diff options
Diffstat (limited to 'lemon/lemon/lp_base.h')
-rw-r--r-- | lemon/lemon/lp_base.h | 2102 |
1 files changed, 2102 insertions, 0 deletions
diff --git a/lemon/lemon/lp_base.h b/lemon/lemon/lp_base.h new file mode 100644 index 0000000..8a7f726 --- /dev/null +++ b/lemon/lemon/lp_base.h @@ -0,0 +1,2102 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2011 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_LP_BASE_H +#define LEMON_LP_BASE_H + +#include<iostream> +#include<vector> +#include<map> +#include<limits> +#include<lemon/math.h> + +#include<lemon/error.h> +#include<lemon/assert.h> + +#include<lemon/core.h> +#include<lemon/bits/solver_bits.h> + +///\file +///\brief The interface of the LP solver interface. +///\ingroup lp_group +namespace lemon { + + ///Common base class for LP and MIP solvers + + ///Usually this class is not used directly, please use one of the concrete + ///implementations of the solver interface. + ///\ingroup lp_group + class LpBase { + + protected: + + _solver_bits::VarIndex rows; + _solver_bits::VarIndex cols; + + public: + + ///Possible outcomes of an LP solving procedure + enum SolveExitStatus { + /// = 0. It means that the problem has been successfully solved: either + ///an optimal solution has been found or infeasibility/unboundedness + ///has been proved. + SOLVED = 0, + /// = 1. Any other case (including the case when some user specified + ///limit has been exceeded). + UNSOLVED = 1 + }; + + ///Direction of the optimization + enum Sense { + /// Minimization + MIN, + /// Maximization + MAX + }; + + ///Enum for \c messageLevel() parameter + enum MessageLevel { + /// No output (default value). + MESSAGE_NOTHING, + /// Error messages only. + MESSAGE_ERROR, + /// Warnings. + MESSAGE_WARNING, + /// Normal output. + MESSAGE_NORMAL, + /// Verbose output. + MESSAGE_VERBOSE + }; + + + ///The floating point type used by the solver + typedef double Value; + ///The infinity constant + static const Value INF; + ///The not a number constant + static const Value NaN; + + friend class Col; + friend class ColIt; + friend class Row; + friend class RowIt; + + ///Refer to a column of the LP. + + ///This type is used to refer to a column of the LP. + /// + ///Its value remains valid and correct even after the addition or erase of + ///other columns. + /// + ///\note This class is similar to other Item types in LEMON, like + ///Node and Arc types in digraph. + class Col { + friend class LpBase; + protected: + int _id; + explicit Col(int id) : _id(id) {} + public: + typedef Value ExprValue; + typedef True LpCol; + /// Default constructor + + /// \warning The default constructor sets the Col to an + /// undefined value. + Col() {} + /// Invalid constructor \& conversion. + + /// This constructor initializes the Col to be invalid. + /// \sa Invalid for more details. + Col(const Invalid&) : _id(-1) {} + /// Equality operator + + /// Two \ref Col "Col"s are equal if and only if they point to + /// the same LP column or both are invalid. + bool operator==(Col c) const {return _id == c._id;} + /// Inequality operator + + /// \sa operator==(Col c) + /// + bool operator!=(Col c) const {return _id != c._id;} + /// Artificial ordering operator. + + /// To allow the use of this object in std::map or similar + /// associative container we require this. + /// + /// \note This operator only have to define some strict ordering of + /// the items; this order has nothing to do with the iteration + /// ordering of the items. + bool operator<(Col c) const {return _id < c._id;} + }; + + ///Iterator for iterate over the columns of an LP problem + + /// Its usage is quite simple, for example, you can count the number + /// of columns in an LP \c lp: + ///\code + /// int count=0; + /// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; + ///\endcode + class ColIt : public Col { + const LpBase *_solver; + public: + /// Default constructor + + /// \warning The default constructor sets the iterator + /// to an undefined value. + ColIt() {} + /// Sets the iterator to the first Col + + /// Sets the iterator to the first Col. + /// + ColIt(const LpBase &solver) : _solver(&solver) + { + _solver->cols.firstItem(_id); + } + /// Invalid constructor \& conversion + + /// Initialize the iterator to be invalid. + /// \sa Invalid for more details. + ColIt(const Invalid&) : Col(INVALID) {} + /// Next column + + /// Assign the iterator to the next column. + /// + ColIt &operator++() + { + _solver->cols.nextItem(_id); + return *this; + } + }; + + /// \brief Returns the ID of the column. + static int id(const Col& col) { return col._id; } + /// \brief Returns the column with the given ID. + /// + /// \pre The argument should be a valid column ID in the LP problem. + static Col colFromId(int id) { return Col(id); } + + ///Refer to a row of the LP. + + ///This type is used to refer to a row of the LP. + /// + ///Its value remains valid and correct even after the addition or erase of + ///other rows. + /// + ///\note This class is similar to other Item types in LEMON, like + ///Node and Arc types in digraph. + class Row { + friend class LpBase; + protected: + int _id; + explicit Row(int id) : _id(id) {} + public: + typedef Value ExprValue; + typedef True LpRow; + /// Default constructor + + /// \warning The default constructor sets the Row to an + /// undefined value. + Row() {} + /// Invalid constructor \& conversion. + + /// This constructor initializes the Row to be invalid. + /// \sa Invalid for more details. + Row(const Invalid&) : _id(-1) {} + /// Equality operator + + /// Two \ref Row "Row"s are equal if and only if they point to + /// the same LP row or both are invalid. + bool operator==(Row r) const {return _id == r._id;} + /// Inequality operator + + /// \sa operator==(Row r) + /// + bool operator!=(Row r) const {return _id != r._id;} + /// Artificial ordering operator. + + /// To allow the use of this object in std::map or similar + /// associative container we require this. + /// + /// \note This operator only have to define some strict ordering of + /// the items; this order has nothing to do with the iteration + /// ordering of the items. + bool operator<(Row r) const {return _id < r._id;} + }; + + ///Iterator for iterate over the rows of an LP problem + + /// Its usage is quite simple, for example, you can count the number + /// of rows in an LP \c lp: + ///\code + /// int count=0; + /// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; + ///\endcode + class RowIt : public Row { + const LpBase *_solver; + public: + /// Default constructor + + /// \warning The default constructor sets the iterator + /// to an undefined value. + RowIt() {} + /// Sets the iterator to the first Row + + /// Sets the iterator to the first Row. + /// + RowIt(const LpBase &solver) : _solver(&solver) + { + _solver->rows.firstItem(_id); + } + /// Invalid constructor \& conversion + + /// Initialize the iterator to be invalid. + /// \sa Invalid for more details. + RowIt(const Invalid&) : Row(INVALID) {} + /// Next row + + /// Assign the iterator to the next row. + /// + RowIt &operator++() + { + _solver->rows.nextItem(_id); + return *this; + } + }; + + /// \brief Returns the ID of the row. + static int id(const Row& row) { return row._id; } + /// \brief Returns the row with the given ID. + /// + /// \pre The argument should be a valid row ID in the LP problem. + static Row rowFromId(int id) { return Row(id); } + + public: + + ///Linear expression of variables and a constant component + + ///This data structure stores a linear expression of the variables + ///(\ref Col "Col"s) and also has a constant component. + /// + ///There are several ways to access and modify the contents of this + ///container. + ///\code + ///e[v]=5; + ///e[v]+=12; + ///e.erase(v); + ///\endcode + ///or you can also iterate through its elements. + ///\code + ///double s=0; + ///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) + /// s+=*i * primal(i); + ///\endcode + ///(This code computes the primal value of the expression). + ///- Numbers (<tt>double</tt>'s) + ///and variables (\ref Col "Col"s) directly convert to an + ///\ref Expr and the usual linear operations are defined, so + ///\code + ///v+w + ///2*v-3.12*(v-w/2)+2 + ///v*2.1+(3*v+(v*12+w+6)*3)/2 + ///\endcode + ///are valid expressions. + ///The usual assignment operations are also defined. + ///\code + ///e=v+w; + ///e+=2*v-3.12*(v-w/2)+2; + ///e*=3.4; + ///e/=5; + ///\endcode + ///- The constant member can be set and read by dereference + /// operator (unary *) + /// + ///\code + ///*e=12; + ///double c=*e; + ///\endcode + /// + ///\sa Constr + class Expr { + friend class LpBase; + public: + /// The key type of the expression + typedef LpBase::Col Key; + /// The value type of the expression + typedef LpBase::Value Value; + + protected: + Value const_comp; + std::map<int, Value> comps; + + public: + typedef True SolverExpr; + /// Default constructor + + /// Construct an empty expression, the coefficients and + /// the constant component are initialized to zero. + Expr() : const_comp(0) {} + /// Construct an expression from a column + + /// Construct an expression, which has a term with \c c variable + /// and 1.0 coefficient. + Expr(const Col &c) : const_comp(0) { + typedef std::map<int, Value>::value_type pair_type; + comps.insert(pair_type(id(c), 1)); + } + /// Construct an expression from a constant + + /// Construct an expression, which's constant component is \c v. + /// + Expr(const Value &v) : const_comp(v) {} + /// Returns the coefficient of the column + Value operator[](const Col& c) const { + std::map<int, Value>::const_iterator it=comps.find(id(c)); + if (it != comps.end()) { + return it->second; + } else { + return 0; + } + } + /// Returns the coefficient of the column + Value& operator[](const Col& c) { + return comps[id(c)]; + } + /// Sets the coefficient of the column + void set(const Col &c, const Value &v) { + if (v != 0.0) { + typedef std::map<int, Value>::value_type pair_type; + comps.insert(pair_type(id(c), v)); + } else { + comps.erase(id(c)); + } + } + /// Returns the constant component of the expression + Value& operator*() { return const_comp; } + /// Returns the constant component of the expression + const Value& operator*() const { return const_comp; } + /// \brief Removes the coefficients which's absolute value does + /// not exceed \c epsilon. It also sets to zero the constant + /// component, if it does not exceed epsilon in absolute value. + void simplify(Value epsilon = 0.0) { + std::map<int, Value>::iterator it=comps.begin(); + while (it != comps.end()) { + std::map<int, Value>::iterator jt=it; + ++jt; + if (std::fabs((*it).second) <= epsilon) comps.erase(it); + it=jt; + } + if (std::fabs(const_comp) <= epsilon) const_comp = 0; + } + + void simplify(Value epsilon = 0.0) const { + const_cast<Expr*>(this)->simplify(epsilon); + } + + ///Sets all coefficients and the constant component to 0. + void clear() { + comps.clear(); + const_comp=0; + } + + ///Compound assignment + Expr &operator+=(const Expr &e) { + for (std::map<int, Value>::const_iterator it=e.comps.begin(); + it!=e.comps.end(); ++it) + comps[it->first]+=it->second; + const_comp+=e.const_comp; + return *this; + } + ///Compound assignment + Expr &operator-=(const Expr &e) { + for (std::map<int, Value>::const_iterator it=e.comps.begin(); + it!=e.comps.end(); ++it) + comps[it->first]-=it->second; + const_comp-=e.const_comp; + return *this; + } + ///Multiply with a constant + Expr &operator*=(const Value &v) { + for (std::map<int, Value>::iterator it=comps.begin(); + it!=comps.end(); ++it) + it->second*=v; + const_comp*=v; + return *this; + } + ///Division with a constant + Expr &operator/=(const Value &c) { + for (std::map<int, Value>::iterator it=comps.begin(); + it!=comps.end(); ++it) + it->second/=c; + const_comp/=c; + return *this; + } + + ///Iterator over the expression + + ///The iterator iterates over the terms of the expression. + /// + ///\code + ///double s=0; + ///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i) + /// s+= *i * primal(i); + ///\endcode + class CoeffIt { + private: + + std::map<int, Value>::iterator _it, _end; + + public: + + /// Sets the iterator to the first term + + /// Sets the iterator to the first term of the expression. + /// + CoeffIt(Expr& e) + : _it(e.comps.begin()), _end(e.comps.end()){} + + /// Convert the iterator to the column of the term + operator Col() const { + return colFromId(_it->first); + } + + /// Returns the coefficient of the term + Value& operator*() { return _it->second; } + + /// Returns the coefficient of the term + const Value& operator*() const { return _it->second; } + /// Next term + + /// Assign the iterator to the next term. + /// + CoeffIt& operator++() { ++_it; return *this; } + + /// Equality operator + bool operator==(Invalid) const { return _it == _end; } + /// Inequality operator + bool operator!=(Invalid) const { return _it != _end; } + }; + + /// Const iterator over the expression + + ///The iterator iterates over the terms of the expression. + /// + ///\code + ///double s=0; + ///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) + /// s+=*i * primal(i); + ///\endcode + class ConstCoeffIt { + private: + + std::map<int, Value>::const_iterator _it, _end; + + public: + + /// Sets the iterator to the first term + + /// Sets the iterator to the first term of the expression. + /// + ConstCoeffIt(const Expr& e) + : _it(e.comps.begin()), _end(e.comps.end()){} + + /// Convert the iterator to the column of the term + operator Col() const { + return colFromId(_it->first); + } + + /// Returns the coefficient of the term + const Value& operator*() const { return _it->second; } + + /// Next term + + /// Assign the iterator to the next term. + /// + ConstCoeffIt& operator++() { ++_it; return *this; } + + /// Equality operator + bool operator==(Invalid) const { return _it == _end; } + /// Inequality operator + bool operator!