diff options
Diffstat (limited to 'clang/lib/Sema/SemaExprCXX.cpp')
-rw-r--r-- | clang/lib/Sema/SemaExprCXX.cpp | 5362 |
1 files changed, 5362 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaExprCXX.cpp b/clang/lib/Sema/SemaExprCXX.cpp new file mode 100644 index 0000000..af86cb2 --- /dev/null +++ b/clang/lib/Sema/SemaExprCXX.cpp @@ -0,0 +1,5362 @@ +//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements semantic analysis for C++ expressions. +// +//===----------------------------------------------------------------------===// + +#include "clang/Sema/SemaInternal.h" +#include "clang/Sema/DeclSpec.h" +#include "clang/Sema/Initialization.h" +#include "clang/Sema/Lookup.h" +#include "clang/Sema/ParsedTemplate.h" +#include "clang/Sema/ScopeInfo.h" +#include "clang/Sema/Scope.h" +#include "clang/Sema/TemplateDeduction.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/CXXInheritance.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/ExprObjC.h" +#include "clang/AST/TypeLoc.h" +#include "clang/Basic/PartialDiagnostic.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Lex/Preprocessor.h" +#include "TypeLocBuilder.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/ErrorHandling.h" +using namespace clang; +using namespace sema; + +ParsedType Sema::getDestructorName(SourceLocation TildeLoc, + IdentifierInfo &II, + SourceLocation NameLoc, + Scope *S, CXXScopeSpec &SS, + ParsedType ObjectTypePtr, + bool EnteringContext) { + // Determine where to perform name lookup. + + // FIXME: This area of the standard is very messy, and the current + // wording is rather unclear about which scopes we search for the + // destructor name; see core issues 399 and 555. Issue 399 in + // particular shows where the current description of destructor name + // lookup is completely out of line with existing practice, e.g., + // this appears to be ill-formed: + // + // namespace N { + // template <typename T> struct S { + // ~S(); + // }; + // } + // + // void f(N::S<int>* s) { + // s->N::S<int>::~S(); + // } + // + // See also PR6358 and PR6359. + // For this reason, we're currently only doing the C++03 version of this + // code; the C++0x version has to wait until we get a proper spec. + QualType SearchType; + DeclContext *LookupCtx = 0; + bool isDependent = false; + bool LookInScope = false; + + // If we have an object type, it's because we are in a + // pseudo-destructor-expression or a member access expression, and + // we know what type we're looking for. + if (ObjectTypePtr) + SearchType = GetTypeFromParser(ObjectTypePtr); + + if (SS.isSet()) { + NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); + + bool AlreadySearched = false; + bool LookAtPrefix = true; + // C++ [basic.lookup.qual]p6: + // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, + // the type-names are looked up as types in the scope designated by the + // nested-name-specifier. In a qualified-id of the form: + // + // ::[opt] nested-name-specifier ~ class-name + // + // where the nested-name-specifier designates a namespace scope, and in + // a qualified-id of the form: + // + // ::opt nested-name-specifier class-name :: ~ class-name + // + // the class-names are looked up as types in the scope designated by + // the nested-name-specifier. + // + // Here, we check the first case (completely) and determine whether the + // code below is permitted to look at the prefix of the + // nested-name-specifier. + DeclContext *DC = computeDeclContext(SS, EnteringContext); + if (DC && DC->isFileContext()) { + AlreadySearched = true; + LookupCtx = DC; + isDependent = false; + } else if (DC && isa<CXXRecordDecl>(DC)) + LookAtPrefix = false; + + // The second case from the C++03 rules quoted further above. + NestedNameSpecifier *Prefix = 0; + if (AlreadySearched) { + // Nothing left to do. + } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { + CXXScopeSpec PrefixSS; + PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); + LookupCtx = computeDeclContext(PrefixSS, EnteringContext); + isDependent = isDependentScopeSpecifier(PrefixSS); + } else if (ObjectTypePtr) { + LookupCtx = computeDeclContext(SearchType); + isDependent = SearchType->isDependentType(); + } else { + LookupCtx = computeDeclContext(SS, EnteringContext); + isDependent = LookupCtx && LookupCtx->isDependentContext(); + } + + LookInScope = false; + } else if (ObjectTypePtr) { + // C++ [basic.lookup.classref]p3: + // If the unqualified-id is ~type-name, the type-name is looked up + // in the context of the entire postfix-expression. If the type T + // of the object expression is of a class type C, the type-name is + // also looked up in the scope of class C. At least one of the + // lookups shall find a name that refers to (possibly + // cv-qualified) T. + LookupCtx = computeDeclContext(SearchType); + isDependent = SearchType->isDependentType(); + assert((isDependent || !SearchType->isIncompleteType()) && + "Caller should have completed object type"); + + LookInScope = true; + } else { + // Perform lookup into the current scope (only). + LookInScope = true; + } + + TypeDecl *NonMatchingTypeDecl = 0; + LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); + for (unsigned Step = 0; Step != 2; ++Step) { + // Look for the name first in the computed lookup context (if we + // have one) and, if that fails to find a match, in the scope (if + // we're allowed to look there). + Found.clear(); + if (Step == 0 && LookupCtx) + LookupQualifiedName(Found, LookupCtx); + else if (Step == 1 && LookInScope && S) + LookupName(Found, S); + else + continue; + + // FIXME: Should we be suppressing ambiguities here? + if (Found.isAmbiguous()) + return ParsedType(); + + if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { + QualType T = Context.getTypeDeclType(Type); + + if (SearchType.isNull() || SearchType->isDependentType() || + Context.hasSameUnqualifiedType(T, SearchType)) { + // We found our type! + + return ParsedType::make(T); + } + + if (!SearchType.isNull()) + NonMatchingTypeDecl = Type; + } + + // If the name that we found is a class template name, and it is + // the same name as the template name in the last part of the + // nested-name-specifier (if present) or the object type, then + // this is the destructor for that class. + // FIXME: This is a workaround until we get real drafting for core + // issue 399, for which there isn't even an obvious direction. + if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) { + QualType MemberOfType; + if (SS.isSet()) { + if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { + // Figure out the type of the context, if it has one. + if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) + MemberOfType = Context.getTypeDeclType(Record); + } + } + if (MemberOfType.isNull()) + MemberOfType = SearchType; + + if (MemberOfType.isNull()) + continue; + + // We're referring into a class template specialization. If the + // class template we found is the same as the template being + // specialized, we found what we are looking for. + if (const RecordType *Record = MemberOfType->getAs<RecordType>()) { + if (ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) { + if (Spec->getSpecializedTemplate()->getCanonicalDecl() == + Template->getCanonicalDecl()) + return ParsedType::make(MemberOfType); + } + + continue; + } + + // We're referring to an unresolved class template + // specialization. Determine whether we class template we found + // is the same as the template being specialized or, if we don't + // know which template is being specialized, that it at least + // has the same name. + if (const TemplateSpecializationType *SpecType + = MemberOfType->getAs<TemplateSpecializationType>()) { + TemplateName SpecName = SpecType->getTemplateName(); + + // The class template we found is the same template being + // specialized. + if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { + if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) + return ParsedType::make(MemberOfType); + + continue; + } + + // The class template we found has the same name as the + // (dependent) template name being specialized. + if (DependentTemplateName *DepTemplate + = SpecName.getAsDependentTemplateName()) { + if (DepTemplate->isIdentifier() && + DepTemplate->getIdentifier() == Template->getIdentifier()) + return ParsedType::make(MemberOfType); + + continue; + } + } + } + } + + if (isDependent) { + // We didn't find our type, but that's okay: it's dependent + // anyway. + + // FIXME: What if we have no nested-name-specifier? + QualType T = CheckTypenameType(ETK_None, SourceLocation(), + SS.getWithLocInContext(Context), + II, NameLoc); + return ParsedType::make(T); + } + + if (NonMatchingTypeDecl) { + QualType T = Context.getTypeDeclType(NonMatchingTypeDecl); + Diag(NameLoc, diag::err_destructor_expr_type_mismatch) + << T << SearchType; + Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here) + << T; + } else if (ObjectTypePtr) + Diag(NameLoc, diag::err_ident_in_dtor_not_a_type) + << &II; + else + Diag(NameLoc, diag::err_destructor_class_name); + + return ParsedType(); +} + +ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) { + if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType) + return ParsedType(); + assert(DS.getTypeSpecType() == DeclSpec::TST_decltype + && "only get destructor types from declspecs"); + QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); + QualType SearchType = GetTypeFromParser(ObjectType); + if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) { + return ParsedType::make(T); + } + + Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) + << T << SearchType; + return ParsedType(); +} + +/// \brief Build a C++ typeid expression with a type operand. +ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, + SourceLocation TypeidLoc, + TypeSourceInfo *Operand, + SourceLocation RParenLoc) { + // C++ [expr.typeid]p4: + // The top-level cv-qualifiers of the lvalue expression or the type-id + // that is the operand of typeid are always ignored. + // If the type of the type-id is a class type or a reference to a class + // type, the class shall be completely-defined. + Qualifiers Quals; + QualType T + = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), + Quals); + if (T->getAs<RecordType>() && + RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) + return ExprError(); + + return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), + Operand, + SourceRange(TypeidLoc, RParenLoc))); +} + +/// \brief Build a C++ typeid expression with an expression operand. +ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, + SourceLocation TypeidLoc, + Expr *E, + SourceLocation RParenLoc) { + if (E && !E->isTypeDependent()) { + if (E->getType()->isPlaceholderType()) { + ExprResult result = CheckPlaceholderExpr(E); + if (result.isInvalid()) return ExprError(); + E = result.take(); + } + + QualType T = E->getType(); + if (const RecordType *RecordT = T->getAs<RecordType>()) { + CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); + // C++ [expr.typeid]p3: + // [...] If the type of the expression is a class type, the class + // shall be completely-defined. + if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) + return ExprError(); + + // C++ [expr.typeid]p3: + // When typeid is applied to an expression other than an glvalue of a + // polymorphic class type [...] [the] expression is an unevaluated + // operand. [...] + if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) { + // The subexpression is potentially evaluated; switch the context + // and recheck the subexpression. + ExprResult Result = TranformToPotentiallyEvaluated(E); + if (Result.isInvalid()) return ExprError(); + E = Result.take(); + + // We require a vtable to query the type at run time. + MarkVTableUsed(TypeidLoc, RecordD); + } + } + + // C++ [expr.typeid]p4: + // [...] If the type of the type-id is a reference to a possibly + // cv-qualified type, the result of the typeid expression refers to a + // std::type_info object representing the cv-unqualified referenced + // type. + Qualifiers Quals; + QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); + if (!Context.hasSameType(T, UnqualT)) { + T = UnqualT; + E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take(); + } + } + + return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), + E, + SourceRange(TypeidLoc, RParenLoc))); +} + +/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); +ExprResult +Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, + bool isType, void *TyOrExpr, SourceLocation RParenLoc) { + // Find the std::type_info type. + if (!getStdNamespace()) + return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); + + if (!CXXTypeInfoDecl) { + IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); + LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); + LookupQualifiedName(R, getStdNamespace()); + CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); + if (!CXXTypeInfoDecl) + return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); + } + + QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); + + if (isType) { + // The operand is a type; handle it as such. + TypeSourceInfo *TInfo = 0; + QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), + &TInfo); + if (T.isNull()) + return ExprError(); + + if (!TInfo) + TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); + + return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); + } + + // The operand is an expression. + return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc); +} + +/// Retrieve the UuidAttr associated with QT. +static UuidAttr *GetUuidAttrOfType(QualType QT) { + // Optionally remove one level of pointer, reference or array indirection. + const Type *Ty = QT.getTypePtr();; + if (QT->isPointerType() || QT->isReferenceType()) + Ty = QT->getPointeeType().getTypePtr(); + else if (QT->isArrayType()) + Ty = cast<ArrayType>(QT)->getElementType().getTypePtr(); + + // Loop all record redeclaration looking for an uuid attribute. + CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); + for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(), + E = RD->redecls_end(); I != E; ++I) { + if (UuidAttr *Uuid = I->getAttr<UuidAttr>()) + return Uuid; + } + + return 0; +} + +/// \brief Build a Microsoft __uuidof expression with a type operand. +ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, + SourceLocation TypeidLoc, + TypeSourceInfo *Operand, + SourceLocation RParenLoc) { + if (!Operand->getType()->isDependentType()) { + if (!GetUuidAttrOfType(Operand->getType())) + return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); + } + + // FIXME: add __uuidof semantic analysis for type operand. + return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(), + Operand, + SourceRange(TypeidLoc, RParenLoc))); +} + +/// \brief Build a Microsoft __uuidof expression with an expression operand. +ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, + SourceLocation TypeidLoc, + Expr *E, + SourceLocation RParenLoc) { + if (!E->getType()->isDependentType()) { + if (!GetUuidAttrOfType(E->getType()) && + !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) + return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); + } + // FIXME: add __uuidof semantic analysis for type operand. + return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(), + E, + SourceRange(TypeidLoc, RParenLoc))); +} + +/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); +ExprResult +Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, + bool isType, void *TyOrExpr, SourceLocation RParenLoc) { + // If MSVCGuidDecl has not been cached, do the lookup. + if (!MSVCGuidDecl) { + IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID"); + LookupResult R(*this, GuidII, SourceLocation(), LookupTagName); + LookupQualifiedName(R, Context.getTranslationUnitDecl()); + MSVCGuidDecl = R.getAsSingle<RecordDecl>(); + if (!MSVCGuidDecl) + return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof)); + } + + QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl); + + if (isType) { + // The operand is a type; handle it as such. + TypeSourceInfo *TInfo = 0; + QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), + &TInfo); + if (T.isNull()) + return ExprError(); + + if (!TInfo) + TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); + + return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); + } + + // The operand is an expression. + return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); +} + +/// ActOnCXXBoolLiteral - Parse {true,false} literals. +ExprResult +Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { + assert((Kind == tok::kw_true || Kind == tok::kw_false) && + "Unknown C++ Boolean value!"); + return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, + Context.BoolTy, OpLoc)); +} + +/// ActOnCXXNullPtrLiteral - Parse 'nullptr'. +ExprResult +Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { + return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); +} + +/// ActOnCXXThrow - Parse throw expressions. +ExprResult +Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { + bool IsThrownVarInScope = false; + if (Ex) { + // C++0x [class.copymove]p31: + // When certain criteria are met, an implementation is allowed to omit the + // copy/move construction of a class object [...] + // + // - in a throw-expression, when the operand is the name of a + // non-volatile automatic object (other than a function or catch- + // clause parameter) whose scope does not extend beyond the end of the + // innermost enclosing try-block (if there is one), the copy/move + // operation from the operand to the exception object (15.1) can be + // omitted by constructing the automatic object directly into the + // exception object + if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) + if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { + if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { + for( ; S; S = S->getParent()) { + if (S->isDeclScope(Var)) { + IsThrownVarInScope = true; + break; + } + + if (S->getFlags() & + (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | + Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | + Scope::TryScope)) + break; + } + } + } + } + + return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); +} + +ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, + bool IsThrownVarInScope) { + // Don't report an error if 'throw' is used in system headers. + if (!getLangOpts().CXXExceptions && + !getSourceManager().isInSystemHeader(OpLoc)) + Diag(OpLoc, diag::err_exceptions_disabled) << "throw"; + + if (Ex && !Ex->isTypeDependent()) { + ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope); + if (ExRes.isInvalid()) + return ExprError(); + Ex = ExRes.take(); + } + + return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc, + IsThrownVarInScope)); +} + +/// CheckCXXThrowOperand - Validate the operand of a throw. +ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E, + bool IsThrownVarInScope) { + // C++ [except.throw]p3: + // A throw-expression initializes a temporary object, called the exception + // object, the type of which is determined by removing any top-level + // cv-qualifiers from the static type of the operand of throw and adjusting + // the type from "array of T" or "function returning T" to "pointer to T" + // or "pointer to function returning T", [...] + if (E->getType().hasQualifiers()) + E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp, + E->getValueKind()).take(); + + ExprResult Res = DefaultFunctionArrayConversion(E); + if (Res.isInvalid()) + return ExprError(); + E = Res.take(); + + // If the type of the exception would be an incomplete type or a pointer + // to an incomplete type other than (cv) void the program is ill-formed. + QualType Ty = E->getType(); + bool isPointer = false; + if (const PointerType* Ptr = Ty->getAs<PointerType>()) { + Ty = Ptr->getPointeeType(); + isPointer = true; + } + if (!isPointer || !Ty->isVoidType()) { + if (RequireCompleteType(ThrowLoc, Ty, + PDiag(isPointer ? diag::err_throw_incomplete_ptr + : diag::err_throw_incomplete) + << E->getSourceRange())) + return ExprError(); + + if (RequireNonAbstractType(ThrowLoc, E->getType(), + PDiag(diag::err_throw_abstract_type) + << E->getSourceRange())) + return ExprError(); + } + + // Initialize the exception result. This implicitly weeds out + // abstract types or types with inaccessible copy constructors. + + // C++0x [class.copymove]p31: + // When certain criteria are met, an implementation is allowed to omit the + // copy/move construction of a class object [...] + // + // - in a throw-expression, when the operand is the name of a + // non-volatile automatic object (other than a function or catch-clause + // parameter) whose scope does not extend beyond the end of the + // innermost enclosing try-block (if there is one), the copy/move + // operation from the operand to the exception object (15.1) can be + // omitted by constructing the automatic object directly into the + // exception object + const VarDecl *NRVOVariable = 0; + if (IsThrownVarInScope) + NRVOVariable = getCopyElisionCandidate(QualType(), E, false); + + InitializedEntity Entity = + InitializedEntity::InitializeException(ThrowLoc, E->getType(), + /*NRVO=*/NRVOVariable != 0); + Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable, + QualType(), E, + IsThrownVarInScope); + if (Res.isInvalid()) + return ExprError(); + E = Res.take(); + + // If the exception has class type, we need additional handling. + const RecordType *RecordTy = Ty->getAs<RecordType>(); + if (!RecordTy) + return Owned(E); + CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); + + // If we are throwing a polymorphic class type or pointer thereof, + // exception handling will make use of the vtable. + MarkVTableUsed(ThrowLoc, RD); + + // If a pointer is thrown, the referenced object will not be destroyed. + if (isPointer) + return Owned(E); + + // If the class has a destructor, we must be able to call it. + if (RD->hasIrrelevantDestructor()) + return Owned(E); + + CXXDestructorDecl *Destructor = LookupDestructor(RD); + if (!Destructor) + return Owned(E); + + MarkFunctionReferenced(E->getExprLoc(), Destructor); + CheckDestructorAccess(E->getExprLoc(), Destructor, + PDiag(diag::err_access_dtor_exception) << Ty); + DiagnoseUseOfDecl(Destructor, E->getExprLoc()); + return Owned(E); +} + +QualType Sema::getCurrentThisType() { + DeclContext *DC = getFunctionLevelDeclContext(); + QualType ThisTy = CXXThisTypeOverride; + if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { + if (method && method->isInstance()) + ThisTy = method->getThisType(Context); + } + + return ThisTy; +} + +Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, + Decl *ContextDecl, + unsigned CXXThisTypeQuals, + bool Enabled) + : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) +{ + if (!Enabled || !ContextDecl) + return; + + CXXRecordDecl *Record = 