summaryrefslogtreecommitdiff
path: root/clang/lib/Sema/SemaLambda.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/Sema/SemaLambda.cpp')
-rw-r--r--clang/lib/Sema/SemaLambda.cpp820
1 files changed, 820 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaLambda.cpp b/clang/lib/Sema/SemaLambda.cpp
new file mode 100644
index 0000000..6ef8d88
--- /dev/null
+++ b/clang/lib/Sema/SemaLambda.cpp
@@ -0,0 +1,820 @@
+//===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for C++ lambda expressions.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/AST/ExprCXX.h"
+using namespace clang;
+using namespace sema;
+
+CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
+ bool KnownDependent) {
+ DeclContext *DC = CurContext;
+ while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
+ DC = DC->getParent();
+
+ // Start constructing the lambda class.
+ CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC,
+ IntroducerRange.getBegin(),
+ KnownDependent);
+ DC->addDecl(Class);
+
+ return Class;
+}
+
+/// \brief Determine whether the given context is or is enclosed in an inline
+/// function.
+static bool isInInlineFunction(const DeclContext *DC) {
+ while (!DC->isFileContext()) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
+ if (FD->isInlined())
+ return true;
+
+ DC = DC->getLexicalParent();
+ }
+
+ return false;
+}
+
+CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
+ SourceRange IntroducerRange,
+ TypeSourceInfo *MethodType,
+ SourceLocation EndLoc,
+ llvm::ArrayRef<ParmVarDecl *> Params,
+ llvm::Optional<unsigned> ManglingNumber,
+ Decl *ContextDecl) {
+ // C++11 [expr.prim.lambda]p5:
+ // The closure type for a lambda-expression has a public inline function
+ // call operator (13.5.4) whose parameters and return type are described by
+ // the lambda-expression's parameter-declaration-clause and
+ // trailing-return-type respectively.
+ DeclarationName MethodName
+ = Context.DeclarationNames.getCXXOperatorName(OO_Call);
+ DeclarationNameLoc MethodNameLoc;
+ MethodNameLoc.CXXOperatorName.BeginOpNameLoc
+ = IntroducerRange.getBegin().getRawEncoding();
+ MethodNameLoc.CXXOperatorName.EndOpNameLoc
+ = IntroducerRange.getEnd().getRawEncoding();
+ CXXMethodDecl *Method
+ = CXXMethodDecl::Create(Context, Class, EndLoc,
+ DeclarationNameInfo(MethodName,
+ IntroducerRange.getBegin(),
+ MethodNameLoc),
+ MethodType->getType(), MethodType,
+ /*isStatic=*/false,
+ SC_None,
+ /*isInline=*/true,
+ /*isConstExpr=*/false,
+ EndLoc);
+ Method->setAccess(AS_public);
+
+ // Temporarily set the lexical declaration context to the current
+ // context, so that the Scope stack matches the lexical nesting.
+ Method->setLexicalDeclContext(CurContext);
+
+ // Add parameters.
+ if (!Params.empty()) {
+ Method->setParams(Params);
+ CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
+ const_cast<ParmVarDecl **>(Params.end()),
+ /*CheckParameterNames=*/false);
+
+ for (CXXMethodDecl::param_iterator P = Method->param_begin(),
+ PEnd = Method->param_end();
+ P != PEnd; ++P)
+ (*P)->setOwningFunction(Method);
+ }
+
+ // If we don't already have a mangling number for this lambda expression,
+ // allocate one now.
+ if (!ManglingNumber) {
+ ContextDecl = ExprEvalContexts.back().LambdaContextDecl;
+
+ enum ContextKind {
+ Normal,
+ DefaultArgument,
+ DataMember,
+ StaticDataMember
+ } Kind = Normal;
+
+ // Default arguments of member function parameters that appear in a class
+ // definition, as well as the initializers of data members, receive special
+ // treatment. Identify them.
+ if (ContextDecl) {
+ if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ContextDecl)) {
+ if (const DeclContext *LexicalDC
+ = Param->getDeclContext()->getLexicalParent())
+ if (LexicalDC->isRecord())
+ Kind = DefaultArgument;
+ } else if (VarDecl *Var = dyn_cast<VarDecl>(ContextDecl)) {
+ if (Var->getDeclContext()->isRecord())
+ Kind = StaticDataMember;
+ } else if (isa<FieldDecl>(ContextDecl)) {
+ Kind = DataMember;
+ }
+ }
+
+ switch (Kind) {
+ case Normal:
+ if (CurContext->isDependentContext() || isInInlineFunction(CurContext))
+ ManglingNumber = Context.getLambdaManglingNumber(Method);
+ else
+ ManglingNumber = 0;
+
+ // There is no special context for this lambda.