=(Invalid) const { return _it != _end; } + }; + + }; + + ///Linear constraint + + ///This data stucture represents a linear constraint in the LP. + ///Basically it is a linear expression with a lower or an upper bound + ///(or both). These parts of the constraint can be obtained by the member + ///functions \ref expr(), \ref lowerBound() and \ref upperBound(), + ///respectively. + ///There are two ways to construct a constraint. + ///- You can set the linear expression and the bounds directly + /// by the functions above. + ///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt> + /// are defined between expressions, or even between constraints whenever + /// it makes sense. Therefore if \c e and \c f are linear expressions and + /// \c s and \c t are numbers, then the followings are valid expressions + /// and thus they can be used directly e.g. in \ref addRow() whenever + /// it makes sense. + ///\code + /// e<=s + /// e<=f + /// e==f + /// s<=e<=t + /// e>=t + ///\endcode + ///\warning The validity of a constraint is checked only at run + ///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will + ///compile, but will fail an assertion. + class Constr + { + public: + typedef LpBase::Expr Expr; + typedef Expr::Key Key; + typedef Expr::Value Value; + + protected: + Expr _expr; + Value _lb,_ub; + public: + ///\e + Constr() : _expr(), _lb(NaN), _ub(NaN) {} + ///\e + Constr(Value lb, const Expr &e, Value ub) : + _expr(e), _lb(lb), _ub(ub) {} + Constr(const Expr &e) : + _expr(e), _lb(NaN), _ub(NaN) {} + ///\e + void clear() + { + _expr.clear(); + _lb=_ub=NaN; + } + + ///Reference to the linear expression + Expr &expr() { return _expr; } + ///Cont reference to the linear expression + const Expr &expr() const { return _expr; } + ///Reference to the lower bound. + + ///\return + ///- \ref INF "INF": the constraint is lower unbounded. + ///- \ref NaN "NaN": lower bound has not been set. + ///- finite number: the lower bound + Value &lowerBound() { return _lb; } + ///The const version of \ref lowerBound() + const Value &lowerBound() const { return _lb; } + ///Reference to the upper bound. + + ///\return + ///- \ref INF "INF": the constraint is upper unbounded. + ///- \ref NaN "NaN": upper bound has not been set. + ///- finite number: the upper bound + Value &upperBound() { return _ub; } + ///The const version of \ref upperBound() + const Value &upperBound() const { return _ub; } + ///Is the constraint lower bounded? + bool lowerBounded() const { + return _lb != -INF && !isNaN(_lb); + } + ///Is the constraint upper bounded? + bool upperBounded() const { + return _ub != INF && !isNaN(_ub); + } + + }; + + ///Linear expression of rows + + ///This data structure represents a column of the matrix, + ///thas is it strores a linear expression of the dual variables + ///(\ref Row "Row"s). + /// + ///There are several ways to access and modify the contents of this + ///container. + ///\code + ///e[v]=5; + ///e[v]+=12; + ///e.erase(v); + ///\endcode + ///or you can also iterate through its elements. + ///\code + ///double s=0; + ///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) + /// s+=*i; + ///\endcode + ///(This code computes the sum of all coefficients). + ///- Numbers (<tt>double</tt>'s) + ///and variables (\ref Row "Row"s) directly convert to an + ///\ref DualExpr and the usual linear operations are defined, so + ///\code + ///v+w + ///2*v-3.12*(v-w/2) + ///v*2.1+(3*v+(v*12+w)*3)/2 + ///\endcode + ///are valid \ref DualExpr dual expressions. + ///The usual assignment operations are also defined. + ///\code + ///e=v+w; + ///e+=2*v-3.12*(v-w/2); + ///e*=3.4; + ///e/=5; + ///\endcode + /// + ///\sa Expr + class DualExpr { + friend class LpBase; + public: + /// The key type of the expression + typedef LpBase::Row Key; + /// The value type of the expression + typedef LpBase::Value Value; + + protected: + std::map<int, Value> comps; + + public: + typedef True SolverExpr; + /// Default constructor + + /// Construct an empty expression, the coefficients are + /// initialized to zero. + DualExpr() {} + /// Construct an expression from a row + + /// Construct an expression, which has a term with \c r dual + /// variable and 1.0 coefficient. + DualExpr(const Row &r) { + typedef std::map<int, Value>::value_type pair_type; + comps.insert(pair_type(id(r), 1)); + } + /// Returns the coefficient of the row + Value operator[](const Row& r) const { + std::map<int, Value>::const_iterator it = comps.find(id(r)); + if (it != comps.end()) { + return it->second; + } else { + return 0; + } + } + /// Returns the coefficient of the row + Value& operator[](const Row& r) { + return comps[id(r)]; + } + /// Sets the coefficient of the row + void set(const Row &r, const Value &v) { + if (v != 0.0) { + typedef std::map<int, Value>::value_type pair_type; + comps.insert(pair_type(id(r), v)); + } else { + comps.erase(id(r)); + } + } + /// \brief Removes the coefficients which's absolute value does + /// not exceed \c epsilon. + void simplify(Value epsilon = 0.0) { + std::map<int, Value>::iterator it=comps.begin(); + while (it != comps.end()) { + std::map<int, Value>::iterator jt=it; + ++jt; + if (std::fabs((*it).second) <= epsilon) comps.erase(it); + it=jt; + } + } + + void simplify(Value epsilon = 0.0) const { + const_cast<DualExpr*>(this)->simplify(epsilon); + } + + ///Sets all coefficients to 0. + void clear() { + comps.clear(); + } + ///Compound assignment + DualExpr &operator+=(const DualExpr &e) { + for (std::map<int, Value>::const_iterator it=e.comps.begin(); + it!=e.comps.end(); ++it) + comps[it->first]+=it->second; + return *this; + } + ///Compound assignment + DualExpr &operator-=(const DualExpr &e) { + for (std::map<int, Value>::const_iterator it=e.comps.begin(); + it!=e.comps.end(); ++it) + comps[it->first]-=it->second; + return *this; + } + ///Multiply with a constant + DualExpr &operator*=(const Value &v) { + for (std::map<int, Value>::iterator it=comps.begin(); + it!=comps.end(); ++it) + it->second*=v; + return *this; + } + ///Division with a constant + DualExpr &operator/=(const Value &v) { + for (std::map<int, Value>::iterator it=comps.begin(); + it!=comps.end(); ++it) + it->second/=v; + return *this; + } + + ///Iterator over the expression + + ///The iterator iterates over the terms of the expression. + /// + ///\code + ///double s=0; + ///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i) + /// s+= *i * dual(i); + ///\endcode + class CoeffIt { + private: + + std::map<int, Value>::iterator _it, _end; + + public: + + /// Sets the iterator to the first term + + /// Sets the iterator to the first term of the expression. + /// + CoeffIt(DualExpr& e) + : _it(e.comps.begin()), _end(e.comps.end()){} + + /// Convert the iterator to the row of the term + operator Row() const { + return rowFromId(_it->first); + } + + /// Returns the coefficient of the term + Value& operator*() { return _it->second; } + + /// Returns the coefficient of the term + const Value& operator*() const { return _it->second; } + + /// Next term + + /// Assign the iterator to the next term. + /// + CoeffIt& operator++() { ++_it; return *this; } + + /// Equality operator + bool operator==(Invalid) const { return _it == _end; } + /// Inequality operator + bool operator!