order_map, node_data);
+ int xlp = markExternalPath(xnode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ int ylp = markExternalPath(ynode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+
+ Node lwnode, lznode;
+ markCommonPath(wnode, rorder, lwnode, lznode, order_list,
+ order_map, node_data, arc_lists, embed_arc,
+ merge_roots, child_lists, ancestor_map, low_map);
+
+ markPertinentPath(lwnode, order_map, node_data, arc_lists,
+ embed_arc, merge_roots);
+ int zlp = markExternalPath(lznode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+
+ int minlp = xlp < ylp ? xlp : ylp;
+ if (zlp < minlp) minlp = zlp;
+
+ int maxlp = xlp > ylp ? xlp : ylp;
+ if (zlp > maxlp) maxlp = zlp;
+
+ markPredPath(order_list[maxlp], order_list[minlp], pred_map);
+
+ return;
+ }
+ }
+
+ Node pxnode, pynode;
+ std::vector<Arc> ipath;
+ findInternalPath(ipath, wnode, root, type_map, order_map,
+ node_data, arc_lists);
+ setInternalFlags(ipath, type_map);
+ pynode = _graph.source(ipath.front());
+ pxnode = _graph.target(ipath.back());
+
+ wnode = findPertinent(pynode, order_map, node_data,
+ embed_arc, merge_roots);
+
+ // Minor-C
+ {
+ if (type_map[_graph.source(ipath.front())] == HIGHY) {
+ if (type_map[_graph.target(ipath.back())] == HIGHX) {
+ markFacePath(xnode, pxnode, order_map, node_data);
+ }
+ markFacePath(root, xnode, order_map, node_data);
+ markPertinentPath(wnode, order_map, node_data, arc_lists,
+ embed_arc, merge_roots);
+ markInternalPath(ipath);
+ int xlp = markExternalPath(xnode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ int ylp = markExternalPath(ynode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
+ return;
+ }
+
+ if (type_map[_graph.target(ipath.back())] == HIGHX) {
+ markFacePath(ynode, root, order_map, node_data);
+ markPertinentPath(wnode, order_map, node_data, arc_lists,
+ embed_arc, merge_roots);
+ markInternalPath(ipath);
+ int xlp = markExternalPath(xnode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ int ylp = markExternalPath(ynode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
+ return;
+ }
+ }
+
+ std::vector<Arc> ppath;
+ findPilePath(ppath, root, type_map, order_map, node_data, arc_lists);
+
+ // Minor-D
+ if (!ppath.empty()) {
+ markFacePath(ynode, xnode, order_map, node_data);
+ markPertinentPath(wnode, order_map, node_data, arc_lists,
+ embed_arc, merge_roots);
+ markPilePath(ppath);
+ markInternalPath(ipath);
+ int xlp = markExternalPath(xnode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ int ylp = markExternalPath(ynode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
+ return;
+ }
+
+ // Minor-E*
+ {
+
+ if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
+ Node znode = findExternal(pynode, rorder, order_map,
+ child_lists, ancestor_map,
+ low_map, node_data);
+
+ if (type_map[znode] == LOWY) {
+ markFacePath(root, xnode, order_map, node_data);
+ markPertinentPath(wnode, order_map, node_data, arc_lists,
+ embed_arc, merge_roots);
+ markInternalPath(ipath);
+ int xlp = markExternalPath(xnode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ int zlp = markExternalPath(znode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map);
+ } else {
+ markFacePath(ynode, root, order_map, node_data);
+ markPertinentPath(wnode, order_map, node_data, arc_lists,
+ embed_arc, merge_roots);
+ markInternalPath(ipath);
+ int ylp = markExternalPath(ynode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ int zlp = markExternalPath(znode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map);
+ }
+ return;
+ }
+
+ int xlp = markExternalPath(xnode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ int ylp = markExternalPath(ynode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+ int wlp = markExternalPath(wnode, order_map, child_lists,