+ ContextDecl = 0;
+ break;
+
+ case StaticDataMember:
+ if (!CurContext->isDependentContext()) {
+ ManglingNumber = 0;
+ ContextDecl = 0;
+ break;
+ }
+ // Fall through to assign a mangling number.
+
+ case DataMember:
+ case DefaultArgument:
+ ManglingNumber = ExprEvalContexts.back().getLambdaMangleContext()
+ .getManglingNumber(Method);
+ break;
+ }
+ }
+
+ Class->setLambdaMangling(*ManglingNumber, ContextDecl);
+ return Method;
+}
+
+LambdaScopeInfo *Sema::enterLambdaScope(CXXMethodDecl *CallOperator,
+ SourceRange IntroducerRange,
+ LambdaCaptureDefault CaptureDefault,
+ bool ExplicitParams,
+ bool ExplicitResultType,
+ bool Mutable) {
+ PushLambdaScope(CallOperator->getParent(), CallOperator);
+ LambdaScopeInfo *LSI = getCurLambda();
+ if (CaptureDefault == LCD_ByCopy)
+ LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
+ else if (CaptureDefault == LCD_ByRef)
+ LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
+ LSI->IntroducerRange = IntroducerRange;
+ LSI->ExplicitParams = ExplicitParams;
+ LSI->Mutable = Mutable;
+
+ if (ExplicitResultType) {
+ LSI->ReturnType = CallOperator->getResultType();
+
+ if (!LSI->ReturnType->isDependentType() &&
+ !LSI->ReturnType->isVoidType()) {
+ if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
+ diag::err_lambda_incomplete_result)) {
+ // Do nothing.
+ } else if (LSI->ReturnType->isObjCObjectOrInterfaceType()) {
+ Diag(CallOperator->getLocStart(), diag::err_lambda_objc_object_result)
+ << LSI->ReturnType;
+ }
+ }
+ } else {
+ LSI->HasImplicitReturnType = true;
+ }
+
+ return LSI;
+}
+
+void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
+ LSI->finishedExplicitCaptures();
+}
+
+void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
+ // Introduce our parameters into the function scope
+ for (unsigned p = 0, NumParams = CallOperator->getNumParams();
+ p < NumParams; ++p) {
+ ParmVarDecl *Param = CallOperator->getParamDecl(p);
+
+ // If this has an identifier, add it to the scope stack.
+ if (CurScope && Param->getIdentifier()) {
+ CheckShadow(CurScope, Param);
+
+ PushOnScopeChains(Param, CurScope);
+ }
+ }
+}
+
+void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
+ Declarator &ParamInfo,
+ Scope *CurScope) {
+ // Determine if we're within a context where we know that the lambda will
+ // be dependent, because there are template parameters in scope.
+ bool KnownDependent = false;
+ if (Scope *TmplScope = CurScope->getTemplateParamParent())
+ if (!TmplScope->decl_empty())
+ KnownDependent = true;
+
+ CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, KnownDependent);
+
+ // Determine the signature of the call operator.
+ TypeSourceInfo *MethodTyInfo;
+ bool ExplicitParams = true;
+ bool ExplicitResultType = true;
+ SourceLocation EndLoc;
+ llvm::ArrayRef<ParmVarDecl *> Params;
+ if (ParamInfo.getNumTypeObjects() == 0) {
+ // C++11 [expr.prim.lambda]p4:
+ // If a lambda-expression does not include a lambda-declarator, it is as
+ // if the lambda-declarator were ().
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.HasTrailingReturn = true;
+ EPI.TypeQuals |= DeclSpec::TQ_const;
+ QualType MethodTy = Context.getFunctionType(Context.DependentTy,
+ /*Args=*/0, /*NumArgs=*/0, EPI);
+ MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
+ ExplicitParams = false;
+ ExplicitResultType = false;
+ EndLoc = Intro.Range.getEnd();
+ } else {
+ assert(ParamInfo.isFunctionDeclarator() &&
+ "lambda-declarator is a function");
+ DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
+
+ // C++11 [expr.prim.lambda]p5:
+ // This function call operator is declared const (9.3.1) if and only if
+ // the lambda-expression's parameter-declaration-clause is not followed
+ // by mutable. It is neither virtual nor declared volatile. [...]