=(Invalid) const { return _it != _end; } + }; + + ///Iterator over the expression + + ///The iterator iterates over the terms of the expression. + /// + ///\code + ///double s=0; + ///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) + /// s+= *i * dual(i); + ///\endcode + class ConstCoeffIt { + private: + + std::map<int, Value>::const_iterator _it, _end; + + public: + + /// Sets the iterator to the first term + + /// Sets the iterator to the first term of the expression. + /// + ConstCoeffIt(const DualExpr& e) + : _it(e.comps.begin()), _end(e.comps.end()){} + + /// Convert the iterator to the row of the term + operator Row() const { + return rowFromId(_it->first); + } + + /// Returns the coefficient of the term + const Value& operator*() const { return _it->second; } + + /// Next term + + /// Assign the iterator to the next term. + /// + ConstCoeffIt& operator++() { ++_it; return *this; } + + /// Equality operator + bool operator==(Invalid) const { return _it == _end; } + /// Inequality operator + bool operator!=(Invalid) const { return _it != _end; } + }; + }; + + + protected: + + class InsertIterator { + private: + + std::map<int, Value>& _host; + const _solver_bits::VarIndex& _index; + + public: + + typedef std::output_iterator_tag iterator_category; + typedef void difference_type; + typedef void value_type; + typedef void reference; + typedef void pointer; + + InsertIterator(std::map<int, Value>& host, + const _solver_bits::VarIndex& index) + : _host(host), _index(index) {} + + InsertIterator& operator=(const std::pair<int, Value>& value) { + typedef std::map<int, Value>::value_type pair_type; + _host.insert(pair_type(_index[value.first], value.second)); + return *this; + } + + InsertIterator& operator*() { return *this; } + InsertIterator& operator++() { return *this; } + InsertIterator operator++(int) { return *this; } + + }; + + class ExprIterator { + private: + std::map<int, Value>::const_iterator _host_it; + const _solver_bits::VarIndex& _index; + public: + + typedef std::bidirectional_iterator_tag iterator_category; + typedef std::ptrdiff_t difference_type; + typedef const std::pair<int, Value> value_type; + typedef value_type reference; + + class pointer { + public: + pointer(value_type& _value) : value(_value) {} + value_type* operator->() { return &value; } + private: + value_type value; + }; + + ExprIterator(const std::map<int, Value>::const_iterator& host_it, + const _solver_bits::VarIndex& index) + : _host_it(host_it), _index(index) {} + + reference operator*() { + return std::make_pair(_index(_host_it->first), _host_it->second); + } + + pointer operator->() { + return pointer(operator*()); + } + + ExprIterator& operator++() { ++_host_it; return *this; } + ExprIterator operator++(int) { + ExprIterator tmp(*this); ++_host_it; return tmp; + } + + ExprIterator& operator--() { --_host_it; return *this; } + ExprIterator operator--(int) { + ExprIterator tmp(*this); --_host_it; return tmp; + } + + bool operator==(const ExprIterator& it) const { + return _host_it == it._host_it; + } + + bool operator!=(const ExprIterator& it) const { + return _host_it != it._host_it; + } + + }; + + protected: + + //Abstract virtual functions + + virtual int _addColId(int col) { return cols.addIndex(col); } + virtual int _addRowId(int row) { return rows.addIndex(row); } + + virtual void _eraseColId(int col) { cols.eraseIndex(col); } + virtual void _eraseRowId(int row) { rows.eraseIndex(row); } + + virtual int _addCol() = 0; + virtual int _addRow() = 0; + + virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u) { + int row = _addRow(); + _setRowCoeffs(row, b, e); + _setRowLowerBound(row, l); + _setRowUpperBound(row, u); + return row; + } + + virtual void _eraseCol(int col) = 0; + virtual void _eraseRow(int row) = 0; + + virtual void _getColName(int col, std::string& name) const = 0; + virtual void _setColName(int col, const std::string& name) = 0; + virtual int _colByName(const std::string& name) const = 0; + + virtual void _getRowName(int row, std::string& name) const = 0; + virtual void _setRowName(int row, const std::string& name) = 0; + virtual int _rowByName(const std::string& name) const = 0; + + virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0; + virtual void _getRowCoeffs(int i, InsertIterator b) const = 0; + + virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0; + virtual void _getColCoeffs(int i, InsertIterator b) const = 0; + + virtual void _setCoeff(int row, int col, Value value) = 0; + virtual Value _getCoeff(int row, int col) const = 0; + + virtual void _setColLowerBound(int i, Value value) = 0; + virtual Value _getColLowerBound(int i) const = 0; + + virtual void _setColUpperBound(int i, Value value) = 0; + virtual Value _getColUpperBound(int i) const = 0; + + virtual void _setRowLowerBound(int i, Value value) = 0; + virtual Value _getRowLowerBound(int i) const = 0; + + virtual void _setRowUpperBound(int i, Value value) = 0; + virtual Value _getRowUpperBound(int i) const = 0; + + virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0; + virtual void _getObjCoeffs(InsertIterator b) const = 0; + + virtual void _setObjCoeff(int i, Value obj_coef) = 0; + virtual Value _getObjCoeff(int i) const = 0; + + virtual void _setSense(Sense) = 0; + virtual Sense _getSense() const = 0; + + virtual void _clear() = 0; + + virtual const char* _solverName() const = 0; + + virtual void _messageLevel(MessageLevel level) = 0; + + //Own protected stuff + + //Constant component of the objective function + Value obj_const_comp; + + LpBase() : rows(), cols(), obj_const_comp(0) {} + + public: + + /// Virtual destructor + virtual ~LpBase() {} + + ///Gives back the name of the solver. + const char* solverName() const {return _solverName();} + + ///\name Build Up and Modify the LP + + ///@{ + + ///Add a new empty column (i.e a new variable) to the LP + Col addCol() { Col c; c._id = _addColId(_addCol()); return c;} + + ///\brief Adds several new columns (i.e variables) at once + /// + ///This magic function takes a container as its argument and fills + ///its elements with new columns (i.e. variables) + ///\param t can be + ///- a standard STL compatible iterable container with + ///\ref Col as its \c values_type like + ///\code + ///std::vector<LpBase::Col> + ///std::list<LpBase::Col> + ///\endcode + ///- a standard STL compatible iterable container with + ///\ref Col as its \c mapped_type like + ///\code + ///std::map<AnyType,LpBase::Col> + ///\endcode + ///- an iterable lemon \ref concepts::WriteMap "write map" like + ///\code + ///ListGraph::NodeMap<LpBase::Col> + ///ListGraph::ArcMap<LpBase::Col> + ///\endcode + ///\return The number of the created column. +#ifdef DOXYGEN + template<class T> + int addColSet(T &t) { return 0;} +#else + template<class T> + typename enable_if<typename T::value_type::LpCol,int>::type + addColSet(T &t,dummy<0> = 0) { + int s=0; + for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;} + return s; + } + template<class T> + typename enable_if<typename T::value_type::second_type::LpCol, + int>::type + addColSet(T &t,dummy<1> = 1) { + int s=0; + for(typename T::iterator i=t.begin();i!