summaryrefslogtreecommitdiff
path: root/clang/lib/Sema/SemaDeclObjC.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/Sema/SemaDeclObjC.cpp')
-rw-r--r--clang/lib/Sema/SemaDeclObjC.cpp3121
1 files changed, 3121 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaDeclObjC.cpp b/clang/lib/Sema/SemaDeclObjC.cpp
new file mode 100644
index 0000000..a942d49
--- /dev/null
+++ b/clang/lib/Sema/SemaDeclObjC.cpp
@@ -0,0 +1,3121 @@
+//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for Objective C declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/ExternalSemaSource.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Lex/Preprocessor.h"
+#include "llvm/ADT/DenseSet.h"
+
+using namespace clang;
+
+/// Check whether the given method, which must be in the 'init'
+/// family, is a valid member of that family.
+///
+/// \param receiverTypeIfCall - if null, check this as if declaring it;
+/// if non-null, check this as if making a call to it with the given
+/// receiver type
+///
+/// \return true to indicate that there was an error and appropriate
+/// actions were taken
+bool Sema::checkInitMethod(ObjCMethodDecl *method,
+ QualType receiverTypeIfCall) {
+ if (method->isInvalidDecl()) return true;
+
+ // This castAs is safe: methods that don't return an object
+ // pointer won't be inferred as inits and will reject an explicit
+ // objc_method_family(init).
+
+ // We ignore protocols here. Should we? What about Class?
+
+ const ObjCObjectType *result = method->getResultType()
+ ->castAs<ObjCObjectPointerType>()->getObjectType();
+
+ if (result->isObjCId()) {
+ return false;
+ } else if (result->isObjCClass()) {
+ // fall through: always an error
+ } else {
+ ObjCInterfaceDecl *resultClass = result->getInterface();
+ assert(resultClass && "unexpected object type!");
+
+ // It's okay for the result type to still be a forward declaration
+ // if we're checking an interface declaration.
+ if (!resultClass->hasDefinition()) {
+ if (receiverTypeIfCall.isNull() &&
+ !isa<ObjCImplementationDecl>(method->getDeclContext()))
+ return false;
+
+ // Otherwise, we try to compare class types.
+ } else {
+ // If this method was declared in a protocol, we can't check
+ // anything unless we have a receiver type that's an interface.
+ const ObjCInterfaceDecl *receiverClass = 0;
+ if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
+ if (receiverTypeIfCall.isNull())
+ return false;
+
+ receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
+ ->getInterfaceDecl();
+
+ // This can be null for calls to e.g. id<Foo>.
+ if (!receiverClass) return false;
+ } else {
+ receiverClass = method->getClassInterface();
+ assert(receiverClass && "method not associated with a class!");
+ }
+
+ // If either class is a subclass of the other, it's fine.
+ if (receiverClass->isSuperClassOf(resultClass) ||
+ resultClass->isSuperClassOf(receiverClass))
+ return false;
+ }
+ }
+
+ SourceLocation loc = method->getLocation();
+
+ // If we're in a system header, and this is not a call, just make
+ // the method unusable.
+ if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
+ method->addAttr(new (Context) UnavailableAttr(loc, Context,
+ "init method returns a type unrelated to its receiver type"));
+ return true;
+ }
+
+ // Otherwise, it's an error.
+ Diag(loc, diag::err_arc_init_method_unrelated_result_type);
+ method->setInvalidDecl();
+ return true;
+}
+
+void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
+ const ObjCMethodDecl *Overridden,
+ bool IsImplementation) {
+ if (Overridden->hasRelatedResultType() &&
+ !NewMethod->hasRelatedResultType()) {
+ // This can only happen when the method follows a naming convention that
+ // implies a related result type, and the original (overridden) method has
+ // a suitable return type, but the new (overriding) method does not have
+ // a suitable return type.
+ QualType ResultType = NewMethod->getResultType();
+ SourceRange ResultTypeRange;
+ if (const TypeSourceInfo *ResultTypeInfo
+ = NewMethod->getResultTypeSourceInfo())
+ ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
+
+ // Figure out which class this method is part of, if any.
+ ObjCInterfaceDecl *CurrentClass
+ = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
+ if (!CurrentClass) {
+ DeclContext *DC = NewMethod->getDeclContext();
+ if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
+ CurrentClass = Cat->getClassInterface();
+ else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
+ CurrentClass = Impl->getClassInterface();
+ else if (ObjCCategoryImplDecl *CatImpl
+ = dyn_cast<ObjCCategoryImplDecl>(DC))
+ CurrentClass = CatImpl->getClassInterface();
+ }
+
+ if (CurrentClass) {
+ Diag(NewMethod->getLocation(),
+ diag::warn_related_result_type_compatibility_class)
+ << Context.getObjCInterfaceType(CurrentClass)
+ << ResultType
+ << ResultTypeRange;
+ } else {
+ Diag(NewMethod->getLocation(),
+ diag::warn_related_result_type_compatibility_protocol)
+ << ResultType
+ << ResultTypeRange;
+ }
+
+ if (ObjCMethodFamily Family = Overridden->getMethodFamily())
+ Diag(Overridden->getLocation(),
+ diag::note_related_result_type_overridden_family)
+ << Family;
+ else
+ Diag(Overridden->getLocation(),
+ diag::note_related_result_type_overridden);
+ }
+ if (getLangOpts().ObjCAutoRefCount) {
+ if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
+ Overridden->hasAttr<NSReturnsRetainedAttr>())) {
+ Diag(NewMethod->getLocation(),
+ diag::err_nsreturns_retained_attribute_mismatch) << 1;
+ Diag(Overridden->getLocation(), diag::note_previous_decl)
+ << "method";
+ }
+ if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
+ Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
+ Diag(NewMethod->getLocation(),
+ diag::err_nsreturns_retained_attribute_mismatch) << 0;
+ Diag(Overridden->getLocation(), diag::note_previous_decl)
+ << "method";
+ }
+ ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin();
+ for (ObjCMethodDecl::param_iterator
+ ni = NewMethod->param_begin(), ne = NewMethod->param_end();
+ ni != ne; ++ni, ++oi) {
+ const ParmVarDecl *oldDecl = (*oi);
+ ParmVarDecl *newDecl = (*ni);
+ if (newDecl->hasAttr<NSConsumedAttr>() !=
+ oldDecl->hasAttr<NSConsumedAttr>()) {
+ Diag(newDecl->getLocation(),
+ diag::err_nsconsumed_attribute_mismatch);
+ Diag(oldDecl->getLocation(), diag::note_previous_decl)
+ << "parameter";
+ }
+ }
+ }
+}
+
+/// \brief Check a method declaration for compatibility with the Objective-C
+/// ARC conventions.
+static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
+ ObjCMethodFamily family = method->getMethodFamily();
+ switch (family) {
+ case OMF_None:
+ case OMF_dealloc:
+ case OMF_finalize:
+ case OMF_retain:
+ case OMF_release:
+ case OMF_autorelease:
+ case OMF_retainCount:
+ case OMF_self:
+ case OMF_performSelector:
+ return false;
+
+ case OMF_init:
+ // If the method doesn't obey the init rules, don't bother annotating it.
+ if (S.checkInitMethod(method, QualType()))
+ return true;
+
+ method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
+ S.Context));
+
+ // Don't add a second copy of this attribute, but otherwise don't
+ // let it be suppressed.
+ if (method->hasAttr<NSReturnsRetainedAttr>())
+ return false;
+ break;
+
+ case OMF_alloc:
+ case OMF_copy:
+ case OMF_mutableCopy:
+ case OMF_new:
+ if (method->hasAttr<NSReturnsRetainedAttr>() ||
+ method->hasAttr<NSReturnsNotRetainedAttr>() ||
+ method->hasAttr<NSReturnsAutoreleasedAttr>())
+ return false;
+ break;
+ }
+
+ method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
+ S.Context));
+ return false;
+}
+
+static void DiagnoseObjCImplementedDeprecations(Sema &S,
+ NamedDecl *ND,
+ SourceLocation ImplLoc,
+ int select) {
+ if (ND && ND->isDeprecated()) {
+ S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
+ if (select == 0)
+ S.Diag(ND->getLocation(), diag::note_method_declared_at)
+ << ND->getDeclName();
+ else
+ S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
+ }
+}
+
+/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
+/// pool.
+void Sema::AddAnyMethodToGlobalPool(Decl *D) {
+ ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
+
+ // If we don't have a valid method decl, simply return.
+ if (!MDecl)
+ return;
+ if (MDecl->isInstanceMethod())
+ AddInstanceMethodToGlobalPool(MDecl, true);
+ else
+ AddFactoryMethodToGlobalPool(MDecl, true);
+}
+
+/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
+/// and user declared, in the method definition's AST.
+void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
+ assert(getCurMethodDecl() == 0 && "Method parsing confused");
+ ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
+
+ // If we don't have a valid method decl, simply return.
+ if (!MDecl)
+ return;
+
+ // Allow all of Sema to see that we are entering a method definition.
+ PushDeclContext(FnBodyScope, MDecl);
+ PushFunctionScope();
+
+ // Create Decl objects for each parameter, entrring them in the scope for
+ // binding to their use.
+
+ // Insert the invisible arguments, self and _cmd!
+ MDecl->createImplicitParams(Context, MDecl->getClassInterface());
+
+ PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
+ PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
+
+ // Introduce all of the other parameters into this scope.
+ for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
+ E = MDecl->param_end(); PI != E; ++PI) {
+ ParmVarDecl *Param = (*PI);
+ if (!Param->isInvalidDecl() &&
+ RequireCompleteType(Param->getLocation(), Param->getType(),
+ diag::err_typecheck_decl_incomplete_type))
+ Param->setInvalidDecl();
+ if ((*PI)->getIdentifier())
+ PushOnScopeChains(*PI, FnBodyScope);
+ }
+
+ // In ARC, disallow definition of retain/release/autorelease/retainCount
+ if (getLangOpts().ObjCAutoRefCount) {
+ switch (MDecl->getMethodFamily()) {
+ case OMF_retain:
+ case OMF_retainCount:
+ case OMF_release:
+ case OMF_autorelease:
+ Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
+ << MDecl->getSelector();
+ break;
+
+ case OMF_None:
+ case OMF_dealloc:
+ case OMF_finalize:
+ case OMF_alloc:
+ case OMF_init:
+ case OMF_mutableCopy:
+ case OMF_copy:
+ case OMF_new:
+ case OMF_self:
+ case OMF_performSelector:
+ break;
+ }
+ }
+
+ // Warn on deprecated methods under -Wdeprecated-implementations,
+ // and prepare for warning on missing super calls.
+ if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
+ if (ObjCMethodDecl *IMD =
+ IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
+ DiagnoseObjCImplementedDeprecations(*this,
+ dyn_cast<NamedDecl>(IMD),
+ MDecl->getLocation(), 0);
+
+ // If this is "dealloc" or "finalize", set some bit here.
+ // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
+ // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
+ // Only do this if the current class actually has a superclass.
+ if (IC->getSuperClass()) {
+ ObjCShouldCallSuperDealloc =
+ !(Context.getLangOpts().ObjCAutoRefCount ||
+ Context.getLangOpts().getGC() == LangOptions::GCOnly) &&
+ MDecl->getMethodFamily() == OMF_dealloc;
+ ObjCShouldCallSuperFinalize =
+ Context.getLangOpts().getGC() != LangOptions::NonGC &&
+ MDecl->getMethodFamily() == OMF_finalize;
+ }
+ }
+}
+
+namespace {
+
+// Callback to only accept typo corrections that are Objective-C classes.
+// If an ObjCInterfaceDecl* is given to the constructor, then the validation
+// function will reject corrections to that class.
+class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
+ public:
+ ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
+ explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
+ : CurrentIDecl(IDecl) {}
+
+ virtual bool ValidateCandidate(const TypoCorrection &candidate) {
+ ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
+ return ID && !declaresSameEntity(ID, CurrentIDecl);
+ }
+
+ private:
+ ObjCInterfaceDecl *CurrentIDecl;
+};
+
+}
+
+Decl *Sema::
+ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
+ IdentifierInfo *ClassName, SourceLocation ClassLoc,
+ IdentifierInfo *SuperName, SourceLocation SuperLoc,
+ Decl * const *ProtoRefs, unsigned NumProtoRefs,
+ const SourceLocation *ProtoLocs,
+ SourceLocation EndProtoLoc, AttributeList *AttrList) {
+ assert(ClassName && "Missing class identifier");
+
+ // Check for another declaration kind with the same name.
+ NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
+ LookupOrdinaryName, ForRedeclaration);
+
+ if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
+ Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ }
+
+ // Create a declaration to describe this @interface.
+ ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
+ ObjCInterfaceDecl *IDecl
+ = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
+ PrevIDecl, ClassLoc);
+
+ if (PrevIDecl) {
+ // Class already seen. Was it a definition?
+ if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
+ Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
+ << PrevIDecl->getDeclName();
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ IDecl->setInvalidDecl();
+ }
+ }
+
+ if (AttrList)
+ ProcessDeclAttributeList(TUScope, IDecl, AttrList);
+ PushOnScopeChains(IDecl, TUScope);
+
+ // Start the definition of this class. If we're in a redefinition case, there
+ // may already be a definition, so we'll end up adding to it.
+ if (!IDecl->hasDefinition())
+ IDecl->startDefinition();
+
+ if (SuperName) {
+ // Check if a different kind of symbol declared in this scope.
+ PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
+ LookupOrdinaryName);
+
+ if (!PrevDecl) {
+ // Try to correct for a typo in the superclass name without correcting
+ // to the class we're defining.
+ ObjCInterfaceValidatorCCC Validator(IDecl);
+ if (TypoCorrection Corrected = CorrectTypo(
+ DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
+ NULL, Validator)) {
+ PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
+ Diag(SuperLoc, diag::err_undef_superclass_suggest)
+ << SuperName << ClassName << PrevDecl->getDeclName();
+ Diag(PrevDecl->getLocation(), diag::note_previous_decl)
+ << PrevDecl->getDeclName();
+ }
+ }
+
+ if (declaresSameEntity(PrevDecl, IDecl)) {
+ Diag(SuperLoc, diag::err_recursive_superclass)
+ << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
+ IDecl->setEndOfDefinitionLoc(ClassLoc);
+ } else {
+ ObjCInterfaceDecl *SuperClassDecl =
+ dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
+
+ // Diagnose classes that inherit from deprecated classes.
+ if (SuperClassDecl)
+ (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
+
+ if (PrevDecl && SuperClassDecl == 0) {
+ // The previous declaration was not a class decl. Check if we have a
+ // typedef. If we do, get the underlying class type.
+ if (const TypedefNameDecl *TDecl =
+ dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
+ QualType T = TDecl->getUnderlyingType();
+ if (T->isObjCObjectType()) {
+ if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
+ SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
+ }
+ }
+
+ // This handles the following case:
+ //
+ // typedef int SuperClass;
+ // @interface MyClass : SuperClass {} @end
+ //
+ if (!SuperClassDecl) {
+ Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ }
+ }
+
+ if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
+ if (!SuperClassDecl)
+ Diag(SuperLoc, diag::err_undef_superclass)
+ << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
+ else if (RequireCompleteType(SuperLoc,
+ Context.getObjCInterfaceType(SuperClassDecl),
+ PDiag(diag::err_forward_superclass)
+ << SuperClassDecl->getDeclName()
+ << ClassName
+ << SourceRange(AtInterfaceLoc, ClassLoc))) {
+ SuperClassDecl = 0;
+ }
+ }
+ IDecl->setSuperClass(SuperClassDecl);
+ IDecl->setSuperClassLoc(SuperLoc);
+ IDecl->setEndOfDefinitionLoc(SuperLoc);
+ }
+ } else { // we have a root class.
+ IDecl->setEndOfDefinitionLoc(ClassLoc);
+ }
+
+ // Check then save referenced protocols.
+ if (NumProtoRefs) {
+ IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
+ ProtoLocs, Context);
+ IDecl->setEndOfDefinitionLoc(EndProtoLoc);
+ }
+
+ CheckObjCDeclScope(IDecl);
+ return ActOnObjCContainerStartDefinition(IDecl);
+}
+
+/// ActOnCompatiblityAlias - this action is called after complete parsing of
+/// @compatibility_alias declaration. It sets up the alias relationships.
+Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
+ IdentifierInfo *AliasName,
+ SourceLocation AliasLocation,
+ IdentifierInfo *ClassName,
+ SourceLocation ClassLocation) {
+ // Look for previous declaration of alias name
+ NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
+ LookupOrdinaryName, ForRedeclaration);
+ if (ADecl) {
+ if (isa<ObjCCompatibleAliasDecl>(ADecl))
+ Diag(AliasLocation, diag::warn_previous_alias_decl);
+ else
+ Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
+ Diag(ADecl->getLocation(), diag::note_previous_declaration);
+ return 0;
+ }
+ // Check for class declaration
+ NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
+ LookupOrdinaryName, ForRedeclaration);
+ if (const TypedefNameDecl *TDecl =
+ dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
+ QualType T = TDecl->getUnderlyingType();
+ if (T->isObjCObjectType()) {
+ if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
+ ClassName = IDecl->getIdentifier();
+ CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
+ LookupOrdinaryName, ForRedeclaration);
+ }
+ }
+ }
+ ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
+ if (CDecl == 0) {
+ Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
+ if (CDeclU)
+ Diag(CDeclU->getLocation(), diag::note_previous_declaration);
+ return 0;
+ }
+
+ // Everything checked out, instantiate a new alias declaration AST.
+ ObjCCompatibleAliasDecl *AliasDecl =
+ ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
+
+ if (!CheckObjCDeclScope(AliasDecl))
+ PushOnScopeChains(AliasDecl, TUScope);
+
+ return AliasDecl;
+}
+
+bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
+ IdentifierInfo *PName,
+ SourceLocation &Ploc, SourceLocation PrevLoc,
+ const ObjCList<ObjCProtocolDecl> &PList) {
+
+ bool res = false;
+ for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
+ E = PList.end(); I != E; ++I) {
+ if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
+ Ploc)) {
+ if (PDecl->getIdentifier() == PName) {
+ Diag(Ploc, diag::err_protocol_has_circular_dependency);
+ Diag(PrevLoc, diag::note_previous_definition);
+ res = true;
+ }
+
+ if (!PDecl->hasDefinition())
+ continue;
+
+ if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
+ PDecl->getLocation(), PDecl->getReferencedProtocols()))
+ res = true;
+ }
+ }
+ return res;
+}
+
+Decl *
+Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
+ IdentifierInfo *ProtocolName,
+ SourceLocation ProtocolLoc,
+ Decl * const *ProtoRefs,
+ unsigned NumProtoRefs,
+ const SourceLocation *ProtoLocs,
+ SourceLocation EndProtoLoc,
+ AttributeList *AttrList) {
+ bool err = false;
+ // FIXME: Deal with AttrList.
+ assert(ProtocolName && "Missing protocol identifier");
+ ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
+ ForRedeclaration);
+ ObjCProtocolDecl *PDecl = 0;
+ if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
+ // If we already have a definition, complain.
+ Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+
+ // Create a new protocol that is completely distinct from previous
+ // declarations, and do not make this protocol available for name lookup.
+ // That way, we'll end up completely ignoring the duplicate.
+ // FIXME: Can we turn this into an error?
+ PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
+ ProtocolLoc, AtProtoInterfaceLoc,
+ /*PrevDecl=*/0);
+ PDecl->startDefinition();
+ } else {
+ if (PrevDecl) {
+ // Check for circular dependencies among protocol declarations. This can
+ // only happen if this protocol was forward-declared.
+ ObjCList<ObjCProtocolDecl> PList;
+ PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
+ err = CheckForwardProtocolDeclarationForCircularDependency(
+ ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
+ }
+
+ // Create the new declaration.
+ PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
+ ProtocolLoc, AtProtoInterfaceLoc,
+ /*PrevDecl=*/PrevDecl);
+
+ PushOnScopeChains(PDecl, TUScope);
+ PDecl->startDefinition();
+ }
+
+ if (AttrList)
+ ProcessDeclAttributeList(TUScope, PDecl, AttrList);
+
+ // Merge attributes from previous declarations.
+ if (PrevDecl)
+ mergeDeclAttributes(PDecl, PrevDecl);
+
+ if (!err && NumProtoRefs ) {
+ /// Check then save referenced protocols.
+ PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
+ ProtoLocs, Context);
+ }
+
+ CheckObjCDeclScope(PDecl);
+ return ActOnObjCContainerStartDefinition(PDecl);
+}
+
+/// FindProtocolDeclaration - This routine looks up protocols and
+/// issues an error if they are not declared. It returns list of
+/// protocol declarations in its 'Protocols' argument.
+void
+Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
+ const IdentifierLocPair *ProtocolId,
+ unsigned NumProtocols,
+ SmallVectorImpl<Decl *> &Protocols) {
+ for (unsigned i = 0; i != NumProtocols; ++i) {
+ ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
+ ProtocolId[i].second);
+ if (!PDecl) {
+ DeclFilterCCC<ObjCProtocolDecl> Validator;
+ TypoCorrection Corrected = CorrectTypo(
+ DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
+ LookupObjCProtocolName, TUScope, NULL, Validator);
+ if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
+ Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
+ << ProtocolId[i].first << Corrected.getCorrection();
+ Diag(PDecl->getLocation(), diag::note_previous_decl)
+ << PDecl->getDeclName();
+ }
+ }
+
+ if (!PDecl) {
+ Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
+ << ProtocolId[i].first;
+ continue;
+ }
+
+ (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
+
+ // If this is a forward declaration and we are supposed to warn in this
+ // case, do it.
+ if (WarnOnDeclarations && !PDecl->hasDefinition())
+ Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
+ << ProtocolId[i].first;
+ Protocols.push_back(PDecl);
+ }
+}
+
+/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
+/// a class method in its extension.
+///
+void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
+ ObjCInterfaceDecl *ID) {
+ if (!ID)
+ return; // Possibly due to previous error
+
+ llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
+ for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
+ e = ID->meth_end(); i != e; ++i) {
+ ObjCMethodDecl *MD = *i;
+ MethodMap[MD->getSelector()] = MD;
+ }
+
+ if (MethodMap.empty())
+ return;
+ for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
+ e = CAT->meth_end(); i != e; ++i) {
+ ObjCMethodDecl *Method = *i;
+ const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
+ if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
+ Diag(Method->getLocation(), diag::err_duplicate_method_decl)
+ << Method->getDeclName();
+ Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
+ }
+ }
+}
+
+/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
+Sema::DeclGroupPtrTy
+Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
+ const IdentifierLocPair *IdentList,
+ unsigned NumElts,
+ AttributeList *attrList) {
+ SmallVector<Decl *, 8> DeclsInGroup;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ IdentifierInfo *Ident = IdentList[i].first;
+ ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
+ ForRedeclaration);
+ ObjCProtocolDecl *PDecl
+ = ObjCProtocolDecl::Create(Context, CurContext, Ident,
+ IdentList[i].second, AtProtocolLoc,
+ PrevDecl);
+
+ PushOnScopeChains(PDecl, TUScope);
+ CheckObjCDeclScope(PDecl);
+
+ if (attrList)
+ ProcessDeclAttributeList(TUScope, PDecl, attrList);
+
+ if (PrevDecl)
+ mergeDeclAttributes(PDecl, PrevDecl);
+
+ DeclsInGroup.push_back(PDecl);
+ }
+
+ return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
+}
+
+Decl *Sema::
+ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
+ IdentifierInfo *ClassName, SourceLocation ClassLoc,
+ IdentifierInfo *CategoryName,
+ SourceLocation CategoryLoc,
+ Decl * const *ProtoRefs,
+ unsigned NumProtoRefs,
+ const SourceLocation *ProtoLocs,
+ SourceLocation EndProtoLoc) {
+ ObjCCategoryDecl *CDecl;
+ ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
+
+ /// Check that class of this category is already completely declared.
+
+ if (!IDecl
+ || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
+ PDiag(diag::err_category_forward_interface)
+ << (CategoryName == 0))) {
+ // Create an invalid ObjCCategoryDecl to serve as context for
+ // the enclosing method declarations. We mark the decl invalid
+ // to make it clear that this isn't a valid AST.
+ CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
+ ClassLoc, CategoryLoc, CategoryName,IDecl);
+ CDecl->setInvalidDecl();
+ CurContext->addDecl(CDecl);
+
+ if (!IDecl)
+ Diag(ClassLoc, diag::err_undef_interface) << ClassName;
+ return ActOnObjCContainerStartDefinition(CDecl);
+ }
+
+ if (!CategoryName && IDecl->getImplementation()) {
+ Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
+ Diag(IDecl->getImplementation()->getLocation(),
+ diag::note_implementation_declared);
+ }
+
+ if (CategoryName) {
+ /// Check for duplicate interface declaration for this category
+ ObjCCategoryDecl *CDeclChain;
+ for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
+ CDeclChain = CDeclChain->getNextClassCategory()) {
+ if (CDeclChain->getIdentifier() == CategoryName) {
+ // Class extensions can be declared multiple times.