+ if (!FTI.hasMutableQualifier())
+ FTI.TypeQuals |= DeclSpec::TQ_const;
+
+ MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
+ assert(MethodTyInfo && "no type from lambda-declarator");
+ EndLoc = ParamInfo.getSourceRange().getEnd();
+
+ ExplicitResultType
+ = MethodTyInfo->getType()->getAs<FunctionType>()->getResultType()
+ != Context.DependentTy;
+
+ TypeLoc TL = MethodTyInfo->getTypeLoc();
+ FunctionProtoTypeLoc Proto = cast<FunctionProtoTypeLoc>(TL);
+ Params = llvm::ArrayRef<ParmVarDecl *>(Proto.getParmArray(),
+ Proto.getNumArgs());
+ }
+
+ CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
+ MethodTyInfo, EndLoc, Params);
+
+ if (ExplicitParams)
+ CheckCXXDefaultArguments(Method);
+
+ // Attributes on the lambda apply to the method.
+ ProcessDeclAttributes(CurScope, Method, ParamInfo);
+
+ // Introduce the function call operator as the current declaration context.
+ PushDeclContext(CurScope, Method);
+
+ // Introduce the lambda scope.
+ LambdaScopeInfo *LSI
+ = enterLambdaScope(Method, Intro.Range, Intro.Default, ExplicitParams,
+ ExplicitResultType,
+ (Method->getTypeQualifiers() & Qualifiers::Const) == 0);
+
+ // Handle explicit captures.
+ SourceLocation PrevCaptureLoc
+ = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
+ for (llvm::SmallVector<LambdaCapture, 4>::const_iterator
+ C = Intro.Captures.begin(),
+ E = Intro.Captures.end();
+ C != E;
+ PrevCaptureLoc = C->Loc, ++C) {
+ if (C->Kind == LCK_This) {
+ // C++11 [expr.prim.lambda]p8:
+ // An identifier or this shall not appear more than once in a
+ // lambda-capture.
+ if (LSI->isCXXThisCaptured()) {
+ Diag(C->Loc, diag::err_capture_more_than_once)
+ << "'this'"
+ << SourceRange(LSI->getCXXThisCapture().getLocation())
+ << FixItHint::CreateRemoval(
+ SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p8:
+ // If a lambda-capture includes a capture-default that is =, the
+ // lambda-capture shall not contain this [...].
+ if (Intro.Default == LCD_ByCopy) {
+ Diag(C->Loc, diag::err_this_capture_with_copy_default)
+ << FixItHint::CreateRemoval(
+ SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p12:
+ // If this is captured by a local lambda expression, its nearest
+ // enclosing function shall be a non-static member function.
+ QualType ThisCaptureType = getCurrentThisType();
+ if (ThisCaptureType.isNull()) {
+ Diag(C->Loc, diag::err_this_capture) << true;
+ continue;
+ }
+
+ CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
+ continue;
+ }
+
+ assert(C->Id && "missing identifier for capture");
+
+ // C++11 [expr.prim.lambda]p8:
+ // If a lambda-capture includes a capture-default that is &, the
+ // identifiers in the lambda-capture shall not be preceded by &.
+ // If a lambda-capture includes a capture-default that is =, [...]
+ // each identifier it contains shall be preceded by &.
+ if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
+ Diag(C->Loc, diag::err_reference_capture_with_reference_default)
+ << FixItHint::CreateRemoval(
+ SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
+ Diag(C->Loc, diag::err_copy_capture_with_copy_default)
+ << FixItHint::CreateRemoval(
+ SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ }
+
+ DeclarationNameInfo Name(C->Id, C->Loc);
+ LookupResult R(*this, Name, LookupOrdinaryName);
+ LookupName(R, CurScope);
+ if (R.isAmbiguous())
+ continue;
+ if (R.empty()) {
+ // FIXME: Disable corrections that would add qualification?
+ CXXScopeSpec ScopeSpec;
+ DeclFilterCCC<VarDecl> Validator;
+ if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p10:
+ // The identifiers in a capture-list are looked up using the usual rules
+ // for unqualified name lookup (3.4.1); each such lookup shall find a
+ // variable with automatic storage duration declared in the reaching
+ // scope of the local lambda expression.