=t.end();++i) { + i->second=addCol(); + s++; + } + return s; + } + template<class T> + typename enable_if<typename T::MapIt::Value::LpCol, + int>::type + addColSet(T &t,dummy<2> = 2) { + int s=0; + for(typename T::MapIt i(t); i!=INVALID; ++i) + { + i.set(addCol()); + s++; + } + return s; + } +#endif + + ///Set a column (i.e a dual constraint) of the LP + + ///\param c is the column to be modified + ///\param e is a dual linear expression (see \ref DualExpr) + ///a better one. + void col(Col c, const DualExpr &e) { + e.simplify(); + _setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), rows), + ExprIterator(e.comps.end(), rows)); + } + + ///Get a column (i.e a dual constraint) of the LP + + ///\param c is the column to get + ///\return the dual expression associated to the column + DualExpr col(Col c) const { + DualExpr e; + _getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows)); + return e; + } + + ///Add a new column to the LP + + ///\param e is a dual linear expression (see \ref DualExpr) + ///\param o is the corresponding component of the objective + ///function. It is 0 by default. + ///\return The created column. + Col addCol(const DualExpr &e, Value o = 0) { + Col c=addCol(); + col(c,e); + objCoeff(c,o); + return c; + } + + ///Add a new empty row (i.e a new constraint) to the LP + + ///This function adds a new empty row (i.e a new constraint) to the LP. + ///\return The created row + Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;} + + ///\brief Add several new rows (i.e constraints) at once + /// + ///This magic function takes a container as its argument and fills + ///its elements with new row (i.e. variables) + ///\param t can be + ///- a standard STL compatible iterable container with + ///\ref Row as its \c values_type like + ///\code + ///std::vector<LpBase::Row> + ///std::list<LpBase::Row> + ///\endcode + ///- a standard STL compatible iterable container with + ///\ref Row as its \c mapped_type like + ///\code + ///std::map<AnyType,LpBase::Row> + ///\endcode + ///- an iterable lemon \ref concepts::WriteMap "write map" like + ///\code + ///ListGraph::NodeMap<LpBase::Row> + ///ListGraph::ArcMap<LpBase::Row> + ///\endcode + ///\return The number of rows created. +#ifdef DOXYGEN + template<class T> + int addRowSet(T &t) { return 0;} +#else + template<class T> + typename enable_if<typename T::value_type::LpRow,int>::type + addRowSet(T &t, dummy<0> = 0) { + int s=0; + for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;} + return s; + } + template<class T> + typename enable_if<typename T::value_type::second_type::LpRow, int>::type + addRowSet(T &t, dummy<1> = 1) { + int s=0; + for(typename T::iterator i=t.begin();i!=t.end();++i) { + i->second=addRow(); + s++; + } + return s; + } + template<class T> + typename enable_if<typename T::MapIt::Value::LpRow, int>::type + addRowSet(T &t, dummy<2> = 2) { + int s=0; + for(typename T::MapIt i(t); i!=INVALID; ++i) + { + i.set(addRow()); + s++; + } + return s; + } +#endif + + ///Set a row (i.e a constraint) of the LP + + ///\param r is the row to be modified + ///\param l is lower bound (-\ref INF means no bound) + ///\param e is a linear expression (see \ref Expr) + ///\param u is the upper bound (\ref INF means no bound) + void row(Row r, Value l, const Expr &e, Value u) { + e.simplify(); + _setRowCoeffs(rows(id(r)), ExprIterator(e.comps.begin(), cols), + ExprIterator(e.comps.end(), cols)); + _setRowLowerBound(rows(id(r)),l - *e); + _setRowUpperBound(rows(id(r)),u - *e); + } + + ///Set a row (i.e a constraint) of the LP + + ///\param r is the row to be modified + ///\param c is a linear expression (see \ref Constr) + void row(Row r, const Constr &c) { + row(r, c.lowerBounded()?c.lowerBound():-INF, + c.expr(), c.upperBounded()?c.upperBound():INF); + } + + + ///Get a row (i.e a constraint) of the LP + + ///\param r is the row to get + ///\return the expression associated to the row + Expr row(Row r) const { + Expr e; + _getRowCoeffs(rows(id(r)), InsertIterator(e.comps, cols)); + return e; + } + + ///Add a new row (i.e a new constraint) to the LP + + ///\param l is the lower bound (-\ref INF means no bound) + ///\param e is a linear expression (see \ref Expr) + ///\param u is the upper bound (\ref INF means no bound) + ///\return The created row. + Row addRow(Value l,const Expr &e, Value u) { + Row r; + e.simplify(); + r._id = _addRowId(_addRow(l - *e, ExprIterator(e.comps.begin(), cols), + ExprIterator(e.comps.end(), cols), u - *e)); + return r; + } + + ///Add a new row (i.e a new constraint) to the LP + + ///\param c is a linear expression (see \ref Constr) + ///\return The created row. + Row addRow(const Constr &c) { + Row r; + c.expr().simplify(); + r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound()-*c.expr():-INF, + ExprIterator(c.expr().comps.begin(), cols), + ExprIterator(c.expr().comps.end(), cols), + c.upperBounded()?c.upperBound()-*c.expr():INF)); + return r; + } + ///Erase a column (i.e a variable) from the LP + + ///\param c is the column to be deleted + void erase(Col c) { + _eraseCol(cols(id(c))); + _eraseColId(cols(id(c))); + } + ///Erase a row (i.e a constraint) from the LP + + ///\param r is the row to be deleted + void erase(Row r) { + _eraseRow(rows(id(r))); + _eraseRowId(rows(id(r))); + } + + /// Get the name of a column + + ///\param c is the coresponding column + ///\return The name of the colunm + std::string colName(Col c) const { + std::string name; + _getColName(cols(id(c)), name); + return name; + } + + /// Set the name of a column + + ///\param c is the coresponding column + ///\param name The name to be given + void colName(Col c, const std::string& name) { + _setColName(cols(id(c)), name); + } + + /// Get the column by its name + + ///\param name The name of the column + ///\return the proper column or \c INVALID + Col colByName(const std::string& name) const { + int k = _colByName(name); + return k != -1 ? Col(cols[k]) : Col(INVALID); + } + + /// Get the name of a row + + ///\param r is the coresponding row + ///\return The name of the row + std::string rowName(Row r) const { + std::string name; + _getRowName(rows(id(r)), name); + return name; + } + + /// Set the name of a row + + ///\param r is the coresponding row + ///\param name The name to be given + void rowName(Row r, const std::string& name) { + _setRowName(rows(id(r)), name); + } + + /// Get the row by its name + + ///\param name The name of the row + ///\return the proper row or \c INVALID + Row rowByName(const std::string& name) const { + int k = _rowByName(name); + return k != -1 ? Row(rows[k]) : Row(INVALID); + } + + /// Set an element of the coefficient matrix of the LP + + ///\param r is the row of the element to be modified + ///\param c is the column of the element to be modified + ///\param val is the new value of the coefficient + void coeff(Row r, Col c, Value val) { + _setCoeff(rows(id(r)),cols(id(c)), val); + } + + /// Get an element of the coefficient matrix of the LP + + ///\param r is the row of the element + ///\param c is the column of the element + ///\return the corresponding coefficient + Value coeff(Row r, Col c) const { + return _getCoeff(rows(id(r)),cols(id(c))); + } + + /// Set