+ pred_map, ancestor_map, low_map);
+
+ if (wlp > xlp && wlp > ylp) {
+ markFacePath(root, root, order_map, node_data);
+ markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map);
+ return;
+ }
+
+ markInternalPath(ipath);
+ markPertinentPath(wnode, order_map, node_data, arc_lists,
+ embed_arc, merge_roots);
+
+ if (xlp > ylp && xlp > wlp) {
+ markFacePath(root, pynode, order_map, node_data);
+ markFacePath(wnode, xnode, order_map, node_data);
+ markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map);
+ return;
+ }
+
+ if (ylp > xlp && ylp > wlp) {
+ markFacePath(pxnode, root, order_map, node_data);
+ markFacePath(ynode, wnode, order_map, node_data);
+ markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map);
+ return;
+ }
+
+ if (pynode != ynode) {
+ markFacePath(pxnode, wnode, order_map, node_data);
+
+ int minlp = xlp < ylp ? xlp : ylp;
+ if (wlp < minlp) minlp = wlp;
+
+ int maxlp = xlp > ylp ? xlp : ylp;
+ if (wlp > maxlp) maxlp = wlp;
+
+ markPredPath(order_list[maxlp], order_list[minlp], pred_map);
+ return;
+ }
+
+ if (pxnode != xnode) {
+ markFacePath(wnode, pynode, order_map, node_data);
+
+ int minlp = xlp < ylp ? xlp : ylp;
+ if (wlp < minlp) minlp = wlp;
+
+ int maxlp = xlp > ylp ? xlp : ylp;
+ if (wlp > maxlp) maxlp = wlp;
+
+ markPredPath(order_list[maxlp], order_list[minlp], pred_map);
+ return;
+ }
+
+ markFacePath(root, root, order_map, node_data);
+ int minlp = xlp < ylp ? xlp : ylp;
+ if (wlp < minlp) minlp = wlp;
+ markPredPath(root, order_list[minlp], pred_map);
+ return;
+ }
+
+ }
+
+ };
+
+ namespace _planarity_bits {
+
+ template <typename Graph, typename EmbeddingMap>
+ void makeConnected(Graph& graph, EmbeddingMap& embedding) {
+ DfsVisitor<Graph> null_visitor;
+ DfsVisit<Graph, DfsVisitor<Graph> > dfs(graph, null_visitor);
+ dfs.init();
+
+ typename Graph::Node u = INVALID;
+ for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
+ if (!dfs.reached(n)) {
+ dfs.addSource(n);
+ dfs.start();
+ if (u == INVALID) {
+ u = n;
+ } else {
+ typename Graph::Node v = n;
+
+ typename Graph::Arc ue = typename Graph::OutArcIt(graph, u);
+ typename Graph::Arc ve = typename Graph::OutArcIt(graph, v);
+
+ typename Graph::Arc e = graph.direct(graph.addEdge(u, v), true);
+
+ if (ue != INVALID) {
+ embedding[e] = embedding[ue];
+ embedding[ue] = e;
+ } else {
+ embedding[e] = e;
+ }
+
+ if (ve != INVALID) {
+ embedding[graph.oppositeArc(e)] = embedding[ve];
+ embedding[ve] = graph.oppositeArc(e);
+ } else {
+ embedding[graph.oppositeArc(e)] = graph.oppositeArc(e);
+ }
+ }
+ }
+ }
+ }
+
+ template <typename Graph, typename EmbeddingMap>
+ void makeBiNodeConnected(Graph& graph, EmbeddingMap& embedding) {
+ typename Graph::template ArcMap<bool> processed(graph);
+
+ std::vector<typename Graph::Arc> arcs;
+ for (typename Graph::ArcIt e(graph); e != INVALID; ++e) {
+ arcs.push_back(e);
+ }
+
+ IterableBoolMap<Graph, typename Graph::Node> visited(graph, false);
+
+ for (int i = 0; i < int(arcs.size()); ++i) {
+ typename Graph::Arc pp = arcs[i];
+ if (processed[pp]) continue;
+
+ typename Graph::Arc e = embedding[graph.oppositeArc(pp)];
+ processed[e] = true;
+ visited.set(graph.source(e), true);
+
+ typename Graph::Arc p = e, l = e;
+ e = embedding[graph.oppositeArc(e)];
+
+ while (e != l) {
+ processed[e] = true;
+
+ if (visited[graph.source(e)]) {
+
+ typename Graph::Arc n =
+ graph.direct(graph.addEdge(graph.source(p),
+ graph.target(e)), true);
+ embedding[n] = p;
+ embedding[graph.oppositeArc(pp)] = n;
+
+ embedding[graph.oppositeArc(n)] =
+ embedding[graph.oppositeArc(e)];
+ embedding[graph.oppositeArc(e)] =
+ graph.oppositeArc(n);
+
+ p = n;