+ //
+ // Note that the 'reaching scope' check happens in tryCaptureVariable().
+ VarDecl *Var = R.getAsSingle<VarDecl>();
+ if (!Var) {
+ Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
+ continue;
+ }
+
+ if (!Var->hasLocalStorage()) {
+ Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
+ Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p8:
+ // An identifier or this shall not appear more than once in a
+ // lambda-capture.
+ if (LSI->isCaptured(Var)) {
+ Diag(C->Loc, diag::err_capture_more_than_once)
+ << C->Id
+ << SourceRange(LSI->getCapture(Var).getLocation())
+ << FixItHint::CreateRemoval(
+ SourceRange(PP.getLocForEndOfToken(PrevCaptureLoc), C->Loc));
+ continue;
+ }
+
+ // C++11 [expr.prim.lambda]p23:
+ // A capture followed by an ellipsis is a pack expansion (14.5.3).
+ SourceLocation EllipsisLoc;
+ if (C->EllipsisLoc.isValid()) {
+ if (Var->isParameterPack()) {
+ EllipsisLoc = C->EllipsisLoc;
+ } else {
+ Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
+ << SourceRange(C->Loc);
+
+ // Just ignore the ellipsis.
+ }
+ } else if (Var->isParameterPack()) {
+ Diag(C->Loc, diag::err_lambda_unexpanded_pack);
+ continue;
+ }
+
+ TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
+ TryCapture_ExplicitByVal;
+ tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
+ }
+ finishLambdaExplicitCaptures(LSI);
+
+ // Add lambda parameters into scope.
+ addLambdaParameters(Method, CurScope);
+
+ // Enter a new evaluation context to insulate the lambda from any
+ // cleanups from the enclosing full-expression.
+ PushExpressionEvaluationContext(PotentiallyEvaluated);
+}
+
+void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
+ bool IsInstantiation) {
+ // Leave the expression-evaluation context.
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+
+ // Leave the context of the lambda.
+ if (!IsInstantiation)
+ PopDeclContext();
+
+ // Finalize the lambda.
+ LambdaScopeInfo *LSI = getCurLambda();
+ CXXRecordDecl *Class = LSI->Lambda;
+ Class->setInvalidDecl();
+ SmallVector<Decl*, 4> Fields(Class->field_begin(), Class->field_end());
+ ActOnFields(0, Class->getLocation(), Class, Fields,
+ SourceLocation(), SourceLocation(), 0);
+ CheckCompletedCXXClass(Class);
+
+ PopFunctionScopeInfo();
+}
+
+/// \brief Add a lambda's conversion to function pointer, as described in
+/// C++11 [expr.prim.lambda]p6.
+static void addFunctionPointerConversion(Sema &S,
+ SourceRange IntroducerRange,
+ CXXRecordDecl *Class,
+ CXXMethodDecl *CallOperator) {
+ // Add the conversion to function pointer.
+ const FunctionProtoType *Proto
+ = CallOperator->getType()->getAs<FunctionProtoType>();
+ QualType FunctionPtrTy;
+ QualType FunctionTy;
+ {
+ FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
+ ExtInfo.TypeQuals = 0;
+ FunctionTy = S.Context.getFunctionType(Proto->getResultType(),
+ Proto->arg_type_begin(),
+ Proto->getNumArgs(),
+ ExtInfo);
+ FunctionPtrTy = S.Context.getPointerType(FunctionTy);
+ }
+
+ FunctionProtoType::ExtProtoInfo ExtInfo;
+ ExtInfo.TypeQuals = Qualifiers::Const;
+ QualType ConvTy = S.Context.getFunctionType(FunctionPtrTy, 0, 0, ExtInfo);
+
+ SourceLocation Loc = IntroducerRange.getBegin();
+ DeclarationName Name
+ = S.Context.DeclarationNames.getCXXConversionFunctionName(
+ S.Context.getCanonicalType(FunctionPtrTy));
+ DeclarationNameLoc NameLoc;
+ NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(FunctionPtrTy,
+ Loc);
+ CXXConversionDecl *Conversion
+ = CXXConversionDecl::Create(S.Context, Class, Loc,
+ DeclarationNameInfo(Name, Loc, NameLoc),
+ ConvTy,
+ S.Context.getTrivialTypeSourceInfo(ConvTy,
+ Loc),
+ /*isInline=*/false, /*isExplicit=*/false,
+ /*isConstexpr=*/false,
+ CallOperator->getBody()->getLocEnd());
+ Conversion->setAccess(AS_public);
+ Conversion->setImplicit(true);
+ Class->addDecl(Conversion);
+
+ // Add a non-static member function "__invoke" that will be the result of
+ // the conversion.