the lower bound of a column (i.e a variable) + + /// The lower bound of a variable (column) has to be given by an + /// extended number of type Value, i.e. a finite number of type + /// Value or -\ref INF. + void colLowerBound(Col c, Value value) { + _setColLowerBound(cols(id(c)),value); + } + + /// Get the lower bound of a column (i.e a variable) + + /// This function returns the lower bound for column (variable) \c c + /// (this might be -\ref INF as well). + ///\return The lower bound for column \c c + Value colLowerBound(Col c) const { + return _getColLowerBound(cols(id(c))); + } + + ///\brief Set the lower bound of several columns + ///(i.e variables) at once + /// + ///This magic function takes a container as its argument + ///and applies the function on all of its elements. + ///The lower bound of a variable (column) has to be given by an + ///extended number of type Value, i.e. a finite number of type + ///Value or -\ref INF. +#ifdef DOXYGEN + template<class T> + void colLowerBound(T &t, Value value) { return 0;} +#else + template<class T> + typename enable_if<typename T::value_type::LpCol,void>::type + colLowerBound(T &t, Value value,dummy<0> = 0) { + for(typename T::iterator i=t.begin();i!=t.end();++i) { + colLowerBound(*i, value); + } + } + template<class T> + typename enable_if<typename T::value_type::second_type::LpCol, + void>::type + colLowerBound(T &t, Value value,dummy<1> = 1) { + for(typename T::iterator i=t.begin();i!=t.end();++i) { + colLowerBound(i->second, value); + } + } + template<class T> + typename enable_if<typename T::MapIt::Value::LpCol, + void>::type + colLowerBound(T &t, Value value,dummy<2> = 2) { + for(typename T::MapIt i(t); i!=INVALID; ++i){ + colLowerBound(*i, value); + } + } +#endif + + /// Set the upper bound of a column (i.e a variable) + + /// The upper bound of a variable (column) has to be given by an + /// extended number of type Value, i.e. a finite number of type + /// Value or \ref INF. + void colUpperBound(Col c, Value value) { + _setColUpperBound(cols(id(c)),value); + }; + + /// Get the upper bound of a column (i.e a variable) + + /// This function returns the upper bound for column (variable) \c c + /// (this might be \ref INF as well). + /// \return The upper bound for column \c c + Value colUpperBound(Col c) const { + return _getColUpperBound(cols(id(c))); + } + + ///\brief Set the upper bound of several columns + ///(i.e variables) at once + /// + ///This magic function takes a container as its argument + ///and applies the function on all of its elements. + ///The upper bound of a variable (column) has to be given by an + ///extended number of type Value, i.e. a finite number of type + ///Value or \ref INF. +#ifdef DOXYGEN + template<class T> + void colUpperBound(T &t, Value value) { return 0;} +#else + template<class T1> + typename enable_if<typename T1::value_type::LpCol,void>::type + colUpperBound(T1 &t, Value value,dummy<0> = 0) { + for(typename T1::iterator i=t.begin();i!=t.end();++i) { + colUpperBound(*i, value); + } + } + template<class T1> + typename enable_if<typename T1::value_type::second_type::LpCol, + void>::type + colUpperBound(T1 &t, Value value,dummy<1> = 1) { + for(typename T1::iterator i=t.begin();i!=t.end();++i) { + colUpperBound(i->second, value); + } + } + template<class T1> + typename enable_if<typename T1::MapIt::Value::LpCol, + void>::type + colUpperBound(T1 &t, Value value,dummy<2> = 2) { + for(typename T1::MapIt i(t); i!=INVALID; ++i){ + colUpperBound(*i, value); + } + } +#endif + + /// Set the lower and the upper bounds of a column (i.e a variable) + + /// The lower and the upper bounds of + /// a variable (column) have to be given by an + /// extended number of type Value, i.e. a finite number of type + /// Value, -\ref INF or \ref INF. + void colBounds(Col c, Value lower, Value upper) { + _setColLowerBound(cols(id(c)),lower); + _setColUpperBound(cols(id(c)),upper); + } + + ///\brief Set the lower and the upper bound of several columns + ///(i.e variables) at once + /// + ///This magic function takes a container as its argument + ///and applies the function on all of its elements. + /// The lower and the upper bounds of + /// a variable (column) have to be given by an + /// extended number of type Value, i.e. a finite number of type + /// Value, -\ref INF or \ref INF. +#ifdef DOXYGEN + template<class T> + void colBounds(T &t, Value lower, Value upper) { return 0;} +#else + template<class T2> + typename enable_if<typename T2::value_type::LpCol,void>::type + colBounds(T2 &t, Value lower, Value upper,dummy<0> = 0) { + for(typename T2::iterator i=t.begin();i!=t.end();++i) { + colBounds(*i, lower, upper); + } + } + template<class T2> + typename enable_if<typename T2::value_type::second_type::LpCol, void>::type + colBounds(T2 &t, Value lower, Value upper,dummy<1> = 1) { + for(typename T2::iterator i=t.begin();i!=t.end();++i) { + colBounds(i->second, lower, upper); + } + } + template<class T2> + typename enable_if<typename T2::MapIt::Value::LpCol, void>::type + colBounds(T2 &t, Value lower, Value upper,dummy<2> = 2) { + for(typename T2::MapIt i(t); i!=INVALID; ++i){ + colBounds(*i, lower, upper); + } + } +#endif + + /// Set the lower bound of a row (i.e a constraint) + + /// The lower bound of a constraint (row) has to be given by an + /// extended number of type Value, i.e. a finite number of type + /// Value or -\ref INF. + void rowLowerBound(Row r, Value value) { + _setRowLowerBound(rows(id(r)),value); + } + + /// Get the lower bound of a row (i.e a constraint) + + /// This function returns the lower bound for row (constraint) \c c + /// (this might be -\ref INF as well). + ///\return The lower bound for row \c r + Value rowLowerBound(Row r) const { + return _getRowLowerBound(rows(id(r))); + } + + /// Set the upper bound of a row (i.e a constraint) + + /// The upper bound of a constraint (row) has to be given by an + /// extended number of type Value, i.e. a finite number of type + /// Value or -\ref INF. + void rowUpperBound(Row r, Value value) { + _setRowUpperBound(rows(id(r)),value); + } + + /// Get the upper bound of a row (i.e a constraint) + + /// This function returns the upper bound for row (constraint) \c c + /// (this might be -\ref INF as well). + ///\return The upper bound for row \c r + Value rowUpperBound(Row r) const { + return _getRowUpperBound(rows(id(r))); + } + + ///Set an element of the objective function + void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); }; + + ///Get an element of the objective function + Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); }; + + ///Set the objective function + + ///\param e is a linear expression of type \ref Expr. + /// + void obj(const Expr& e) { + _setObjCoeffs(ExprIterator(e.comps.begin(), cols), + ExprIterator(e.comps.end(), cols)); + obj_const_comp = *e; + } + + ///Get the objective function + + ///\return the objective function as a linear expression of type + ///Expr. + Expr obj() const { + Expr e; + _getObjCoeffs(InsertIterator(e.comps, cols)); + *e = obj_const_comp; + return e; + } + + + ///Set the direction