+ e = embedding[graph.oppositeArc(n)];
+ } else {
+ visited.set(graph.source(e), true);
+ pp = p;
+ p = e;
+ e = embedding[graph.oppositeArc(e)];
+ }
+ }
+ visited.setAll(false);
+ }
+ }
+
+
+ template <typename Graph, typename EmbeddingMap>
+ void makeMaxPlanar(Graph& graph, EmbeddingMap& embedding) {
+
+ typename Graph::template NodeMap<int> degree(graph);
+
+ for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
+ degree[n] = countIncEdges(graph, n);
+ }
+
+ typename Graph::template ArcMap<bool> processed(graph);
+ IterableBoolMap<Graph, typename Graph::Node> visited(graph, false);
+
+ std::vector<typename Graph::Arc> arcs;
+ for (typename Graph::ArcIt e(graph); e != INVALID; ++e) {
+ arcs.push_back(e);
+ }
+
+ for (int i = 0; i < int(arcs.size()); ++i) {
+ typename Graph::Arc e = arcs[i];
+
+ if (processed[e]) continue;
+ processed[e] = true;
+
+ typename Graph::Arc mine = e;
+ int mind = degree[graph.source(e)];
+
+ int face_size = 1;
+
+ typename Graph::Arc l = e;
+ e = embedding[graph.oppositeArc(e)];
+ while (l != e) {
+ processed[e] = true;
+
+ ++face_size;
+
+ if (degree[graph.source(e)] < mind) {
+ mine = e;
+ mind = degree[graph.source(e)];
+ }
+
+ e = embedding[graph.oppositeArc(e)];
+ }
+
+ if (face_size < 4) {
+ continue;
+ }
+
+ typename Graph::Node s = graph.source(mine);
+ for (typename Graph::OutArcIt e(graph, s); e != INVALID; ++e) {
+ visited.set(graph.target(e), true);
+ }
+
+ typename Graph::Arc oppe = INVALID;
+
+ e = embedding[graph.oppositeArc(mine)];
+ e = embedding[graph.oppositeArc(e)];
+ while (graph.target(e) != s) {
+ if (visited[graph.source(e)]) {
+ oppe = e;
+ break;
+ }
+ e = embedding[graph.oppositeArc(e)];
+ }
+ visited.setAll(false);
+
+ if (oppe == INVALID) {
+
+ e = embedding[graph.oppositeArc(mine)];
+ typename Graph::Arc pn = mine, p = e;
+
+ e = embedding[graph.oppositeArc(e)];
+ while (graph.target(e) != s) {
+ typename Graph::Arc n =
+ graph.direct(graph.addEdge(s, graph.source(e)), true);
+
+ embedding[n] = pn;
+ embedding[graph.oppositeArc(n)] = e;
+ embedding[graph.oppositeArc(p)] = graph.oppositeArc(n);
+
+ pn = n;
+
+ p = e;
+ e = embedding[graph.oppositeArc(e)];
+ }
+
+ embedding[graph.oppositeArc(e)] = pn;
+
+ } else {
+
+ mine = embedding[graph.oppositeArc(mine)];
+ s = graph.source(mine);
+ oppe = embedding[graph.oppositeArc(oppe)];
+ typename Graph::Node t = graph.source(oppe);
+
+ typename Graph::Arc ce = graph.direct(graph.addEdge(s, t), true);
+ embedding[ce] = mine;
+ embedding[graph.oppositeArc(ce)] = oppe;
+
+ typename Graph::Arc pn = ce, p = oppe;
+ e = embedding[graph.oppositeArc(oppe)];
+ while (graph.target(e) != s) {
+ typename Graph::Arc n =
+ graph.direct(graph.addEdge(s, graph.source(e)), true);
+
+ embedding[n] = pn;
+ embedding[graph.oppositeArc(n)] = e;
+ embedding[graph.oppositeArc(p)] = graph.oppositeArc(n);
+
+ pn = n;
+
+ p = e;
+ e = embedding[graph.oppositeArc(e)];
+
+ }
+ embedding[graph.oppositeArc(e)] = pn;
+
+ pn = graph.oppositeArc(ce), p = mine;
+ e = embedding[graph.oppositeArc(mine)];
+ while (graph.target(e) != t) {
+ typename Graph::Arc n =
+ graph.direct(graph.addEdge(t, graph.source(e)), true);
+
+ embedding[n] = pn;
+ embedding[graph.oppositeArc(n)] = e;
+ embedding[graph.oppositeArc(p)] = graph.oppositeArc(n);
+
+ pn = n;
+
+ p = e;
+ e = embedding[graph.oppositeArc(e)];
+
+ }
+ embedding[graph.oppositeArc(e)] = pn;
+ }
+ }
+ }
+
+ }
+
+ /// \ingroup planar
+ ///
+ /// \brief Schnyder's planar drawing algorithm
+ ///
+ /// The planar drawing algorithm calculates positions for the nodes
+ /// in the plane. These coordinates satisfy that if the edges are
+ /// represented with straight lines, then they will not intersect
+ /// each other.