+ Name = &S.Context.Idents.get("__invoke");
+ CXXMethodDecl *Invoke
+ = CXXMethodDecl::Create(S.Context, Class, Loc,
+ DeclarationNameInfo(Name, Loc), FunctionTy,
+ CallOperator->getTypeSourceInfo(),
+ /*IsStatic=*/true, SC_Static, /*IsInline=*/true,
+ /*IsConstexpr=*/false,
+ CallOperator->getBody()->getLocEnd());
+ SmallVector<ParmVarDecl *, 4> InvokeParams;
+ for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
+ ParmVarDecl *From = CallOperator->getParamDecl(I);
+ InvokeParams.push_back(ParmVarDecl::Create(S.Context, Invoke,
+ From->getLocStart(),
+ From->getLocation(),
+ From->getIdentifier(),
+ From->getType(),
+ From->getTypeSourceInfo(),
+ From->getStorageClass(),
+ From->getStorageClassAsWritten(),
+ /*DefaultArg=*/0));
+ }
+ Invoke->setParams(InvokeParams);
+ Invoke->setAccess(AS_private);
+ Invoke->setImplicit(true);
+ Class->addDecl(Invoke);
+}
+
+/// \brief Add a lambda's conversion to block pointer.
+static void addBlockPointerConversion(Sema &S,
+ SourceRange IntroducerRange,
+ CXXRecordDecl *Class,
+ CXXMethodDecl *CallOperator) {
+ const FunctionProtoType *Proto
+ = CallOperator->getType()->getAs<FunctionProtoType>();
+ QualType BlockPtrTy;
+ {
+ FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
+ ExtInfo.TypeQuals = 0;
+ QualType FunctionTy
+ = S.Context.getFunctionType(Proto->getResultType(),
+ Proto->arg_type_begin(),
+ Proto->getNumArgs(),
+ ExtInfo);
+ BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
+ }
+
+ FunctionProtoType::ExtProtoInfo ExtInfo;
+ ExtInfo.TypeQuals = Qualifiers::Const;
+ QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, 0, 0, ExtInfo);
+
+ SourceLocation Loc = IntroducerRange.getBegin();
+ DeclarationName Name
+ = S.Context.DeclarationNames.getCXXConversionFunctionName(
+ S.Context.getCanonicalType(BlockPtrTy));
+ DeclarationNameLoc NameLoc;
+ NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
+ CXXConversionDecl *Conversion
+ = CXXConversionDecl::Create(S.Context, Class, Loc,
+ DeclarationNameInfo(Name, Loc, NameLoc),
+ ConvTy,
+ S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
+ /*isInline=*/false, /*isExplicit=*/false,
+ /*isConstexpr=*/false,
+ CallOperator->getBody()->getLocEnd());
+ Conversion->setAccess(AS_public);
+ Conversion->setImplicit(true);
+ Class->addDecl(Conversion);
+}
+
+ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
+ Scope *CurScope,
+ bool IsInstantiation) {
+ // Collect information from the lambda scope.
+ llvm::SmallVector<LambdaExpr::Capture, 4> Captures;
+ llvm::SmallVector<Expr *, 4> CaptureInits;
+ LambdaCaptureDefault CaptureDefault;
+ CXXRecordDecl *Class;
+ CXXMethodDecl *CallOperator;
+ SourceRange IntroducerRange;
+ bool ExplicitParams;
+ bool ExplicitResultType;
+ bool LambdaExprNeedsCleanups;
+ llvm::SmallVector<VarDecl *, 4> ArrayIndexVars;
+ llvm::SmallVector<unsigned, 4> ArrayIndexStarts;
+ {
+ LambdaScopeInfo *LSI = getCurLambda();
+ CallOperator = LSI->CallOperator;
+ Class = LSI->Lambda;
+ IntroducerRange = LSI->IntroducerRange;
+ ExplicitParams = LSI->ExplicitParams;
+ ExplicitResultType = !LSI->HasImplicitReturnType;
+ LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
+ ArrayIndexVars.swap(LSI->ArrayIndexVars);
+ ArrayIndexStarts.swap(LSI->ArrayIndexStarts);
+
+ // Translate captures.