0; + if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) + Record = Template->getTemplatedDecl(); + else + Record = cast<CXXRecordDecl>(ContextDecl); + + S.CXXThisTypeOverride + = S.Context.getPointerType( + S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals)); + + this->Enabled = true; +} + + +Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { + if (Enabled) { + S.CXXThisTypeOverride = OldCXXThisTypeOverride; + } +} + +void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) { + // We don't need to capture this in an unevaluated context. + if (ExprEvalContexts.back().Context == Unevaluated && !Explicit) + return; + + // Otherwise, check that we can capture 'this'. + unsigned NumClosures = 0; + for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) { + if (CapturingScopeInfo *CSI = + dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { + if (CSI->CXXThisCaptureIndex != 0) { + // 'this' is already being captured; there isn't anything more to do. + break; + } + + if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || + CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || + CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || + Explicit) { + // This closure can capture 'this'; continue looking upwards. + NumClosures++; + Explicit = false; + continue; + } + // This context can't implicitly capture 'this'; fail out. + Diag(Loc, diag::err_this_capture) << Explicit; + return; + } + break; + } + + // Mark that we're implicitly capturing 'this' in all the scopes we skipped. + // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated + // contexts. + for (unsigned idx = FunctionScopes.size() - 1; + NumClosures; --idx, --NumClosures) { + CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); + Expr *ThisExpr = 0; + QualType ThisTy = getCurrentThisType(); + if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) { + // For lambda expressions, build a field and an initializing expression. + CXXRecordDecl *Lambda = LSI->Lambda; + FieldDecl *Field + = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy, + Context.getTrivialTypeSourceInfo(ThisTy, Loc), + 0, false, false); + Field->setImplicit(true); + Field->setAccess(AS_private); + Lambda->addDecl(Field); + ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true); + } + bool isNested = NumClosures > 1; + CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr); + } +} + +ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { + /// C++ 9.3.2: In the body of a non-static member function, the keyword this + /// is a non-lvalue expression whose value is the address of the object for + /// which the function is called. + + QualType ThisTy = getCurrentThisType(); + if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use); + + CheckCXXThisCapture(Loc); + return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false)); +} + +bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { + // If we're outside the body of a member function, then we'll have a specified + // type for 'this'. + if (CXXThisTypeOverride.isNull()) + return false; + + // Determine whether we're looking into a class that's currently being + // defined. + CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); + return Class && Class->isBeingDefined(); +} + +ExprResult +Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, + SourceLocation LParenLoc, + MultiExprArg exprs, + SourceLocation RParenLoc) { + if (!TypeRep) + return ExprError(); + + TypeSourceInfo *TInfo; + QualType Ty = GetTypeFromParser(TypeRep, &TInfo); + if (!TInfo) + TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); + + return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc); +} + +/// ActOnCXXTypeConstructExpr - Parse construction of a specified type. +/// Can be interpreted either as function-style casting ("int(x)") +/// or class type construction ("ClassType(x,y,z)") +/// or creation of a value-initialized type ("int()"). +ExprResult +Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, + SourceLocation LParenLoc, + MultiExprArg exprs, + SourceLocation RParenLoc) { + QualType Ty = TInfo->getType(); + unsigned NumExprs = exprs.size(); + Expr **Exprs = (Expr**)exprs.get(); + SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); + + if (Ty->isDependentType() || + CallExpr::hasAnyTypeDependentArguments( + llvm::makeArrayRef(Exprs, NumExprs))) { + exprs.release(); + + return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo, + LParenLoc, + Exprs, NumExprs, + RParenLoc)); + } + + bool ListInitialization = LParenLoc.isInvalid(); + assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0]))) + && "List initialization must have initializer list as expression."); + SourceRange FullRange = SourceRange(TyBeginLoc, + ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc); + + // C++ [expr.type.conv]p1: + // If the expression list is a single expression, the type conversion + // expression is equivalent (in definedness, and if defined in meaning) to the + // corresponding cast expression. + if (NumExprs == 1 && !ListInitialization) { + Expr *Arg = Exprs[0]; + exprs.release(); + return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc); + } + + QualType ElemTy = Ty; + if (Ty->isArrayType()) { + if (!ListInitialization) + return ExprError(Diag(TyBeginLoc, + diag::err_value_init_for_array_type) << FullRange); + ElemTy = Context.getBaseElementType(Ty); + } + + if (!Ty->isVoidType() && + RequireCompleteType(TyBeginLoc, ElemTy, + PDiag(diag::err_invalid_incomplete_type_use) + << FullRange)) + return ExprError(); + + if (RequireNonAbstractType(TyBeginLoc, Ty, + diag::err_allocation_of_abstract_type)) + return ExprError(); + + InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); + InitializationKind Kind + = NumExprs ? ListInitialization + ? InitializationKind::CreateDirectList(TyBeginLoc) + : InitializationKind::CreateDirect(TyBeginLoc, + LParenLoc, RParenLoc) + : InitializationKind::CreateValue(TyBeginLoc, + LParenLoc, RParenLoc); + InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs); + ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs)); + + if (!Result.isInvalid() && ListInitialization && + isa<InitListExpr>(Result.get())) { + // If the list-initialization doesn't involve a constructor call, we'll get + // the initializer-list (with corrected type) back, but that's not what we + // want, since it will be treated as an initializer list in further + // processing. Explicitly insert a cast here. + InitListExpr *List = cast<InitListExpr>(Result.take()); + Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(), + Expr::getValueKindForType(TInfo->getType()), + TInfo, TyBeginLoc, CK_NoOp, + List, /*Path=*/0, RParenLoc)); + } + + // FIXME: Improve AST representation? + return move(Result); +} + +/// doesUsualArrayDeleteWantSize - Answers whether the usual +/// operator delete[] for the given type has a size_t parameter. +static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, + QualType allocType) { + const RecordType *record = + allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); + if (!record) return false; + + // Try to find an operator delete[] in class scope. + + DeclarationName deleteName = + S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); + LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); + S.LookupQualifiedName(ops, record->getDecl()); + + // We're just doing this for information. + ops.suppressDiagnostics(); + + // Very likely: there's no operator delete[]. + if (ops.empty()) return false; + + // If it's ambiguous, it should be illegal to call operator delete[] + // on this thing, so it doesn't matter if we allocate extra space or not. + if (ops.isAmbiguous()) return false; + + LookupResult::Filter filter = ops.makeFilter(); + while (filter.hasNext()) { + NamedDecl *del = filter.next()->getUnderlyingDecl(); + + // C++0x [basic.stc.dynamic.deallocation]p2: + // A template instance is never a usual deallocation function, + // regardless of its signature. + if (isa<FunctionTemplateDecl>(del)) { + filter.erase(); + continue; + } + + // C++0x [basic.stc.dynamic.deallocation]p2: + // If class T does not declare [an operator delete[] with one + // parameter] but does declare a member deallocation function + // named operator delete[] with exactly two parameters, the + // second of which has type std::size_t, then this function + // is a usual deallocation function. + if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) { + filter.erase(); + continue; + } + } + filter.done(); + + if (!ops.isSingleResult()) return false; + + const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl()); + return (del->getNumParams() == 2); +} + +/// \brief Parsed a C++ 'new' expression (C++ 5.3.4). + +/// E.g.: +/// @code new (memory) int[size][4] @endcode +/// or +/// @code ::new Foo(23, "hello") @endcode +/// +/// \param StartLoc The first location of the expression. +/// \param UseGlobal True if 'new' was prefixed with '::'. +/// \param PlacementLParen Opening paren of the placement arguments. +/// \param PlacementArgs Placement new arguments. +/// \param PlacementRParen Closing paren of the placement arguments. +/// \param TypeIdParens If the type is in parens, the source range. +/// \param D The type to be allocated, as well as array dimensions. +/// \param ConstructorLParen Opening paren of the constructor args, empty if +/// initializer-list syntax is used. +/// \param ConstructorArgs Constructor/initialization arguments. +/// \param ConstructorRParen Closing paren of the constructor args. +ExprResult +Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, + SourceLocation PlacementLParen, MultiExprArg PlacementArgs, + SourceLocation PlacementRParen, SourceRange TypeIdParens, + Declarator &D, Expr *Initializer) { + bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto; + + Expr *ArraySize = 0; + // If the specified type is an array, unwrap it and save the expression. + if (D.getNumTypeObjects() > 0 && + D.getTypeObject(0).Kind == DeclaratorChunk::Array) { + DeclaratorChunk &Chunk = D.getTypeObject(0); + if (TypeContainsAuto) + return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) + << D.getSourceRange()); + if (Chunk.Arr.hasStatic) + return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) + << D.getSourceRange()); + if (!Chunk.Arr.NumElts) + return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) + << D.getSourceRange()); + + ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); + D.DropFirstTypeObject(); + } + + // Every dimension shall be of constant size. + if (ArraySize) { + for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { + if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) + break; + + DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; + if (Expr *NumElts = (Expr *)Array.NumElts) { + if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { + Array.NumElts = VerifyIntegerConstantExpression(NumElts, 0, + PDiag(diag::err_new_array_nonconst)).take(); + if (!Array.NumElts) + return ExprError(); + } + } + } + } + + TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0); + QualType AllocType = TInfo->getType(); + if (D.isInvalidType()) + return ExprError(); + + SourceRange DirectInitRange; + if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) + DirectInitRange = List->getSourceRange(); + + return BuildCXXNew(StartLoc, UseGlobal, + PlacementLParen, + move(PlacementArgs), + PlacementRParen, + TypeIdParens, + AllocType, + TInfo, + ArraySize, + DirectInitRange, + Initializer, + TypeContainsAuto); +} + +static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, + Expr *Init) { + if (!Init) + return true; + if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) + return PLE->getNumExprs() == 0; + if (isa<ImplicitValueInitExpr>(Init)) + return true; + else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) + return !CCE->isListInitialization() && + CCE->getConstructor()->isDefaultConstructor(); + else if (Style == CXXNewExpr::ListInit) { + assert(isa<InitListExpr>(Init) && + "Shouldn't create list CXXConstructExprs for arrays."); + return true; + } + return false; +} + +ExprResult +Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, + SourceLocation PlacementLParen, + MultiExprArg PlacementArgs, + SourceLocation PlacementRParen, + SourceRange TypeIdParens, + QualType AllocType, + TypeSourceInfo *AllocTypeInfo, + Expr *ArraySize, + SourceRange DirectInitRange, + Expr *Initializer, + bool TypeMayContainAuto) { + SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); + + CXXNewExpr::InitializationStyle initStyle; + if (DirectInitRange.isValid()) { + assert(Initializer && "Have parens but no initializer."); + initStyle = CXXNewExpr::CallInit; + } else if (Initializer && isa<InitListExpr>(Initializer)) + initStyle = CXXNewExpr::ListInit; + else { + // In template instantiation, the initializer could be a CXXDefaultArgExpr + // unwrapped from a CXXConstructExpr that was implicitly built. There is no + // particularly sane way we can handle this (especially since it can even + // occur for array new), so we throw the initializer away and have it be + // rebuilt. + if (Initializer && isa<CXXDefaultArgExpr>(Initializer)) + Initializer = 0; + assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || + isa<CXXConstructExpr>(Initializer)) && + "Initializer expression that cannot have been implicitly created."); + initStyle = CXXNewExpr::NoInit; + } + + Expr **Inits = &Initializer; + unsigned NumInits = Initializer ? 1 : 0; + if (initStyle == CXXNewExpr::CallInit) { + if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) { + Inits = List->getExprs(); + NumInits = List->getNumExprs(); + } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){ + if (!isa<CXXTemporaryObjectExpr>(CCE)) { + // Can happen in template instantiation. Since this is just an implicit + // construction, we just take it apart and rebuild it. + Inits = CCE->getArgs(); + NumInits = CCE->getNumArgs(); + } + } + } + + // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. + if (TypeMayContainAuto && AllocType->getContainedAutoType()) { + if (initStyle == CXXNewExpr::NoInit || NumInits == 0) + return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) + << AllocType << TypeRange); + if (initStyle == CXXNewExpr::ListInit) + return ExprError(Diag(Inits[0]->getLocStart(), + diag::err_auto_new_requires_parens) + << AllocType << TypeRange); + if (NumInits > 1) { + Expr *FirstBad = Inits[1]; + return ExprError(Diag(FirstBad->getLocStart(), + diag::err_auto_new_ctor_multiple_expressions) + << AllocType << TypeRange); + } + Expr *Deduce = Inits[0]; + TypeSourceInfo *DeducedType = 0; + if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == + DAR_Failed) + return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) + << AllocType << Deduce->getType() + << TypeRange << Deduce->getSourceRange()); + if (!DeducedType) + return ExprError(); + + AllocTypeInfo = DeducedType; + AllocType = AllocTypeInfo->getType(); + } + + // Per C++0x [expr.new]p5, the type being constructed may be a + // typedef of an array type. + if (!ArraySize) { + if (const ConstantArrayType *Array + = Context.getAsConstantArrayType(AllocType)) { + ArraySize = IntegerLiteral::Create(Context, Array->getSize(), + Context.getSizeType(), + TypeRange.getEnd()); + AllocType = Array->getElementType(); + } + } + + if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) + return ExprError(); + + if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) { + Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(), + diag::warn_dangling_std_initializer_list) + << /*at end of FE*/0 << Inits[0]->getSourceRange(); + } + + // In ARC, infer 'retaining' for the allocated + if (getLangOpts().ObjCAutoRefCount && + AllocType.getObjCLifetime() == Qualifiers::OCL_None && + AllocType->isObjCLifetimeType()) { + AllocType = Context.getLifetimeQualifiedType(AllocType, + AllocType->getObjCARCImplicitLifetime()); + } + + QualType ResultType = Context.getPointerType(AllocType); + + // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have + // integral or enumeration type with a non-negative value." + // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped + // enumeration type, or a class type for which a single non-explicit + // conversion function to integral or unscoped enumeration type exists. + if (ArraySize && !ArraySize->isTypeDependent()) { + ExprResult ConvertedSize = ConvertToIntegralOrEnumerationType( + StartLoc, ArraySize, + PDiag(diag::err_array_size_not_integral) << getLangOpts().CPlusPlus0x, + PDiag(diag::err_array_size_incomplete_type) + << ArraySize->getSourceRange(), + PDiag(diag::err_array_size_explicit_conversion), + PDiag(diag::note_array_size_conversion), + PDiag(diag::err_array_size_ambiguous_conversion), + PDiag(diag::note_array_size_conversion), + PDiag(getLangOpts().CPlusPlus0x ? + diag::warn_cxx98_compat_array_size_conversion : + diag::ext_array_size_conversion), + /*AllowScopedEnumerations*/ false); + if (ConvertedSize.isInvalid()) + return ExprError(); + + ArraySize = ConvertedSize.take(); + QualType SizeType = ArraySize->getType(); + if (!SizeType->isIntegralOrUnscopedEnumerationType()) + return ExprError(); + + // C++98 [expr.new]p7: + // The expression in a direct-new-declarator shall have integral type + // with a non-negative value. + // + // Let's see if this is a constant < 0. If so, we reject it out of + // hand. Otherwise, if it's not a constant, we must have an unparenthesized + // array type. + // + // Note: such a construct has well-defined semantics in C++11: it throws + // std::bad_array_new_length. + if (!ArraySize->isValueDependent()) { + llvm::APSInt Value; + // We've already performed any required implicit conversion to integer or + // unscoped enumeration type. + if (ArraySize->isIntegerConstantExpr(Value, Context)) { + if (Value < llvm::APSInt( + llvm::APInt::getNullValue(Value.getBitWidth()), + Value.isUnsigned())) { + if (getLangOpts().CPlusPlus0x) + Diag(ArraySize->getLocStart(), + diag::warn_typecheck_negative_array_new_size) + << ArraySize->getSourceRange(); + else + return ExprError(Diag(ArraySize->getLocStart(), + diag::err_typecheck_negative_array_size) + << ArraySize->getSourceRange()); + } else if (!AllocType->isDependentType()) { + unsigned ActiveSizeBits = + ConstantArrayType::getNumAddressingBits(Context, AllocType, Value); + if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { + if (getLangOpts().CPlusPlus0x) + Diag(ArraySize->getLocStart(), + diag::warn_array_new_too_large) + << Value.toString(10) + << ArraySize->getSourceRange(); + else + return ExprError(Diag(ArraySize->getLocStart(), + diag::err_array_too_large) + << Value.toString(10) + << ArraySize->getSourceRange()); + } + } + } else if (TypeIdParens.isValid()) { + // Can't have dynamic array size when the type-id is in parentheses. + Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst) + << ArraySize->getSourceRange() + << FixItHint::CreateRemoval(TypeIdParens.getBegin()) + << FixItHint::CreateRemoval(TypeIdParens.getEnd()); + + TypeIdParens = SourceRange(); + } + } + + // ARC: warn about ABI issues. + if (getLangOpts().ObjCAutoRefCount) { + QualType BaseAllocType = Context.getBaseElementType(AllocType); + if (BaseAllocType.hasStrongOrWeakObjCLifetime()) + Diag(StartLoc, diag::warn_err_new_delete_object_array) + << 0 << BaseAllocType; + } + + // Note that we do *not* convert the argument in any way. It can + // be signed, larger than size_t, whatever. + } + + FunctionDecl *OperatorNew = 0; + FunctionDecl *OperatorDelete = 0; + Expr **PlaceArgs = (Expr**)PlacementArgs.get(); + unsigned NumPlaceArgs = PlacementArgs.size(); + + if (!AllocType->isDependentType() && + !Expr::hasAnyTypeDependentArguments( + llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) && + FindAllocationFunctions(StartLoc, + SourceRange(PlacementLParen, PlacementRParen), + UseGlobal, AllocType, ArraySize, PlaceArgs, + NumPlaceArgs, OperatorNew, OperatorDelete)) + return ExprError(); + + // If this is an array allocation, compute whether the usual array + // deallocation function for the type has a size_t parameter. + bool UsualArrayDeleteWantsSize = false; + if (ArraySize && !AllocType->isDependentType()) + UsualArrayDeleteWantsSize + = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); + + SmallVector<Expr *, 8> AllPlaceArgs; + if (OperatorNew) { + // Add default arguments, if any. + const FunctionProtoType *Proto = + OperatorNew->getType()->getAs<FunctionProtoType>(); + VariadicCallType CallType = + Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; + + if (GatherArgumentsForCall(PlacementLParen, OperatorNew, + Proto, 1, PlaceArgs, NumPlaceArgs, + AllPlaceArgs, CallType)) + return ExprError(); + + NumPlaceArgs = AllPlaceArgs.size(); + if (NumPlaceArgs > 0) + PlaceArgs = &AllPlaceArgs[0]; + + DiagnoseSentinelCalls(OperatorNew, PlacementLParen, + PlaceArgs, NumPlaceArgs); + + // FIXME: Missing call to CheckFunctionCall or equivalent + } + + // Warn if the type is over-aligned and is being allocated by global operator + // new. + if (NumPlaceArgs == 0 && OperatorNew && + (OperatorNew->isImplicit() || + getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) { + if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){ + unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign(); + if (Align > SuitableAlign) + Diag(StartLoc, diag::warn_overaligned_type) + << AllocType + << unsigned(Align / Context.getCharWidth()) + << unsigned(SuitableAlign / Context.getCharWidth()); + } + } + + QualType InitType = AllocType; + // Array 'new' can't have any initializers except empty parentheses. + // Initializer lists are also allowed, in C++11. Rely on the parser for the + // dialect distinction. + if (ResultType->isArrayType() || ArraySize) { + if (!isLegalArrayNewInitializer(initStyle, Initializer)) { + SourceRange InitRange(Inits[0]->getLocStart(), + Inits[NumInits - 1]->getLocEnd()); + Diag(StartLoc, diag::err_new_array_init_args) << InitRange; + return ExprError(); + } + if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) { + // We do the initialization typechecking against the array type + // corresponding to the number of initializers + 1 (to also check + // default-initialization). + unsigned NumElements = ILE->getNumInits() + 1; + InitType = Context.getConstantArrayType(AllocType, + llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements), + ArrayType::Normal, 0); + } + } + + if (!AllocType->isDependentType() && + !Expr::hasAnyTypeDependentArguments( + llvm::makeArrayRef(Inits, NumInits))) { + // C++11 [expr.new]p15: + // A new-expression that creates an object of type T initializes that + // object as follows: + InitializationKind Kind + // - If the new-initializer is omitted, the object is default- + // initialized (8.5); if no initialization is performed, + // the object has indeterminate value + = initStyle == CXXNewExpr::NoInit + ? InitializationKind::CreateDefault(TypeRange.getBegin()) + // - Otherwise, the