+ Diag(CategoryLoc, diag::warn_dup_category_def)
+ << ClassName << CategoryName;
+ Diag(CDeclChain->getLocation(), diag::note_previous_definition);
+ break;
+ }
+ }
+ }
+
+ CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
+ ClassLoc, CategoryLoc, CategoryName, IDecl);
+ // FIXME: PushOnScopeChains?
+ CurContext->addDecl(CDecl);
+
+ if (NumProtoRefs) {
+ CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
+ ProtoLocs, Context);
+ // Protocols in the class extension belong to the class.
+ if (CDecl->IsClassExtension())
+ IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
+ NumProtoRefs, Context);
+ }
+
+ CheckObjCDeclScope(CDecl);
+ return ActOnObjCContainerStartDefinition(CDecl);
+}
+
+/// ActOnStartCategoryImplementation - Perform semantic checks on the
+/// category implementation declaration and build an ObjCCategoryImplDecl
+/// object.
+Decl *Sema::ActOnStartCategoryImplementation(
+ SourceLocation AtCatImplLoc,
+ IdentifierInfo *ClassName, SourceLocation ClassLoc,
+ IdentifierInfo *CatName, SourceLocation CatLoc) {
+ ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
+ ObjCCategoryDecl *CatIDecl = 0;
+ if (IDecl && IDecl->hasDefinition()) {
+ CatIDecl = IDecl->FindCategoryDeclaration(CatName);
+ if (!CatIDecl) {
+ // Category @implementation with no corresponding @interface.
+ // Create and install one.
+ CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
+ ClassLoc, CatLoc,
+ CatName, IDecl);
+ CatIDecl->setImplicit();
+ }
+ }
+
+ ObjCCategoryImplDecl *CDecl =
+ ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
+ ClassLoc, AtCatImplLoc, CatLoc);
+ /// Check that class of this category is already completely declared.
+ if (!IDecl) {
+ Diag(ClassLoc, diag::err_undef_interface) << ClassName;
+ CDecl->setInvalidDecl();
+ } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
+ diag::err_undef_interface)) {
+ CDecl->setInvalidDecl();
+ }
+
+ // FIXME: PushOnScopeChains?
+ CurContext->addDecl(CDecl);
+
+ // If the interface is deprecated/unavailable, warn/error about it.
+ if (IDecl)
+ DiagnoseUseOfDecl(IDecl, ClassLoc);
+
+ /// Check that CatName, category name, is not used in another implementation.
+ if (CatIDecl) {
+ if (CatIDecl->getImplementation()) {
+ Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
+ << CatName;
+ Diag(CatIDecl->getImplementation()->getLocation(),
+ diag::note_previous_definition);
+ } else {
+ CatIDecl->setImplementation(CDecl);
+ // Warn on implementating category of deprecated class under
+ // -Wdeprecated-implementations flag.
+ DiagnoseObjCImplementedDeprecations(*this,
+ dyn_cast<NamedDecl>(IDecl),
+ CDecl->getLocation(), 2);
+ }
+ }
+
+ CheckObjCDeclScope(CDecl);
+ return ActOnObjCContainerStartDefinition(CDecl);
+}
+
+Decl *Sema::ActOnStartClassImplementation(
+ SourceLocation AtClassImplLoc,
+ IdentifierInfo *ClassName, SourceLocation ClassLoc,
+ IdentifierInfo *SuperClassname,
+ SourceLocation SuperClassLoc) {
+ ObjCInterfaceDecl* IDecl = 0;
+ // Check for another declaration kind with the same name.
+ NamedDecl *PrevDecl
+ = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
+ ForRedeclaration);
+ if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
+ Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
+ RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
+ diag::warn_undef_interface);
+ } else {
+ // We did not find anything with the name ClassName; try to correct for
+ // typos in the class name.
+ ObjCInterfaceValidatorCCC Validator;
+ if (TypoCorrection Corrected = CorrectTypo(
+ DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
+ NULL, Validator)) {
+ // Suggest the (potentially) correct interface name. However, put the
+ // fix-it hint itself in a separate note, since changing the name in
+ // the warning would make the fix-it change semantics.However, don't
+ // provide a code-modification hint or use the typo name for recovery,
+ // because this is just a warning. The program may actually be correct.
+ IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
+ DeclarationName CorrectedName = Corrected.getCorrection();
+ Diag(ClassLoc, diag::warn_undef_interface_suggest)
+ << ClassName << CorrectedName;
+ Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
+ << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
+ IDecl = 0;
+ } else {
+ Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
+ }
+ }
+
+ // Check that super class name is valid class name
+ ObjCInterfaceDecl* SDecl = 0;
+ if (SuperClassname) {
+ // Check if a different kind of symbol declared in this scope.
+ PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
+ LookupOrdinaryName);
+ if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
+ Diag(SuperClassLoc, diag::err_redefinition_different_kind)
+ << SuperClassname;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ } else {
+ SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
+ if (SDecl && !SDecl->hasDefinition())
+ SDecl = 0;
+ if (!SDecl)
+ Diag(SuperClassLoc, diag::err_undef_superclass)
+ << SuperClassname << ClassName;
+ else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
+ // This implementation and its interface do not have the same
+ // super class.
+ Diag(SuperClassLoc, diag::err_conflicting_super_class)
+ << SDecl->getDeclName();
+ Diag(SDecl->getLocation(), diag::note_previous_definition);
+ }
+ }
+ }
+
+ if (!IDecl) {
+ // Legacy case of @implementation with no corresponding @interface.
+ // Build, chain & install the interface decl into the identifier.
+
+ // FIXME: Do we support attributes on the @implementation? If so we should
+ // copy them over.
+ IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
+ ClassName, /*PrevDecl=*/0, ClassLoc,
+ true);
+ IDecl->startDefinition();
+ if (SDecl) {
+ IDecl->setSuperClass(SDecl);
+ IDecl->setSuperClassLoc(SuperClassLoc);
+ IDecl->setEndOfDefinitionLoc(SuperClassLoc);
+ } else {
+ IDecl->setEndOfDefinitionLoc(ClassLoc);
+ }
+
+ PushOnScopeChains(IDecl, TUScope);
+ } else {
+ // Mark the interface as being completed, even if it was just as
+ // @class ....;
+ // declaration; the user cannot reopen it.
+ if (!IDecl->hasDefinition())
+ IDecl->startDefinition();
+ }
+
+ ObjCImplementationDecl* IMPDecl =
+ ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
+ ClassLoc, AtClassImplLoc);
+
+ if (CheckObjCDeclScope(IMPDecl))
+ return ActOnObjCContainerStartDefinition(IMPDecl);
+
+ // Check that there is no duplicate implementation of this class.
+ if (IDecl->getImplementation()) {
+ // FIXME: Don't leak everything!
+ Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
+ Diag(IDecl->getImplementation()->getLocation(),
+ diag::note_previous_definition);
+ } else { // add it to the list.
+ IDecl->setImplementation(IMPDecl);
+ PushOnScopeChains(IMPDecl, TUScope);
+ // Warn on implementating deprecated class under
+ // -Wdeprecated-implementations flag.
+ DiagnoseObjCImplementedDeprecations(*this,
+ dyn_cast<NamedDecl>(IDecl),
+ IMPDecl->getLocation(), 1);
+ }
+ return ActOnObjCContainerStartDefinition(IMPDecl);
+}
+
+Sema::DeclGroupPtrTy
+Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
+ SmallVector<Decl *, 64> DeclsInGroup;
+ DeclsInGroup.reserve(Decls.size() + 1);
+
+ for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
+ Decl *Dcl = Decls[i];
+ if (!Dcl)
+ continue;
+ if (Dcl->getDeclContext()->isFileContext())
+ Dcl->setTopLevelDeclInObjCContainer();
+ DeclsInGroup.push_back(Dcl);
+ }
+
+ DeclsInGroup.push_back(ObjCImpDecl);
+
+ return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
+}
+
+void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
+ ObjCIvarDecl **ivars, unsigned numIvars,
+ SourceLocation RBrace) {
+ assert(ImpDecl && "missing implementation decl");
+ ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
+ if (!IDecl)
+ return;
+ /// Check case of non-existing @interface decl.
+ /// (legacy objective-c @implementation decl without an @interface decl).
+ /// Add implementations's ivar to the synthesize class's ivar list.
+ if (IDecl->isImplicitInterfaceDecl()) {
+ IDecl->setEndOfDefinitionLoc(RBrace);
+ // Add ivar's to class's DeclContext.
+ for (unsigned i = 0, e = numIvars; i != e; ++i) {
+ ivars[i]->setLexicalDeclContext(ImpDecl);
+ IDecl->makeDeclVisibleInContext(ivars[i]);
+ ImpDecl->addDecl(ivars[i]);
+ }
+
+ return;
+ }
+ // If implementation has empty ivar list, just return.
+ if (numIvars == 0)
+ return;
+
+ assert(ivars && "missing @implementation ivars");
+ if (LangOpts.ObjCNonFragileABI2) {
+ if (ImpDecl->getSuperClass())
+ Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
+ for (unsigned i = 0; i < numIvars; i++) {
+ ObjCIvarDecl* ImplIvar = ivars[i];
+ if (const ObjCIvarDecl *ClsIvar =
+ IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
+ Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
+ Diag(ClsIvar->getLocation(), diag::note_previous_definition);
+ continue;
+ }
+ // Instance ivar to Implementation's DeclContext.
+ ImplIvar->setLexicalDeclContext(ImpDecl);
+ IDecl->makeDeclVisibleInContext(ImplIvar);
+ ImpDecl->addDecl(ImplIvar);
+ }
+ return;
+ }
+ // Check interface's Ivar list against those in the implementation.
+ // names and types must match.
+ //
+ unsigned j = 0;
+ ObjCInterfaceDecl::ivar_iterator
+ IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
+ for (; numIvars > 0 && IVI != IVE; ++IVI) {
+ ObjCIvarDecl* ImplIvar = ivars[j++];
+ ObjCIvarDecl* ClsIvar = *IVI;
+ assert (ImplIvar && "missing implementation ivar");
+ assert (ClsIvar && "missing class ivar");
+
+ // First, make sure the types match.
+ if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
+ Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
+ << ImplIvar->getIdentifier()
+ << ImplIvar->getType() << ClsIvar->getType();
+ Diag(ClsIvar->getLocation(), diag::note_previous_definition);
+ } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
+ ImplIvar->getBitWidthValue(Context) !=
+ ClsIvar->getBitWidthValue(Context)) {
+ Diag(ImplIvar->getBitWidth()->getLocStart(),
+ diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
+ Diag(ClsIvar->getBitWidth()->getLocStart(),
+ diag::note_previous_definition);
+ }
+ // Make sure the names are identical.
+ if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
+ Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
+ << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
+ Diag(ClsIvar->getLocation(), diag::note_previous_definition);
+ }
+ --numIvars;
+ }
+
+ if (numIvars > 0)
+ Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
+ else if (IVI != IVE)
+ Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
+}
+
+void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
+ bool &IncompleteImpl, unsigned DiagID) {
+ // No point warning no definition of method which is 'unavailable'.
+ if (method->hasAttr<UnavailableAttr>())
+ return;
+ if (!IncompleteImpl) {
+ Diag(ImpLoc, diag::warn_incomplete_impl);
+ IncompleteImpl = true;
+ }
+ if (DiagID == diag::warn_unimplemented_protocol_method)
+ Diag(ImpLoc, DiagID) << method->getDeclName();
+ else
+ Diag(method->getLocation(), DiagID) << method->getDeclName();
+}
+
+/// Determines if type B can be substituted for type A. Returns true if we can
+/// guarantee that anything that the user will do to an object of type A can
+/// also be done to an object of type B. This is trivially true if the two
+/// types are the same, or if B is a subclass of A. It becomes more complex
+/// in cases where protocols are involved.
+///
+/// Object types in Objective-C describe the minimum requirements for an
+/// object, rather than providing a complete description of a type. For
+/// example, if A is a subclass of B, then B* may refer to an instance of A.
+/// The principle of substitutability means that we may use an instance of A
+/// anywhere that we may use an instance of B - it will implement all of the
+/// ivars of B and all of the methods of B.
+///
+/// This substitutability is important when type checking methods, because
+/// the implementation may have stricter type definitions than the interface.
+/// The interface specifies minimum requirements, but the implementation may
+/// have more accurate ones. For example, a method may privately accept
+/// instances of B, but only publish that it accepts instances of A. Any
+/// object passed to it will be type checked against B, and so will implicitly
+/// by a valid A*. Similarly, a method may return a subclass of the class that
+/// it is declared as returning.