+ for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
+ LambdaScopeInfo::Capture From = LSI->Captures[I];
+ assert(!From.isBlockCapture() && "Cannot capture __block variables");
+ bool IsImplicit = I >= LSI->NumExplicitCaptures;
+
+ // Handle 'this' capture.
+ if (From.isThisCapture()) {
+ Captures.push_back(LambdaExpr::Capture(From.getLocation(),
+ IsImplicit,
+ LCK_This));
+ CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
+ getCurrentThisType(),
+ /*isImplicit=*/true));
+ continue;
+ }
+
+ VarDecl *Var = From.getVariable();
+ LambdaCaptureKind Kind = From.isCopyCapture()? LCK_ByCopy : LCK_ByRef;
+ Captures.push_back(LambdaExpr::Capture(From.getLocation(), IsImplicit,
+ Kind, Var, From.getEllipsisLoc()));
+ CaptureInits.push_back(From.getCopyExpr());
+ }
+
+ switch (LSI->ImpCaptureStyle) {
+ case CapturingScopeInfo::ImpCap_None:
+ CaptureDefault = LCD_None;
+ break;
+
+ case CapturingScopeInfo::ImpCap_LambdaByval:
+ CaptureDefault = LCD_ByCopy;
+ break;
+
+ case CapturingScopeInfo::ImpCap_LambdaByref:
+ CaptureDefault = LCD_ByRef;
+ break;
+
+ case CapturingScopeInfo::ImpCap_Block:
+ llvm_unreachable("block capture in lambda");
+ break;
+ }
+
+ // C++11 [expr.prim.lambda]p4:
+ // If a lambda-expression does not include a
+ // trailing-return-type, it is as if the trailing-return-type
+ // denotes the following type:
+ // FIXME: Assumes current resolution to core issue 975.
+ if (LSI->HasImplicitReturnType) {
+ // - if there are no return statements in the
+ // compound-statement, or all return statements return
+ // either an expression of type void or no expression or
+ // braced-init-list, the type void;
+ if (LSI->ReturnType.isNull()) {
+ LSI->ReturnType = Context.VoidTy;
+ } else {
+ // C++11 [expr.prim.lambda]p4:
+ // - if the compound-statement is of the form
+ //
+ // { attribute-specifier-seq[opt] return expression ; }
+ //
+ // the type of the returned expression after
+ // lvalue-to-rvalue conversion (4.1), array-to-pointer
+ // conver- sion (4.2), and function-to-pointer conversion
+ // (4.3);
+ //
+ // Since we're accepting the resolution to a post-C++11 core
+ // issue with a non-trivial extension, provide a warning (by
+ // default).
+ CompoundStmt *CompoundBody = cast<CompoundStmt>(Body);
+ if (!(CompoundBody->size() == 1 &&
+ isa<ReturnStmt>(*CompoundBody->body_begin())) &&
+ !Context.hasSameType(LSI->ReturnType, Context.VoidTy))
+ Diag(IntroducerRange.getBegin(),
+ diag::ext_lambda_implies_void_return);
+ }
+
+ // Create a function type with the inferred return type.
+ const FunctionProtoType *Proto
+ = CallOperator->getType()->getAs<FunctionProtoType>();
+ QualType FunctionTy
+ = Context.getFunctionType(LSI->ReturnType,
+ Proto->arg_type_begin(),
+ Proto->getNumArgs(),
+ Proto->getExtProtoInfo());
+ CallOperator->setType(FunctionTy);
+ }
+
+ // C++ [expr.prim.lambda]p7:
+ // The lambda-expression's compound-statement yields the
+ // function-body (8.4) of the function call operator [...].
+ ActOnFinishFunctionBody(CallOperator, Body, IsInstantiation);
+ CallOperator->setLexicalDeclContext(Class);
+ Class->addDecl(CallOperator);
+ PopExpressionEvaluationContext();
+
+ // C++11 [expr.prim.lambda]p6:
+ // The closure type for a lambda-expression with no lambda-capture
+ // has a public non-virtual non-explicit const conversion function
+ // to pointer to function having the same parameter and return
+ // types as the closure type's function call operator.
+ if (Captures.empty() && CaptureDefault == LCD_None)
+ addFunctionPointerConversion(*this, IntroducerRange, Class,
+ CallOperator);
+
+ // Objective-C++:
+ // The closure type for a lambda-expression has a public non-virtual
+ // non-explicit const conversion function to a block pointer having the
+ // same parameter and return types as the closure type's function call
+ // operator.