new-initializer is interpreted according to the + // initialization rules of 8.5 for direct-initialization. + : initStyle == CXXNewExpr::ListInit + ? InitializationKind::CreateDirectList(TypeRange.getBegin()) + : InitializationKind::CreateDirect(TypeRange.getBegin(), + DirectInitRange.getBegin(), + DirectInitRange.getEnd()); + + InitializedEntity Entity + = InitializedEntity::InitializeNew(StartLoc, InitType); + InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits); + ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, + MultiExprArg(Inits, NumInits)); + if (FullInit.isInvalid()) + return ExprError(); + + // FullInit is our initializer; strip off CXXBindTemporaryExprs, because + // we don't want the initialized object to be destructed. + if (CXXBindTemporaryExpr *Binder = + dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) + FullInit = Owned(Binder->getSubExpr()); + + Initializer = FullInit.take(); + } + + // Mark the new and delete operators as referenced. + if (OperatorNew) + MarkFunctionReferenced(StartLoc, OperatorNew); + if (OperatorDelete) + MarkFunctionReferenced(StartLoc, OperatorDelete); + + // C++0x [expr.new]p17: + // If the new expression creates an array of objects of class type, + // access and ambiguity control are done for the destructor. + QualType BaseAllocType = Context.getBaseElementType(AllocType); + if (ArraySize && !BaseAllocType->isDependentType()) { + if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) { + if (CXXDestructorDecl *dtor = LookupDestructor( + cast<CXXRecordDecl>(BaseRecordType->getDecl()))) { + MarkFunctionReferenced(StartLoc, dtor); + CheckDestructorAccess(StartLoc, dtor, + PDiag(diag::err_access_dtor) + << BaseAllocType); + DiagnoseUseOfDecl(dtor, StartLoc); + } + } + } + + PlacementArgs.release(); + + return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew, + OperatorDelete, + UsualArrayDeleteWantsSize, + PlaceArgs, NumPlaceArgs, TypeIdParens, + ArraySize, initStyle, Initializer, + ResultType, AllocTypeInfo, + StartLoc, DirectInitRange)); +} + +/// \brief Checks that a type is suitable as the allocated type +/// in a new-expression. +bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, + SourceRange R) { + // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an + // abstract class type or array thereof. + if (AllocType->isFunctionType()) + return Diag(Loc, diag::err_bad_new_type) + << AllocType << 0 << R; + else if (AllocType->isReferenceType()) + return Diag(Loc, diag::err_bad_new_type) + << AllocType << 1 << R; + else if (!AllocType->isDependentType() && + RequireCompleteType(Loc, AllocType, + PDiag(diag::err_new_incomplete_type) + << R)) + return true; + else if (RequireNonAbstractType(Loc, AllocType, + diag::err_allocation_of_abstract_type)) + return true; + else if (AllocType->isVariablyModifiedType()) + return Diag(Loc, diag::err_variably_modified_new_type) + << AllocType; + else if (unsigned AddressSpace = AllocType.getAddressSpace()) + return Diag(Loc, diag::err_address_space_qualified_new) + << AllocType.getUnqualifiedType() << AddressSpace; + else if (getLangOpts().ObjCAutoRefCount) { + if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { + QualType BaseAllocType = Context.getBaseElementType(AT); + if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && + BaseAllocType->isObjCLifetimeType()) + return Diag(Loc, diag::err_arc_new_array_without_ownership) + << BaseAllocType; + } + } + + return false; +} + +/// \brief Determine whether the given function is a non-placement +/// deallocation function. +static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) { + if (FD->isInvalidDecl()) + return false; + + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) + return Method->isUsualDeallocationFunction(); + + return ((FD->getOverloadedOperator() == OO_Delete || + FD->getOverloadedOperator() == OO_Array_Delete) && + FD->getNumParams() == 1); +} + +/// FindAllocationFunctions - Finds the overloads of operator new and delete +/// that are appropriate for the allocation. +bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, + bool UseGlobal, QualType AllocType, + bool IsArray, Expr **PlaceArgs, + unsigned NumPlaceArgs, + FunctionDecl *&OperatorNew, + FunctionDecl *&OperatorDelete) { + // --- Choosing an allocation function --- + // C++ 5.3.4p8 - 14 & 18 + // 1) If UseGlobal is true, only look in the global scope. Else, also look + // in the scope of the allocated class. + // 2) If an array size is given, look for operator new[], else look for + // operator new. + // 3) The first argument is always size_t. Append the arguments from the + // placement form. + + SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs); + // We don't care about the actual value of this argument. + // FIXME: Should the Sema create the expression and embed it in the syntax + // tree? Or should the consumer just recalculate the value? + IntegerLiteral Size(Context, llvm::APInt::getNullValue( + Context.getTargetInfo().getPointerWidth(0)), + Context.getSizeType(), + SourceLocation()); + AllocArgs[0] = &Size; + std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1); + + // C++ [expr.new]p8: + // If the allocated type is a non-array type, the allocation + // function's name is operator new and the deallocation function's + // name is operator delete. If the allocated type is an array + // type, the allocation function's name is operator new[] and the + // deallocation function's name is operator delete[]. + DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( + IsArray ? OO_Array_New : OO_New); + DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( + IsArray ? OO_Array_Delete : OO_Delete); + + QualType AllocElemType = Context.getBaseElementType(AllocType); + + if (AllocElemType->isRecordType() && !UseGlobal) { + CXXRecordDecl *Record + = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); + if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], + AllocArgs.size(), Record, /*AllowMissing=*/true, + OperatorNew)) + return true; + } + if (!OperatorNew) { + // Didn't find a member overload. Look for a global one. + DeclareGlobalNewDelete(); + DeclContext *TUDecl = Context.getTranslationUnitDecl(); + if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], + AllocArgs.size(), TUDecl, /*AllowMissing=*/false, + OperatorNew)) + return true; + } + + // We don't need an operator delete if we're running under + // -fno-exceptions. + if (!getLangOpts().Exceptions) { + OperatorDelete = 0; + return false; + } + + // FindAllocationOverload can change the passed in arguments, so we need to + // copy them back. + if (NumPlaceArgs > 0) + std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs); + + // C++ [expr.new]p19: + // + // If the new-expression begins with a unary :: operator, the + // deallocation function's name is looked up in the global + // scope. Otherwise, if the allocated type is a class type T or an + // array thereof, the deallocation function's name is looked up in + // the scope of T. If this lookup fails to find the name, or if + // the allocated type is not a class type or array thereof, the + // deallocation function's name is looked up in the global scope. + LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); + if (AllocElemType->isRecordType() && !UseGlobal) { + CXXRecordDecl *RD + = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); + LookupQualifiedName(FoundDelete, RD); + } + if (FoundDelete.isAmbiguous()) + return true; // FIXME: clean up expressions? + + if (FoundDelete.empty()) { + DeclareGlobalNewDelete(); + LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); + } + + FoundDelete.suppressDiagnostics(); + + SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; + + // Whether we're looking for a placement operator delete is dictated + // by whether we selected a placement operator new, not by whether + // we had explicit placement arguments. This matters for things like + // struct A { void *operator new(size_t, int = 0); ... }; + // A *a = new A() + bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1); + + if (isPlacementNew) { + // C++ [expr.new]p20: + // A declaration of a placement deallocation function matches the + // declaration of a placement allocation function if it has the + // same number of parameters and, after parameter transformations + // (8.3.5), all parameter types except the first are + // identical. [...] + // + // To perform this comparison, we compute the function type that + // the deallocation function should have, and use that type both + // for template argument deduction and for comparison purposes. + // + // FIXME: this comparison should ignore CC and the like. + QualType ExpectedFunctionType; + { + const FunctionProtoType *Proto + = OperatorNew->getType()->getAs<FunctionProtoType>(); + + SmallVector<QualType, 4> ArgTypes; + ArgTypes.push_back(Context.VoidPtrTy); + for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I) + ArgTypes.push_back(Proto->getArgType(I)); + + FunctionProtoType::ExtProtoInfo EPI; + EPI.Variadic = Proto->isVariadic(); + + ExpectedFunctionType + = Context.getFunctionType(Context.VoidTy, ArgTypes.data(), + ArgTypes.size(), EPI); + } + + for (LookupResult::iterator D = FoundDelete.begin(), + DEnd = FoundDelete.end(); + D != DEnd; ++D) { + FunctionDecl *Fn = 0; + if (FunctionTemplateDecl *FnTmpl + = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { + // Perform template argument deduction to try to match the + // expected function type. + TemplateDeductionInfo Info(Context, StartLoc); + if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info)) + continue; + } else + Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); + + if (Context.hasSameType(Fn->getType(), ExpectedFunctionType)) + Matches.push_back(std::make_pair(D.getPair(), Fn)); + } + } else { + // C++ [expr.new]p20: + // [...] Any non-placement deallocation function matches a + // non-placement allocation function. [...] + for (LookupResult::iterator D = FoundDelete.begin(), + DEnd = FoundDelete.end(); + D != DEnd; ++D) { + if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl())) + if (isNonPlacementDeallocationFunction(Fn)) + Matches.push_back(std::make_pair(D.getPair(), Fn)); + } + } + + // C++ [expr.new]p20: + // [...] If the lookup finds a single matching deallocation + // function, that function will be called; otherwise, no + // deallocation function will be called. + if (Matches.size() == 1) { + OperatorDelete = Matches[0].second; + + // C++0x [expr.new]p20: + // If the lookup finds the two-parameter form of a usual + // deallocation function (3.7.4.2) and that function, considered + // as a placement deallocation function, would have been + // selected as a match for the allocation function, the program + // is ill-formed. + if (NumPlaceArgs && getLangOpts().CPlusPlus0x && + isNonPlacementDeallocationFunction(OperatorDelete)) { + Diag(StartLoc, diag::err_placement_new_non_placement_delete) + << SourceRange(PlaceArgs[0]->getLocStart(), + PlaceArgs[NumPlaceArgs - 1]->getLocEnd()); + Diag(OperatorDelete->getLocation(), diag::note_previous_decl) + << DeleteName; + } else { + CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), + Matches[0].first); + } + } + + return false; +} + +/// FindAllocationOverload - Find an fitting overload for the allocation +/// function in the specified scope. +bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, + DeclarationName Name, Expr** Args, + unsigned NumArgs, DeclContext *Ctx, + bool AllowMissing, FunctionDecl *&Operator, + bool Diagnose) { + LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); + LookupQualifiedName(R, Ctx); + if (R.empty()) { + if (AllowMissing || !Diagnose) + return false; + return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) + << Name << Range; + } + + if (R.isAmbiguous()) + return true; + + R.suppressDiagnostics(); + + OverloadCandidateSet Candidates(StartLoc); + for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); + Alloc != AllocEnd; ++Alloc) { + // Even member operator new/delete are implicitly treated as + // static, so don't use AddMemberCandidate. + NamedDecl *D = (*Alloc)->getUnderlyingDecl(); + + if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { + AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), + /*ExplicitTemplateArgs=*/0, + llvm::makeArrayRef(Args, NumArgs), + Candidates, + /*SuppressUserConversions=*/false); + continue; + } + + FunctionDecl *Fn = cast<FunctionDecl>(D); + AddOverloadCandidate(Fn, Alloc.getPair(), + llvm::makeArrayRef(Args, NumArgs), Candidates, + /*SuppressUserConversions=*/false); + } + + // Do the resolution. + OverloadCandidateSet::iterator Best; + switch (Candidates.BestViableFunction(*this, StartLoc, Best)) { + case OR_Success: { + // Got one! + FunctionDecl *FnDecl = Best->Function; + MarkFunctionReferenced(StartLoc, FnDecl); + // The first argument is size_t, and the first parameter must be size_t, + // too. This is checked on declaration and can be assumed. (It can't be + // asserted on, though, since invalid decls are left in there.) + // Watch out for variadic allocator function. + unsigned NumArgsInFnDecl = FnDecl->getNumParams(); + for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) { + InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, + FnDecl->getParamDecl(i)); + + if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i]))) + return true; + + ExprResult Result + = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i])); + if (Result.isInvalid()) + return true; + + Args[i] = Result.takeAs<Expr>(); + } + + Operator = FnDecl; + + if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), + Best->FoundDecl, Diagnose) == AR_inaccessible) + return true; + + return false; + } + + case OR_No_Viable_Function: + if (Diagnose) { + Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) + << Name << Range; + Candidates.NoteCandidates(*this, OCD_AllCandidates, + llvm::makeArrayRef(Args, NumArgs)); + } + return true; + + case OR_Ambiguous: + if (Diagnose) { + Diag(StartLoc, diag::err_ovl_ambiguous_call) + << Name << Range; + Candidates.NoteCandidates(*this, OCD_ViableCandidates, + llvm::makeArrayRef(Args, NumArgs)); + } + return true; + + case OR_Deleted: { + if (Diagnose) { + Diag(StartLoc, diag::err_ovl_deleted_call) + << Best->Function->isDeleted() + << Name + << getDeletedOrUnavailableSuffix(Best->Function) + << Range; + Candidates.NoteCandidates(*this, OCD_AllCandidates, + llvm::makeArrayRef(Args, NumArgs)); + } + return true; + } + } + llvm_unreachable("Unreachable, bad result from BestViableFunction"); +} + + +/// DeclareGlobalNewDelete - Declare the global forms of operator new and +/// delete. These are: +/// @code +/// // C++03: +/// void* operator new(std::size_t) throw(std::bad_alloc); +/// void* operator new[](std::size_t) throw(std::bad_alloc); +/// void operator delete(void *) throw(); +/// void operator delete[](void *) throw(); +/// // C++0x: +/// void* operator new(std::size_t); +/// void* operator new[](std::size_t); +/// void operator delete(void *); +/// void operator delete[](void *); +/// @endcode +/// C++0x operator delete is implicitly noexcept. +/// Note that the placement and nothrow forms of new are *not* implicitly +/// declared. Their use requires including \<new\>. +void Sema::DeclareGlobalNewDelete() { + if (GlobalNewDeleteDeclared) + return; + + // C++ [basic.std.dynamic]p2: + // [...] The following allocation and deallocation functions (18.4) are + // implicitly declared in global scope in each translation unit of a + // program + // + // C++03: + // void* operator new(std::size_t) throw(std::bad_alloc); + // void* operator new[](std::size_t) throw(std::bad_alloc); + // void operator delete(void*) throw(); + // void operator delete[](void*) throw(); + // C++0x: + // void* operator new(std::size_t); + // void* operator new[](std::size_t); + // void operator delete(void*); + // void operator delete[](void*); + // + // These implicit declarations introduce only the function names operator + // new, operator new[], operator delete, operator delete[]. + // + // Here, we need to refer to std::bad_alloc, so we will implicitly declare + // "std" or "bad_alloc" as necessary to form the exception specification. + // However, we do not make these implicit declarations visible to name + // lookup. + // Note that the C++0x versions of operator delete are deallocation functions, + // and thus are implicitly noexcept. + if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) { + // The "std::bad_alloc" class has not yet been declared, so build it + // implicitly. + StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, + getOrCreateStdNamespace(), + SourceLocation(), SourceLocation(), + &PP.getIdentifierTable().get("bad_alloc"), + 0); + getStdBadAlloc()->setImplicit(true); + } + + GlobalNewDeleteDeclared = true; + + QualType VoidPtr = Context.getPointerType(Context.VoidTy); + QualType SizeT = Context.getSizeType(); + bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew; + + DeclareGlobalAllocationFunction( + Context.DeclarationNames.getCXXOperatorName(OO_New), + VoidPtr, SizeT, AssumeSaneOperatorNew); + DeclareGlobalAllocationFunction( + Context.DeclarationNames.getCXXOperatorName(OO_Array_New), + VoidPtr, SizeT, AssumeSaneOperatorNew); + DeclareGlobalAllocationFunction( + Context.DeclarationNames.getCXXOperatorName(OO_Delete), + Context.VoidTy, VoidPtr); + DeclareGlobalAllocationFunction( + Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), + Context.VoidTy, VoidPtr); +} + +/// DeclareGlobalAllocationFunction - Declares a single implicit global +/// allocation function if it doesn't already exist. +void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, + QualType Return, QualType Argument, + bool AddMallocAttr) { + DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); + + // Check if this function is already declared. + { + DeclContext::lookup_iterator Alloc, AllocEnd; + for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name); + Alloc != AllocEnd; ++Alloc) { + // Only look at non-template functions, as it is the predefined, + // non-templated allocation function we are trying to declare here. + if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { + QualType InitialParamType = + Context.getCanonicalType( + Func->getParamDecl(0)->getType().getUnqualifiedType()); + // FIXME: Do we need to check for default arguments here? + if (Func->getNumParams() == 1 && InitialParamType == Argument) { + if(AddMallocAttr && !Func->hasAttr<MallocAttr>()) + Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context)); + return; + } + } + } + } + + QualType BadAllocType; + bool HasBadAllocExceptionSpec + = (Name.getCXXOverloadedOperator() == OO_New || + Name.getCXXOverloadedOperator() == OO_Array_New); + if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) { + assert(StdBadAlloc && "Must have std::bad_alloc declared"); + BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); + } + + FunctionProtoType::ExtProtoInfo EPI; + if (HasBadAllocExceptionSpec) { + if (!getLangOpts().CPlusPlus0x) { + EPI.ExceptionSpecType = EST_Dynamic; + EPI.NumExceptions = 1; + EPI.Exceptions = &BadAllocType; + } + } else { + EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ? + EST_BasicNoexcept : EST_DynamicNone; + } + + QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI); + FunctionDecl *Alloc = + FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), + SourceLocation(), Name, + FnType, /*TInfo=*/0, SC_None, + SC_None, false, true); + Alloc->setImplicit(); + + if (AddMallocAttr) + Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context)); + + ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(), + SourceLocation(), 0, + Argument, /*TInfo=*/0, + SC_None, SC_None, 0); + Alloc->setParams(Param); + + // FIXME: Also add this declaration to the IdentifierResolver, but + // make sure it is at the end of the chain to coincide with the + // global scope. + Context.getTranslationUnitDecl()->addDecl(Alloc); +} + +bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, + DeclarationName Name, + FunctionDecl* &Operator, bool Diagnose) { + LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); + // Try to find operator delete/operator delete[] in class scope. + LookupQualifiedName(Found, RD); + + if (Found.isAmbiguous()) + return true; + + Found.suppressDiagnostics(); + + SmallVector<DeclAccessPair,4> Matches; + for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); + F != FEnd; ++F) { + NamedDecl *ND = (*F)->getUnderlyingDecl(); + + // Ignore template operator delete members from the check for a usual + // deallocation function. + if (isa<FunctionTemplateDecl>(ND)) + continue; + + if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction()) + Matches.push_back(F.getPair()); + } + + // There's exactly one suitable operator; pick it. + if (Matches.size() == 1) { + Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl()); + + if (Operator->isDeleted()) { + if (Diagnose) { + Diag(StartLoc, diag::err_deleted_function_use); + NoteDeletedFunction(Operator); + } + return true; + } + + if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), + Matches[0], Diagnose) == AR_inaccessible) + return true; + + return false; + + // We found multiple suitable operators; complain about the ambiguity. + } else if (!Matches.empty()) { + if (Diagnose) { + Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) + << Name << RD; + + for (SmallVectorImpl<DeclAccessPair>::iterator + F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F) + Diag((*F)->getUnderlyingDecl()->getLocation(), + diag::note_member_declared_here) << Name; + } + return true; + } + + // We did find operator delete/operator delete[] declarations, but + // none of them were suitable. + if (!Found.empty()) { + if (Diagnose) { + Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) + << Name << RD; + + for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); + F != FEnd; ++F) + Diag((*F)->getUnderlyingDecl()->getLocation(), + diag::note_member_declared_here) << Name; + } + return true; + } + + // Look for a global declaration. + DeclareGlobalNewDelete(); + DeclContext *TUDecl = Context.getTranslationUnitDecl(); + + CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation()); + Expr* DeallocArgs[1]; + DeallocArgs[0] = &Null; + if (FindAllocationOverload(StartLoc, SourceRange(), Name, + DeallocArgs, 1, TUDecl, !Diagnose, + Operator, Diagnose)) + return true; + + assert(Operator && "Did not find a deallocation function!"); + return false; +} + +/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: +/// @code ::delete ptr; @endcode +/// or +/// @code delete [] ptr; @endcode +ExprResult +Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, + bool ArrayForm, Expr *ExE) { + // C++ [expr.delete]p1: + // The operand shall have a pointer type, or a class type having a single + // conversion function to a pointer type. The result has type