+ ///
+ /// Scnyder's algorithm embeds the graph on an \c (n-2)x(n-2) size grid,
+ /// i.e. each node will be located in the \c [0..n-2]x[0..n-2] square.
+ /// The time complexity of the algorithm is O(n).
+ ///
+ /// \see PlanarEmbedding
+ template <typename Graph>
+ class PlanarDrawing {
+ public:
+
+ TEMPLATE_GRAPH_TYPEDEFS(Graph);
+
+ /// \brief The point type for storing coordinates
+ typedef dim2::Point<int> Point;
+ /// \brief The map type for storing the coordinates of the nodes
+ typedef typename Graph::template NodeMap<Point> PointMap;
+
+
+ /// \brief Constructor
+ ///
+ /// Constructor
+ /// \pre The graph must be simple, i.e. it should not
+ /// contain parallel or loop arcs.
+ PlanarDrawing(const Graph& graph)
+ : _graph(graph), _point_map(graph) {}
+
+ private:
+
+ template <typename AuxGraph, typename AuxEmbeddingMap>
+ void drawing(const AuxGraph& graph,
+ const AuxEmbeddingMap& next,
+ PointMap& point_map) {
+ TEMPLATE_GRAPH_TYPEDEFS(AuxGraph);
+
+ typename AuxGraph::template ArcMap<Arc> prev(graph);
+
+ for (NodeIt n(graph); n != INVALID; ++n) {
+ Arc e = OutArcIt(graph, n);
+
+ Arc p = e, l = e;
+
+ e = next[e];
+ while (e != l) {
+ prev[e] = p;
+ p = e;
+ e = next[e];
+ }
+ prev[e] = p;
+ }
+
+ Node anode, bnode, cnode;
+
+ {
+ Arc e = ArcIt(graph);
+ anode = graph.source(e);
+ bnode = graph.target(e);
+ cnode = graph.target(next[graph.oppositeArc(e)]);
+ }
+
+ IterableBoolMap<AuxGraph, Node> proper(graph, false);
+ typename AuxGraph::template NodeMap<int> conn(graph, -1);
+
+ conn[anode] = conn[bnode] = -2;
+ {
+ for (OutArcIt e(graph, anode); e != INVALID; ++e) {
+ Node m = graph.target(e);
+ if (conn[m] == -1) {
+ conn[m] = 1;
+ }
+ }
+ conn[cnode] = 2;
+
+ for (OutArcIt e(graph, bnode); e != INVALID; ++e) {
+ Node m = graph.target(e);
+ if (conn[m] == -1) {
+ conn[m] = 1;
+ } else if (conn[m] != -2) {
+ conn[m] += 1;
+ Arc pe = graph.oppositeArc(e);
+ if (conn[graph.target(next[pe])] == -2) {
+ conn[m] -= 1;
+ }
+ if (conn[graph.target(prev[pe])] == -2) {
+ conn[m] -= 1;
+ }
+
+ proper.set(m, conn[m] == 1);
+ }
+ }
+ }
+
+
+ typename AuxGraph::template ArcMap<int> angle(graph, -1);
+
+ while (proper.trueNum() != 0) {
+ Node n = typename IterableBoolMap<AuxGraph, Node>::TrueIt(proper);
+ proper.set(n, false);
+ conn[n] = -2;
+
+ for (OutArcIt e(graph, n); e != INVALID; ++e) {
+ Node m = graph.target(e);
+ if (conn[m] == -1) {
+ conn[m] = 1;
+ } else if (conn[m] != -2) {
+ conn[m] += 1;
+ Arc pe = graph.oppositeArc(e);
+ if (conn[graph.target(next[pe])] == -2) {
+ conn[m] -= 1;
+ }
+ if (conn[graph.target(prev[pe])] == -2) {
+ conn[m] -= 1;
+ }
+
+ proper.set(m, conn[m] == 1);
+ }
+ }
+
+ {
+ Arc e = OutArcIt(graph, n);
+ Arc p = e, l = e;
+
+ e = next[e];
+ while (e != l) {
+
+ if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) {
+ Arc f = e;
+ angle[f] = 0;
+ f = next[graph.oppositeArc(f)];
+ angle[f] = 1;
+ f = next[graph.oppositeArc(f)];
+ angle[f] = 2;
+ }
+
+ p = e;
+ e = next[e];
+ }
+
+ if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) {
+ Arc f = e;
+ angle[f] = 0;
+ f = next[graph.oppositeArc(f)];
+ angle[f] = 1;
+ f = next[graph.oppositeArc(f)];
+ angle[f] = 2;
+ }
+ }
+ }
+
+ typename AuxGraph::template NodeMap<Node> apred(graph, INVALID);
+ typename AuxGraph::template NodeMap<Node> bpred(graph, INVALID);
+ typename AuxGraph::template NodeMap<Node> cpred(graph, INVALID);
+
+ typename AuxGraph::template NodeMap<int> apredid(graph, -1);
+ typename AuxGraph::template NodeMap<int> bpredid(graph, -1);
+ typename AuxGraph::template NodeMap<int> cpredid(graph, -1);
+
+ for (ArcIt e(graph); e != INVALID; ++e) {
+ if (angle[e] == angle[next[e]]) {
+ switch (angle[e]) {
+ case 2:
+ apred[graph.target(e)] = graph.source(e);
+ apredid[graph.target(e)] = graph.id(graph.source(e));