+///
+/// This is most important when considering subclassing. A method in a
+/// subclass must accept any object as an argument that its superclass's
+/// implementation accepts. It may, however, accept a more general type
+/// without breaking substitutability (i.e. you can still use the subclass
+/// anywhere that you can use the superclass, but not vice versa). The
+/// converse requirement applies to return types: the return type for a
+/// subclass method must be a valid object of the kind that the superclass
+/// advertises, but it may be specified more accurately. This avoids the need
+/// for explicit down-casting by callers.
+///
+/// Note: This is a stricter requirement than for assignment.
+static bool isObjCTypeSubstitutable(ASTContext &Context,
+ const ObjCObjectPointerType *A,
+ const ObjCObjectPointerType *B,
+ bool rejectId) {
+ // Reject a protocol-unqualified id.
+ if (rejectId && B->isObjCIdType()) return false;
+
+ // If B is a qualified id, then A must also be a qualified id and it must
+ // implement all of the protocols in B. It may not be a qualified class.
+ // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
+ // stricter definition so it is not substitutable for id<A>.
+ if (B->isObjCQualifiedIdType()) {
+ return A->isObjCQualifiedIdType() &&
+ Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
+ QualType(B,0),
+ false);
+ }
+
+ /*
+ // id is a special type that bypasses type checking completely. We want a
+ // warning when it is used in one place but not another.
+ if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
+
+
+ // If B is a qualified id, then A must also be a qualified id (which it isn't
+ // if we've got this far)
+ if (B->isObjCQualifiedIdType()) return false;
+ */
+
+ // Now we know that A and B are (potentially-qualified) class types. The
+ // normal rules for assignment apply.
+ return Context.canAssignObjCInterfaces(A, B);
+}
+
+static SourceRange getTypeRange(TypeSourceInfo *TSI) {
+ return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
+}
+
+static bool CheckMethodOverrideReturn(Sema &S,
+ ObjCMethodDecl *MethodImpl,
+ ObjCMethodDecl *MethodDecl,
+ bool IsProtocolMethodDecl,
+ bool IsOverridingMode,
+ bool Warn) {
+ if (IsProtocolMethodDecl &&
+ (MethodDecl->getObjCDeclQualifier() !=
+ MethodImpl->getObjCDeclQualifier())) {
+ if (Warn) {
+ S.Diag(MethodImpl->getLocation(),
+ (IsOverridingMode ?
+ diag::warn_conflicting_overriding_ret_type_modifiers
+ : diag::warn_conflicting_ret_type_modifiers))
+ << MethodImpl->getDeclName()
+ << getTypeRange(MethodImpl->getResultTypeSourceInfo());
+ S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
+ << getTypeRange(MethodDecl->getResultTypeSourceInfo());
+ }
+ else
+ return false;
+ }
+
+ if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
+ MethodDecl->getResultType()))
+ return true;
+ if (!Warn)
+ return false;
+
+ unsigned DiagID =
+ IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
+ : diag::warn_conflicting_ret_types;
+
+ // Mismatches between ObjC pointers go into a different warning
+ // category, and sometimes they're even completely whitelisted.
+ if (const ObjCObjectPointerType *ImplPtrTy =
+ MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
+ if (const ObjCObjectPointerType *IfacePtrTy =
+ MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
+ // Allow non-matching return types as long as they don't violate
+ // the principle of substitutability. Specifically, we permit
+ // return types that are subclasses of the declared return type,
+ // or that are more-qualified versions of the declared type.
+ if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
+ return false;
+
+ DiagID =
+ IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
+ : diag::warn_non_covariant_ret_types;
+ }
+ }
+
+ S.Diag(MethodImpl->getLocation(), DiagID)
+ << MethodImpl->getDeclName()
+ << MethodDecl->getResultType()
+ << MethodImpl->getResultType()
+ << getTypeRange(MethodImpl->getResultTypeSourceInfo());
+ S.Diag(MethodDecl->getLocation(),
+ IsOverridingMode ? diag::note_previous_declaration
+ : diag::note_previous_definition)
+ << getTypeRange(MethodDecl->getResultTypeSourceInfo());
+ return false;
+}
+
+static bool CheckMethodOverrideParam(Sema &S,
+ ObjCMethodDecl *MethodImpl,
+ ObjCMethodDecl *MethodDecl,
+ ParmVarDecl *ImplVar,
+ ParmVarDecl *IfaceVar,
+ bool IsProtocolMethodDecl,
+ bool IsOverridingMode,
+ bool Warn) {
+ if (IsProtocolMethodDecl &&
+ (ImplVar->getObjCDeclQualifier() !=
+ IfaceVar->getObjCDeclQualifier())) {
+ if (Warn) {
+ if (IsOverridingMode)
+ S.Diag(ImplVar->getLocation(),
+ diag::warn_conflicting_overriding_param_modifiers)
+ << getTypeRange(ImplVar->getTypeSourceInfo())
+ << MethodImpl->getDeclName();
+ else S.Diag(ImplVar->getLocation(),
+ diag::warn_conflicting_param_modifiers)
+ << getTypeRange(ImplVar->getTypeSourceInfo())
+ << MethodImpl->getDeclName();
+ S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
+ << getTypeRange(IfaceVar->getTypeSourceInfo());
+ }
+ else
+ return false;
+ }
+
+ QualType ImplTy = ImplVar->getType();
+ QualType IfaceTy = IfaceVar->getType();
+
+ if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
+ return true;
+
+ if (!Warn)
+ return false;
+ unsigned DiagID =
+ IsOverridingMode ? diag::warn_conflicting_overriding_param_types
+ : diag::warn_conflicting_param_types;
+
+ // Mismatches between ObjC pointers go into a different warning
+ // category, and sometimes they're even completely whitelisted.
+ if (const ObjCObjectPointerType *ImplPtrTy =
+ ImplTy->getAs<ObjCObjectPointerType>()) {
+ if (const ObjCObjectPointerType *IfacePtrTy =
+ IfaceTy->getAs<ObjCObjectPointerType>()) {
+ // Allow non-matching argument types as long as they don't
+ // violate the principle of substitutability. Specifically, the
+ // implementation must accept any objects that the superclass
+ // accepts, however it may also accept others.
+ if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
+ return false;
+
+ DiagID =
+ IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
+ : diag::warn_non_contravariant_param_types;
+ }
+ }
+
+ S.Diag(ImplVar->getLocation(), DiagID)
+ << getTypeRange(ImplVar->getTypeSourceInfo())
+ << MethodImpl->getDeclName() << IfaceTy << ImplTy;
+ S.Diag(IfaceVar->getLocation(),
+ (IsOverridingMode ? diag::note_previous_declaration
+ : diag::note_previous_definition))
+ << getTypeRange(IfaceVar->getTypeSourceInfo());
+ return false;
+}
+
+/// In ARC, check whether the conventional meanings of the two methods
+/// match. If they don't, it's a hard error.
+static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
+ ObjCMethodDecl *decl) {
+ ObjCMethodFamily implFamily = impl->getMethodFamily();
+ ObjCMethodFamily declFamily = decl->getMethodFamily();
+ if (implFamily == declFamily) return false;
+
+ // Since conventions are sorted by selector, the only possibility is
+ // that the types differ enough to cause one selector or the other
+ // to fall out of the family.
+ assert(implFamily == OMF_None || declFamily == OMF_None);
+
+ // No further diagnostics required on invalid declarations.
+ if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
+
+ const ObjCMethodDecl *unmatched = impl;
+ ObjCMethodFamily family = declFamily;
+ unsigned errorID = diag::err_arc_lost_method_convention;
+ unsigned noteID = diag::note_arc_lost_method_convention;
+ if (declFamily == OMF_None) {
+ unmatched = decl;
+ family = implFamily;
+ errorID = diag::err_arc_gained_method_convention;
+ noteID = diag::note_arc_gained_method_convention;
+ }
+
+ // Indexes into a %select clause in the diagnostic.
+ enum FamilySelector {
+ F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
+ };
+ FamilySelector familySelector = FamilySelector();
+
+ switch (family) {
+ case OMF_None: llvm_unreachable("logic error, no method convention");
+ case OMF_retain:
+ case OMF_release:
+ case OMF_autorelease:
+ case OMF_dealloc:
+ case OMF_finalize:
+ case OMF_retainCount:
+ case OMF_self:
+ case OMF_performSelector:
+ // Mismatches for these methods don't change ownership
+ // conventions, so we don't care.
+ return false;
+
+ case OMF_init: familySelector = F_init; break;
+ case OMF_alloc: familySelector = F_alloc; break;
+ case OMF_copy: familySelector = F_copy; break;
+ case OMF_mutableCopy: familySelector = F_mutableCopy; break;
+ case OMF_new: familySelector = F_new; break;
+ }
+
+ enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
+ ReasonSelector reasonSelector;
+
+ // The only reason these methods don't fall within their families is
+ // due to unusual result types.
+ if (unmatched->getResultType()->isObjCObjectPointerType()) {
+ reasonSelector = R_UnrelatedReturn;
+ } else {
+ reasonSelector = R_NonObjectReturn;
+ }
+
+ S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
+ S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
+
+ return true;
+}
+
+void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
+ ObjCMethodDecl *MethodDecl,
+ bool IsProtocolMethodDecl) {
+ if (getLangOpts().ObjCAutoRefCount &&
+ checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
+ return;
+
+ CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
+ IsProtocolMethodDecl, false,
+ true);
+
+ for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
+ IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
+ IM != EM; ++IM, ++IF) {
+ CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
+ IsProtocolMethodDecl, false, true);
+ }
+
+ if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
+ Diag(ImpMethodDecl->getLocation(),
+ diag::warn_conflicting_variadic);
+ Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
+ }
+}
+
+void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
+ ObjCMethodDecl *Overridden,
+ bool IsProtocolMethodDecl) {
+
+ CheckMethodOverrideReturn(*this, Method, Overridden,
+ IsProtocolMethodDecl, true,
+ true);
+
+ for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
+ IF = Overridden->param_begin(), EM = Method->param_end();
+ IM != EM; ++IM, ++IF) {
+ CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
+ IsProtocolMethodDecl, true, true);
+ }
+
+ if (Method->isVariadic() != Overridden->isVariadic()) {
+ Diag(Method->getLocation(),
+ diag::warn_conflicting_overriding_variadic);
+ Diag(Overridden->getLocation(), diag::note_previous_declaration);
+ }
+}
+
+/// WarnExactTypedMethods - This routine issues a warning if method
+/// implementation declaration matches exactly that of its declaration.
+void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
+ ObjCMethodDecl *MethodDecl,
+ bool IsProtocolMethodDecl) {
+ // don't issue warning when protocol method is optional because primary
+ // class is not required to implement it and it is safe for protocol
+ // to implement it.
+ if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
+ return;
+ // don't issue warning when primary class's method is
+ // depecated/unavailable.
+ if (MethodDecl->hasAttr<UnavailableAttr>() ||
+ MethodDecl->hasAttr<DeprecatedAttr>())
+ return;
+
+ bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
+ IsProtocolMethodDecl, false, false);
+ if (match)
+ for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
+ IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
+ IM != EM; ++IM, ++IF) {
+ match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
+ *IM, *IF,
+ IsProtocolMethodDecl, false, false);
+ if (!match)
+ break;
+ }
+ if (match)
+ match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
+ if (match)
+ match = !(MethodDecl->isClassMethod() &&
+ MethodDecl->getSelector() == GetNullarySelector("load", Context));
+
+ if (match) {
+ Diag(ImpMethodDecl->getLocation(),
+ diag::warn_category_method_impl_match);
+ Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
+ << MethodDecl->getDeclName();
+ }
+}
+
+/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
+/// improve the efficiency of selector lookups and type checking by associating
+/// with each protocol / interface / category the flattened instance tables. If
+/// we used an immutable set to keep the table then it wouldn't add significant
+/// memory cost and it would be handy for lookups.
+
+/// CheckProtocolMethodDefs - This routine checks unimplemented methods
+/// Declared in protocol, and those referenced by it.
+void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
+ ObjCProtocolDecl *PDecl,
+ bool& IncompleteImpl,
+ const llvm::DenseSet<Selector> &InsMap,
+ const llvm::DenseSet<Selector> &ClsMap,
+ ObjCContainerDecl *CDecl) {
+ ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
+ ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
+ : dyn_cast<ObjCInterfaceDecl>(CDecl);
+ assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
+
+ ObjCInterfaceDecl *Super = IDecl->getSuperClass();
+ ObjCInterfaceDecl *NSIDecl = 0;
+ if (getLangOpts().NeXTRuntime) {
+ // check to see if class implements forwardInvocation method and objects
+ // of this class are derived from 'NSProxy' so that to forward requests
+ // from one object to another.
+ // Under such conditions, which means that every method possible is
+ // implemented in the class, we should not issue "Method definition not
+ // found" warnings.