void. + // + // DR599 amends "pointer type" to "pointer to object type" in both cases. + + ExprResult Ex = Owned(ExE); + FunctionDecl *OperatorDelete = 0; + bool ArrayFormAsWritten = ArrayForm; + bool UsualArrayDeleteWantsSize = false; + + if (!Ex.get()->isTypeDependent()) { + // Perform lvalue-to-rvalue cast, if needed. + Ex = DefaultLvalueConversion(Ex.take()); + + QualType Type = Ex.get()->getType(); + + if (const RecordType *Record = Type->getAs<RecordType>()) { + if (RequireCompleteType(StartLoc, Type, + PDiag(diag::err_delete_incomplete_class_type))) + return ExprError(); + + SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions; + + CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); + const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions(); + for (UnresolvedSetImpl::iterator I = Conversions->begin(), + E = Conversions->end(); I != E; ++I) { + NamedDecl *D = I.getDecl(); + if (isa<UsingShadowDecl>(D)) + D = cast<UsingShadowDecl>(D)->getTargetDecl(); + + // Skip over templated conversion functions; they aren't considered. + if (isa<FunctionTemplateDecl>(D)) + continue; + + CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); + + QualType ConvType = Conv->getConversionType().getNonReferenceType(); + if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) + if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) + ObjectPtrConversions.push_back(Conv); + } + if (ObjectPtrConversions.size() == 1) { + // We have a single conversion to a pointer-to-object type. Perform + // that conversion. + // TODO: don't redo the conversion calculation. + ExprResult Res = + PerformImplicitConversion(Ex.get(), + ObjectPtrConversions.front()->getConversionType(), + AA_Converting); + if (Res.isUsable()) { + Ex = move(Res); + Type = Ex.get()->getType(); + } + } + else if (ObjectPtrConversions.size() > 1) { + Diag(StartLoc, diag::err_ambiguous_delete_operand) + << Type << Ex.get()->getSourceRange(); + for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) + NoteOverloadCandidate(ObjectPtrConversions[i]); + return ExprError(); + } + } + + if (!Type->isPointerType()) + return ExprError(Diag(StartLoc, diag::err_delete_operand) + << Type << Ex.get()->getSourceRange()); + + QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); + QualType PointeeElem = Context.getBaseElementType(Pointee); + + if (unsigned AddressSpace = Pointee.getAddressSpace()) + return Diag(Ex.get()->getLocStart(), + diag::err_address_space_qualified_delete) + << Pointee.getUnqualifiedType() << AddressSpace; + + CXXRecordDecl *PointeeRD = 0; + if (Pointee->isVoidType() && !isSFINAEContext()) { + // The C++ standard bans deleting a pointer to a non-object type, which + // effectively bans deletion of "void*". However, most compilers support + // this, so we treat it as a warning unless we're in a SFINAE context. + Diag(StartLoc, diag::ext_delete_void_ptr_operand) + << Type << Ex.get()->getSourceRange(); + } else if (Pointee->isFunctionType() || Pointee->isVoidType()) { + return ExprError(Diag(StartLoc, diag::err_delete_operand) + << Type << Ex.get()->getSourceRange()); + } else if (!Pointee->isDependentType()) { + if (!RequireCompleteType(StartLoc, Pointee, + PDiag(diag::warn_delete_incomplete) + << Ex.get()->getSourceRange())) { + if (const RecordType *RT = PointeeElem->getAs<RecordType>()) + PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); + } + } + + // C++ [expr.delete]p2: + // [Note: a pointer to a const type can be the operand of a + // delete-expression; it is not necessary to cast away the constness + // (5.2.11) of the pointer expression before it is used as the operand + // of the delete-expression. ] + if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy)) + Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy, + CK_BitCast, Ex.take(), 0, VK_RValue)); + + if (Pointee->isArrayType() && !ArrayForm) { + Diag(StartLoc, diag::warn_delete_array_type) + << Type << Ex.get()->getSourceRange() + << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]"); + ArrayForm = true; + } + + DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( + ArrayForm ? OO_Array_Delete : OO_Delete); + + if (PointeeRD) { + if (!UseGlobal && + FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, + OperatorDelete)) + return ExprError(); + + // If we're allocating an array of records, check whether the + // usual operator delete[] has a size_t parameter. + if (ArrayForm) { + // If the user specifically asked to use the global allocator, + // we'll need to do the lookup into the class. + if (UseGlobal) + UsualArrayDeleteWantsSize = + doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); + + // Otherwise, the usual operator delete[] should be the + // function we just found. + else if (isa<CXXMethodDecl>(OperatorDelete)) + UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2); + } + + if (!PointeeRD->hasIrrelevantDestructor()) + if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { + MarkFunctionReferenced(StartLoc, + const_cast<CXXDestructorDecl*>(Dtor)); + DiagnoseUseOfDecl(Dtor, StartLoc); + } + + // C++ [expr.delete]p3: + // In the first alternative (delete object), if the static type of the + // object to be deleted is different from its dynamic type, the static + // type shall be a base class of the dynamic type of the object to be + // deleted and the static type shall have a virtual destructor or the + // behavior is undefined. + // + // Note: a final class cannot be derived from, no issue there + if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) { + CXXDestructorDecl *dtor = PointeeRD->getDestructor(); + if (dtor && !dtor->isVirtual()) { + if (PointeeRD->isAbstract()) { + // If the class is abstract, we warn by default, because we're + // sure the code has undefined behavior. + Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor) + << PointeeElem; + } else if (!ArrayForm) { + // Otherwise, if this is not an array delete, it's a bit suspect, + // but not necessarily wrong. + Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem; + } + } + } + + } else if (getLangOpts().ObjCAutoRefCount && + PointeeElem->isObjCLifetimeType() && + (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong || + PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) && + ArrayForm) { + Diag(StartLoc, diag::warn_err_new_delete_object_array) + << 1 << PointeeElem; + } + + if (!OperatorDelete) { + // Look for a global declaration. + DeclareGlobalNewDelete(); + DeclContext *TUDecl = Context.getTranslationUnitDecl(); + Expr *Arg = Ex.get(); + if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName, + &Arg, 1, TUDecl, /*AllowMissing=*/false, + OperatorDelete)) + return ExprError(); + } + + MarkFunctionReferenced(StartLoc, OperatorDelete); + + // Check access and ambiguity of operator delete and destructor. + if (PointeeRD) { + if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { + CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, + PDiag(diag::err_access_dtor) << PointeeElem); + } + } + + } + + return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, + ArrayFormAsWritten, + UsualArrayDeleteWantsSize, + OperatorDelete, Ex.take(), StartLoc)); +} + +/// \brief Check the use of the given variable as a C++ condition in an if, +/// while, do-while, or switch statement. +ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, + SourceLocation StmtLoc, + bool ConvertToBoolean) { + QualType T = ConditionVar->getType(); + + // C++ [stmt.select]p2: + // The declarator shall not specify a function or an array. + if (T->isFunctionType()) + return ExprError(Diag(ConditionVar->getLocation(), + diag::err_invalid_use_of_function_type) + << ConditionVar->getSourceRange()); + else if (T->isArrayType()) + return ExprError(Diag(ConditionVar->getLocation(), + diag::err_invalid_use_of_array_type) + << ConditionVar->getSourceRange()); + + ExprResult Condition = + Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(), + SourceLocation(), + ConditionVar, + /*enclosing*/ false, + ConditionVar->getLocation(), + ConditionVar->getType().getNonReferenceType(), + VK_LValue)); + + MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get())); + + if (ConvertToBoolean) { + Condition = CheckBooleanCondition(Condition.take(), StmtLoc); + if (Condition.isInvalid()) + return ExprError(); + } + + return move(Condition); +} + +/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. +ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) { + // C++ 6.4p4: + // The value of a condition that is an initialized declaration in a statement + // other than a switch statement is the value of the declared variable + // implicitly converted to type bool. If that conversion is ill-formed, the + // program is ill-formed. + // The value of a condition that is an expression is the value of the + // expression, implicitly converted to bool. + // + return PerformContextuallyConvertToBool(CondExpr); +} + +/// Helper function to determine whether this is the (deprecated) C++ +/// conversion from a string literal to a pointer to non-const char or +/// non-const wchar_t (for narrow and wide string literals, +/// respectively). +bool +Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { + // Look inside the implicit cast, if it exists. + if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) + From = Cast->getSubExpr(); + + // A string literal (2.13.4) that is not a wide string literal can + // be converted to an rvalue of type "pointer to char"; a wide + // string literal can be converted to an rvalue of type "pointer + // to wchar_t" (C++ 4.2p2). + if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) + if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) + if (const BuiltinType *ToPointeeType + = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { + // This conversion is considered only when there is an + // explicit appropriate pointer target type (C++ 4.2p2). + if (!ToPtrType->getPointeeType().hasQualifiers()) { + switch (StrLit->getKind()) { + case StringLiteral::UTF8: + case StringLiteral::UTF16: + case StringLiteral::UTF32: + // We don't allow UTF literals to be implicitly converted + break; + case StringLiteral::Ascii: + return (ToPointeeType->getKind() == BuiltinType::Char_U || + ToPointeeType->getKind() == BuiltinType::Char_S); + case StringLiteral::Wide: + return ToPointeeType->isWideCharType(); + } + } + } + + return false; +} + +static ExprResult BuildCXXCastArgument(Sema &S, + SourceLocation CastLoc, + QualType Ty, + CastKind Kind, + CXXMethodDecl *Method, + DeclAccessPair FoundDecl, + bool HadMultipleCandidates, + Expr *From) { + switch (Kind) { + default: llvm_unreachable("Unhandled cast kind!"); + case CK_ConstructorConversion: { + CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); + ASTOwningVector<Expr*> ConstructorArgs(S); + + if (S.CompleteConstructorCall(Constructor, + MultiExprArg(&From, 1), + CastLoc, ConstructorArgs)) + return ExprError(); + + S.CheckConstructorAccess(CastLoc, Constructor, + InitializedEntity::InitializeTemporary(Ty), + Constructor->getAccess()); + + ExprResult Result + = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method), + move_arg(ConstructorArgs), + HadMultipleCandidates, /*ZeroInit*/ false, + CXXConstructExpr::CK_Complete, SourceRange()); + if (Result.isInvalid()) + return ExprError(); + + return S.MaybeBindToTemporary(Result.takeAs<Expr>()); + } + + case CK_UserDefinedConversion: { + assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); + + // Create an implicit call expr that calls it. + CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); + ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, + HadMultipleCandidates); + if (Result.isInvalid()) + return ExprError(); + // Record usage of conversion in an implicit cast. + Result = S.Owned(ImplicitCastExpr::Create(S.Context, + Result.get()->getType(), + CK_UserDefinedConversion, + Result.get(), 0, + Result.get()->getValueKind())); + + S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl); + + return S.MaybeBindToTemporary(Result.get()); + } + } +} + +/// PerformImplicitConversion - Perform an implicit conversion of the +/// expression From to the type ToType using the pre-computed implicit +/// conversion sequence ICS. Returns the converted +/// expression. Action is the kind of conversion we're performing, +/// used in the error message. +ExprResult +Sema::PerformImplicitConversion(Expr *From, QualType ToType, + const ImplicitConversionSequence &ICS, + AssignmentAction Action, + CheckedConversionKind CCK) { + switch (ICS.getKind()) { + case ImplicitConversionSequence::StandardConversion: { + ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, + Action, CCK); + if (Res.isInvalid()) + return ExprError(); + From = Res.take(); + break; + } + + case ImplicitConversionSequence::UserDefinedConversion: { + + FunctionDecl *FD = ICS.UserDefined.ConversionFunction; + CastKind CastKind; + QualType BeforeToType; + assert(FD && "FIXME: aggregate initialization from init list"); + if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { + CastKind = CK_UserDefinedConversion; + + // If the user-defined conversion is specified by a conversion function, + // the initial standard conversion sequence converts the source type to + // the implicit object parameter of the conversion function. + BeforeToType = Context.getTagDeclType(Conv->getParent()); + } else { + const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); + CastKind = CK_ConstructorConversion; + // Do no conversion if dealing with ... for the first conversion. + if (!ICS.UserDefined.EllipsisConversion) { + // If the user-defined conversion is specified by a constructor, the + // initial standard conversion sequence converts the source type to the + // type required by the argument of the constructor + BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); + } + } + // Watch out for elipsis conversion. + if (!ICS.UserDefined.EllipsisConversion) { + ExprResult Res = + PerformImplicitConversion(From, BeforeToType, + ICS.UserDefined.Before, AA_Converting, + CCK); + if (Res.isInvalid()) + return ExprError(); + From = Res.take(); + } + + ExprResult CastArg + = BuildCXXCastArgument(*this, + From->getLocStart(), + ToType.getNonReferenceType(), + CastKind, cast<CXXMethodDecl>(FD), + ICS.UserDefined.FoundConversionFunction, + ICS.UserDefined.HadMultipleCandidates, + From); + + if (CastArg.isInvalid()) + return ExprError(); + + From = CastArg.take(); + + return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, + AA_Converting, CCK); + } + + case ImplicitConversionSequence::AmbiguousConversion: + ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), + PDiag(diag::err_typecheck_ambiguous_condition) + << From->getSourceRange()); + return ExprError(); + + case ImplicitConversionSequence::EllipsisConversion: + llvm_unreachable("Cannot perform an ellipsis conversion"); + + case ImplicitConversionSequence::BadConversion: + return ExprError(); + } + + // Everything went well. + return Owned(From); +} + +/// PerformImplicitConversion - Perform an implicit conversion of the +/// expression From to the type ToType by following the standard +/// conversion sequence SCS. Returns the converted +/// expression. Flavor is the context in which we're performing this +/// conversion, for use in error messages. +ExprResult +Sema::PerformImplicitConversion(Expr *From, QualType ToType, + const StandardConversionSequence& SCS, + AssignmentAction Action, + CheckedConversionKind CCK) { + bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); + + // Overall FIXME: we are recomputing too many types here and doing far too + // much extra work. What this means is that we need to keep track of more + // information that is computed when we try the implicit conversion initially, + // so that we don't need to recompute anything here. + QualType FromType = From->getType(); + + if (SCS.CopyConstructor) { + // FIXME: When can ToType be a reference type? + assert(!ToType->isReferenceType()); + if (SCS.Second == ICK_Derived_To_Base) { + ASTOwningVector<Expr*> ConstructorArgs(*this); + if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), + MultiExprArg(*this, &From, 1), + /*FIXME:ConstructLoc*/SourceLocation(), + ConstructorArgs)) + return ExprError(); + return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), + ToType, SCS.CopyConstructor, + move_arg(ConstructorArgs), + /*HadMultipleCandidates*/ false, + /*ZeroInit*/ false, + CXXConstructExpr::CK_Complete, + SourceRange()); + } + return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), + ToType, SCS.CopyConstructor, + MultiExprArg(*this, &From, 1), + /*HadMultipleCandidates*/ false, + /*ZeroInit*/ false, + CXXConstructExpr::CK_Complete, + SourceRange()); + } + + // Resolve overloaded function references. + if (Context.hasSameType(FromType, Context.OverloadTy)) { + DeclAccessPair Found; + FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, + true, Found); + if (!Fn) + return ExprError(); + + if (DiagnoseUseOfDecl(Fn, From->getLocStart())) + return ExprError(); + + From = FixOverloadedFunctionReference(From, Found, Fn); + FromType = From->getType(); + } + + // Perform the first implicit conversion. + switch (SCS.First) { + case ICK_Identity: + // Nothing to do. + break; + + case ICK_Lvalue_To_Rvalue: { + assert(From->getObjectKind() != OK_ObjCProperty); + FromType = FromType.getUnqualifiedType(); + ExprResult FromRes = DefaultLvalueConversion(From); + assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!"); + From = FromRes.take(); + break; + } + + case ICK_Array_To_Pointer: + FromType = Context.getArrayDecayedType(FromType); + From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, + VK_RValue, /*BasePath=*/0, CCK).take(); + break; + + case ICK_Function_To_Pointer: + FromType = Context.getPointerType(FromType); + From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, + VK_RValue, /*BasePath=*/0, CCK).take(); + break; + + default: + llvm_unreachable("Improper first standard conversion"); + } + + // Perform the second implicit conversion + switch (SCS.Second) { + case ICK_Identity: + // If both sides are functions (or pointers/references to them), there could + // be incompatible exception declarations. + if (CheckExceptionSpecCompatibility(From, ToType)) + return ExprError(); + // Nothing else to do. + break; + + case ICK_NoReturn_Adjustment: + // If both sides are functions (or pointers/references to them), there could + // be incompatible exception declarations. + if (CheckExceptionSpecCompatibility(From, ToType)) + return ExprError(); + + From = ImpCastExprToType(From, ToType, CK_NoOp, + VK_RValue, /*BasePath=*/0, CCK).take(); + break; + + case ICK_Integral_Promotion: + case ICK_Integral_Conversion: + From = ImpCastExprToType(From, ToType, CK_IntegralCast, + VK_RValue, /*BasePath=*/0, CCK).take(); + break; + + case ICK_Floating_Promotion: + case ICK_Floating_Conversion: + From = ImpCastExprToType(From, ToType, CK_FloatingCast, + VK_RValue, /*BasePath=*/0, CCK).take(); + break; + + case ICK_Complex_Promotion: + case ICK_Complex_Conversion: { + QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType(); + QualType ToEl = ToType->getAs<ComplexType>()->getElementType(); + CastKind CK; + if (FromEl->isRealFloatingType()) { + if (ToEl->isRealFloatingType()) + CK = CK_FloatingComplexCast; + else + CK = CK_FloatingComplexToIntegralComplex; + } else if (ToEl->isRealFloatingType()) { + CK = CK_IntegralComplexToFloatingComplex; + } else { + CK = CK_IntegralComplexCast; + } + From = ImpCastExprToType(From, ToType, CK, + VK_RValue, /*BasePath=*/0, CCK).take(); + break; + } + + case ICK_Floating_Integral: + if (ToType->isRealFloatingType()) + From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, + VK_RValue, /*BasePath=*/0, CCK).take(); + else + From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, + VK_RValue, /*BasePath=*/0, CCK).take(); + break; + + case ICK_Compatible_Conversion: + From = ImpCastExprToType(From, ToType, CK_NoOp, + VK_RValue, /*BasePath=*/0, CCK).take(); + break; + + case ICK_Writeback_Conversion: + case ICK_Pointer_Conversion: { + if (SCS.IncompatibleObjC && Action != AA_Casting) { + // Diagnose incompatible Objective-C conversions + if (Action == AA_Initializing || Action == AA_Assigning) + Diag(From->getLocStart(), + diag::ext_typecheck_convert_incompatible_pointer) + << ToType << From->getType() << Action + << From->getSourceRange() << 0; + else + Diag(From->getLocStart(), + diag::ext_typecheck_convert_incompatible_pointer) + << From->getType() << ToType << Action + << From->getSourceRange() << 0; + + if (From->getType()->isObjCObjectPointerType() && + ToType->isObjCObjectPointerType()) + EmitRelatedResultTypeNote(From); + } + else if (getLangOpts().ObjCAutoRefCount && + !CheckObjCARCUnavailableWeakConversion(ToType, + From->getType())) { + if (Action == AA_Initializing) + Diag(From->getLocStart(), + diag::err_arc_weak_unavailable_assign); + else + Diag(From->getLocStart(), + diag::err_arc_convesion_of_weak_unavailable) + << (Action == AA_Casting) << From->getType() << ToType + << From->getSourceRange(); + } + + CastKind Kind = CK_Invalid; + CXXCastPath BasePath; + if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle)) + return ExprError(); + + // Make sure we extend blocks if necessary. + // FIXME: doing this here is really ugly. + if (Kind == CK_BlockPointerToObjCPointerCast) { + ExprResult E = From; + (void) PrepareCastToObjCObjectPointer(E); + From = E.take(); + } + + From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) + .take(); + break; + } + + case ICK_Pointer_Member: { + CastKind Kind = CK_Invalid; + CXXCastPath BasePath; + if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) + return ExprError(); + if (CheckExceptionSpecCompatibility(From, ToType)) + return ExprError(); + From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) + .take(); + break; + } + + case ICK_Boolean_Conversion: + // Perform half-to-boolean conversion via float. + if (From->getType()->isHalfType()) { + From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take(); + FromType = Context.FloatTy; + } + + From = ImpCastExprToType(From, Context.BoolTy, + ScalarTypeToBooleanCastKind(FromType), + VK_RValue, /*BasePath=*/0, CCK).take(); + break; + + case ICK_Derived_To_Base: { + CXXCastPath BasePath; + if (CheckDerivedToBaseConversion(From->getType(), + ToType.getNonReferenceType(), + From->getLocStart(), + From->getSourceRange(), + &BasePath, + CStyle)) + return ExprError(); + + From = ImpCastExprToType(From, ToType.getNonReferenceType(), + CK_DerivedToBase, From->getValueKind(), + &BasePath, CCK).take(); + break; + } + + case ICK_Vector_Conversion: + From = ImpCastExprToType(From, ToType, CK_BitCast, + VK_RValue, /*BasePath=*/0, CCK).take(); + break; + + case ICK_Vector_Splat: + From = ImpCastExprToType(From, ToType, CK_VectorSplat, + VK_RValue, /*BasePath=*/0, CCK).take(); + break; + + case ICK_Complex_Real: + // Case 1. x -> _Complex y + if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { + QualType ElType = ToComplex->getElementType(); + bool isFloatingComplex = ElType->isRealFloatingType(); + + // x -> y + if (Context.hasSameUnqualifiedType(ElType, From->getType())) { + // do nothing + } else if (From->getType()->isRealFloatingType()) { + From = ImpCastExprToType(From, ElType, + isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take(); + } else { + assert(From->getType()->isIntegerType()); + From = ImpCastExprToType(From, ElType, + isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take(); + } + // y -> _Complex y + From = ImpCastExprToType(From, ToType, + isFloatingComplex ? CK_FloatingRealToComplex + : CK_IntegralRealToComplex).take(); + + // Case 2. _Complex x -> y + } else { + const ComplexType *FromComplex = From->getType()->getAs<ComplexType>(); + assert(FromComplex); + + QualType ElType = FromComplex->getElementType(); + bool isFloatingComplex = ElType->isRealFloatingType(); + + // _Complex x -> x + From = ImpCastExprToType(From, ElType, + isFloatingComplex ? CK_FloatingComplexToReal + : CK_IntegralComplexToReal, + VK_RValue, /*BasePath=*/0, CCK).take(); + + // x -> y + if (Context.hasSameUnqualifiedType(ElType, ToType)) { + // do nothing + } else if (ToType->isRealFloatingType()) { + From = ImpCastExprToType(From, ToType, + isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, + VK_RValue, /*BasePath=*/0, CCK).take(); + } else { + assert(ToType->isIntegerType()); + From = ImpCastExprToType(From, ToType, + isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, + VK_RValue, /*BasePath=*/0, CCK).take(); + } + } + break; + + case ICK_Block_Pointer_Conversion: { + From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, + VK_RValue, /*BasePath=*/0, CCK).take(); + break; + } + + case ICK_TransparentUnionConversion: { + ExprResult FromRes = Owned(From); + Sema::AssignConvertType ConvTy = + CheckTransparentUnionArgumentConstraints(ToType, FromRes); + if (FromRes.isInvalid()) + return ExprError(); + From = FromRes.take(); + assert ((ConvTy == Sema::Compatible) && + "Improper transparent union conversion"); + (void)ConvTy; + break; + } + + case ICK_Lvalue_To_Rvalue: + case ICK_Array_To_Pointer: + case ICK_Function_To_Pointer: + case ICK_Qualification: + case ICK_Num_Conversion_Kinds: + llvm_unreachable("Improper second standard conversion"); + } + + switch (SCS.Third) { + case ICK_Identity: + // Nothing to do. + break; + + case ICK_Qualification: { + // The qualification keeps the category of the inner expression, unless the + // target type isn't a reference. + ExprValueKind VK = ToType->isReferenceType() ? + From->getValueKind() : VK_RValue; + From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), + CK_NoOp, VK, /*BasePath=*/0, CCK).take(); + + if (SCS.DeprecatedStringLiteralToCharPtr && + !getLangOpts().WritableStrings) + Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion) + << ToType.getNonReferenceType(); + + break; + } + + default: + llvm_unreachable("Improper third standard conversion"); + } + + // If this conversion sequence involved a scalar -> atomic conversion, perform + // that conversion now. + if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) + if (Context.hasSameType(ToAtomic->getValueType(), From->getType())) + From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0, + CCK).take(); + + return Owned(From); +} + +ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT, + SourceLocation KWLoc, + ParsedType Ty, + SourceLocation RParen) { + TypeSourceInfo *TSInfo; + QualType T = GetTypeFromParser(Ty, &TSInfo); + + if (!TSInfo) + TSInfo = Context.getTrivialTypeSourceInfo(T); + return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen); +} + +/// \brief Check the completeness of a type in a unary type trait. +/// +/// If the particular type trait requires a complete type, tries to complete +/// it. If completing the type fails, a diagnostic is emitted and false +/// returned. If completing the type succeeds or no completion was required, +/// returns true. +static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, + UnaryTypeTrait UTT, + SourceLocation Loc, + QualType ArgTy) { + // C++0x [meta.unary.prop]p3: + // For all of the class templates X declared in this Clause, instantiating + // that template with a template argument that is a class template + // specialization may result in the implicit instantiation of the template + // argument if and only if the semantics of X require that the argument + // must be a complete type. + // We apply this rule to all the type trait expressions used to implement + // these class templates. We also try to follow any GCC documented behavior + // in these expressions to ensure portability of standard libraries. + switch (UTT) { + // is_complete_type somewhat obviously cannot require a complete type. + case UTT_IsCompleteType: + // Fall-through + + // These traits are modeled on the type predicates in C++0x + // [meta.unary.cat] and [meta.unary.comp]. They are not specified as + // requiring a complete type, as whether or not they return true cannot be + // impacted by the completeness of the type. + case UTT_IsVoid: + case UTT_IsIntegral: + case UTT_IsFloatingPoint: + case UTT_IsArray: + case UTT_IsPointer: + case UTT_IsLvalueReference: + case UTT_IsRvalueReference: + case UTT_IsMemberFunctionPointer: + case UTT_IsMemberObjectPointer: + case UTT_IsEnum: + case UTT_IsUnion: + case UTT_IsClass: + case UTT_IsFunction: + case UTT_IsReference: + case UTT_IsArithmetic: + case UTT_IsFundamental: + case UTT_IsObject: + case UTT_IsScalar: + case UTT_IsCompound: + case UTT_IsMemberPointer: + // Fall-through + + // These traits are modeled on type predicates in C++0x [meta.unary.prop] + // which requires some of its traits to have the complete type. However, + // the completeness of the type cannot impact these traits' semantics, and + // so they don't require it. This matches the comments on these traits in + // Table 49. + case UTT_IsConst: + case UTT_IsVolatile: + case UTT_IsSigned: + case UTT_IsUnsigned: + return true; + + // C++0x [meta.unary.prop] Table 49 requires the following traits to be + // applied to a complete type. + case UTT_IsTrivial: + case UTT_IsTriviallyCopyable: + case UTT_IsStandardLayout: + case UTT_IsPOD: + case UTT_IsLiteral: + case UTT_IsEmpty: + case UTT_IsPolymorphic: + case UTT_IsAbstract: + // Fall-through + + // These traits require a complete type. + case UTT_IsFinal: + + // These trait expressions are designed to help implement predicates in + // [meta.unary.prop] despite not being named the same. They are specified + // by both GCC and the Embarcadero C++ compiler, and require the complete + // type due to the overarching C++0x type predicates being implemented + // requiring the complete type. + case UTT_HasNothrowAssign: + case UTT_HasNothrowConstructor: + case UTT_HasNothrowCopy: + case UTT_HasTrivialAssign: + case UTT_HasTrivialDefaultConstructor: + case UTT_HasTrivialCopy: + case UTT_HasTrivialDestructor: + case UTT_HasVirtualDestructor: + // Arrays of unknown bound are expressly allowed. + QualType ElTy = ArgTy; + if (ArgTy->isIncompleteArrayType()) + ElTy = S.Context.getAsArrayType(ArgTy)->getElementType(); + + // The void type is expressly allowed. + if (ElTy->isVoidType()) + return true; + + return !S.RequireCompleteType( + Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr); + } + llvm_unreachable("Type trait not handled by switch"); +} + +static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, + SourceLocation KeyLoc, QualType T) { + assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); + + ASTContext &C = Self.Context; + switch(UTT) { + // Type trait expressions corresponding to the primary type category + // predicates in C++0x [meta.unary.cat]. + case UTT_IsVoid: + return T->isVoidType(); + case UTT_IsIntegral: + return T->isIntegralType(C); + case UTT_IsFloatingPoint: + return T->isFloatingType(); + case UTT_IsArray: + return T->isArrayType(); + case UTT_IsPointer: + return T->isPointerType(); + case UTT_IsLvalueReference: + return T->isLValueReferenceType(); + case UTT_IsRvalueReference: + return T->isRValueReferenceType(); + case UTT_IsMemberFunctionPointer: + return T->isMemberFunctionPointerType(); + case UTT_IsMemberObjectPointer: + return T->isMemberDataPointerType(); + case UTT_IsEnum: + return T->isEnumeralType(); + case UTT_IsUnion: + return T->isUnionType(); + case UTT_IsClass: + return T->isClassType() || T->isStructureType(); + case UTT_IsFunction: + return T->isFunctionType(); + + // Type trait expressions which correspond to the convenient composition + // predicates in C++0x [meta.unary.comp]. + case UTT_IsReference: + return T->isReferenceType(); + case UTT_IsArithmetic: + return T->isArithmeticType() && !T->isEnumeralType(); + case UTT_IsFundamental: + return T->isFundamentalType(); + case UTT_IsObject: + return T->isObjectType(); + case UTT_IsScalar: + // Note: semantic analysis depends on Objective-C lifetime types to be + // considered scalar types. However, such types do not actually behave + // like scalar types at run time (since they may require retain/release + // operations), so we report them as non-scalar. + if (T->isObjCLifetimeType()) { + switch (T.getObjCLifetime()) { + case Qualifiers::OCL_None: + case Qualifiers::OCL_ExplicitNone: + return true; + + case Qualifiers::OCL_Strong: + case Qualifiers::OCL_Weak: + case Qualifiers::OCL_Autoreleasing: + return false; + } + } + + return T->isScalarType(); + case UTT_IsCompound: + return T->isCompoundType(); + case UTT_IsMemberPointer: + return T->isMemberPointerType(); + + // Type trait expressions which correspond to the type property predicates + // in C++0x [meta.unary.prop]. + case UTT_IsConst: + return T.isConstQualified(); + case UTT_IsVolatile: + return T.isVolatileQualified(); + case UTT_IsTrivial: + return T.isTrivialType(Self.Context); + case UTT_IsTriviallyCopyable: + return T.isTriviallyCopyableType(Self.Context); + case UTT_IsStandardLayout: + return T->isStandardLayoutType(); + case UTT_IsPOD: + return T.isPODType(Self.Context); + case UTT_IsLiteral: + return T->isLiteralType(); + case UTT_IsEmpty: + if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) + return !RD->isUnion() && RD->isEmpty(); + return false; + case UTT_IsPolymorphic: + if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) + return RD->isPolymorphic(); + return false; + case UTT_IsAbstract: + if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) + return RD->isAbstract(); + return false; + case UTT_IsFinal: + if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) + return RD->hasAttr<FinalAttr>(); + return false; + case UTT_IsSigned: + return T->isSignedIntegerType(); + case UTT_IsUnsigned: + return T->isUnsignedIntegerType(); + + // Type trait expressions which query classes regarding their construction, + // destruction, and copying. Rather than being based directly on the + // related type predicates in the standard, they are specified by both + // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those + // specifications. + // + // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html + // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index + case UTT_HasTrivialDefaultConstructor: + // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: + // If __is_pod (type) is true then the trait is true, else if type is + // a cv class or union type (or array thereof) with a trivial default + // constructor ([class.ctor]) then the trait is true, else it is false. + if (T.isPODType(Self.Context)) + return true; + if (const RecordType *RT = + C.getBaseElementType(T)->getAs<RecordType>()) + return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor(); + return false; + case UTT_HasTrivialCopy: + // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: + // If __is_pod (type) is true or type is a reference type then + // the trait is true, else if type is a cv class or union type + // with a trivial copy constructor ([class.copy]) then the trait + // is true, else it is false. + if (T.isPODType(Self.Context) || T->isReferenceType()) + return true; + if (const RecordType *RT = T->getAs<RecordType>()) + return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor(); + return false; + case UTT_HasTrivialAssign: + // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: + // If type is const qualified or is a reference type then the + // trait is false. Otherwise if __is_pod (type) is true then the + // trait is true, else if type is a cv class or union type with + // a trivial copy assignment ([class.copy]) then the trait is + // true, else it is false. + // Note: the const and reference restrictions are interesting, + // given that const and reference members don't prevent a class + // from having a trivial copy assignment operator (but do cause + // errors if the copy assignment operator is actually used, q.v. + // [class.copy]p12). + + if (C.getBaseElementType(T).isConstQualified()) + return false; + if (T.isPODType(Self.Context)) + return true; + if (const RecordType *RT = T->getAs<RecordType>()) + return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment(); + return false; + case UTT_HasTrivialDestructor: + // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: + // If __is_pod (type) is true or type is a reference type + // then the trait is true, else if type is a cv class or union + // type (or array thereof) with a trivial destructor + // ([class.dtor]) then the trait is true, else it is + // false. + if (T.isPODType(Self.Context) || T->isReferenceType()) + return true; + + // Objective-C++ ARC: autorelease types don't require destruction. + if (T->isObjCLifetimeType() && + T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) + return true; + + if (const RecordType *RT = + C.getBaseElementType(T)->getAs<RecordType>()) + return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor(); + return false; + // TODO: Propagate nothrowness for implicitly declared special members. + case UTT_HasNothrowAssign: + // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: + // If type is const qualified or is a reference type then the + // trait is false. Otherwise if __has_trivial_assign (type) + // is true then the trait is true, else if type is a cv class + // or union type with copy assignment operators that are known + // not to throw an exception then the trait is true, else it is + // false. + if (C.getBaseElementType(T).isConstQualified()) + return false; + if (T->isReferenceType()) + return false; + if (T.isPODType(Self.Context) || T->isObjCLifetimeType()) + return true; + if (const RecordType *RT = T->getAs<RecordType>()) { + CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl()); + if (RD->hasTrivialCopyAssignment()) + return true; + + bool FoundAssign = false; + DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal); + LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc), + Sema::LookupOrdinaryName); + if (Self.LookupQualifiedName(Res, RD)) { + Res.suppressDiagnostics(); + for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); + Op != OpEnd; ++Op) { + if (isa<FunctionTemplateDecl>(*Op)) + continue; + + CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); + if (Operator->isCopyAssignmentOperator()) { + FoundAssign = true; + const FunctionProtoType *CPT + = Operator->getType()->getAs<FunctionProtoType>(); + CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); + if (!CPT) + return false; + if (CPT->getExceptionSpecType() == EST_Delayed) + return false; + if (!CPT->isNothrow(Self.Context)) + return false; + } + } + } + + return FoundAssign; + } + return false; + case UTT_HasNothrowCopy: + // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: + // If __has_trivial_copy (type) is true then the trait is true, else + // if type is a cv class or union type with copy constructors that are + // known not to throw an exception then the trait is true, else it is + // false. + if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) + return true; + if (const RecordType *RT = T->getAs<RecordType>()) { + CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); + if (RD->hasTrivialCopyConstructor()) + return true; + + bool FoundConstructor = false; + unsigned FoundTQs; + DeclContext::lookup_const_iterator Con, ConEnd; + for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD); + Con != ConEnd; ++Con) { + // A template constructor is never a copy constructor. + // FIXME: However, it may actually be selected at the actual overload + // resolution point. + if (isa<FunctionTemplateDecl>(*Con)) + continue; + CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); + if (Constructor->isCopyConstructor(FoundTQs)) { + FoundConstructor = true; + const FunctionProtoType *CPT + = Constructor->getType()->getAs<FunctionProtoType>(); + CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); + if (!CPT) + return false; + if (CPT->getExceptionSpecType() == EST_Delayed) + return false; + // FIXME: check whether evaluating default arguments can throw. + // For now, we'll be conservative and assume that they can throw. + if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1) + return false; + } + } + + return FoundConstructor; + } + return false; + case UTT_HasNothrowConstructor: + // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: + // If __has_trivial_constructor (type) is true then the trait is + // true, else if type is a cv class or union type (or array + // thereof) with a default constructor that is known not to + // throw an exception then the trait is true, else it is false. + if (T.isPODType(C) || T->isObjCLifetimeType()) + return true; + if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) { + CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); + if (RD->hasTrivialDefaultConstructor()) + return true; + + DeclContext::lookup_const_iterator Con, ConEnd; + for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD); + Con != ConEnd; ++Con) { + // FIXME: In C++0x, a constructor template can be a default constructor. + if (isa<FunctionTemplateDecl>(*Con)) + continue; + CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); + if (Constructor->isDefaultConstructor()) { + const FunctionProtoType *CPT + = Constructor->getType()->getAs<FunctionProtoType>(); + CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); + if (!CPT) + return false; + if (CPT->getExceptionSpecType() == EST_Delayed) + return false; + // TODO: check whether evaluating default arguments can throw. + // For now, we'll be conservative and assume that they can throw. + return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0; + } + } + } + return false; + case UTT_HasVirtualDestructor: + // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: + // If type is a class type with a virtual destructor ([class.dtor]) + // then the trait is true, else it is false. + if (const RecordType *Record = T->getAs<RecordType>()) { + CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); + if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) + return Destructor->isVirtual(); + } + return false; + + // These type trait expressions are modeled on the specifications for the + // Embarcadero C++0x type trait functions: + // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index + case UTT_IsCompleteType: + // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): + // Returns True if and only if T is a complete type at the point of the + // function call. + return !T->isIncompleteType(); + } + llvm_unreachable("Type trait not covered by switch"); +} + +ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT, + SourceLocation KWLoc, + TypeSourceInfo *TSInfo, + SourceLocation RParen) { + QualType T = TSInfo->getType(); + if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T)) + return ExprError(); + + bool Value = false; + if (!T->isDependentType()) + Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T); + + return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value, + RParen, Context.BoolTy)); +} + +ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT, + SourceLocation KWLoc, + ParsedType LhsTy, + ParsedType RhsTy, + SourceLocation RParen) { + TypeSourceInfo *LhsTSInfo; + QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo); + if (!LhsTSInfo) + LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT); + + TypeSourceInfo *RhsTSInfo; + QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo); + if (!RhsTSInfo) + RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT); + + return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen); +} + +static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, + ArrayRef<TypeSourceInfo *> Args, + SourceLocation RParenLoc) { + switch (Kind) { + case clang::TT_IsTriviallyConstructible: { + // C++11 [meta.unary.prop]: + // is_trivially_constructible is defined as: + // + // is_constructible<T, Args...>::value is true and the variable + // definition for is_constructible, as defined below, is known to call no + // operation that is not trivial. + // + // The predicate condition for a template specialization + // is_constructible<T, Args...