of optimization + void sense(Sense sense) { _setSense(sense); } + + ///Query the direction of the optimization + Sense sense() const {return _getSense(); } + + ///Set the sense to maximization + void max() { _setSense(MAX); } + + ///Set the sense to maximization + void min() { _setSense(MIN); } + + ///Clears the problem + void clear() { _clear(); } + + /// Sets the message level of the solver + void messageLevel(MessageLevel level) { _messageLevel(level); } + + ///@} + + }; + + /// Addition + + ///\relates LpBase::Expr + /// + inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) { + LpBase::Expr tmp(a); + tmp+=b; + return tmp; + } + ///Substraction + + ///\relates LpBase::Expr + /// + inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) { + LpBase::Expr tmp(a); + tmp-=b; + return tmp; + } + ///Multiply with constant + + ///\relates LpBase::Expr + /// + inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) { + LpBase::Expr tmp(a); + tmp*=b; + return tmp; + } + + ///Multiply with constant + + ///\relates LpBase::Expr + /// + inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) { + LpBase::Expr tmp(b); + tmp*=a; + return tmp; + } + ///Divide with constant + + ///\relates LpBase::Expr + /// + inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) { + LpBase::Expr tmp(a); + tmp/=b; + return tmp; + } + + ///Create constraint + + ///\relates LpBase::Constr + /// + inline LpBase::Constr operator<=(const LpBase::Expr &e, + const LpBase::Expr &f) { + return LpBase::Constr(0, f - e, LpBase::NaN); + } + + ///Create constraint + + ///\relates LpBase::Constr + /// + inline LpBase::Constr operator<=(const LpBase::Value &e, + const LpBase::Expr &f) { + return LpBase::Constr(e, f, LpBase::NaN); + } + + ///Create constraint + + ///\relates LpBase::Constr + /// + inline LpBase::Constr operator<=(const LpBase::Expr &e, + const LpBase::Value &f) { + return LpBase::Constr(LpBase::NaN, e, f); + } + + ///Create constraint + + ///\relates LpBase::Constr + /// + inline LpBase::Constr operator>=(const LpBase::Expr &e, + const LpBase::Expr &f) { + return LpBase::Constr(0, e - f, LpBase::NaN); + } + + + ///Create constraint + + ///\relates LpBase::Constr + /// + inline LpBase::Constr operator>=(const LpBase::Value &e, + const LpBase::Expr &f) { + return LpBase::Constr(LpBase::NaN, f, e); + } + + + ///Create constraint + + ///\relates LpBase::Constr + /// + inline LpBase::Constr operator>=(const LpBase::Expr &e, + const LpBase::Value &f) { + return LpBase::Constr(f, e, LpBase::NaN); + } + + ///Create constraint + + ///\relates LpBase::Constr + /// + inline LpBase::Constr operator==(const LpBase::Expr &e, + const LpBase::Value &f) { + return LpBase::Constr(f, e, f); + } + + ///Create constraint + + ///\relates LpBase::Constr + /// + inline LpBase::Constr operator==(const LpBase::Expr &e, + const LpBase::Expr &f) { + return LpBase::Constr(0, f - e, 0); + } + + ///Create constraint + + ///\relates LpBase::Constr + /// + inline LpBase::Constr operator<=(const LpBase::Value &n, + const LpBase::Constr &c) { + LpBase::Constr tmp(c); + LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); + tmp.lowerBound()=n; + return tmp; + } + ///Create constraint + + ///\relates LpBase::Constr + /// + inline LpBase::Constr operator<=(const LpBase::Constr &c, + const LpBase::Value &n) + { + LpBase::Constr tmp(c); + LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); + tmp.upperBound()=n; + return tmp; + } + + ///Create constraint + + ///\relates LpBase::Constr + /// + inline LpBase::Constr operator>=(const LpBase::Value &n, + const LpBase::Constr &c) { + LpBase::Constr tmp(c); + LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); + tmp.upperBound()=n; + return tmp; + } + ///Create constraint + + ///\relates LpBase::Constr + /// + inline LpBase::Constr operator>=(const LpBase::Constr &c, + const LpBase::Value &n) + { + LpBase::Constr tmp(c); + LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); + tmp.lowerBound()=n; + return tmp; + } + + ///Addition + + ///\relates LpBase::DualExpr + /// + inline LpBase::DualExpr operator+(const LpBase::DualExpr &a, + const LpBase::DualExpr &b) { + LpBase::DualExpr tmp(a); + tmp+=b; + return tmp; + } + ///Substraction + + ///\relates LpBase::DualExpr + /// + inline LpBase::DualExpr operator-(const LpBase::DualExpr &a, + const LpBase::DualExpr &b) { + LpBase::DualExpr tmp(a); + tmp-=b; + return tmp; + } + ///Multiply with constant + + ///\relates LpBase::DualExpr + /// + inline LpBase::DualExpr operator*(const LpBase::DualExpr &a, + const LpBase::Value &b) { + LpBase::DualExpr tmp(a); + tmp*=b; + return tmp; + } + + ///Multiply with constant + + ///\relates LpBase::DualExpr + /// + inline LpBase::DualExpr operator*(const LpBase::Value &a, + const LpBase::DualExpr &b) { + LpBase::DualExpr tmp(b); + tmp*=a; + return tmp; + } + ///Divide with constant + + ///\relates LpBase::DualExpr + /// + inline LpBase::DualExpr operator/(const LpBase::DualExpr &a, + const LpBase::Value &b) { + LpBase::DualExpr tmp(a); + tmp/=b; + return tmp; + } + + /// \ingroup lp_group + /// + /// \brief Common base class for LP solvers + /// + /// This class is an abstract base class for LP solvers. This class + /// provides a full interface for set and modify an LP problem, + /// solve it and retrieve the solution. You can use one of the + /// descendants as a concrete implementation, or the \c Lp + /// default LP solver. However, if you would like to handle LP + /// solvers as reference or pointer in a generic way, you can use + /// this class directly. + class LpSolver : virtual public LpBase { + public: + + /// The problem types for primal and dual problems + enum ProblemType { + /// = 0. Feasible solution hasn't been found (but may exist). + UNDEFINED = 0, + /// = 1. The problem has no feasible solution. + INFEASIBLE = 1, + /// = 2. Feasible solution found. + FEASIBLE = 2, + /// = 3. Optimal solution exists and found. + OPTIMAL = 3, + /// = 4. The cost function is unbounded. + UNBOUNDED = 4 + }; + + ///The basis status of variables + enum VarStatus { + /// The variable is in the basis + BASIC, + /// The variable is free, but not basic + FREE, + /// The variable has active lower bound + LOWER, + /// The variable has active upper bound + UPPER, + /// The variable is non-basic and fixed + FIXED + }; + + protected: + + virtual SolveExitStatus _solve() = 0; + + virtual Value _getPrimal(int i) const = 0; + virtual Value _getDual(int i) const = 0; + + virtual Value _getPrimalRay(int i) const = 0; + virtual Value _getDualRay(int i) const = 0; + + virtual Value _getPrimalValue() const = 0; + + virtual VarStatus _getColStatus(int i) const = 0; + virtual VarStatus _getRowStatus(int i) const = 0; + + virtual ProblemType _getPrimalType() const = 0; + virtual ProblemType _getDualType() const = 0; + + public: + + ///Allocate a new LP problem instance + virtual LpSolver* newSolver() const = 0; + ///Make a copy of the LP problem + virtual LpSolver* cloneSolver() const = 0; + + ///\name Solve the LP + + ///@{ + + ///\e Solve the LP problem at hand + /// + ///\return The result of the optimization