+ break;
+ case 1:
+ bpred[graph.target(e)] = graph.source(e);
+ bpredid[graph.target(e)] = graph.id(graph.source(e));
+ break;
+ case 0:
+ cpred[graph.target(e)] = graph.source(e);
+ cpredid[graph.target(e)] = graph.id(graph.source(e));
+ break;
+ }
+ }
+ }
+
+ cpred[anode] = INVALID;
+ cpred[bnode] = INVALID;
+
+ std::vector<Node> aorder, border, corder;
+
+ {
+ typename AuxGraph::template NodeMap<bool> processed(graph, false);
+ std::vector<Node> st;
+ for (NodeIt n(graph); n != INVALID; ++n) {
+ if (!processed[n] && n != bnode && n != cnode) {
+ st.push_back(n);
+ processed[n] = true;
+ Node m = apred[n];
+ while (m != INVALID && !processed[m]) {
+ st.push_back(m);
+ processed[m] = true;
+ m = apred[m];
+ }
+ while (!st.empty()) {
+ aorder.push_back(st.back());
+ st.pop_back();
+ }
+ }
+ }
+ }
+
+ {
+ typename AuxGraph::template NodeMap<bool> processed(graph, false);
+ std::vector<Node> st;
+ for (NodeIt n(graph); n != INVALID; ++n) {
+ if (!processed[n] && n != cnode && n != anode) {
+ st.push_back(n);
+ processed[n] = true;
+ Node m = bpred[n];
+ while (m != INVALID && !processed[m]) {
+ st.push_back(m);
+ processed[m] = true;
+ m = bpred[m];
+ }
+ while (!st.empty()) {
+ border.push_back(st.back());
+ st.pop_back();
+ }
+ }
+ }
+ }
+
+ {
+ typename AuxGraph::template NodeMap<bool> processed(graph, false);
+ std::vector<Node> st;
+ for (NodeIt n(graph); n != INVALID; ++n) {
+ if (!processed[n] && n != anode && n != bnode) {
+ st.push_back(n);
+ processed[n] = true;
+ Node m = cpred[n];
+ while (m != INVALID && !processed[m]) {
+ st.push_back(m);
+ processed[m] = true;
+ m = cpred[m];
+ }
+ while (!st.empty()) {
+ corder.push_back(st.back());
+ st.pop_back();
+ }
+ }
+ }
+ }
+
+ typename AuxGraph::template NodeMap<int> atree(graph, 0);
+ for (int i = aorder.size() - 1; i >= 0; --i) {
+ Node n = aorder[i];
+ atree[n] = 1;
+ for (OutArcIt e(graph, n); e != INVALID; ++e) {
+ if (apred[graph.target(e)] == n) {
+ atree[n] += atree[graph.target(e)];
+ }
+ }
+ }
+
+ typename AuxGraph::template NodeMap<int> btree(graph, 0);
+ for (int i = border.size() - 1; i >= 0; --i) {
+ Node n = border[i];
+ btree[n] = 1;
+ for (OutArcIt e(graph, n); e != INVALID; ++e) {
+ if (bpred[graph.target(e)] == n) {
+ btree[n] += btree[graph.target(e)];
+ }
+ }
+ }
+
+ typename AuxGraph::template NodeMap<int> apath(graph, 0);
+ apath[bnode] = apath[cnode] = 1;
+ typename AuxGraph::template NodeMap<int> apath_btree(graph, 0);
+ apath_btree[bnode] = btree[bnode];
+ for (int i = 1; i < int(aorder.size()); ++i) {
+ Node n = aorder[i];
+ apath[n] = apath[apred[n]] + 1;
+ apath_btree[n] = btree[n] + apath_btree[apred[n]];
+ }
+
+ typename AuxGraph::template NodeMap<int> bpath_atree(graph, 0);
+ bpath_atree[anode] = atree[anode];
+ for (int i = 1; i < int(border.size()); ++i) {
+ Node n = border[i];
+ bpath_atree[n] = atree[n] + bpath_atree[bpred[n]];
+ }
+
+ typename AuxGraph::template NodeMap<int> cpath(graph, 0);
+ cpath[anode] = cpath[bnode] = 1;
+ typename AuxGraph::template NodeMap<int> cpath_atree(graph, 0);
+ cpath_atree[anode] = atree[anode];
+ typename AuxGraph::template NodeMap<int> cpath_btree(graph, 0);
+ cpath_btree[bnode] = btree[bnode];
+ for (int i = 1; i < int(corder.size()); ++i) {
+ Node n = corder[i];
+ cpath[n] = cpath[cpred[n]] + 1;
+ cpath_atree[n] = atree[n] + cpath_atree[cpred[n]];
+ cpath_btree[n] = btree[n] + cpath_btree[cpred[n]];
+ }
+
+ typename AuxGraph::template NodeMap<int> third(graph);
+ for (NodeIt n(graph); n != INVALID; ++n) {
+ point_map[n].x =
+ bpath_atree[n] + cpath_atree[n] - atree[n] - cpath[n] + 1;
+ point_map[n].y =
+ cpath_btree[n] + apath_btree[n] - btree[n] - apath[n] + 1;
+ }
+
+ }
+
+ public:
+
+ /// \brief Calculate the node positions
+ ///
+ /// This function calculates the node positions on the plane.