> shall be satisfied if and only if the + // following variable definition would be well-formed for some invented + // variable t: + // + // T t(create<Args>()...); + if (Args.empty()) { + S.Diag(KWLoc, diag::err_type_trait_arity) + << 1 << 1 << 1 << (int)Args.size(); + return false; + } + + bool SawVoid = false; + for (unsigned I = 0, N = Args.size(); I != N; ++I) { + if (Args[I]->getType()->isVoidType()) { + SawVoid = true; + continue; + } + + if (!Args[I]->getType()->isIncompleteType() && + S.RequireCompleteType(KWLoc, Args[I]->getType(), + diag::err_incomplete_type_used_in_type_trait_expr)) + return false; + } + + // If any argument was 'void', of course it won't type-check. + if (SawVoid) + return false; + + llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs; + llvm::SmallVector<Expr *, 2> ArgExprs; + ArgExprs.reserve(Args.size() - 1); + for (unsigned I = 1, N = Args.size(); I != N; ++I) { + QualType T = Args[I]->getType(); + if (T->isObjectType() || T->isFunctionType()) + T = S.Context.getRValueReferenceType(T); + OpaqueArgExprs.push_back( + OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(), + T.getNonLValueExprType(S.Context), + Expr::getValueKindForType(T))); + ArgExprs.push_back(&OpaqueArgExprs.back()); + } + + // Perform the initialization in an unevaluated context within a SFINAE + // trap at translation unit scope. + EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); + Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); + Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); + InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); + InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, + RParenLoc)); + InitializationSequence Init(S, To, InitKind, + ArgExprs.begin(), ArgExprs.size()); + if (Init.Failed()) + return false; + + ExprResult Result = Init.Perform(S, To, InitKind, + MultiExprArg(ArgExprs.data(), + ArgExprs.size())); + if (Result.isInvalid() || SFINAE.hasErrorOccurred()) + return false; + + // The initialization succeeded; not make sure there are no non-trivial + // calls. + return !Result.get()->hasNonTrivialCall(S.Context); + } + } + + return false; +} + +ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, + ArrayRef<TypeSourceInfo *> Args, + SourceLocation RParenLoc) { + bool Dependent = false; + for (unsigned I = 0, N = Args.size(); I != N; ++I) { + if (Args[I]->getType()->isDependentType()) { + Dependent = true; + break; + } + } + + bool Value = false; + if (!Dependent) + Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); + + return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind, + Args, RParenLoc, Value); +} + +ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, + ArrayRef<ParsedType> Args, + SourceLocation RParenLoc) { + llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs; + ConvertedArgs.reserve(Args.size()); + + for (unsigned I = 0, N = Args.size(); I != N; ++I) { + TypeSourceInfo *TInfo; + QualType T = GetTypeFromParser(Args[I], &TInfo); + if (!TInfo) + TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); + + ConvertedArgs.push_back(TInfo); + } + + return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); +} + +static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT, + QualType LhsT, QualType RhsT, + SourceLocation KeyLoc) { + assert(!LhsT->isDependentType() && !RhsT->isDependentType() && + "Cannot evaluate traits of dependent types"); + + switch(BTT) { + case BTT_IsBaseOf: { + // C++0x [meta.rel]p2 + // Base is a base class of Derived without regard to cv-qualifiers or + // Base and Derived are not unions and name the same class type without + // regard to cv-qualifiers. + + const RecordType *lhsRecord = LhsT->getAs<RecordType>(); + if (!lhsRecord) return false; + + const RecordType *rhsRecord = RhsT->getAs<RecordType>(); + if (!rhsRecord) return false; + + assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) + == (lhsRecord == rhsRecord)); + + if (lhsRecord == rhsRecord) + return !lhsRecord->getDecl()->isUnion(); + + // C++0x [meta.rel]p2: + // If Base and Derived are class types and are different types + // (ignoring possible cv-qualifiers) then Derived shall be a + // complete type. + if (Self.RequireCompleteType(KeyLoc, RhsT, + diag::err_incomplete_type_used_in_type_trait_expr)) + return false; + + return cast<CXXRecordDecl>(rhsRecord->getDecl()) + ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); + } + case BTT_IsSame: + return Self.Context.hasSameType(LhsT, RhsT); + case BTT_TypeCompatible: + return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(), + RhsT.getUnqualifiedType()); + case BTT_IsConvertible: + case BTT_IsConvertibleTo: { + // C++0x [meta.rel]p4: + // Given the following function prototype: + // + // template <class T> + // typename add_rvalue_reference<T>::type create(); + // + // the predicate condition for a template specialization + // is_convertible<From, To> shall be satisfied if and only if + // the return expression in the following code would be + // well-formed, including any implicit conversions to the return + // type of the function: + // + // To test() { + // return create<From>(); + // } + // + // Access checking is performed as if in a context unrelated to To and + // From. Only the validity of the immediate context of the expression + // of the return-statement (including conversions to the return type) + // is considered. + // + // We model the initialization as a copy-initialization of a temporary + // of the appropriate type, which for this expression is identical to the + // return statement (since NRVO doesn't apply). + if (LhsT->isObjectType() || LhsT->isFunctionType()) + LhsT = Self.Context.getRValueReferenceType(LhsT); + + InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); + OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), + Expr::getValueKindForType(LhsT)); + Expr *FromPtr = &From; + InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, + SourceLocation())); + + // Perform the initialization in an unevaluated context within a SFINAE + // trap at translation unit scope. + EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); + Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); + Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); + InitializationSequence Init(Self, To, Kind, &FromPtr, 1); + if (Init.Failed()) + return false; + + ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1)); + return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); + } + + case BTT_IsTriviallyAssignable: { + // C++11 [meta.unary.prop]p3: + // is_trivially_assignable is defined as: + // is_assignable<T, U>::value is true and the assignment, as defined by + // is_assignable, is known to call no operation that is not trivial + // + // is_assignable is defined as: + // The expression declval<T>() = declval<U>() is well-formed when + // treated as an unevaluated operand (Clause 5). + // + // For both, T and U shall be complete types, (possibly cv-qualified) + // void, or arrays of unknown bound. + if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && + Self.RequireCompleteType(KeyLoc, LhsT, + diag::err_incomplete_type_used_in_type_trait_expr)) + return false; + if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && + Self.RequireCompleteType(KeyLoc, RhsT, + diag::err_incomplete_type_used_in_type_trait_expr)) + return false; + + // cv void is never assignable. + if (LhsT->isVoidType() || RhsT->isVoidType()) + return false; + + // Build expressions that emulate the effect of declval<T>() and + // declval<U>(). + if (LhsT->isObjectType() || LhsT->isFunctionType()) + LhsT = Self.Context.getRValueReferenceType(LhsT); + if (RhsT->isObjectType() || RhsT->isFunctionType()) + RhsT = Self.Context.getRValueReferenceType(RhsT); + OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), + Expr::getValueKindForType(LhsT)); + OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), + Expr::getValueKindForType(RhsT)); + + // Attempt the assignment in an unevaluated context within a SFINAE + // trap at translation unit scope. + EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); + Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); + Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); + ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs); + if (Result.isInvalid() || SFINAE.hasErrorOccurred()) + return false; + + return !Result.get()->hasNonTrivialCall(Self.Context); + } + } + llvm_unreachable("Unknown type trait or not implemented"); +} + +ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT, + SourceLocation KWLoc, + TypeSourceInfo *LhsTSInfo, + TypeSourceInfo *RhsTSInfo, + SourceLocation RParen) { + QualType LhsT = LhsTSInfo->getType(); + QualType RhsT = RhsTSInfo->getType(); + + if (BTT == BTT_TypeCompatible) { + if (getLangOpts().CPlusPlus) { + Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus) + << SourceRange(KWLoc, RParen); + return ExprError(); + } + } + + bool Value = false; + if (!LhsT->isDependentType() && !RhsT->isDependentType()) + Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc); + + // Select trait result type. + QualType ResultType; + switch (BTT) { + case BTT_IsBaseOf: ResultType = Context.BoolTy; break; + case BTT_IsConvertible: ResultType = Context.BoolTy; break; + case BTT_IsSame: ResultType = Context.BoolTy; break; + case BTT_TypeCompatible: ResultType = Context.IntTy; break; + case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break; + case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy; + } + + return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo, + RhsTSInfo, Value, RParen, + ResultType)); +} + +ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, + SourceLocation KWLoc, + ParsedType Ty, + Expr* DimExpr, + SourceLocation RParen) { + TypeSourceInfo *TSInfo; + QualType T = GetTypeFromParser(Ty, &TSInfo); + if (!TSInfo) + TSInfo = Context.getTrivialTypeSourceInfo(T); + + return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); +} + +static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, + QualType T, Expr *DimExpr, + SourceLocation KeyLoc) { + assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); + + switch(ATT) { + case ATT_ArrayRank: + if (T->isArrayType()) { + unsigned Dim = 0; + while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { + ++Dim; + T = AT->getElementType(); + } + return Dim; + } + return 0; + + case ATT_ArrayExtent: { + llvm::APSInt Value; + uint64_t Dim; + if (Self.VerifyIntegerConstantExpression(DimExpr, &Value, + Self.PDiag(diag::err_dimension_expr_not_constant_integer), + false).isInvalid()) + return 0; + if (Value.isSigned() && Value.isNegative()) { + Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) + << DimExpr->getSourceRange(); + return 0; + } + Dim = Value.getLimitedValue(); + + if (T->isArrayType()) { + unsigned D = 0; + bool Matched = false; + while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { + if (Dim == D) { + Matched = true; + break; + } + ++D; + T = AT->getElementType(); + } + + if (Matched && T->isArrayType()) { + if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) + return CAT->getSize().getLimitedValue(); + } + } + return 0; + } + } + llvm_unreachable("Unknown type trait or not implemented"); +} + +ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, + SourceLocation KWLoc, + TypeSourceInfo *TSInfo, + Expr* DimExpr, + SourceLocation RParen) { + QualType T = TSInfo->getType(); + + // FIXME: This should likely be tracked as an APInt to remove any host + // assumptions about the width of size_t on the target. + uint64_t Value = 0; + if (!T->isDependentType()) + Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); + + // While the specification for these traits from the Embarcadero C++ + // compiler's documentation says the return type is 'unsigned int', Clang + // returns 'size_t'. On Windows, the primary platform for the Embarcadero + // compiler, there is no difference. On several other platforms this is an + // important distinction. + return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, + DimExpr, RParen, + Context.getSizeType())); +} + +ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, + SourceLocation KWLoc, + Expr *Queried, + SourceLocation RParen) { + // If error parsing the expression, ignore. + if (!Queried) + return ExprError(); + + ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); + + return move(Result); +} + +static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { + switch (ET) { + case ET_IsLValueExpr: return E->isLValue(); + case ET_IsRValueExpr: return E->isRValue(); + } + llvm_unreachable("Expression trait not covered by switch"); +} + +ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, + SourceLocation KWLoc, + Expr *Queried, + SourceLocation RParen) { + if (Queried->isTypeDependent()) { + // Delay type-checking for type-dependent expressions. + } else if (Queried->getType()->isPlaceholderType()) { + ExprResult PE = CheckPlaceholderExpr(Queried); + if (PE.isInvalid()) return ExprError(); + return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen); + } + + bool Value = EvaluateExpressionTrait(ET, Queried); + + return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value, + RParen, Context.BoolTy)); +} + +QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, + ExprValueKind &VK, + SourceLocation Loc, + bool isIndirect) { + assert(!LHS.get()->getType()->isPlaceholderType() && + !RHS.get()->getType()->isPlaceholderType() && + "placeholders should have been weeded out by now"); + + // The LHS undergoes lvalue conversions if this is ->*. + if (isIndirect) { + LHS = DefaultLvalueConversion(LHS.take()); + if (LHS.isInvalid()) return QualType(); + } + + // The RHS always undergoes lvalue conversions. + RHS = DefaultLvalueConversion(RHS.take()); + if (RHS.isInvalid()) return QualType(); + + const char *OpSpelling = isIndirect ? "->*" : ".*"; + // C++ 5.5p2 + // The binary operator .* [p3: ->*] binds its second operand, which shall + // be of type "pointer to member of T" (where T is a completely-defined + // class type) [...] + QualType RHSType = RHS.get()->getType(); + const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); + if (!MemPtr) { + Diag(Loc, diag::err_bad_memptr_rhs) + << OpSpelling << RHSType << RHS.get()->getSourceRange(); + return QualType(); + } + + QualType Class(MemPtr->getClass(), 0); + + // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the + // member pointer points must be completely-defined. However, there is no + // reason for this semantic distinction, and the rule is not enforced by + // other compilers. Therefore, we do not check this property, as it is + // likely to be considered a defect. + + // C++ 5.5p2 + // [...] to its first operand, which shall be of class T or of a class of + // which T is an unambiguous and accessible base class. [p3: a pointer to + // such a class] + QualType LHSType = LHS.get()->getType(); + if (isIndirect) { + if (const PointerType *Ptr = LHSType->getAs<PointerType>()) + LHSType = Ptr->getPointeeType(); + else { + Diag(Loc, diag::err_bad_memptr_lhs) + << OpSpelling << 1 << LHSType + << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); + return QualType(); + } + } + + if (!Context.hasSameUnqualifiedType(Class, LHSType)) { + // If we want to check the hierarchy, we need a complete type. + if (RequireCompleteType(Loc, LHSType, PDiag(diag::err_bad_memptr_lhs) + << OpSpelling << (int)isIndirect)) { + return QualType(); + } + CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, + /*DetectVirtual=*/false); + // FIXME: Would it be useful to print full ambiguity paths, or is that + // overkill? + if (!IsDerivedFrom(LHSType, Class, Paths) || + Paths.isAmbiguous(Context.getCanonicalType(Class))) { + Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling + << (int)isIndirect << LHS.get()->getType(); + return QualType(); + } + // Cast LHS to type of use. + QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; + ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind(); + + CXXCastPath BasePath; + BuildBasePathArray(Paths, BasePath); + LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK, + &BasePath); + } + + if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { + // Diagnose use of pointer-to-member type which when used as + // the functional cast in a pointer-to-member expression. + Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; + return QualType(); + } + + // C++ 5.5p2 + // The result is an object or a function of the type specified by the + // second operand. + // The cv qualifiers are the union of those in the pointer and the left side, + // in accordance with 5.5p5 and 5.2.5. + QualType Result = MemPtr->getPointeeType(); + Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); + + // C++0x [expr.mptr.oper]p6: + // In a .* expression whose object expression is an rvalue, the program is + // ill-formed if the second operand is a pointer to member function with + // ref-qualifier &. In a ->* expression or in a .* expression whose object + // expression is an lvalue, the program is ill-formed if the second operand + // is a pointer to member function with ref-qualifier &&. + if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { + switch (Proto->getRefQualifier()) { + case RQ_None: + // Do nothing + break; + + case RQ_LValue: + if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) + Diag(Loc, diag::err_pointer_to_member_oper_value_classify) + << RHSType << 1 << LHS.get()->getSourceRange(); + break; + + case RQ_RValue: + if (isIndirect || !LHS.get()->Classify(Context).isRValue()) + Diag(Loc, diag::err_pointer_to_member_oper_value_classify) + << RHSType << 0 << LHS.get()->getSourceRange(); + break; + } + } + + // C++ [expr.mptr.oper]p6: + // The result of a .* expression whose second operand is a pointer + // to a data member is of the same value category as its + // first operand. The result of a .* expression whose second + // operand is a pointer to a member function is a prvalue. The + // result of an ->* expression is an lvalue if its second operand + // is a pointer to data member and a prvalue otherwise. + if (Result->isFunctionType()) { + VK = VK_RValue; + return Context.BoundMemberTy; + } else if (isIndirect) { + VK = VK_LValue; + } else { + VK = LHS.get()->getValueKind(); + } + + return Result; +} + +/// \brief Try to convert a type to another according to C++0x 5.16p3. +/// +/// This is part of the parameter validation for the ? operator. If either +/// value operand is a class type, the two operands are attempted to be +/// converted to each other. This function does the conversion in one direction. +/// It returns true if the program is ill-formed and has already been diagnosed +/// as such. +static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, + SourceLocation QuestionLoc, + bool &HaveConversion, + QualType &ToType) { + HaveConversion = false; + ToType = To->getType(); + + InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(), + SourceLocation()); + // C++0x 5.16p3 + // The process for determining whether an operand expression E1 of type T1 + // can be converted to match an operand expression E2 of type T2 is defined + // as follows: + // -- If E2 is an lvalue: + bool ToIsLvalue = To->isLValue(); + if (ToIsLvalue) { + // E1 can be converted to match E2 if E1 can be implicitly converted to + // type "lvalue reference to T2", subject to the constraint that in the + // conversion the reference must bind directly to E1. + QualType T = Self.Context.getLValueReferenceType(ToType); + InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); + + InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); + if (InitSeq.isDirectReferenceBinding()) { + ToType = T; + HaveConversion = true; + return false; + } + + if (InitSeq.isAmbiguous()) + return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); + } + + // -- If E2 is an rvalue, or if the conversion above cannot be done: + // -- if E1 and E2 have class type, and the underlying class types are + // the same or one is a base class of the other: + QualType FTy = From->getType(); + QualType TTy = To->getType(); + const RecordType *FRec = FTy->getAs<RecordType>(); + const RecordType *TRec = TTy->getAs<RecordType>(); + bool FDerivedFromT = FRec && TRec && FRec != TRec && + Self.IsDerivedFrom(FTy, TTy); + if (FRec && TRec && + (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { + // E1 can be converted to match E2 if the class of T2 is the + // same type as, or a base class of, the class of T1, and + // [cv2 > cv1]. + if (FRec == TRec || FDerivedFromT) { + if (TTy.isAtLeastAsQualifiedAs(FTy)) { + InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); + InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); + if (InitSeq) { + HaveConversion = true; + return false; + } + + if (InitSeq.isAmbiguous()) + return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); + } + } + + return false; + } + + // -- Otherwise: E1 can be converted to match E2 if E1 can be + // implicitly converted to the type that expression E2 would have + // if E2 were converted to an rvalue (or the type it has, if E2 is + // an rvalue). + // + // This actually refers very narrowly to the lvalue-to-rvalue conversion, not + // to the array-to-pointer or function-to-pointer conversions. + if (!TTy->getAs<TagType>()) + TTy = TTy.getUnqualifiedType(); + + InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); + InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); + HaveConversion = !InitSeq.Failed(); + ToType = TTy; + if (InitSeq.isAmbiguous()) + return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); + + return false; +} + +/// \brief Try to find a common type for two according to C++0x 5.16p5. +/// +/// This is part of the parameter validation for the ? operator. If either +/// value operand is a class type, overload resolution is used to find a +/// conversion to a common type. +static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, + SourceLocation QuestionLoc) { + Expr *Args[2] = { LHS.get(), RHS.get() }; + OverloadCandidateSet CandidateSet(QuestionLoc); + Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2, + CandidateSet); + + OverloadCandidateSet::iterator Best; + switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { + case OR_Success: { + // We found a match. Perform the conversions on the arguments and move on. + ExprResult LHSRes = + Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0], + Best->Conversions[0], Sema::AA_Converting); + if (LHSRes.isInvalid()) + break; + LHS = move(LHSRes); + + ExprResult RHSRes = + Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1], + Best->Conversions[1], Sema::AA_Converting); + if (RHSRes.isInvalid()) + break; + RHS = move(RHSRes); + if (Best->Function) + Self.MarkFunctionReferenced(QuestionLoc, Best->Function); + return false; + } + + case OR_No_Viable_Function: + + // Emit a better diagnostic if one of the expressions is a null pointer + // constant and the other is a pointer type. In this case, the user most + // likely forgot to take the address of the other expression. + if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) + return true; + + Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) + << LHS.get()->getType() << RHS.get()->getType() + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + return true; + + case OR_Ambiguous: + Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) + << LHS.get()->getType() << RHS.get()->getType() + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + // FIXME: Print the possible common types by printing the return types of + // the viable candidates. + break; + + case OR_Deleted: + llvm_unreachable("Conditional operator has only built-in overloads"); + } + return true; +} + +/// \brief Perform an "extended" implicit conversion as returned by +/// TryClassUnification. +static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { + InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); + InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(), + SourceLocation()); + Expr *Arg = E.take(); + InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1); + ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1)); + if (Result.isInvalid()) + return true; + + E = Result; + return false; +} + +/// \brief Check the operands of ?: under C++ semantics. +/// +/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y +/// extension. In this case, LHS == Cond. (But they're not aliases.) +QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, + ExprValueKind &VK, ExprObjectKind &OK, + SourceLocation QuestionLoc) { + // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ + // interface pointers. + + // C++0x 5.16p1 + // The first expression is