procedure. Possible + ///values and their meanings can be found in the documentation of + ///\ref SolveExitStatus. + SolveExitStatus solve() { return _solve(); } + + ///@} + + ///\name Obtain the Solution + + ///@{ + + /// The type of the primal problem + ProblemType primalType() const { + return _getPrimalType(); + } + + /// The type of the dual problem + ProblemType dualType() const { + return _getDualType(); + } + + /// Return the primal value of the column + + /// Return the primal value of the column. + /// \pre The problem is solved. + Value primal(Col c) const { return _getPrimal(cols(id(c))); } + + /// Return the primal value of the expression + + /// Return the primal value of the expression, i.e. the dot + /// product of the primal solution and the expression. + /// \pre The problem is solved. + Value primal(const Expr& e) const { + double res = *e; + for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { + res += *c * primal(c); + } + return res; + } + /// Returns a component of the primal ray + + /// The primal ray is solution of the modified primal problem, + /// where we change each finite bound to 0, and we looking for a + /// negative objective value in case of minimization, and positive + /// objective value for maximization. If there is such solution, + /// that proofs the unsolvability of the dual problem, and if a + /// feasible primal solution exists, then the unboundness of + /// primal problem. + /// + /// \pre The problem is solved and the dual problem is infeasible. + /// \note Some solvers does not provide primal ray calculation + /// functions. + Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); } + + /// Return the dual value of the row + + /// Return the dual value of the row. + /// \pre The problem is solved. + Value dual(Row r) const { return _getDual(rows(id(r))); } + + /// Return the dual value of the dual expression + + /// Return the dual value of the dual expression, i.e. the dot + /// product of the dual solution and the dual expression. + /// \pre The problem is solved. + Value dual(const DualExpr& e) const { + double res = 0.0; + for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) { + res += *r * dual(r); + } + return res; + } + + /// Returns a component of the dual ray + + /// The dual ray is solution of the modified primal problem, where + /// we change each finite bound to 0 (i.e. the objective function + /// coefficients in the primal problem), and we looking for a + /// ositive objective value. If there is such solution, that + /// proofs the unsolvability of the primal problem, and if a + /// feasible dual solution exists, then the unboundness of + /// dual problem. + /// + /// \pre The problem is solved and the primal problem is infeasible. + /// \note Some solvers does not provide dual ray calculation + /// functions. + Value dualRay(Row r) const { return _getDualRay(rows(id(r))); } + + /// Return the basis status of the column + + /// \see VarStatus + VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); } + + /// Return the basis status of the row + + /// \see VarStatus + VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); } + + ///The value of the objective function + + ///\return + ///- \ref INF or -\ref INF means either infeasibility or unboundedness + /// of the primal problem, depending on whether we minimize or maximize. + ///- \ref NaN if no primal solution is found. + ///- The (finite) objective value if an optimal solution is found. + Value primal() const { return _getPrimalValue()+obj_const_comp;} + ///@} + + protected: + + }; + + + /// \ingroup lp_group + /// + /// \brief Common base class for MIP solvers + /// + /// This class is an abstract base class for MIP solvers. This class + /// provides a full interface for set and modify an MIP problem, + /// solve it and retrieve the solution. You can use one of the + /// descendants as a concrete implementation, or the \c Lp + /// default MIP solver. However, if you would like to handle MIP + /// solvers as reference or pointer in a generic way, you can use + /// this class directly. + class MipSolver : virtual public LpBase { + public: + + /// The problem types for MIP problems + enum ProblemType { + /// = 0. Feasible solution hasn't been found (but may exist). + UNDEFINED = 0, + /// = 1. The problem has no feasible solution. + INFEASIBLE = 1, + /// = 2. Feasible solution found. + FEASIBLE = 2, + /// = 3. Optimal solution exists and found. + OPTIMAL = 3, + /// = 4. The cost function is unbounded. + ///The Mip or at least the relaxed problem is unbounded. + UNBOUNDED = 4 + }; + + ///Allocate a new MIP problem instance + virtual MipSolver* newSolver() const = 0; + ///Make a copy of the MIP problem + virtual MipSolver* cloneSolver() const = 0; + + ///\name Solve the MIP + + ///@{ + + /// Solve the MIP problem at hand + /// + ///\return The result of the optimization procedure. Possible + ///values and their meanings can be found in the documentation of + ///\ref SolveExitStatus. + SolveExitStatus solve() { return _solve(); } + + ///@} + + ///\name Set Column Type + ///@{ + + ///Possible variable (column) types (e.g. real, integer, binary etc.) + enum ColTypes { + /// = 0. Continuous variable (default). + REAL = 0, + /// = 1. Integer variable. + INTEGER = 1 + }; + + ///Sets the type of the given column to the given type + + ///Sets the type of the given column to the given type. + /// + void colType(Col c, ColTypes col_type) { + _setColType(cols(id(c)),col_type); + } + + ///Gives back the type of the column. + + ///Gives back the type of the column. + /// + ColTypes colType(Col c) const { + return _getColType(cols(id(c))); + } + ///@} + + ///\name Obtain the Solution + + ///@{ + + /// The type of the MIP problem + ProblemType type() const { + return _getType(); + } + + /// Return the value of the row in the solution + + /// Return the value of the row in the solution. + /// \pre The problem is solved. + Value sol(Col c) const { return _getSol(cols(id(c))); } + + /// Return the value of the expression in the solution + + /// Return the value of the expression in the solution, i.e. the + /// dot product of the solution and the expression. + /// \pre The problem is solved. + Value sol(const Expr& e) const { + double res = *e; + for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { + res += *c * sol(c); + } + return res; + } + ///The value of the objective function + + ///\return + ///- \ref INF or -\ref INF means either infeasibility or unboundedness + /// of the problem, depending on whether we minimize or maximize. + ///- \ref NaN if no primal solution is found. + ///- The (finite) objective value if an optimal solution is found. + Value solValue() const { return _getSolValue()+obj_const_comp;} + ///@} + + protected: + + virtual SolveExitStatus _solve() = 0; + virtual ColTypes _getColType(int col) const = 0; + virtual void _setColType(int col, ColTypes col_type) = 0; + virtual ProblemType _getType() const = 0; + virtual Value _getSol(int i) const = 0; + virtual Value _getSolValue() const = 0; + + }; + + + +} //namespace lemon + +#endif //LEMON_LP_BASE_H |