+ /// \return \c true if the graph is planar.
+ bool run() {
+ PlanarEmbedding<Graph> pe(_graph);
+ if (!pe.run()) return false;
+
+ run(pe);
+ return true;
+ }
+
+ /// \brief Calculate the node positions according to a
+ /// combinatorical embedding
+ ///
+ /// This function calculates the node positions on the plane.
+ /// The given \c embedding map should contain a valid combinatorical
+ /// embedding, i.e. a valid cyclic order of the arcs.
+ /// It can be computed using PlanarEmbedding.
+ template <typename EmbeddingMap>
+ void run(const EmbeddingMap& embedding) {
+ typedef SmartEdgeSet<Graph> AuxGraph;
+
+ if (3 * countNodes(_graph) - 6 == countEdges(_graph)) {
+ drawing(_graph, embedding, _point_map);
+ return;
+ }
+
+ AuxGraph aux_graph(_graph);
+ typename AuxGraph::template ArcMap<typename AuxGraph::Arc>
+ aux_embedding(aux_graph);
+
+ {
+
+ typename Graph::template EdgeMap<typename AuxGraph::Edge>
+ ref(_graph);
+
+ for (EdgeIt e(_graph); e != INVALID; ++e) {
+ ref[e] = aux_graph.addEdge(_graph.u(e), _graph.v(e));
+ }
+
+ for (EdgeIt e(_graph); e != INVALID; ++e) {
+ Arc ee = embedding[_graph.direct(e, true)];
+ aux_embedding[aux_graph.direct(ref[e], true)] =
+ aux_graph.direct(ref[ee], _graph.direction(ee));
+ ee = embedding[_graph.direct(e, false)];
+ aux_embedding[aux_graph.direct(ref[e], false)] =
+ aux_graph.direct(ref[ee], _graph.direction(ee));
+ }
+ }
+ _planarity_bits::makeConnected(aux_graph, aux_embedding);
+ _planarity_bits::makeBiNodeConnected(aux_graph, aux_embedding);
+ _planarity_bits::makeMaxPlanar(aux_graph, aux_embedding);
+ drawing(aux_graph, aux_embedding, _point_map);
+ }
+
+ /// \brief The coordinate of the given node
+ ///
+ /// This function returns the coordinate of the given node.
+ Point operator[](const Node& node) const {
+ return _point_map[node];
+ }
+
+ /// \brief Return the grid embedding in a node map
+ ///
+ /// This function returns the grid embedding in a node map of
+ /// \c dim2::Point<int> coordinates.