contextually converted to bool. + if (!Cond.get()->isTypeDependent()) { + ExprResult CondRes = CheckCXXBooleanCondition(Cond.take()); + if (CondRes.isInvalid()) + return QualType(); + Cond = move(CondRes); + } + + // Assume r-value. + VK = VK_RValue; + OK = OK_Ordinary; + + // Either of the arguments dependent? + if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) + return Context.DependentTy; + + // C++0x 5.16p2 + // If either the second or the third operand has type (cv) void, ... + QualType LTy = LHS.get()->getType(); + QualType RTy = RHS.get()->getType(); + bool LVoid = LTy->isVoidType(); + bool RVoid = RTy->isVoidType(); + if (LVoid || RVoid) { + // ... then the [l2r] conversions are performed on the second and third + // operands ... + LHS = DefaultFunctionArrayLvalueConversion(LHS.take()); + RHS = DefaultFunctionArrayLvalueConversion(RHS.take()); + if (LHS.isInvalid() || RHS.isInvalid()) + return QualType(); + LTy = LHS.get()->getType(); + RTy = RHS.get()->getType(); + + // ... and one of the following shall hold: + // -- The second or the third operand (but not both) is a throw- + // expression; the result is of the type of the other and is an rvalue. + bool LThrow = isa<CXXThrowExpr>(LHS.get()); + bool RThrow = isa<CXXThrowExpr>(RHS.get()); + if (LThrow && !RThrow) + return RTy; + if (RThrow && !LThrow) + return LTy; + + // -- Both the second and third operands have type void; the result is of + // type void and is an rvalue. + if (LVoid && RVoid) + return Context.VoidTy; + + // Neither holds, error. + Diag(QuestionLoc, diag::err_conditional_void_nonvoid) + << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + return QualType(); + } + + // Neither is void. + + // C++0x 5.16p3 + // Otherwise, if the second and third operand have different types, and + // either has (cv) class type, and attempt is made to convert each of those + // operands to the other. + if (!Context.hasSameType(LTy, RTy) && + (LTy->isRecordType() || RTy->isRecordType())) { + ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft; + // These return true if a single direction is already ambiguous. + QualType L2RType, R2LType; + bool HaveL2R, HaveR2L; + if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) + return QualType(); + if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) + return QualType(); + + // If both can be converted, [...] the program is ill-formed. + if (HaveL2R && HaveR2L) { + Diag(QuestionLoc, diag::err_conditional_ambiguous) + << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + return QualType(); + } + + // If exactly one conversion is possible, that conversion is applied to + // the chosen operand and the converted operands are used in place of the + // original operands for the remainder of this section. + if (HaveL2R) { + if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) + return QualType(); + LTy = LHS.get()->getType(); + } else if (HaveR2L) { + if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) + return QualType(); + RTy = RHS.get()->getType(); + } + } + + // C++0x 5.16p4 + // If the second and third operands are glvalues of the same value + // category and have the same type, the result is of that type and + // value category and it is a bit-field if the second or the third + // operand is a bit-field, or if both are bit-fields. + // We only extend this to bitfields, not to the crazy other kinds of + // l-values. + bool Same = Context.hasSameType(LTy, RTy); + if (Same && + LHS.get()->isGLValue() && + LHS.get()->getValueKind() == RHS.get()->getValueKind() && + LHS.get()->isOrdinaryOrBitFieldObject() && + RHS.get()->isOrdinaryOrBitFieldObject()) { + VK = LHS.get()->getValueKind(); + if (LHS.get()->getObjectKind() == OK_BitField || + RHS.get()->getObjectKind() == OK_BitField) + OK = OK_BitField; + return LTy; + } + + // C++0x 5.16p5 + // Otherwise, the result is an rvalue. If the second and third operands + // do not have the same type, and either has (cv) class type, ... + if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { + // ... overload resolution is used to determine the conversions (if any) + // to be applied to the operands. If the overload resolution fails, the + // program is ill-formed. + if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) + return QualType(); + } + + // C++0x 5.16p6 + // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard + // conversions are performed on the second and third operands. + LHS = DefaultFunctionArrayLvalueConversion(LHS.take()); + RHS = DefaultFunctionArrayLvalueConversion(RHS.take()); + if (LHS.isInvalid() || RHS.isInvalid()) + return QualType(); + LTy = LHS.get()->getType(); + RTy = RHS.get()->getType(); + + // After those conversions, one of the following shall hold: + // -- The second and third operands have the same type; the result + // is of that type. If the operands have class type, the result + // is a prvalue temporary of the result type, which is + // copy-initialized from either the second operand or the third + // operand depending on the value of the first operand. + if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { + if (LTy->isRecordType()) { + // The operands have class type. Make a temporary copy. + InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); + ExprResult LHSCopy = PerformCopyInitialization(Entity, + SourceLocation(), + LHS); + if (LHSCopy.isInvalid()) + return QualType(); + + ExprResult RHSCopy = PerformCopyInitialization(Entity, + SourceLocation(), + RHS); + if (RHSCopy.isInvalid()) + return QualType(); + + LHS = LHSCopy; + RHS = RHSCopy; + } + + return LTy; + } + + // Extension: conditional operator involving vector types. + if (LTy->isVectorType() || RTy->isVectorType()) + return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false); + + // -- The second and third operands have arithmetic or enumeration type; + // the usual arithmetic conversions are performed to bring them to a + // common type, and the result is of that type. + if (LTy->isArithmeticType() && RTy->isArithmeticType()) { + UsualArithmeticConversions(LHS, RHS); + if (LHS.isInvalid() || RHS.isInvalid()) + return QualType(); + return LHS.get()->getType(); + } + + // -- The second and third operands have pointer type, or one has pointer + // type and the other is a null pointer constant; pointer conversions + // and qualification conversions are performed to bring them to their + // composite pointer type. The result is of the composite pointer type. + // -- The second and third operands have pointer to member type, or one has + // pointer to member type and the other is a null pointer constant; + // pointer to member conversions and qualification conversions are + // performed to bring them to a common type, whose cv-qualification + // shall match the cv-qualification of either the second or the third + // operand. The result is of the common type. + bool NonStandardCompositeType = false; + QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS, + isSFINAEContext()? 0 : &NonStandardCompositeType); + if (!Composite.isNull()) { + if (NonStandardCompositeType) + Diag(QuestionLoc, + diag::ext_typecheck_cond_incompatible_operands_nonstandard) + << LTy << RTy << Composite + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + + return Composite; + } + + // Similarly, attempt to find composite type of two objective-c pointers. + Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); + if (!Composite.isNull()) + return Composite; + + // Check if we are using a null with a non-pointer type. + if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) + return QualType(); + + Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) + << LHS.get()->getType() << RHS.get()->getType() + << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); + return QualType(); +} + +/// \brief Find a merged pointer type and convert the two expressions to it. +/// +/// This finds the composite pointer type (or member pointer type) for @p E1 +/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this +/// type and returns it. +/// It does not emit diagnostics. +/// +/// \param Loc The location of the operator requiring these two expressions to +/// be converted to the composite pointer type. +/// +/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find +/// a non-standard (but still sane) composite type to which both expressions +/// can be converted. When such a type is chosen, \c *NonStandardCompositeType +/// will be set true. +QualType Sema::FindCompositePointerType(SourceLocation Loc, + Expr *&E1, Expr *&E2, + bool *NonStandardCompositeType) { + if (NonStandardCompositeType) + *NonStandardCompositeType = false; + + assert(getLangOpts().CPlusPlus && "This function assumes C++"); + QualType T1 = E1->getType(), T2 = E2->getType(); + + if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && + !T2->isAnyPointerType() && !T2->isMemberPointerType()) + return QualType(); + + // C++0x 5.9p2 + // Pointer conversions and qualification conversions are performed on + // pointer operands to bring them to their composite pointer type. If + // one operand is a null pointer constant, the composite pointer type is + // the type of the other operand. + if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { + if (T2->isMemberPointerType()) + E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take(); + else + E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take(); + return T2; + } + if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { + if (T1->isMemberPointerType()) + E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take(); + else + E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take(); + return T1; + } + + // Now both have to be pointers or member pointers. + if ((!T1->isPointerType() && !T1->isMemberPointerType()) || + (!T2->isPointerType() && !T2->isMemberPointerType())) + return QualType(); + + // Otherwise, of one of the operands has type "pointer to cv1 void," then + // the other has type "pointer to cv2 T" and the composite pointer type is + // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. + // Otherwise, the composite pointer type is a pointer type similar to the + // type of one of the operands, with a cv-qualification signature that is + // the union of the cv-qualification signatures of the operand types. + // In practice, the first part here is redundant; it's subsumed by the second. + // What we do here is, we build the two possible composite types, and try the + // conversions in both directions. If only one works, or if the two composite + // types are the same, we have succeeded. + // FIXME: extended qualifiers? + typedef SmallVector<unsigned, 4> QualifierVector; + QualifierVector QualifierUnion; + typedef SmallVector<std::pair<const Type *, const Type *>, 4> + ContainingClassVector; + ContainingClassVector MemberOfClass; + QualType Composite1 = Context.getCanonicalType(T1), + Composite2 = Context.getCanonicalType(T2); + unsigned NeedConstBefore = 0; + do { + const PointerType *Ptr1, *Ptr2; + if ((Ptr1 = Composite1->getAs<PointerType>()) && + (Ptr2 = Composite2->getAs<PointerType>())) { + Composite1 = Ptr1->getPointeeType(); + Composite2 = Ptr2->getPointeeType(); + + // If we're allowed to create a non-standard composite type, keep track + // of where we need to fill in additional 'const' qualifiers. + if (NonStandardCompositeType && + Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) + NeedConstBefore = QualifierUnion.size(); + + QualifierUnion.push_back( + Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); + MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0)); + continue; + } + + const MemberPointerType *MemPtr1, *MemPtr2; + if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && + (MemPtr2 = Composite2->getAs<MemberPointerType>())) { + Composite1 = MemPtr1->getPointeeType(); + Composite2 = MemPtr2->getPointeeType(); + + // If we're allowed to create a non-standard composite type, keep track + // of where we need to fill in additional 'const' qualifiers. + if (NonStandardCompositeType && + Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) + NeedConstBefore = QualifierUnion.size(); + + QualifierUnion.push_back( + Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); + MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), + MemPtr2->getClass())); + continue; + } + + // FIXME: block pointer types? + + // Cannot unwrap any more types. + break; + } while (true); + + if (NeedConstBefore && NonStandardCompositeType) { + // Extension: Add 'const' to qualifiers that come before the first qualifier + // mismatch, so that our (non-standard!) composite type meets the + // requirements of C++ [conv.qual]p4 bullet 3. + for (unsigned I = 0; I != NeedConstBefore; ++I) { + if ((QualifierUnion[I] & Qualifiers::Const) == 0) { + QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; + *NonStandardCompositeType = true; + } + } + } + + // Rewrap the composites as pointers or member pointers with the union CVRs. + ContainingClassVector::reverse_iterator MOC + = MemberOfClass.rbegin(); + for (QualifierVector::reverse_iterator + I = QualifierUnion.rbegin(), + E = QualifierUnion.rend(); + I != E; (void)++I, ++MOC) { + Qualifiers Quals = Qualifiers::fromCVRMask(*I); + if (MOC->first && MOC->second) { + // Rebuild member pointer type + Composite1 = Context.getMemberPointerType( + Context.getQualifiedType(Composite1, Quals), + MOC->first); + Composite2 = Context.getMemberPointerType( + Context.getQualifiedType(Composite2, Quals), + MOC->second); + } else { + // Rebuild pointer type + Composite1 + = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); + Composite2 + = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); + } + } + + // Try to convert to the first composite pointer type. + InitializedEntity Entity1 + = InitializedEntity::InitializeTemporary(Composite1); + InitializationKind Kind + = InitializationKind::CreateCopy(Loc, SourceLocation()); + InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1); + InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1); + + if (E1ToC1 && E2ToC1) { + // Conversion to Composite1 is viable. + if (!Context.hasSameType(Composite1, Composite2)) { + // Composite2 is a different type from Composite1. Check whether + // Composite2 is also viable. + InitializedEntity Entity2 + = InitializedEntity::InitializeTemporary(Composite2); + InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); + InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); + if (E1ToC2 && E2ToC2) { + // Both Composite1 and Composite2 are viable and are different; + // this is an ambiguity. + return QualType(); + } + } + + // Convert E1 to Composite1 + ExprResult E1Result + = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1)); + if (E1Result.isInvalid()) + return QualType(); + E1 = E1Result.takeAs<Expr>(); + + // Convert E2 to Composite1 + ExprResult E2Result + = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1)); + if (E2Result.isInvalid()) + return QualType(); + E2 = E2Result.takeAs<Expr>(); + + return Composite1; + } + + // Check whether Composite2 is viable. + InitializedEntity Entity2 + = InitializedEntity::InitializeTemporary(Composite2); + InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); + InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); + if (!E1ToC2 || !E2ToC2) + return QualType(); + + // Convert E1 to Composite2 + ExprResult E1Result + = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1)); + if (E1Result.isInvalid()) + return QualType(); + E1 = E1Result.takeAs<Expr>(); + + // Convert E2 to Composite2 + ExprResult E2Result + = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1)); + if (E2Result.isInvalid()) + return QualType(); + E2 = E2Result.takeAs<Expr>(); + + return Composite2; +} + +ExprResult Sema::MaybeBindToTemporary(Expr *E) { + if (!E) + return ExprError(); + + assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); + + // If the result is a glvalue, we shouldn't bind it. + if (!E->isRValue()) + return Owned(E); + + // In ARC, calls that return a retainable type can return retained, + // in which case we have to insert a consuming cast. + if (getLangOpts().ObjCAutoRefCount && + E->getType()->isObjCRetainableType()) { + + bool ReturnsRetained; + + // For actual calls, we compute this by examining the type of the + // called value. + if (CallExpr *Call = dyn_cast<CallExpr>(E)) { + Expr *Callee = Call->getCallee()->IgnoreParens(); + QualType T = Callee->getType(); + + if (T == Context.BoundMemberTy) { + // Handle pointer-to-members. + if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) + T = BinOp->getRHS()->getType(); + else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) + T = Mem->getMemberDecl()->getType(); + } + + if (const PointerType *Ptr = T->getAs<PointerType>()) + T = Ptr->getPointeeType(); + else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) + T = Ptr->getPointeeType(); + else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) + T = MemPtr->getPointeeType(); + + const FunctionType *FTy = T->getAs<FunctionType>(); + assert(FTy && "call to value not of function type?"); + ReturnsRetained = FTy->getExtInfo().getProducesResult(); + + // ActOnStmtExpr arranges things so that StmtExprs of retainable + // type always produce a +1 object. + } else if (isa<StmtExpr>(E)) { + ReturnsRetained = true; + + // We hit this case with the lambda conversion-to-block optimization; + // we don't want any extra casts here. + } else if (isa<CastExpr>(E) && + isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { + return Owned(E); + + // For message sends and property references, we try to find an + // actual method. FIXME: we should infer retention by selector in + // cases where we don't have an actual method. + } else { + ObjCMethodDecl *D = 0; + if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { + D = Send->getMethodDecl(); + } else if (ObjCNumericLiteral *NumLit = dyn_cast<ObjCNumericLiteral>(E)) { + D = NumLit->getObjCNumericLiteralMethod(); + } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { + D = ArrayLit->getArrayWithObjectsMethod(); + } else if (ObjCDictionaryLiteral *DictLit + = dyn_cast<ObjCDictionaryLiteral>(E)) { + D = DictLit->getDictWithObjectsMethod(); + } + + ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); + + // Don't do reclaims on performSelector calls; despite their + // return type, the invoked method doesn't necessarily actually + // return an object. + if (!ReturnsRetained && + D && D->getMethodFamily() == OMF_performSelector) + return Owned(E); + } + + // Don't reclaim an object of Class type. + if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) + return Owned(E); + + ExprNeedsCleanups = true; + + CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject + : CK_ARCReclaimReturnedObject); + return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0, + VK_RValue)); + } + + if (!getLangOpts().CPlusPlus) + return Owned(E); + + // Search for the base element type (cf. ASTContext::getBaseElementType) with + // a fast path for the common case that the type is directly a RecordType. + const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); + const RecordType *RT = 0; + while (!RT) { + switch (T->getTypeClass()) { + case Type::Record: + RT = cast<RecordType>(T); + break; + case Type::ConstantArray: + case Type::IncompleteArray: + case Type::VariableArray: + case Type::DependentSizedArray: + T = cast<ArrayType>(T)->getElementType().getTypePtr(); + break; + default: + return Owned(E); + } + } + + // That should be enough to guarantee that this type is complete, if we're + // not processing a decltype expression. + CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); + if (RD->isInvalidDecl() || RD->isDependentContext()) + return Owned(E); + + bool IsDecltype = ExprEvalContexts.back().IsDecltype; + CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD); + + if (Destructor) { + MarkFunctionReferenced(E->getExprLoc(), Destructor); + CheckDestructorAccess(E->getExprLoc(), Destructor, + PDiag(diag::err_access_dtor_temp) + << E->getType()); + DiagnoseUseOfDecl(Destructor, E->getExprLoc()); + + // If destructor is trivial, we can avoid the extra copy. + if (Destructor->isTrivial()) + return Owned(E); + + // We need a cleanup, but we don't need to remember the temporary. + ExprNeedsCleanups = true; + } + + CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); + CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); + + if (IsDecltype) + ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); + + return Owned(Bind); +} + +ExprResult +Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { + if (SubExpr.isInvalid()) + return ExprError(); + + return Owned(MaybeCreateExprWithCleanups(SubExpr.take())); +} + +Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { + assert(SubExpr && "sub expression can't be null!"); + + CleanupVarDeclMarking(); + + unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; + assert(ExprCleanupObjects.size() >= FirstCleanup); + assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup); + if (!ExprNeedsCleanups) + return SubExpr; + + ArrayRef<ExprWithCleanups::CleanupObject> Cleanups + = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, + ExprCleanupObjects.size() - FirstCleanup); + + Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups); + DiscardCleanupsInEvaluationContext(); + + return E; +} + +Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { + assert(SubStmt && "sub statement can't be null!"); + + CleanupVarDeclMarking(); + + if (!ExprNeedsCleanups) + return SubStmt; + + // FIXME: In order to attach the temporaries, wrap the statement into + // a StmtExpr; currently this is only used for asm statements. + // This is hacky, either create a new CXXStmtWithTemporaries statement or + // a new AsmStmtWithTemporaries. + CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1, + SourceLocation(), + SourceLocation()); + Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), + SourceLocation()); + return MaybeCreateExprWithCleanups(E); +} + +/// Process the expression contained within a decltype. For such expressions, +/// certain semantic checks on temporaries are delayed until this point, and +/// are omitted for the 'topmost' call in the decltype expression. If the +/// topmost call bound a temporary, strip that temporary off the expression. +ExprResult Sema::ActOnDecltypeExpression(Expr *E) { + ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back(); + assert(Rec.IsDecltype && "not in a decltype expression"); + + // C++11 [expr.call]p11: + // If a function call is a prvalue of object type, + // -- if the function call is either + // -- the operand of a decltype-specifier, or + // -- the right operand of a comma operator that is the operand of a + // decltype-specifier, + // a temporary object is not introduced for the prvalue. + + // Recursively rebuild ParenExprs and comma expressions to strip out the + // outermost