+ // FIXME: Use a general GetUnarySelector method for this.
+ IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
+ Selector fISelector = Context.Selectors.getSelector(1, &II);
+ if (InsMap.count(fISelector))
+ // Is IDecl derived from 'NSProxy'? If so, no instance methods
+ // need be implemented in the implementation.
+ NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
+ }
+
+ // If a method lookup fails locally we still need to look and see if
+ // the method was implemented by a base class or an inherited
+ // protocol. This lookup is slow, but occurs rarely in correct code
+ // and otherwise would terminate in a warning.
+
+ // check unimplemented instance methods.
+ if (!NSIDecl)
+ for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
+ E = PDecl->instmeth_end(); I != E; ++I) {
+ ObjCMethodDecl *method = *I;
+ if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
+ !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
+ (!Super ||
+ !Super->lookupInstanceMethod(method->getSelector()))) {
+ // If a method is not implemented in the category implementation but
+ // has been declared in its primary class, superclass,
+ // or in one of their protocols, no need to issue the warning.
+ // This is because method will be implemented in the primary class
+ // or one of its super class implementation.
+
+ // Ugly, but necessary. Method declared in protcol might have
+ // have been synthesized due to a property declared in the class which
+ // uses the protocol.
+ if (ObjCMethodDecl *MethodInClass =
+ IDecl->lookupInstanceMethod(method->getSelector(),
+ true /*shallowCategoryLookup*/))
+ if (C || MethodInClass->isSynthesized())
+ continue;
+ unsigned DIAG = diag::warn_unimplemented_protocol_method;
+ if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
+ != DiagnosticsEngine::Ignored) {
+ WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
+ Diag(method->getLocation(), diag::note_method_declared_at)
+ << method->getDeclName();
+ Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
+ << PDecl->getDeclName();
+ }
+ }
+ }
+ // check unimplemented class methods
+ for (ObjCProtocolDecl::classmeth_iterator
+ I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
+ I != E; ++I) {
+ ObjCMethodDecl *method = *I;
+ if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
+ !ClsMap.count(method->getSelector()) &&
+ (!Super || !Super->lookupClassMethod(method->getSelector()))) {
+ // See above comment for instance method lookups.
+ if (C && IDecl->lookupClassMethod(method->getSelector(),
+ true /*shallowCategoryLookup*/))
+ continue;
+ unsigned DIAG = diag::warn_unimplemented_protocol_method;
+ if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
+ DiagnosticsEngine::Ignored) {
+ WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
+ Diag(method->getLocation(), diag::note_method_declared_at)
+ << method->getDeclName();
+ Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
+ PDecl->getDeclName();
+ }
+ }
+ }
+ // Check on this protocols's referenced protocols, recursively.
+ for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
+ E = PDecl->protocol_end(); PI != E; ++PI)
+ CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
+}
+
+/// MatchAllMethodDeclarations - Check methods declared in interface
+/// or protocol against those declared in their implementations.
+///
+void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
+ const llvm::DenseSet<Selector> &ClsMap,
+ llvm::DenseSet<Selector> &InsMapSeen,
+ llvm::DenseSet<Selector> &ClsMapSeen,
+ ObjCImplDecl* IMPDecl,
+ ObjCContainerDecl* CDecl,
+ bool &IncompleteImpl,
+ bool ImmediateClass,
+ bool WarnCategoryMethodImpl) {
+ // Check and see if instance methods in class interface have been
+ // implemented in the implementation class. If so, their types match.
+ for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
+ E = CDecl->instmeth_end(); I != E; ++I) {
+ if (InsMapSeen.count((*I)->getSelector()))
+ continue;
+ InsMapSeen.insert((*I)->getSelector());
+ if (!(*I)->isSynthesized() &&
+ !InsMap.count((*I)->getSelector())) {
+ if (ImmediateClass)
+ WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
+ diag::note_undef_method_impl);
+ continue;
+ } else {
+ ObjCMethodDecl *ImpMethodDecl =
+ IMPDecl->getInstanceMethod((*I)->getSelector());
+ assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
+ "Expected to find the method through lookup as well");
+ ObjCMethodDecl *MethodDecl = *I;
+ // ImpMethodDecl may be null as in a @dynamic property.
+ if (ImpMethodDecl) {
+ if (!WarnCategoryMethodImpl)
+ WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
+ isa<ObjCProtocolDecl>(CDecl));
+ else if (!MethodDecl->isSynthesized())
+ WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
+ isa<ObjCProtocolDecl>(CDecl));
+ }
+ }
+ }
+
+ // Check and see if class methods in class interface have been
+ // implemented in the implementation class. If so, their types match.
+ for (ObjCInterfaceDecl::classmeth_iterator
+ I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
+ if (ClsMapSeen.count((*I)->getSelector()))
+ continue;
+ ClsMapSeen.insert((*I)->getSelector());
+ if (!ClsMap.count((*I)->getSelector())) {
+ if (ImmediateClass)
+ WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
+ diag::note_undef_method_impl);
+ } else {
+ ObjCMethodDecl *ImpMethodDecl =
+ IMPDecl->getClassMethod((*I)->getSelector());
+ assert(CDecl->getClassMethod((*I)->getSelector()) &&
+ "Expected to find the method through lookup as well");
+ ObjCMethodDecl *MethodDecl = *I;
+ if (!WarnCategoryMethodImpl)
+ WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
+ isa<ObjCProtocolDecl>(CDecl));
+ else
+ WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
+ isa<ObjCProtocolDecl>(CDecl));
+ }
+ }
+
+ if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
+ // Also methods in class extensions need be looked at next.
+ for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
+ ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
+ MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
+ IMPDecl,
+ const_cast<ObjCCategoryDecl *>(ClsExtDecl),
+ IncompleteImpl, false,
+ WarnCategoryMethodImpl);
+
+ // Check for any implementation of a methods declared in protocol.
+ for (ObjCInterfaceDecl::all_protocol_iterator
+ PI = I->all_referenced_protocol_begin(),
+ E = I->all_referenced_protocol_end(); PI != E; ++PI)
+ MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
+ IMPDecl,
+ (*PI), IncompleteImpl, false,
+ WarnCategoryMethodImpl);
+
+ // FIXME. For now, we are not checking for extact match of methods
+ // in category implementation and its primary class's super class.
+ if (!WarnCategoryMethodImpl && I->getSuperClass())
+ MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
+ IMPDecl,
+ I->getSuperClass(), IncompleteImpl, false);
+ }
+}
+
+/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
+/// category matches with those implemented in its primary class and
+/// warns each time an exact match is found.
+void Sema::CheckCategoryVsClassMethodMatches(
+ ObjCCategoryImplDecl *CatIMPDecl) {
+ llvm::DenseSet<Selector> InsMap, ClsMap;
+
+ for (ObjCImplementationDecl::instmeth_iterator
+ I = CatIMPDecl->instmeth_begin(),
+ E = CatIMPDecl->instmeth_end(); I!=E; ++I)
+ InsMap.insert((*I)->getSelector());
+
+ for (ObjCImplementationDecl::classmeth_iterator
+ I = CatIMPDecl->classmeth_begin(),
+ E = CatIMPDecl->classmeth_end(); I != E; ++I)
+ ClsMap.insert((*I)->getSelector());
+ if (InsMap.empty() && ClsMap.empty())
+ return;
+
+ // Get category's primary class.
+ ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
+ if (!CatDecl)
+ return;
+ ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
+ if (!IDecl)
+ return;
+ llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
+ bool IncompleteImpl = false;
+ MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
+ CatIMPDecl, IDecl,
+ IncompleteImpl, false,
+ true /*WarnCategoryMethodImpl*/);
+}
+
+void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
+ ObjCContainerDecl* CDecl,
+ bool IncompleteImpl) {
+ llvm::DenseSet<Selector> InsMap;
+ // Check and see if instance methods in class interface have been
+ // implemented in the implementation class.
+ for (ObjCImplementationDecl::instmeth_iterator
+ I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
+ InsMap.insert((*I)->getSelector());
+
+ // Check and see if properties declared in the interface have either 1)
+ // an implementation or 2) there is a @synthesize/@dynamic implementation
+ // of the property in the @implementation.
+ if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
+ if (!(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2) ||
+ IDecl->isObjCRequiresPropertyDefs())
+ DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
+
+ llvm::DenseSet<Selector> ClsMap;
+ for (ObjCImplementationDecl::classmeth_iterator
+ I = IMPDecl->classmeth_begin(),
+ E = IMPDecl->classmeth_end(); I != E; ++I)
+ ClsMap.insert((*I)->getSelector());
+
+ // Check for type conflict of methods declared in a class/protocol and
+ // its implementation; if any.
+ llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
+ MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
+ IMPDecl, CDecl,
+ IncompleteImpl, true);
+
+ // check all methods implemented in category against those declared
+ // in its primary class.
+ if (ObjCCategoryImplDecl *CatDecl =
+ dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
+ CheckCategoryVsClassMethodMatches(CatDecl);
+
+ // Check the protocol list for unimplemented methods in the @implementation
+ // class.
+ // Check and see if class methods in class interface have been
+ // implemented in the implementation class.
+
+ if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
+ for (ObjCInterfaceDecl::all_protocol_iterator
+ PI = I->all_referenced_protocol_begin(),
+ E = I->all_referenced_protocol_end(); PI != E; ++PI)
+ CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
+ InsMap, ClsMap, I);
+ // Check class extensions (unnamed categories)
+ for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
+ Categories; Categories = Categories->getNextClassExtension())
+ ImplMethodsVsClassMethods(S, IMPDecl,
+ const_cast<ObjCCategoryDecl*>(Categories),
+ IncompleteImpl);
+ } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
+ // For extended class, unimplemented methods in its protocols will
+ // be reported in the primary class.
+ if (!C->IsClassExtension()) {
+ for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
+ E = C->protocol_end(); PI != E; ++PI)
+ CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
+ InsMap, ClsMap, CDecl);
+ // Report unimplemented properties in the category as well.
+ // When reporting on missing setter/getters, do not report when
+ // setter/getter is implemented in category's primary class
+ // implementation.
+ if (ObjCInterfaceDecl *ID = C->getClassInterface())
+ if (ObjCImplDecl *IMP = ID->getImplementation()) {
+ for (ObjCImplementationDecl::instmeth_iterator
+ I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
+ InsMap.insert((*I)->getSelector());
+ }
+ DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
+ }
+ } else
+ llvm_unreachable("invalid ObjCContainerDecl type.");
+}
+
+/// ActOnForwardClassDeclaration -
+Sema::DeclGroupPtrTy
+Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
+ IdentifierInfo **IdentList,
+ SourceLocation *IdentLocs,
+ unsigned NumElts) {
+ SmallVector<Decl *, 8> DeclsInGroup;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // Check for another declaration kind with the same name.
+ NamedDecl *PrevDecl
+ = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
+ LookupOrdinaryName, ForRedeclaration);
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = 0;
+ }
+
+ if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
+ // GCC apparently allows the following idiom:
+ //
+ // typedef NSObject < XCElementTogglerP > XCElementToggler;
+ // @class XCElementToggler;
+ //
+ // Here we have chosen to ignore the forward class declaration
+ // with a warning. Since this is the implied behavior.
+ TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
+ if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
+ Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ } else {
+ // a forward class declaration matching a typedef name of a class refers
+ // to the underlying class. Just ignore the forward class with a warning
+ // as this will force the intended behavior which is to lookup the typedef
+ // name.
+ if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
+ Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ continue;
+ }
+ }
+ }
+
+ // Create a declaration to describe this forward declaration.
+ ObjCInterfaceDecl *PrevIDecl
+ = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
+ ObjCInterfaceDecl *IDecl
+ = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
+ IdentList[i], PrevIDecl, IdentLocs[i]);
+ IDecl->setAtEndRange(IdentLocs[i]);
+
+ PushOnScopeChains(IDecl, TUScope);
+ CheckObjCDeclScope(IDecl);
+ DeclsInGroup.push_back(IDecl);
+ }
+
+ return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
+}
+
+static bool tryMatchRecordTypes(ASTContext &Context,
+ Sema::MethodMatchStrategy strategy,
+ const Type *left, const Type *right);
+
+static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
+ QualType leftQT, QualType rightQT) {
+ const Type *left =
+ Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
+ const Type *right =
+ Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
+
+ if (left == right) return true;
+
+ // If we're doing a strict match, the types have to match exactly.
+ if (strategy == Sema::MMS_strict) return false;
+
+ if (left->isIncompleteType() || right->isIncompleteType()) return false;
+
+ // Otherwise, use this absurdly complicated algorithm to try to
+ // validate the basic, low-level compatibility of the two types.
+
+ // As a minimum, require the sizes and alignments to match.