+ const PointMap& coords() const {
+ return _point_map;
+ }
+
+ private:
+
+ const Graph& _graph;
+ PointMap _point_map;
+
+ };
+
+ namespace _planarity_bits {
+
+ template <typename ColorMap>
+ class KempeFilter {
+ public:
+ typedef typename ColorMap::Key Key;
+ typedef bool Value;
+
+ KempeFilter(const ColorMap& color_map,
+ const typename ColorMap::Value& first,
+ const typename ColorMap::Value& second)
+ : _color_map(color_map), _first(first), _second(second) {}
+
+ Value operator[](const Key& key) const {
+ return _color_map[key] == _first || _color_map[key] == _second;
+ }
+
+ private:
+ const ColorMap& _color_map;
+ typename ColorMap::Value _first, _second;
+ };
+ }
+
+ /// \ingroup planar
+ ///
+ /// \brief Coloring planar graphs
+ ///
+ /// The graph coloring problem is the coloring of the graph nodes
+ /// so that there are no adjacent nodes with the same color. The
+ /// planar graphs can always be colored with four colors, which is
+ /// proved by Appel and Haken. Their proofs provide a quadratic
+ /// time algorithm for four coloring, but it could not be used to
+ /// implement an efficient algorithm. The five and six coloring can be
+ /// made in linear time, but in this class, the five coloring has
+ /// quadratic worst case time complexity. The two coloring (if
+ /// possible) is solvable with a graph search algorithm and it is
+ /// implemented in \ref bipartitePartitions() function in LEMON. To
+ /// decide whether a planar graph is three colorable is NP-complete.
+ ///
+ /// This class contains member functions for calculate colorings
+ /// with five and six colors. The six coloring algorithm is a simple
+ /// greedy coloring on the backward minimum outgoing order of nodes.
+ /// This order can be computed by selecting the node with least
+ /// outgoing arcs to unprocessed nodes in each phase. This order
+ /// guarantees that when a node is chosen for coloring it has at
+ /// most five already colored adjacents. The five coloring algorithm
+ /// use the same method, but if the greedy approach fails to color
+ /// with five colors, i.e. the node has five already different
+ /// colored neighbours, it swaps the colors in one of the connected
+ /// two colored sets with the Kempe recoloring method.
+ template <typename Graph>
+ class PlanarColoring {
+ public:
+
+ TEMPLATE_GRAPH_TYPEDEFS(Graph);
+
+ /// \brief The map type for storing color indices
+ typedef typename Graph::template NodeMap<int> IndexMap;
+ /// \brief The map type for storing colors
+ ///
+ /// The map type for storing colors.
+ /// \see Palette, Color
+ typedef ComposeMap<Palette, IndexMap> ColorMap;
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ /// \pre The graph must be simple, i.e. it should not
+ /// contain parallel or loop arcs.
+ PlanarColoring(const Graph& graph)
+ : _graph(graph), _color_map(graph), _palette(0) {
+ _palette.add(Color(1,0,0));
+ _palette.add(Color(0,1,0));
+ _palette.add(Color(0,0,1));
+ _palette.add(Color(1,1,0));
+ _palette.add(Color(1,0,1));
+ _palette.add(Color(0,1,1));
+ }
+
+ /// \brief Return the node map of color indices
+ ///
+ /// This function returns the node map of color indices. The values are
+ /// in the range \c [0..4] or \c [0..5] according to the coloring method.
+ IndexMap colorIndexMap() const {
+ return _color_map;
+ }
+
+ /// \brief Return the node map of colors
+ ///
+ /// This function returns the node map of colors. The values are among
+ /// five or six distinct \ref lemon::Color "colors".
+ ColorMap colorMap() const {
+ return composeMap(_palette, _color_map);
+ }
+
+ /// \brief Return the color index of the node
+ ///
+ /// This function returns the color index of the given node. The value is
+ /// in the range \c [0..4] or \c [0..5] according to the coloring method.
+ int colorIndex(const Node& node) const {
+ return _color_map[node];
+ }
+
+ /// \brief Return the color of the node
+ ///
+ /// This function returns the color of the given node. The value is among
+ /// five or six distinct \ref lemon::Color "colors".
+ Color color(const Node& node) const {
+ return _palette[_color_map[node]];
+ }
+
+
+ /// \brief Calculate a coloring with at most six colors
+ ///
+ /// This function calculates a coloring with at most six colors. The time
+ /// complexity of this variant is linear in the size of the graph.
+ /// \return \c true if the algorithm could color the graph with six colors.
+ /// If the algorithm fails, then the graph is not planar.
+ /// \note This function can return \c true if the graph is not
+ /// planar, but it can be colored with at most six colors.