CXXBindTemporaryExpr, if any. + if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { + ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); + if (SubExpr.isInvalid()) + return ExprError(); + if (SubExpr.get() == PE->getSubExpr()) + return Owned(E); + return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take()); + } + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { + if (BO->getOpcode() == BO_Comma) { + ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); + if (RHS.isInvalid()) + return ExprError(); + if (RHS.get() == BO->getRHS()) + return Owned(E); + return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(), + BO_Comma, BO->getType(), + BO->getValueKind(), + BO->getObjectKind(), + BO->getOperatorLoc())); + } + } + + CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); + if (TopBind) + E = TopBind->getSubExpr(); + + // Disable the special decltype handling now. + Rec.IsDecltype = false; + + // Perform the semantic checks we delayed until this point. + CallExpr *TopCall = dyn_cast<CallExpr>(E); + for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) { + CallExpr *Call = Rec.DelayedDecltypeCalls[I]; + if (Call == TopCall) + continue; + + if (CheckCallReturnType(Call->getCallReturnType(), + Call->getLocStart(), + Call, Call->getDirectCallee())) + return ExprError(); + } + + // Now all relevant types are complete, check the destructors are accessible + // and non-deleted, and annotate them on the temporaries. + for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) { + CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I]; + if (Bind == TopBind) + continue; + + CXXTemporary *Temp = Bind->getTemporary(); + + CXXRecordDecl *RD = + Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); + CXXDestructorDecl *Destructor = LookupDestructor(RD); + Temp->setDestructor(Destructor); + + MarkFunctionReferenced(E->getExprLoc(), Destructor); + CheckDestructorAccess(E->getExprLoc(), Destructor, + PDiag(diag::err_access_dtor_temp) + << E->getType()); + DiagnoseUseOfDecl(Destructor, E->getExprLoc()); + + // We need a cleanup, but we don't need to remember the temporary. + ExprNeedsCleanups = true; + } + + // Possibly strip off the top CXXBindTemporaryExpr. + return Owned(E); +} + +ExprResult +Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc, + tok::TokenKind OpKind, ParsedType &ObjectType, + bool &MayBePseudoDestructor) { + // Since this might be a postfix expression, get rid of ParenListExprs. + ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); + if (Result.isInvalid()) return ExprError(); + Base = Result.get(); + + Result = CheckPlaceholderExpr(Base); + if (Result.isInvalid()) return ExprError(); + Base = Result.take(); + + QualType BaseType = Base->getType(); + MayBePseudoDestructor = false; + if (BaseType->isDependentType()) { + // If we have a pointer to a dependent type and are using the -> operator, + // the object type is the type that the pointer points to. We might still + // have enough information about that type to do something useful. + if (OpKind == tok::arrow) + if (const PointerType *Ptr = BaseType->getAs<PointerType>()) + BaseType = Ptr->getPointeeType(); + + ObjectType = ParsedType::make(BaseType); + MayBePseudoDestructor = true; + return Owned(Base); + } + + // C++ [over.match.oper]p8: + // [...] When operator->returns, the operator-> is applied to the value + // returned, with the original second operand. + if (OpKind == tok::arrow) { + // The set of types we've considered so far. + llvm::SmallPtrSet<CanQualType,8> CTypes; + SmallVector<SourceLocation, 8> Locations; + CTypes.insert(Context.getCanonicalType(BaseType)); + + while (BaseType->isRecordType()) { + Result = BuildOverloadedArrowExpr(S, Base, OpLoc); + if (Result.isInvalid()) + return ExprError(); + Base = Result.get(); + if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) + Locations.push_back(OpCall->getDirectCallee()->getLocation()); + BaseType = Base->getType(); + CanQualType CBaseType = Context.getCanonicalType(BaseType); + if (!CTypes.insert(CBaseType)) { + Diag(OpLoc, diag::err_operator_arrow_circular); + for (unsigned i = 0; i < Locations.size(); i++) + Diag(Locations[i], diag::note_declared_at); + return ExprError(); + } + } + + if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()) + BaseType = BaseType->getPointeeType(); + } + + // Objective-C properties allow "." access on Objective-C pointer types, + // so adjust the base type to the object type itself. + if (BaseType->isObjCObjectPointerType()) + BaseType = BaseType->getPointeeType(); + + // C++ [basic.lookup.classref]p2: + // [...] If the type of the object expression is of pointer to scalar + // type, the unqualified-id is looked up in the context of the complete + // postfix-expression. + // + // This also indicates that we could be parsing a pseudo-destructor-name. + // Note that Objective-C class and object types can be pseudo-destructor + // expressions or normal member (ivar or property) access expressions. + if (BaseType->isObjCObjectOrInterfaceType()) { + MayBePseudoDestructor = true; + } else if (!BaseType->isRecordType()) { + ObjectType = ParsedType(); + MayBePseudoDestructor = true; + return Owned(Base); + } + + // The object type must be complete (or dependent), or + // C++11 [expr.prim.general]p3: + // Unlike the object expression in other contexts, *this is not required to + // be of complete type for purposes of class member access (5.2.5) outside + // the member function body. + if (!BaseType->isDependentType() && + !isThisOutsideMemberFunctionBody(BaseType) && + RequireCompleteType(OpLoc, BaseType, + PDiag(diag::err_incomplete_member_access))) + return ExprError(); + + // C++ [basic.lookup.classref]p2: + // If the id-expression in a class member access (5.2.5) is an + // unqualified-id, and the type of the object expression is of a class + // type C (or of pointer to a class type C), the unqualified-id is looked + // up in the scope of class C. [...] + ObjectType = ParsedType::make(BaseType); + return move(Base); +} + +ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc, + Expr *MemExpr) { + SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc); + Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call) + << isa<CXXPseudoDestructorExpr>(MemExpr) + << FixItHint::CreateInsertion(ExpectedLParenLoc, "()"); + + return ActOnCallExpr(/*Scope*/ 0, + MemExpr, + /*LPLoc*/ ExpectedLParenLoc, + MultiExprArg(), + /*RPLoc*/ ExpectedLParenLoc); +} + +static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base, + tok::TokenKind& OpKind, SourceLocation OpLoc) { + if (Base->hasPlaceholderType()) { + ExprResult result = S.CheckPlaceholderExpr(Base); + if (result.isInvalid()) return true; + Base = result.take(); + } + ObjectType = Base->getType(); + + // C++ [expr.pseudo]p2: + // The left-hand side of the dot operator shall be of scalar type. The + // left-hand side of the arrow operator shall be of pointer to scalar type. + // This scalar type is the object type. + // Note that this is rather different from the normal handling for the + // arrow operator. + if (OpKind == tok::arrow) { + if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { + ObjectType = Ptr->getPointeeType(); + } else if (!Base->isTypeDependent()) { + // The user wrote "p->" when she probably meant "p."; fix it. + S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) + << ObjectType << true + << FixItHint::CreateReplacement(OpLoc, "."); + if (S.isSFINAEContext()) + return true; + + OpKind = tok::period; + } + } + + return false; +} + +ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, + SourceLocation OpLoc, + tok::TokenKind OpKind, + const CXXScopeSpec &SS, + TypeSourceInfo *ScopeTypeInfo, + SourceLocation CCLoc, + SourceLocation TildeLoc, + PseudoDestructorTypeStorage Destructed, + bool HasTrailingLParen) { + TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); + + QualType ObjectType; + if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) + return ExprError(); + + if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) { + if (getLangOpts().MicrosoftMode && ObjectType->isVoidType()) + Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); + else + Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) + << ObjectType << Base->getSourceRange(); + return ExprError(); + } + + // C++ [expr.pseudo]p2: + // [...] The cv-unqualified versions of the object type and of the type + // designated by the pseudo-destructor-name shall be the same type. + if (DestructedTypeInfo) { + QualType DestructedType = DestructedTypeInfo->getType(); + SourceLocation DestructedTypeStart + = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); + if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { + if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { + Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) + << ObjectType << DestructedType << Base->getSourceRange() + << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); + + // Recover by setting the destructed type to the object type. + DestructedType = ObjectType; + DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, + DestructedTypeStart); + Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); + } else if (DestructedType.getObjCLifetime() != + ObjectType.getObjCLifetime()) { + + if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { + // Okay: just pretend that the user provided the correctly-qualified + // type. + } else { + Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) + << ObjectType << DestructedType << Base->getSourceRange() + << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); + } + + // Recover by setting the destructed type to the object type. + DestructedType = ObjectType; + DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, + DestructedTypeStart); + Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); + } + } + } + + // C++ [expr.pseudo]p2: + // [...] Furthermore, the two type-names in a pseudo-destructor-name of the + // form + // + // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name + // + // shall designate the same scalar type. + if (ScopeTypeInfo) { + QualType ScopeType = ScopeTypeInfo->getType(); + if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && + !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { + + Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), + diag::err_pseudo_dtor_type_mismatch) + << ObjectType << ScopeType << Base->getSourceRange() + << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); + + ScopeType = QualType(); + ScopeTypeInfo = 0; + } + } + + Expr *Result + = new (Context) CXXPseudoDestructorExpr(Context, Base, + OpKind == tok::arrow, OpLoc, + SS.getWithLocInContext(Context), + ScopeTypeInfo, + CCLoc, + TildeLoc, + Destructed); + + if (HasTrailingLParen) + return Owned(Result); + + return DiagnoseDtorReference(Destructed.getLocation(), Result); +} + +ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, + SourceLocation OpLoc, + tok::TokenKind OpKind, + CXXScopeSpec &SS, + UnqualifiedId &FirstTypeName, + SourceLocation CCLoc, + SourceLocation TildeLoc, + UnqualifiedId &SecondTypeName, + bool HasTrailingLParen) { + assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || + FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && + "Invalid first type name in pseudo-destructor"); + assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || + SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && + "Invalid second type name in pseudo-destructor"); + + QualType ObjectType; + if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) + return ExprError(); + + // Compute the object type that we should use for name lookup purposes. Only + // record types and dependent types matter. + ParsedType ObjectTypePtrForLookup; + if (!SS.isSet()) { + if (ObjectType->isRecordType()) + ObjectTypePtrForLookup = ParsedType::make(ObjectType); + else if (ObjectType->isDependentType()) + ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); + } + + // Convert the name of the type being destructed (following the ~) into a + // type (with source-location information). + QualType DestructedType; + TypeSourceInfo *DestructedTypeInfo = 0; + PseudoDestructorTypeStorage Destructed; + if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) { + ParsedType T = getTypeName(*SecondTypeName.Identifier, + SecondTypeName.StartLocation, + S, &SS, true, false, ObjectTypePtrForLookup); + if (!T && + ((SS.isSet() && !computeDeclContext(SS, false)) || + (!SS.isSet() && ObjectType->isDependentType()))) { + // The name of the type being destroyed is a dependent name, and we + // couldn't find anything useful in scope. Just store the identifier and + // it's location, and we'll perform (qualified) name lookup again at + // template instantiation time. + Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, + SecondTypeName.StartLocation); + } else if (!T) { + Diag(SecondTypeName.StartLocation, + diag::err_pseudo_dtor_destructor_non_type) + << SecondTypeName.Identifier << ObjectType; + if (isSFINAEContext()) + return ExprError(); + + // Recover by assuming we had the right type all along. + DestructedType = ObjectType; + } else + DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); + } else { + // Resolve the template-id to a type. + TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; + ASTTemplateArgsPtr TemplateArgsPtr(*this, + TemplateId->getTemplateArgs(), + TemplateId->NumArgs); + TypeResult T = ActOnTemplateIdType(TemplateId->SS, + TemplateId->TemplateKWLoc, + TemplateId->Template, + TemplateId->TemplateNameLoc, + TemplateId->LAngleLoc, + TemplateArgsPtr, + TemplateId->RAngleLoc); + if (T.isInvalid() || !T.get()) { + // Recover by assuming we had the right type all along. + DestructedType = ObjectType; + } else + DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); + } + + // If we've performed some kind of recovery, (re-)build the type source + // information. + if (!DestructedType.isNull()) { + if (!DestructedTypeInfo) + DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, + SecondTypeName.StartLocation); + Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); + } + + // Convert the name of the scope type (the type prior to '::') into a type. + TypeSourceInfo *ScopeTypeInfo = 0; + QualType ScopeType; + if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || + FirstTypeName.Identifier) { + if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) { + ParsedType T = getTypeName(*FirstTypeName.Identifier, + FirstTypeName.StartLocation, + S, &SS, true, false, ObjectTypePtrForLookup); + if (!T) { + Diag(FirstTypeName.StartLocation, + diag::err_pseudo_dtor_destructor_non_type) + << FirstTypeName.Identifier << ObjectType; + + if (isSFINAEContext()) + return ExprError(); + + // Just drop this type. It's unnecessary anyway. + ScopeType = QualType(); + } else + ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); + } else { + // Resolve the template-id to a type. + TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; + ASTTemplateArgsPtr TemplateArgsPtr(*this, + TemplateId->getTemplateArgs(), + TemplateId->NumArgs); + TypeResult T = ActOnTemplateIdType(TemplateId->SS, + TemplateId->TemplateKWLoc, + TemplateId->Template, + TemplateId->TemplateNameLoc, + TemplateId->LAngleLoc, + TemplateArgsPtr, + TemplateId->RAngleLoc); + if (T.isInvalid() || !T.get()) { + // Recover by dropping this type. + ScopeType = QualType(); + } else + ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); + } + } + + if (!ScopeType.isNull() && !ScopeTypeInfo) + ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, + FirstTypeName.StartLocation); + + + return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, + ScopeTypeInfo, CCLoc, TildeLoc, + Destructed, HasTrailingLParen); +} + +ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, + SourceLocation OpLoc, + tok::TokenKind OpKind, + SourceLocation TildeLoc, + const DeclSpec& DS, + bool HasTrailingLParen) { + QualType ObjectType; + if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) + return ExprError(); + + QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); + + TypeLocBuilder TLB; + DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); + DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); + TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); + PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); + + return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), + 0, SourceLocation(), TildeLoc, + Destructed, HasTrailingLParen); +} + +ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, + CXXConversionDecl *Method, + bool HadMultipleCandidates) { + if (Method->getParent()->isLambda() && + Method->getConversionType()->isBlockPointerType()) { + // This is a lambda coversion to block pointer; check if the argument + // is a LambdaExpr. + Expr *SubE = E; + CastExpr *CE = dyn_cast<CastExpr>(SubE); + if (CE && CE->getCastKind() == CK_NoOp) + SubE = CE->getSubExpr(); + SubE = SubE->IgnoreParens(); + if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) + SubE = BE->getSubExpr(); + if (isa<LambdaExpr>(SubE)) { + // For the conversion to block pointer on a lambda expression, we + // construct a special BlockLiteral instead; this doesn't really make + // a difference in ARC, but outside of ARC the resulting block literal + // follows the normal lifetime rules for block literals instead of being + // autoreleased. + DiagnosticErrorTrap Trap(Diags); + ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(), + E->getExprLoc(), + Method, E); + if (Exp.isInvalid()) + Diag(E->getExprLoc(), diag::note_lambda_to_block_conv); + return Exp; + } + } + + + ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0, + FoundDecl, Method); + if (Exp.isInvalid()) + return true; + + MemberExpr *ME = + new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method, + SourceLocation(), Context.BoundMemberTy, + VK_RValue, OK_Ordinary); + if (HadMultipleCandidates) + ME->setHadMultipleCandidates(true); + + QualType ResultType = Method->getResultType(); + ExprValueKind VK = Expr::getValueKindForType(ResultType); + ResultType = ResultType.getNonLValueExprType(Context); + + MarkFunctionReferenced(Exp.get()->getLocStart(), Method); + CXXMemberCallExpr *CE = + new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK, + Exp.get()->getLocEnd()); + return CE; +} + +ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, + SourceLocation RParen) { + CanThrowResult CanThrow = canThrow(Operand); + return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand, + CanThrow, KeyLoc, RParen)); +} + +ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, + Expr *Operand, SourceLocation RParen) { + return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); +} + +/// Perform the conversions required for an expression used in a +/// context that ignores the result. +ExprResult Sema::IgnoredValueConversions(Expr *E) { + if (E->hasPlaceholderType()) { + ExprResult result = CheckPlaceholderExpr(E); + if (result.isInvalid()) return Owned(E); + E = result.take(); + } + + // C99 6.3.2.1: + // [Except in specific positions,] an lvalue that does not have + // array type is converted to the value stored in the + // designated object (and is no longer an lvalue). + if (E->isRValue()) { + // In C, function designators (i.e. expressions of function type) + // are r-values, but we still want to do function-to-pointer decay + // on them. This is both technically correct and convenient for + // some clients. + if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) + return DefaultFunctionArrayConversion(E); + + return Owned(E); + } + + // Otherwise, this rule does not apply in C++, at least not for the moment. + if (getLangOpts().CPlusPlus) return Owned(E); + + // GCC seems to also exclude expressions of incomplete enum type. + if (const EnumType *T = E->getType()->getAs<EnumType>()) { + if (!T->getDecl()->isComplete()) { + // FIXME: stupid workaround for a codegen bug! + E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take(); + return Owned(E); + } + } + + ExprResult Res = DefaultFunctionArrayLvalueConversion(E); + if (Res.isInvalid()) + return Owned(E); + E = Res.take(); + + if (!E->getType()->isVoidType()) + RequireCompleteType(E->getExprLoc(), E->getType(), + diag::err_incomplete_type); + return Owned(E); +} + +ExprResult Sema::ActOnFinishFullExpr(Expr *FE) { + ExprResult FullExpr = Owned(FE); + + if (!FullExpr.get()) + return ExprError(); + + if (DiagnoseUnexpandedParameterPack(FullExpr.get())) + return ExprError(); + + // Top-level message sends default to 'id' when we're in a debugger. + if (getLangOpts().DebuggerCastResultToId && + FullExpr.get()->getType() == Context.UnknownAnyTy && + isa<ObjCMessageExpr>(FullExpr.get())) { + FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType()); + if (FullExpr.isInvalid()) + return ExprError(); + } + + FullExpr = CheckPlaceholderExpr(FullExpr.take()); + if (FullExpr.isInvalid()) + return ExprError(); + + FullExpr = IgnoredValueConversions(FullExpr.take()); + if (FullExpr.isInvalid()) + return ExprError(); + + CheckImplicitConversions(FullExpr.get(), FullExpr.get()->getExprLoc()); + return MaybeCreateExprWithCleanups(FullExpr); +} + +StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { + if (!FullStmt) return StmtError(); + + return MaybeCreateStmtWithCleanups(FullStmt); +} + +Sema::IfExistsResult +Sema::CheckMicrosoftIfExistsSymbol(Scope *S, + CXXScopeSpec &SS, + const DeclarationNameInfo &TargetNameInfo) { + DeclarationName TargetName = TargetNameInfo.getName(); + if (!TargetName) + return IER_DoesNotExist; + + // If the name itself is dependent, then the result is dependent. + if (TargetName.isDependentName()) + return IER_Dependent; + + // Do the redeclaration lookup in the current scope. + LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, + Sema::NotForRedeclaration); + LookupParsedName(R, S, &SS); + R.suppressDiagnostics(); + + switch (R.getResultKind()) { + case LookupResult::Found: + case LookupResult::FoundOverloaded: + case LookupResult::FoundUnresolvedValue: + case LookupResult::Ambiguous: + return IER_Exists; + + case LookupResult::NotFound: + return IER_DoesNotExist; + + case LookupResult::NotFoundInCurrentInstantiation: + return IER_Dependent; + } + + llvm_unreachable("Invalid LookupResult Kind!"); +} + +Sema::IfExistsResult +Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, + bool IsIfExists, CXXScopeSpec &SS, + UnqualifiedId &Name) { + DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); + + // Check for unexpanded parameter packs. + SmallVector<UnexpandedParameterPack, 4> Unexpanded; + collectUnexpandedParameterPacks(SS, Unexpanded); + collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded); + if (!Unexpanded.empty()) { + DiagnoseUnexpandedParameterPacks(KeywordLoc, + IsIfExists? UPPC_IfExists + : UPPC_IfNotExists, + Unexpanded); + return IER_Error; + } + + return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); +} |