+ if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
+ return false;
+
+ // Consider all the kinds of non-dependent canonical types:
+ // - functions and arrays aren't possible as return and parameter types
+
+ // - vector types of equal size can be arbitrarily mixed
+ if (isa<VectorType>(left)) return isa<VectorType>(right);
+ if (isa<VectorType>(right)) return false;
+
+ // - references should only match references of identical type
+ // - structs, unions, and Objective-C objects must match more-or-less
+ // exactly
+ // - everything else should be a scalar
+ if (!left->isScalarType() || !right->isScalarType())
+ return tryMatchRecordTypes(Context, strategy, left, right);
+
+ // Make scalars agree in kind, except count bools as chars, and group
+ // all non-member pointers together.
+ Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
+ Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
+ if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
+ if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
+ if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
+ leftSK = Type::STK_ObjCObjectPointer;
+ if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
+ rightSK = Type::STK_ObjCObjectPointer;
+
+ // Note that data member pointers and function member pointers don't
+ // intermix because of the size differences.
+
+ return (leftSK == rightSK);
+}
+
+static bool tryMatchRecordTypes(ASTContext &Context,
+ Sema::MethodMatchStrategy strategy,
+ const Type *lt, const Type *rt) {
+ assert(lt && rt && lt != rt);
+
+ if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
+ RecordDecl *left = cast<RecordType>(lt)->getDecl();
+ RecordDecl *right = cast<RecordType>(rt)->getDecl();
+
+ // Require union-hood to match.
+ if (left->isUnion() != right->isUnion()) return false;
+
+ // Require an exact match if either is non-POD.
+ if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
+ (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
+ return false;
+
+ // Require size and alignment to match.
+ if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
+
+ // Require fields to match.
+ RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
+ RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
+ for (; li != le && ri != re; ++li, ++ri) {
+ if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
+ return false;
+ }
+ return (li == le && ri == re);
+}
+
+/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
+/// returns true, or false, accordingly.
+/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
+bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
+ const ObjCMethodDecl *right,
+ MethodMatchStrategy strategy) {
+ if (!matchTypes(Context, strategy,
+ left->getResultType(), right->getResultType()))
+ return false;
+
+ if (getLangOpts().ObjCAutoRefCount &&
+ (left->hasAttr<NSReturnsRetainedAttr>()
+ != right->hasAttr<NSReturnsRetainedAttr>() ||
+ left->hasAttr<NSConsumesSelfAttr>()
+ != right->hasAttr<NSConsumesSelfAttr>()))
+ return false;
+
+ ObjCMethodDecl::param_const_iterator
+ li = left->param_begin(), le = left->param_end(), ri = right->param_begin();
+
+ for (; li != le; ++li, ++ri) {
+ assert(ri != right->param_end() && "Param mismatch");
+ const ParmVarDecl *lparm = *li, *rparm = *ri;
+
+ if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
+ return false;
+
+ if (getLangOpts().ObjCAutoRefCount &&
+ lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
+ return false;
+ }
+ return true;
+}
+
+void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
+ // If the list is empty, make it a singleton list.
+ if (List->Method == 0) {
+ List->Method = Method;
+ List->Next = 0;
+ return;
+ }
+
+ // We've seen a method with this name, see if we have already seen this type
+ // signature.
+ ObjCMethodList *Previous = List;
+ for (; List; Previous = List, List = List->Next) {
+ if (!MatchTwoMethodDeclarations(Method, List->Method))
+ continue;
+
+ ObjCMethodDecl *PrevObjCMethod = List->Method;
+
+ // Propagate the 'defined' bit.
+ if (Method->isDefined())
+ PrevObjCMethod->setDefined(true);
+
+ // If a method is deprecated, push it in the global pool.
+ // This is used for better diagnostics.
+ if (Method->isDeprecated()) {
+ if (!PrevObjCMethod->isDeprecated())
+ List->Method = Method;
+ }
+ // If new method is unavailable, push it into global pool
+ // unless previous one is deprecated.
+ if (Method->isUnavailable()) {
+ if (PrevObjCMethod->getAvailability() < AR_Deprecated)
+ List->Method = Method;
+ }
+
+ return;
+ }
+
+ // We have a new signature for an existing method - add it.
+ // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
+ ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
+ Previous->Next = new (Mem) ObjCMethodList(Method, 0);
+}
+
+/// \brief Read the contents of the method pool for a given selector from
+/// external storage.
+void Sema::ReadMethodPool(Selector Sel) {
+ assert(ExternalSource && "We need an external AST source");
+ ExternalSource->ReadMethodPool(Sel);
+}
+
+void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
+ bool instance) {
+ // Ignore methods of invalid containers.
+ if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
+ return;
+
+ if (ExternalSource)
+ ReadMethodPool(Method->getSelector());
+
+ GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
+ if (Pos == MethodPool.end())
+ Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
+ GlobalMethods())).first;
+
+ Method->setDefined(impl);
+
+ ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
+ addMethodToGlobalList(&Entry, Method);
+}
+
+/// Determines if this is an "acceptable" loose mismatch in the global
+/// method pool. This exists mostly as a hack to get around certain
+/// global mismatches which we can't afford to make warnings / errors.
+/// Really, what we want is a way to take a method out of the global
+/// method pool.
+static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
+ ObjCMethodDecl *other) {
+ if (!chosen->isInstanceMethod())
+ return false;
+
+ Selector sel = chosen->getSelector();
+ if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
+ return false;
+
+ // Don't complain about mismatches for -length if the method we
+ // chose has an integral result type.
+ return (chosen->getResultType()->isIntegerType());
+}
+
+ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
+ bool receiverIdOrClass,
+ bool warn, bool instance) {
+ if (ExternalSource)
+ ReadMethodPool(Sel);
+
+ GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
+ if (Pos == MethodPool.end())
+ return 0;
+
+ ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
+
+ if (warn && MethList.Method && MethList.Next) {
+ bool issueDiagnostic = false, issueError = false;
+
+ // We support a warning which complains about *any* difference in
+ // method signature.
+ bool strictSelectorMatch =
+ (receiverIdOrClass && warn &&
+ (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
+ R.getBegin()) !=
+ DiagnosticsEngine::Ignored));
+ if (strictSelectorMatch)
+ for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
+ if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
+ MMS_strict)) {
+ issueDiagnostic = true;
+ break;
+ }
+ }
+
+ // If we didn't see any strict differences, we won't see any loose
+ // differences. In ARC, however, we also need to check for loose
+ // mismatches, because most of them are errors.
+ if (!strictSelectorMatch ||
+ (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
+ for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
+ // This checks if the methods differ in type mismatch.
+ if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
+ MMS_loose) &&
+ !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
+ issueDiagnostic = true;
+ if (getLangOpts().ObjCAutoRefCount)
+ issueError = true;
+ break;
+ }
+ }
+
+ if (issueDiagnostic) {
+ if (issueError)
+ Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
+ else if (strictSelectorMatch)
+ Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
+ else
+ Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
+
+ Diag(MethList.Method->getLocStart(),
+ issueError ? diag::note_possibility : diag::note_using)
+ << MethList.Method->getSourceRange();
+ for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
+ Diag(Next->Method->getLocStart(), diag::note_also_found)
+ << Next->Method->getSourceRange();
+ }
+ }
+ return MethList.Method;
+}
+
+ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
+ GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
+ if (Pos == MethodPool.end())
+ return 0;
+
+ GlobalMethods &Methods = Pos->second;
+
+ if (Methods.first.Method && Methods.first.Method->isDefined())
+ return Methods.first.Method;
+ if (Methods.second.Method && Methods.second.Method->isDefined())
+ return Methods.second.Method;
+ return 0;
+}
+
+/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
+/// identical selector names in current and its super classes and issues
+/// a warning if any of their argument types are incompatible.
+void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
+ ObjCMethodDecl *Method,
+ bool IsInstance) {
+ ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
+ if (ID == 0) return;
+
+ while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
+ ObjCMethodDecl *SuperMethodDecl =
+ SD->lookupMethod(Method->getSelector(), IsInstance);
+ if (SuperMethodDecl == 0) {
+ ID = SD;
+ continue;
+ }
+ ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
+ E = Method->param_end();
+ ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
+ for (; ParamI != E; ++ParamI, ++PrevI) {
+ // Number of parameters are the same and is guaranteed by selector match.
+ assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
+ QualType T1 = Context.getCanonicalType((*ParamI)->getType());
+ QualType T2 = Context.getCanonicalType((*PrevI)->getType());
+ // If type of argument of method in this class does not match its
+ // respective argument type in the super class method, issue warning;
+ if (!Context.typesAreCompatible(T1, T2)) {
+ Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
+ << T1 << T2;
+ Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
+ return;
+ }
+ }
+ ID = SD;
+ }
+}
+
+/// DiagnoseDuplicateIvars -
+/// Check for duplicate ivars in the entire class at the start of
+/// @implementation. This becomes necesssary because class extension can
+/// add ivars to a class in random order which will not be known until
+/// class's @implementation is seen.
+void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
+ ObjCInterfaceDecl *SID) {
+ for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
+ IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
+ ObjCIvarDecl* Ivar = (*IVI);
+ if (Ivar->isInvalidDecl())
+ continue;
+ if (IdentifierInfo *II = Ivar->getIdentifier()) {
+ ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
+ if (prevIvar) {
+ Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
+ Diag(prevIvar->getLocation(), diag::note_previous_declaration);
+ Ivar->setInvalidDecl();
+ }
+ }
+ }
+}
+
+Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
+ switch (CurContext->getDeclKind()) {
+ case Decl::ObjCInterface:
+ return Sema::OCK_Interface;
+ case Decl::ObjCProtocol:
+ return Sema::OCK_Protocol;
+ case Decl::ObjCCategory:
+ if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
+ return Sema::OCK_ClassExtension;
+ else
+ return Sema::OCK_Category;
+ case Decl::ObjCImplementation:
+ return Sema::OCK_Implementation;
+ case Decl::ObjCCategoryImpl:
+ return Sema::OCK_CategoryImplementation;
+
+ default:
+ return Sema::OCK_None;
+ }
+}
+
+// Note: For class/category implemenations, allMethods/allProperties is
+// always null.
+Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
+ Decl **allMethods, unsigned allNum,
+ Decl **allProperties, unsigned pNum,
+ DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
+
+ if (getObjCContainerKind() == Sema::OCK_None)
+ return 0;
+
+ assert(AtEnd.isValid() && "Invalid location for '@end'");
+
+ ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
+ Decl *ClassDecl = cast<Decl>(OCD);
+
+ bool isInterfaceDeclKind =
+ isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
+ || isa<ObjCProtocolDecl>(ClassDecl);
+ bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
+
+ // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
+ llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
+ llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
+
+ for (unsigned i = 0; i < allNum; i++ ) {
+ ObjCMethodDecl *Method =
+ cast_or_null<ObjCMethodDecl>(allMethods[i]);
+
+ if (!Method) continue; // Already issued a diagnostic.
+ if (Method->isInstanceMethod()) {
+ /// Check for instance method of the same name with incompatible types
+ const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
+ bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
+ : false;
+ if ((isInterfaceDeclKind && PrevMethod && !match)
+ || (checkIdenticalMethods && match)) {
+ Diag(Method->getLocation(), diag::err_duplicate_method_decl)
+ << Method->getDeclName();
+ Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
+ Method->setInvalidDecl();
+ } else {
+ if (PrevMethod) {
+ Method->setAsRedeclaration(PrevMethod);
+ if (!Context.getSourceManager().isInSystemHeader(
+ Method->getLocation()))
+ Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
+ << Method->getDeclName();
+ Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
+ }
+ InsMap[Method->getSelector()] = Method;
+ /// The following allows us to typecheck messages to "id".
+ AddInstanceMethodToGlobalPool(Method);
+ // verify that the instance method conforms to the same definition of
+ // parent methods if it shadows one.
+ CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
+ }
+ } else {
+ /// Check for class method of the same name with incompatible types
+ const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
+ bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
+ : false;
+ if ((isInterfaceDeclKind && PrevMethod && !match)
+ || (checkIdenticalMethods && match)) {
+ Diag(Method->getLocation(), diag::err_duplicate_method_decl)
+ << Method->getDeclName();
+ Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
+ Method->setInvalidDecl();
+ } else {
+ if (PrevMethod) {
+ Method->setAsRedeclaration(PrevMethod);
+ if (!Context.getSourceManager().isInSystemHeader(
+ Method->getLocation()))
+ Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
+ << Method->getDeclName();
+ Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
+ }
+ ClsMap[Method->getSelector()] = Method;
+ /// The following allows us to typecheck messages to "Class".
+ AddFactoryMethodToGlobalPool(Method);
+ // verify that the class method conforms to the same definition of
+ // parent methods if it shadows one.
+ CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
+ }
+ }
+ }
+ if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
+ // Compares properties declared in this class to those of its
+ // super class.
+ ComparePropertiesInBaseAndSuper(I);
+ CompareProperties(I, I);
+ } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
+ // Categories are used to extend the class by declaring new methods.
+ // By the same token, they are also used to add new properties. No
+ // need to compare the added property to those in the class.
+
+ // Compare protocol properties with those in category
+ CompareProperties(C, C);
+ if (C->IsClassExtension()) {
+ ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
+ DiagnoseClassExtensionDupMethods(C, CCPrimary);
+ }
+ }
+ if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
+ if (CDecl->getIdentifier())
+ // ProcessPropertyDecl is responsible for diagnosing conflicts with any
+ // user-defined setter/getter. It also synthesizes setter/getter methods
+ // and adds them to the DeclContext and global method pools.
+ for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
+ E = CDecl->prop_end();
+ I != E; ++I)
+ ProcessPropertyDecl(*I, CDecl);
+ CDecl->setAtEndRange(AtEnd);
+ }
+ if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
+ IC->setAtEndRange(AtEnd);
+ if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
+ // Any property declared in a class extension might have user
+ // declared setter or getter in current class extension or one
+ // of the other class extensions. Mark them as synthesized as
+ // property will be synthesized when property with same name is
+ // seen in the @implementation.
+ for (const ObjCCategoryDecl *ClsExtDecl =
+ IDecl->getFirstClassExtension();
+ ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
+ for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
+ E = ClsExtDecl->prop_end(); I != E; ++I) {
+ ObjCPropertyDecl *Property = (*I);
+ // Skip over properties declared @dynamic
+ if (const ObjCPropertyImplDecl *PIDecl
+ = IC->FindPropertyImplDecl(Property->getIdentifier()))
+ if (PIDecl->getPropertyImplementation()
+ == ObjCPropertyImplDecl::Dynamic)
+ continue;
+
+ for (const ObjCCategoryDecl *CExtDecl =
+ IDecl->getFirstClassExtension();
+ CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
+ if (ObjCMethodDecl *GetterMethod =
+ CExtDecl->getInstanceMethod(Property->getGetterName()))
+ GetterMethod->setSynthesized(true);
+ if (!Property->isReadOnly())
+ if (ObjCMethodDecl *SetterMethod =
+ CExtDecl->getInstanceMethod(Property->getSetterName()))
+ SetterMethod->setSynthesized(true);
+ }
+ }
+ }
+ ImplMethodsVsClassMethods(S, IC, IDecl);
+ AtomicPropertySetterGetterRules(IC, IDecl);
+ DiagnoseOwningPropertyGetterSynthesis(IC);
+
+ bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
+ if (IDecl->getSuperClass() == NULL) {
+ // This class has no superclass, so check that it has been marked with
+ // __attribute((objc_root_class)).
+ if (!HasRootClassAttr) {
+ SourceLocation DeclLoc(IDecl->getLocation());
+ SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
+ Diag(DeclLoc, diag::warn_objc_root_class_missing)
+ << IDecl->getIdentifier();
+ // See if NSObject is in the current scope, and if it is, suggest
+ // adding " : NSObject " to the class declaration.
+ NamedDecl *IF = LookupSingleName(TUScope,
+ NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
+ DeclLoc, LookupOrdinaryName);
+ ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
+ if (NSObjectDecl && NSObjectDecl->getDefinition()) {
+ Diag(SuperClassLoc, diag::note_objc_needs_superclass)
+ << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
+ } else {
+ Diag(SuperClassLoc, diag::note_objc_needs_superclass);
+ }
+ }
+ } else if (HasRootClassAttr) {
+ // Complain that only root classes may have this attribute.
+ Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
+ }
+
+ if (LangOpts.ObjCNonFragileABI2) {
+ while (IDecl->getSuperClass()) {
+ DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
+ IDecl = IDecl->getSuperClass();
+ }
+ }
+ }
+ SetIvarInitializers(IC);
+ } else if (ObjCCategoryImplDecl* CatImplClass =
+ dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
+ CatImplClass->setAtEndRange(AtEnd);
+
+ // Find category interface decl and then check that all methods declared
+ // in this interface are implemented in the category @implementation.
+ if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
+ for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
+ Categories; Categories = Categories->getNextClassCategory()) {
+ if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
+ ImplMethodsVsClassMethods(S, CatImplClass, Categories);
+ break;
+ }
+ }
+ }
+ }
+ if (isInterfaceDeclKind) {
+ // Reject invalid vardecls.
+ for (unsigned i = 0; i != tuvNum; i++) {
+ DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
+ for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
+ if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
+ if (!VDecl->hasExternalStorage())
+ Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
+ }
+ }
+ }
+ ActOnObjCContainerFinishDefinition();
+
+ for (unsigned i = 0; i != tuvNum; i++) {
+ DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
+ for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
+ (*I)->setTopLevelDeclInObjCContainer();
+ Consumer.HandleTopLevelDeclInObjCContainer(DG);
+ }
+
+ return ClassDecl;
+}
+
+
+/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
+/// objective-c's type qualifier from the parser version of the same info.
+static Decl::ObjCDeclQualifier
+CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
+ return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
+}
+
+static inline
+bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
+ const AttrVec &A) {
+ // If method is only declared in implementation (private method),
+ // No need to issue any diagnostics on method definition with attributes.
+ if (!IMD)
+ return false;
+
+ // method declared in interface has no attribute.
+ // But implementation has attributes. This is invalid
+ if (!IMD->hasAttrs())
+ return true;
+
+ const AttrVec &D = IMD->getAttrs();
+ if (D.size() != A.size())
+ return true;
+
+ // attributes on method declaration and definition must match exactly.
+ // Note that we have at most a couple of attributes on methods, so this
+ // n*n search is good enough.
+ for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
+ bool match = false;
+ for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
+ if ((*i)->getKind() == (*i1)->getKind()) {
+ match = true;
+ break;
+ }
+ }
+ if (!match)
+ return true;
+ }
+ return false;
+}
+
+namespace {
+ /// \brief Describes the compatibility of a result type with its method.
+ enum ResultTypeCompatibilityKind {
+ RTC_Compatible,
+ RTC_Incompatible,
+ RTC_Unknown
+ };
+}
+
+/// \brief Check whether the declared result type of the given Objective-C
+/// method declaration is compatible with the method's class.
+///
+static ResultTypeCompatibilityKind
+CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
+ ObjCInterfaceDecl *CurrentClass) {
+ QualType ResultType = Method->getResultType();
+
+ // If an Objective-C method inherits its related result type, then its
+ // declared result type must be compatible with its own class type. The
+ // declared result type is compatible if:
+ if (const ObjCObjectPointerType *ResultObjectType
+ = ResultType->getAs<ObjCObjectPointerType>()) {
+ // - it is id or qualified id, or
+ if (ResultObjectType->isObjCIdType() ||
+ ResultObjectType->isObjCQualifiedIdType())
+ return RTC_Compatible;
+
+ if (CurrentClass) {
+ if (ObjCInterfaceDecl *ResultClass
+ = ResultObjectType->getInterfaceDecl()) {
+ // - it is the same as the method's class type, or
+ if (declaresSameEntity(CurrentClass, ResultClass))
+ return RTC_Compatible;
+
+ // - it is a superclass of the method's class type
+ if (ResultClass->isSuperClassOf(CurrentClass))
+ return RTC_Compatible;
+ }
+ } else {
+ // Any Objective-C pointer type might be acceptable for a protocol
+ // method; we just don't know.
+ return RTC_Unknown;
+ }
+ }
+
+ return RTC_Incompatible;
+}
+
+namespace {
+/// A helper class for searching for methods which a particular method
+/// overrides.
+class OverrideSearch {
+public:
+ Sema &S;
+ ObjCMethodDecl *Method;
+ llvm::SmallPtrSet<ObjCContainerDecl*, 128> Searched;
+ llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
+ bool Recursive;
+
+public:
+ OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
+ Selector selector = method->getSelector();
+
+ // Bypass this search if we've never seen an instance/class method
+ // with this selector before.
+ Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
+ if (it == S.MethodPool.end()) {
+ if (!S.ExternalSource) return;
+ S.ReadMethodPool(selector);
+
+ it = S.MethodPool.find(selector);
+ if (it == S.MethodPool.end())
+ return;
+ }
+ ObjCMethodList &list =
+ method->isInstanceMethod() ? it->second.first : it->second.second;
+ if (!list.Method) return;
+
+ ObjCContainerDecl *container
+ = cast<ObjCContainerDecl>(method->getDeclContext());
+
+ // Prevent the search from reaching this container again. This is
+ // important with categories, which override methods from the
+ // interface and each other.
+ Searched.insert(container);
+ searchFromContainer(container);
+ }
+
+ typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
+ iterator begin() const { return Overridden.begin(); }
+ iterator end() const { return Overridden.end(); }
+
+private:
+ void searchFromContainer(ObjCContainerDecl *container) {
+ if (container->isInvalidDecl()) return;
+
+ switch (container->getDeclKind()) {
+#define OBJCCONTAINER(type, base) \
+ case Decl::type: \
+ searchFrom(cast<type##Decl>(container)); \
+ break;
+#define ABSTRACT_DECL(expansion)
+#define DECL(type, base) \
+ case Decl::type:
+#include "clang/AST/DeclNodes.inc"
+ llvm_unreachable("not an ObjC container!");
+ }
+ }
+
+ void searchFrom(ObjCProtocolDecl *protocol) {
+ if (!protocol->hasDefinition())
+ return;
+
+ // A method in a protocol declaration overrides declarations from
+ // referenced ("parent") protocols.
+ search(protocol->getReferencedProtocols());
+ }
+
+ void searchFrom(ObjCCategoryDecl *category) {
+ // A method in a category declaration overrides declarations from
+ // the main class and from protocols the category references.
+ search(category->getClassInterface());
+ search(category->getReferencedProtocols());
+ }
+
+ void searchFrom(ObjCCategoryImplDecl *impl) {
+ // A method in a category definition that has a category
+ // declaration overrides declarations from the category
+ // declaration.
+ if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
+ search(category);
+
+ // Otherwise it overrides declarations from the class.
+ } else {
+ search(impl->getClassInterface());
+ }
+ }
+
+ void searchFrom(ObjCInterfaceDecl *iface) {
+ // A method in a class declaration overrides declarations from
+ if (!iface->hasDefinition())
+ return;
+
+ // - categories,
+ for (ObjCCategoryDecl *category = iface->getCategoryList();
+ category; category = category->getNextClassCategory())
+ search(category);
+
+ // - the super class, and
+ if (ObjCInterfaceDecl *super = iface->getSuperClass())
+ search(super);
+
+ // - any referenced protocols.
+ search(iface->getReferencedProtocols());
+ }
+
+ void searchFrom(ObjCImplementationDecl *impl) {
+ // A method in a class implementation overrides declarations from
+ // the class interface.
+ search(impl->getClassInterface());
+ }
+
+
+ void search(const ObjCProtocolList &protocols) {
+ for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
+ i != e; ++i)
+ search(*i);
+ }
+
+ void search(ObjCContainerDecl *container) {
+ // Abort if we've already searched this container.
+ if (!Searched.insert(container)) return;
+
+ // Check for a method in this container which matches this selector.
+ ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
+ Method->isInstanceMethod());
+
+ // If we find one, record it and bail out.
+ if (meth) {
+ Overridden.insert(meth);
+ return;
+ }
+
+ // Otherwise, search for methods that a hypothetical method here
+ // would have overridden.
+
+ // Note that we're now in a recursive case.
+ Recursive = true;
+
+ searchFromContainer(container);
+ }
+};
+}
+
+Decl *Sema::ActOnMethodDeclaration(
+ Scope *S,
+ SourceLocation MethodLoc, SourceLocation EndLoc,
+ tok::TokenKind MethodType,
+ ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
+ ArrayRef<SourceLocation> SelectorLocs,
+ Selector Sel,
+ // optional arguments. The number of types/arguments is obtained
+ // from the Sel.getNumArgs().
+ ObjCArgInfo *ArgInfo,
+ DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
+ AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
+ bool isVariadic, bool MethodDefinition) {
+ // Make sure we can establish a context for the method.
+ if (!CurContext->isObjCContainer()) {
+ Diag(MethodLoc, diag::error_missing_method_context);
+ return 0;
+ }
+ ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
+ Decl *ClassDecl = cast<Decl>(OCD);
+ QualType resultDeclType;
+
+ bool HasRelatedResultType = false;
+ TypeSourceInfo *ResultTInfo = 0;
+ if (ReturnType) {
+ resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
+
+ // Methods cannot return interface types. All ObjC objects are
+ // passed by reference.
