summaryrefslogtreecommitdiff
path: root/lemon/lemon/bits/bezier.h
diff options
context:
space:
mode:
Diffstat (limited to 'lemon/lemon/bits/bezier.h')
-rw-r--r--lemon/lemon/bits/bezier.h174
1 files changed, 174 insertions, 0 deletions
diff --git a/lemon/lemon/bits/bezier.h b/lemon/lemon/bits/bezier.h
new file mode 100644
index 0000000..cdec206
--- /dev/null
+++ b/lemon/lemon/bits/bezier.h
@@ -0,0 +1,174 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2009
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_BEZIER_H
+#define LEMON_BEZIER_H
+
+//\ingroup misc
+//\file
+//\brief Classes to compute with Bezier curves.
+//
+//Up to now this file is used internally by \ref graph_to_eps.h
+
+#include<lemon/dim2.h>
+
+namespace lemon {
+ namespace dim2 {
+
+class BezierBase {
+public:
+ typedef lemon::dim2::Point<double> Point;
+protected:
+ static Point conv(Point x,Point y,double t) {return (1-t)*x+t*y;}
+};
+
+class Bezier1 : public BezierBase
+{
+public:
+ Point p1,p2;
+
+ Bezier1() {}
+ Bezier1(Point _p1, Point _p2) :p1(_p1), p2(_p2) {}
+
+ Point operator()(double t) const
+ {
+ // return conv(conv(p1,p2,t),conv(p2,p3,t),t);
+ return conv(p1,p2,t);
+ }
+ Bezier1 before(double t) const
+ {
+ return Bezier1(p1,conv(p1,p2,t));
+ }
+
+ Bezier1 after(double t) const
+ {
+ return Bezier1(conv(p1,p2,t),p2);
+ }
+
+ Bezier1 revert() const { return Bezier1(p2,p1);}
+ Bezier1 operator()(double a,double b) const { return before(b).after(a/b); }
+ Point grad() const { return p2-p1; }
+ Point norm() const { return rot90(p2-p1); }
+ Point grad(double) const { return grad(); }
+ Point norm(double t) const { return rot90(grad(t)); }
+};
+
+class Bezier2 : public BezierBase
+{
+public:
+ Point p1,p2,p3;
+
+ Bezier2() {}
+ Bezier2(Point _p1, Point _p2, Point _p3) :p1(_p1), p2(_p2), p3(_p3) {}
+ Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
+ Point operator()(double t) const
+ {
+ // return conv(conv(p1,p2,t),conv(p2,p3,t),t);
+ return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3;
+ }
+ Bezier2 before(double t) const
+ {
+ Point q(conv(p1,p2,t));
+ Point r(conv(p2,p3,t));
+ return Bezier2(p1,q,conv(q,r,t));
+ }
+
+ Bezier2 after(double t) const
+ {
+ Point q(conv(p1,p2,t));
+ Point r(conv(p2,p3,t));
+ return Bezier2(conv(q,r,t),r,p3);
+ }
+ Bezier2 revert() const { return Bezier2(p3,p2,p1);}
+ Bezier2 operator()(double a,double b) const { return before(b).after(a/b); }
+ Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
+ Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); }
+ Point grad(double t) const { return grad()(t); }
+ Point norm(double t) const { return rot90(grad(t)); }
+};
+
+class Bezier3 : public BezierBase
+{
+public:
+ Point p1,p2,p3,p4;
+
+ Bezier3() {}
+ Bezier3(Point _p1, Point _p2, Point _p3, Point _p4)
+ : p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
+ Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)),
+ p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
+ Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)),
+ p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
+
+ Point operator()(double t) const
+ {
+ // return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t);
+ return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+
+ (3*t*t*(1-t))*p3+(t*t*t)*p4;
+ }
+ Bezier3 before(double t) const
+ {
+ Point p(conv(p1,p2,t));
+ Point q(conv(p2,p3,t));
+ Point r(conv(p3,p4,t));
+ Point a(conv(p,q,t));
+ Point b(conv(q,r,t));
+ Point c(conv(a,b,t));
+ return Bezier3(p1,p,a,c);
+ }
+
+ Bezier3 after(double t) const
+ {
+ Point p(conv(p1,p2,t));
+ Point q(conv(p2,p3,t));
+ Point r(conv(p3,p4,t));
+ Point a(conv(p,q,t));
+ Point b(conv(q,r,t));
+ Point c(conv(a,b,t));
+ return Bezier3(c,b,r,p4);
+ }
+ Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);}
+ Bezier3 operator()(double a,double b) const { return before(b).after(a/b); }
+ Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
+ Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1),
+ 3.0*rot90(p3-p2),
+ 3.0*rot90(p4-p3)); }
+ Point grad(double t) const { return grad()(t); }
+ Point norm(double t) const { return rot90(grad(t)); }
+
+ template<class R,class F,class S,class D>
+ R recSplit(F &_f,const S &_s,D _d) const
+ {
+ const Point a=(p1+p2)/2;
+ const Point b=(p2+p3)/2;
+ const Point c=(p3+p4)/2;
+ const Point d=(a+b)/2;
+ const Point e=(b+c)/2;
+ const Point f=(d+e)/2;
+ R f1=_f(Bezier3(p1,a,d,e),_d);
+ R f2=_f(Bezier3(e,d,c,p4),_d);
+ return _s(f1,f2);
+ }
+
+};
+
+
+} //END OF NAMESPACE dim2
+} //END OF NAMESPACE lemon
+
+#endif // LEMON_BEZIER_H