+ bool runSixColoring() {
+
+ typename Graph::template NodeMap<int> heap_index(_graph, -1);
+ BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index);
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ _color_map[n] = -2;
+ heap.push(n, countOutArcs(_graph, n));
+ }
+
+ std::vector<Node> order;
+
+ while (!heap.empty()) {
+ Node n = heap.top();
+ heap.pop();
+ _color_map[n] = -1;
+ order.push_back(n);
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ Node t = _graph.runningNode(e);
+ if (_color_map[t] == -2) {
+ heap.decrease(t, heap[t] - 1);
+ }
+ }
+ }
+
+ for (int i = order.size() - 1; i >= 0; --i) {
+ std::vector<bool> forbidden(6, false);
+ for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) {
+ Node t = _graph.runningNode(e);
+ if (_color_map[t] != -1) {
+ forbidden[_color_map[t]] = true;
+ }
+ }
+ for (int k = 0; k < 6; ++k) {
+ if (!forbidden[k]) {
+ _color_map[order[i]] = k;
+ break;
+ }
+ }
+ if (_color_map[order[i]] == -1) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ private:
+
+ bool recolor(const Node& u, const Node& v) {
+ int ucolor = _color_map[u];
+ int vcolor = _color_map[v];
+ typedef _planarity_bits::KempeFilter<IndexMap> KempeFilter;
+ KempeFilter filter(_color_map, ucolor, vcolor);
+
+ typedef FilterNodes<const Graph, const KempeFilter> KempeGraph;
+ KempeGraph kempe_graph(_graph, filter);
+
+ std::vector<Node> comp;
+ Bfs<KempeGraph> bfs(kempe_graph);
+ bfs.init();
+ bfs.addSource(u);
+ while (!bfs.emptyQueue()) {
+ Node n = bfs.nextNode();
+ if (n == v) return false;
+ comp.push_back(n);
+ bfs.processNextNode();
+ }
+
+ int scolor = ucolor + vcolor;
+ for (int i = 0; i < static_cast<int>(comp.size()); ++i) {
+ _color_map[comp[i]] = scolor - _color_map[comp[i]];
+ }
+
+ return true;
+ }
+
+ template <typename EmbeddingMap>
+ void kempeRecoloring(const Node& node, const EmbeddingMap& embedding) {
+ std::vector<Node> nodes;
+ nodes.reserve(4);
+
+ for (Arc e = OutArcIt(_graph, node); e != INVALID; e = embedding[e]) {
+ Node t = _graph.target(e);
+ if (_color_map[t] != -1) {
+ nodes.push_back(t);
+ if (nodes.size() == 4) break;
+ }
+ }
+
+ int color = _color_map[nodes[0]];
+ if (recolor(nodes[0], nodes[2])) {
+ _color_map[node] = color;
+ } else {
+ color = _color_map[nodes[1]];
+ recolor(nodes[1], nodes[3]);
+ _color_map[node] = color;
+ }
+ }
+
+ public:
+
+ /// \brief Calculate a coloring with at most five colors
+ ///
+ /// This function calculates a coloring with at most five
+ /// colors. The worst case time complexity of this variant is
+ /// quadratic in the size of the graph.
+ /// \param embedding This map should contain a valid combinatorical
+ /// embedding, i.e. a valid cyclic order of the arcs.
+ /// It can be computed using PlanarEmbedding.
+ template <typename EmbeddingMap>
+ void runFiveColoring(const EmbeddingMap& embedding) {
+
+ typename Graph::template NodeMap<int> heap_index(_graph, -1);
+ BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index);
+
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ _color_map[n] = -2;
+ heap.push(n, countOutArcs(_graph, n));
+ }
+
+ std::vector<Node> order;
+
+ while (!heap.empty()) {
+ Node n = heap.top();
+ heap.pop();
+ _color_map[n] = -1;
+ order.push_back(n);
+ for (OutArcIt e(_graph, n); e != INVALID; ++e) {
+ Node t = _graph.runningNode(e);
+ if (_color_map[t] == -2) {
+ heap.decrease(t, heap[t] - 1);
+ }
+ }
+ }
+
+ for (int i = order.size() - 1; i >= 0; --i) {
+ std::vector<bool> forbidden(5, false);
+ for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) {
+ Node t = _graph.runningNode(e);
+ if (_color_map[t] != -1) {
+ forbidden[_color_map[t]] = true;
+ }
+ }
+ for (int k = 0; k < 5; ++k) {
+ if (!forbidden[k]) {
+ _color_map[order[i]] = k;
+ break;
+ }
+ }
+ if (_color_map[order[i]] == -1) {
+ kempeRecoloring(order[i], embedding);
+ }
+ }
+ }
+
+ /// \brief Calculate a coloring with at most five colors
+ ///
+ /// This function calculates a coloring with at most five
+ /// colors. The worst case time complexity of this variant is
+ /// quadratic in the size of the graph.
+ /// \return \c true if the graph is planar.
+ bool runFiveColoring() {
+ PlanarEmbedding<Graph> pe(_graph);
+ if (!pe.run()) return false;
+
+ runFiveColoring(pe.embeddingMap());
+ return true;
+ }
+
+ private:
+
+ const Graph& _graph;
+ IndexMap _color_map;
+ Palette _palette;
+ };
+
+}
+
+#endif