+ if (resultDeclType->isObjCObjectType()) {
+ Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
+ << 0 << resultDeclType;
+ return 0;
+ }
+
+ HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
+ } else { // get the type for "id".
+ resultDeclType = Context.getObjCIdType();
+ Diag(MethodLoc, diag::warn_missing_method_return_type)
+ << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
+ }
+
+ ObjCMethodDecl* ObjCMethod =
+ ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
+ resultDeclType,
+ ResultTInfo,
+ CurContext,
+ MethodType == tok::minus, isVariadic,
+ /*isSynthesized=*/false,
+ /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
+ MethodDeclKind == tok::objc_optional
+ ? ObjCMethodDecl::Optional
+ : ObjCMethodDecl::Required,
+ HasRelatedResultType);
+
+ SmallVector<ParmVarDecl*, 16> Params;
+
+ for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
+ QualType ArgType;
+ TypeSourceInfo *DI;
+
+ if (ArgInfo[i].Type == 0) {
+ ArgType = Context.getObjCIdType();
+ DI = 0;
+ } else {
+ ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
+ // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
+ ArgType = Context.getAdjustedParameterType(ArgType);
+ }
+
+ LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
+ LookupOrdinaryName, ForRedeclaration);
+ LookupName(R, S);
+ if (R.isSingleResult()) {
+ NamedDecl *PrevDecl = R.getFoundDecl();
+ if (S->isDeclScope(PrevDecl)) {
+ Diag(ArgInfo[i].NameLoc,
+ (MethodDefinition ? diag::warn_method_param_redefinition
+ : diag::warn_method_param_declaration))
+ << ArgInfo[i].Name;
+ Diag(PrevDecl->getLocation(),
+ diag::note_previous_declaration);
+ }
+ }
+
+ SourceLocation StartLoc = DI
+ ? DI->getTypeLoc().getBeginLoc()
+ : ArgInfo[i].NameLoc;
+
+ ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
+ ArgInfo[i].NameLoc, ArgInfo[i].Name,
+ ArgType, DI, SC_None, SC_None);
+
+ Param->setObjCMethodScopeInfo(i);
+
+ Param->setObjCDeclQualifier(
+ CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
+
+ // Apply the attributes to the parameter.
+ ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
+
+ if (Param->hasAttr<BlocksAttr>()) {
+ Diag(Param->getLocation(), diag::err_block_on_nonlocal);
+ Param->setInvalidDecl();
+ }
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+
+ Params.push_back(Param);
+ }
+
+ for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
+ ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
+ QualType ArgType = Param->getType();
+ if (ArgType.isNull())
+ ArgType = Context.getObjCIdType();
+ else
+ // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
+ ArgType = Context.getAdjustedParameterType(ArgType);
+ if (ArgType->isObjCObjectType()) {
+ Diag(Param->getLocation(),
+ diag::err_object_cannot_be_passed_returned_by_value)
+ << 1 << ArgType;
+ Param->setInvalidDecl();
+ }
+ Param->setDeclContext(ObjCMethod);
+
+ Params.push_back(Param);
+ }
+
+ ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
+ ObjCMethod->setObjCDeclQualifier(
+ CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
+
+ if (AttrList)
+ ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
+
+ // Add the method now.
+ const ObjCMethodDecl *PrevMethod = 0;
+ if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
+ if (MethodType == tok::minus) {
+ PrevMethod = ImpDecl->getInstanceMethod(Sel);
+ ImpDecl->addInstanceMethod(ObjCMethod);
+ } else {
+ PrevMethod = ImpDecl->getClassMethod(Sel);
+ ImpDecl->addClassMethod(ObjCMethod);
+ }
+
+ ObjCMethodDecl *IMD = 0;
+ if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
+ IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
+ ObjCMethod->isInstanceMethod());
+ if (ObjCMethod->hasAttrs() &&
+ containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
+ SourceLocation MethodLoc = IMD->getLocation();
+ if (!getSourceManager().isInSystemHeader(MethodLoc)) {
+ Diag(EndLoc, diag::warn_attribute_method_def);
+ Diag(MethodLoc, diag::note_method_declared_at)
+ << ObjCMethod->getDeclName();
+ }
+ }
+ } else {
+ cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
+ }
+
+ if (PrevMethod) {
+ // You can never have two method definitions with the same name.
+ Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
+ << ObjCMethod->getDeclName();
+ Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
+ }
+
+ // If this Objective-C method does not have a related result type, but we
+ // are allowed to infer related result types, try to do so based on the
+ // method family.
+ ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
+ if (!CurrentClass) {
+ if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
+ CurrentClass = Cat->getClassInterface();
+ else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
+ CurrentClass = Impl->getClassInterface();
+ else if (ObjCCategoryImplDecl *CatImpl
+ = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
+ CurrentClass = CatImpl->getClassInterface();
+ }
+
+ ResultTypeCompatibilityKind RTC
+ = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
+
+ // Search for overridden methods and merge information down from them.
+ OverrideSearch overrides(*this, ObjCMethod);
+ for (OverrideSearch::iterator
+ i = overrides.begin(), e = overrides.end(); i != e; ++i) {
+ ObjCMethodDecl *overridden = *i;
+
+ // Propagate down the 'related result type' bit from overridden methods.
+ if (RTC != RTC_Incompatible && overridden->hasRelatedResultType())
+ ObjCMethod->SetRelatedResultType();
+
+ // Then merge the declarations.
+ mergeObjCMethodDecls(ObjCMethod, overridden);
+
+ // Check for overriding methods
+ if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
+ isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
+ CheckConflictingOverridingMethod(ObjCMethod, overridden,
+ isa<ObjCProtocolDecl>(overridden->getDeclContext()));
+ }
+
+ bool ARCError = false;
+ if (getLangOpts().ObjCAutoRefCount)
+ ARCError = CheckARCMethodDecl(*this, ObjCMethod);
+
+ // Infer the related result type when possible.
+ if (!ARCError && RTC == RTC_Compatible &&
+ !ObjCMethod->hasRelatedResultType() &&
+ LangOpts.ObjCInferRelatedResultType) {
+ bool InferRelatedResultType = false;
+ switch (ObjCMethod->getMethodFamily()) {
+ case OMF_None:
+ case OMF_copy:
+ case OMF_dealloc:
+ case OMF_finalize:
+ case OMF_mutableCopy:
+ case OMF_release:
+ case OMF_retainCount:
+ case OMF_performSelector:
+ break;
+
+ case OMF_alloc:
+ case OMF_new:
+ InferRelatedResultType = ObjCMethod->isClassMethod();
+ break;
+
+ case OMF_init:
+ case OMF_autorelease:
+ case OMF_retain:
+ case OMF_self:
+ InferRelatedResultType = ObjCMethod->isInstanceMethod();
+ break;
+ }
+
+ if (InferRelatedResultType)
+ ObjCMethod->SetRelatedResultType();
+ }
+
+ return ObjCMethod;
+}
+
+bool Sema::CheckObjCDeclScope(Decl *D) {
+ // Following is also an error. But it is caused by a missing @end
+ // and diagnostic is issued elsewhere.
+ if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
+ return false;
+
+ // If we switched context to translation unit while we are still lexically in
+ // an objc container, it means the parser missed emitting an error.
+ if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
+ return false;
+
+ Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
+ D->setInvalidDecl();
+
+ return true;
+}
+
+/// Called whenever @defs(ClassName) is encountered in the source. Inserts the
+/// instance variables of ClassName into Decls.
+void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
+ IdentifierInfo *ClassName,
+ SmallVectorImpl<Decl*> &Decls) {
+ // Check that ClassName is a valid class
+ ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
+ if (!Class) {
+ Diag(DeclStart, diag::err_undef_interface) << ClassName;
+ return;
+ }
+ if (LangOpts.ObjCNonFragileABI) {
+ Diag(DeclStart, diag::err_atdef_nonfragile_interface);
+ return;
+ }
+
+ // Collect the instance variables
+ SmallVector<const ObjCIvarDecl*, 32> Ivars;
+ Context.DeepCollectObjCIvars(Class, true, Ivars);
+ // For each ivar, create a fresh ObjCAtDefsFieldDecl.
+ for (unsigned i = 0; i < Ivars.size(); i++) {
+ const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
+ RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
+ Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
+ /*FIXME: StartL=*/ID->getLocation(),
+ ID->getLocation(),
+ ID->getIdentifier(), ID->getType(),
+ ID->getBitWidth());
+ Decls.push_back(FD);
+ }
+
+ // Introduce all of these fields into the appropriate scope.
+ for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
+ D != Decls.end(); ++D) {
+ FieldDecl *FD = cast<FieldDecl>(*D);
+ if (getLangOpts().CPlusPlus)
+ PushOnScopeChains(cast<FieldDecl>(FD), S);
+ else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
+ Record->addDecl(FD);
+ }
+}
+
+/// \brief Build a type-check a new Objective-C exception variable declaration.
+VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc,
+ IdentifierInfo *Id,
+ bool Invalid) {
+ // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
+ // duration shall not be qualified by an address-space qualifier."
+ // Since all parameters have automatic store duration, they can not have
+ // an address space.
+ if (T.getAddressSpace() != 0) {
+ Diag(IdLoc, diag::err_arg_with_address_space);
+ Invalid = true;
+ }
+
+ // An @catch parameter must be an unqualified object pointer type;
+ // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
+ if (Invalid) {
+ // Don't do any further checking.
+ } else if (T->isDependentType()) {
+ // Okay: we don't know what this type will instantiate to.
+ } else if (!T->isObjCObjectPointerType()) {
+ Invalid = true;
+ Diag(IdLoc ,diag::err_catch_param_not_objc_type);
+ } else if (T->isObjCQualifiedIdType()) {
+ Invalid = true;
+ Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
+ }
+
+ VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
+ T, TInfo, SC_None, SC_None);
+ New->setExceptionVariable(true);
+
+ // In ARC, infer 'retaining' for variables of retainable type.
+ if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
+ Invalid = true;
+
+ if (Invalid)
+ New->setInvalidDecl();
+ return New;
+}
+
+Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
+ const DeclSpec &DS = D.getDeclSpec();
+
+ // We allow the "register" storage class on exception variables because
+ // GCC did, but we drop it completely. Any other storage class is an error.
+ if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
+ Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
+ << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
+ } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
+ Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
+ << DS.getStorageClassSpec();
+ }
+ if (D.getDeclSpec().isThreadSpecified())
+ Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+
+ DiagnoseFunctionSpecifiers(D);
+
+ // Check that there are no default arguments inside the type of this
+ // exception object (C++ only).
+ if (getLangOpts().CPlusPlus)
+ CheckExtraCXXDefaultArguments(D);
+
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+ QualType ExceptionType = TInfo->getType();
+
+ VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
+ D.getSourceRange().getBegin(),
+ D.getIdentifierLoc(),
+ D.getIdentifier(),
+ D.isInvalidType());
+
+ // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
+ if (D.getCXXScopeSpec().isSet()) {
+ Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
+ << D.getCXXScopeSpec().getRange();
+ New->setInvalidDecl();
+ }
+
+ // Add the parameter declaration into this scope.
+ S->AddDecl(New);
+ if (D.getIdentifier())
+ IdResolver.AddDecl(New);
+
+ ProcessDeclAttributes(S, New, D);
+
+ if (New->hasAttr<BlocksAttr>())
+ Diag(New->getLocation(), diag::err_block_on_nonlocal);
+ return New;
+}
+
+/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
+/// initialization.
+void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
+ SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
+ for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
+ Iv= Iv->getNextIvar()) {
+ QualType QT = Context.getBaseElementType(Iv->getType());
+ if (QT->isRecordType())
+ Ivars.push_back(Iv);
+ }
+}
+
+void Sema::DiagnoseUseOfUnimplementedSelectors() {
+ // Load referenced selectors from the external source.
+ if (ExternalSource) {
+ SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
+ ExternalSource->ReadReferencedSelectors(Sels);
+ for (unsigned I = 0, N = Sels.size(); I != N; ++I)
+ ReferencedSelectors[Sels[I].first] = Sels[I].second;
+ }
+
+ // Warning will be issued only when selector table is
+ // generated (which means there is at lease one implementation
+ // in the TU). This is to match gcc's behavior.
+ if (ReferencedSelectors.empty() ||
+ !Context.AnyObjCImplementation())
+ return;
+ for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
+ ReferencedSelectors.begin(),
+ E = ReferencedSelectors.end(); S != E; ++S) {
+ Selector Sel = (*S).first;
+ if (!LookupImplementedMethodInGlobalPool(Sel))
+ Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
+ }
+ return;
+}