+ if (getLangOpts().Blocks && getLangOpts().ObjC1)
+ addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
+
+ // Finalize the lambda class.
+ SmallVector<Decl*, 4> Fields(Class->field_begin(), Class->field_end());
+ ActOnFields(0, Class->getLocation(), Class, Fields,
+ SourceLocation(), SourceLocation(), 0);
+ CheckCompletedCXXClass(Class);
+ }
+
+ if (LambdaExprNeedsCleanups)
+ ExprNeedsCleanups = true;
+
+ LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
+ CaptureDefault, Captures,
+ ExplicitParams, ExplicitResultType,
+ CaptureInits, ArrayIndexVars,
+ ArrayIndexStarts, Body->getLocEnd());
+
+ // C++11 [expr.prim.lambda]p2:
+ // A lambda-expression shall not appear in an unevaluated operand
+ // (Clause 5).
+ if (!CurContext->isDependentContext()) {
+ switch (ExprEvalContexts.back().Context) {
+ case Unevaluated:
+ // We don't actually diagnose this case immediately, because we
+ // could be within a context where we might find out later that
+ // the expression is potentially evaluated (e.g., for typeid).
+ ExprEvalContexts.back().Lambdas.push_back(Lambda);
+ break;
+
+ case ConstantEvaluated:
+ case PotentiallyEvaluated:
+ case PotentiallyEvaluatedIfUsed:
+ break;
+ }
+ }
+
+ return MaybeBindToTemporary(Lambda);
+}
+
+ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
+ SourceLocation ConvLocation,
+ CXXConversionDecl *Conv,
+ Expr *Src) {
+ // Make sure that the lambda call operator is marked used.
+ CXXRecordDecl *Lambda = Conv->getParent();
+ CXXMethodDecl *CallOperator
+ = cast<CXXMethodDecl>(
+ *Lambda->lookup(
+ Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
+ CallOperator->setReferenced();
+ CallOperator->setUsed();
+
+ ExprResult Init = PerformCopyInitialization(
+ InitializedEntity::InitializeBlock(ConvLocation,
+ Src->getType(),
+ /*NRVO=*/false),
+ CurrentLocation, Src);
+ if (!Init.isInvalid())
+ Init = ActOnFinishFullExpr(Init.take());
+
+ if (Init.isInvalid())
+ return ExprError();
+
+ // Create the new block to be returned.
+ BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
+
+ // Set the type information.
+ Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
+ Block->setIsVariadic(CallOperator->isVariadic());
+ Block->setBlockMissingReturnType(false);
+
+ // Add parameters.
+ SmallVector<ParmVarDecl *, 4> BlockParams;
+ for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
+ ParmVarDecl *From = CallOperator->getParamDecl(I);
+ BlockParams.push_back(ParmVarDecl::Create(Context, Block,
+ From->getLocStart(),
+ From->getLocation(),
+ From->getIdentifier(),
+ From->getType(),
+ From->getTypeSourceInfo(),
+ From->getStorageClass(),
+ From->getStorageClassAsWritten(),
+ /*DefaultArg=*/0));
+ }
+ Block->setParams(BlockParams);
+
+ Block->setIsConversionFromLambda(true);
+
+ // Add capture. The capture uses a fake variable, which doesn't correspond
+ // to any actual memory location. However, the initializer copy-initializes
+ // the lambda object.
+ TypeSourceInfo *CapVarTSI =
+ Context.getTrivialTypeSourceInfo(Src->getType());
+ VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
+ ConvLocation, 0,
+ Src->getType(), CapVarTSI,
+ SC_None, SC_None);
+ BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
+ /*Nested=*/false, /*Copy=*/Init.take());
+ Block->setCaptures(Context, &Capture, &Capture + 1,
+ /*CapturesCXXThis=*/false);
+
+ // Add a fake function body to the block. IR generation is responsible
+ // for filling in the actual body, which cannot be expressed as an AST.
+ Block->setBody(new (Context) CompoundStmt(Context, 0, 0,
+ ConvLocation,
+ ConvLocation));
+
+ // Create the block literal expression.
+ Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
+ ExprCleanupObjects.push_back(Block);
+ ExprNeedsCleanups = true;
+
+ return BuildBlock;
+}