diff options
Diffstat (limited to 'clang/lib/Sema/SemaDeclObjC.cpp')
-rw-r--r-- | clang/lib/Sema/SemaDeclObjC.cpp | 3121 |
1 files changed, 3121 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaDeclObjC.cpp b/clang/lib/Sema/SemaDeclObjC.cpp new file mode 100644 index 0000000..a942d49 --- /dev/null +++ b/clang/lib/Sema/SemaDeclObjC.cpp @@ -0,0 +1,3121 @@ +//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements semantic analysis for Objective C declarations. +// +//===----------------------------------------------------------------------===// + +#include "clang/Sema/SemaInternal.h" +#include "clang/Sema/Lookup.h" +#include "clang/Sema/ExternalSemaSource.h" +#include "clang/Sema/Scope.h" +#include "clang/Sema/ScopeInfo.h" +#include "clang/AST/ASTConsumer.h" +#include "clang/AST/Expr.h" +#include "clang/AST/ExprObjC.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/ASTMutationListener.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Sema/DeclSpec.h" +#include "clang/Lex/Preprocessor.h" +#include "llvm/ADT/DenseSet.h" + +using namespace clang; + +/// Check whether the given method, which must be in the 'init' +/// family, is a valid member of that family. +/// +/// \param receiverTypeIfCall - if null, check this as if declaring it; +/// if non-null, check this as if making a call to it with the given +/// receiver type +/// +/// \return true to indicate that there was an error and appropriate +/// actions were taken +bool Sema::checkInitMethod(ObjCMethodDecl *method, + QualType receiverTypeIfCall) { + if (method->isInvalidDecl()) return true; + + // This castAs is safe: methods that don't return an object + // pointer won't be inferred as inits and will reject an explicit + // objc_method_family(init). + + // We ignore protocols here. Should we? What about Class? + + const ObjCObjectType *result = method->getResultType() + ->castAs<ObjCObjectPointerType>()->getObjectType(); + + if (result->isObjCId()) { + return false; + } else if (result->isObjCClass()) { + // fall through: always an error + } else { + ObjCInterfaceDecl *resultClass = result->getInterface(); + assert(resultClass && "unexpected object type!"); + + // It's okay for the result type to still be a forward declaration + // if we're checking an interface declaration. + if (!resultClass->hasDefinition()) { + if (receiverTypeIfCall.isNull() && + !isa<ObjCImplementationDecl>(method->getDeclContext())) + return false; + + // Otherwise, we try to compare class types. + } else { + // If this method was declared in a protocol, we can't check + // anything unless we have a receiver type that's an interface. + const ObjCInterfaceDecl *receiverClass = 0; + if (isa<ObjCProtocolDecl>(method->getDeclContext())) { + if (receiverTypeIfCall.isNull()) + return false; + + receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() + ->getInterfaceDecl(); + + // This can be null for calls to e.g. id<Foo>. + if (!receiverClass) return false; + } else { + receiverClass = method->getClassInterface(); + assert(receiverClass && "method not associated with a class!"); + } + + // If either class is a subclass of the other, it's fine. + if (receiverClass->isSuperClassOf(resultClass) || + resultClass->isSuperClassOf(receiverClass)) + return false; + } + } + + SourceLocation loc = method->getLocation(); + + // If we're in a system header, and this is not a call, just make + // the method unusable. + if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { + method->addAttr(new (Context) UnavailableAttr(loc, Context, + "init method returns a type unrelated to its receiver type")); + return true; + } + + // Otherwise, it's an error. + Diag(loc, diag::err_arc_init_method_unrelated_result_type); + method->setInvalidDecl(); + return true; +} + +void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, + const ObjCMethodDecl *Overridden, + bool IsImplementation) { + if (Overridden->hasRelatedResultType() && + !NewMethod->hasRelatedResultType()) { + // This can only happen when the method follows a naming convention that + // implies a related result type, and the original (overridden) method has + // a suitable return type, but the new (overriding) method does not have + // a suitable return type. + QualType ResultType = NewMethod->getResultType(); + SourceRange ResultTypeRange; + if (const TypeSourceInfo *ResultTypeInfo + = NewMethod->getResultTypeSourceInfo()) + ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); + + // Figure out which class this method is part of, if any. + ObjCInterfaceDecl *CurrentClass + = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); + if (!CurrentClass) { + DeclContext *DC = NewMethod->getDeclContext(); + if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) + CurrentClass = Cat->getClassInterface(); + else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) + CurrentClass = Impl->getClassInterface(); + else if (ObjCCategoryImplDecl *CatImpl + = dyn_cast<ObjCCategoryImplDecl>(DC)) + CurrentClass = CatImpl->getClassInterface(); + } + + if (CurrentClass) { + Diag(NewMethod->getLocation(), + diag::warn_related_result_type_compatibility_class) + << Context.getObjCInterfaceType(CurrentClass) + << ResultType + << ResultTypeRange; + } else { + Diag(NewMethod->getLocation(), + diag::warn_related_result_type_compatibility_protocol) + << ResultType + << ResultTypeRange; + } + + if (ObjCMethodFamily Family = Overridden->getMethodFamily()) + Diag(Overridden->getLocation(), + diag::note_related_result_type_overridden_family) + << Family; + else + Diag(Overridden->getLocation(), + diag::note_related_result_type_overridden); + } + if (getLangOpts().ObjCAutoRefCount) { + if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != + Overridden->hasAttr<NSReturnsRetainedAttr>())) { + Diag(NewMethod->getLocation(), + diag::err_nsreturns_retained_attribute_mismatch) << 1; + Diag(Overridden->getLocation(), diag::note_previous_decl) + << "method"; + } + if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != + Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { + Diag(NewMethod->getLocation(), + diag::err_nsreturns_retained_attribute_mismatch) << 0; + Diag(Overridden->getLocation(), diag::note_previous_decl) + << "method"; + } + ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(); + for (ObjCMethodDecl::param_iterator + ni = NewMethod->param_begin(), ne = NewMethod->param_end(); + ni != ne; ++ni, ++oi) { + const ParmVarDecl *oldDecl = (*oi); + ParmVarDecl *newDecl = (*ni); + if (newDecl->hasAttr<NSConsumedAttr>() != + oldDecl->hasAttr<NSConsumedAttr>()) { + Diag(newDecl->getLocation(), + diag::err_nsconsumed_attribute_mismatch); + Diag(oldDecl->getLocation(), diag::note_previous_decl) + << "parameter"; + } + } + } +} + +/// \brief Check a method declaration for compatibility with the Objective-C +/// ARC conventions. +static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) { + ObjCMethodFamily family = method->getMethodFamily(); + switch (family) { + case OMF_None: + case OMF_dealloc: + case OMF_finalize: + case OMF_retain: + case OMF_release: + case OMF_autorelease: + case OMF_retainCount: + case OMF_self: + case OMF_performSelector: + return false; + + case OMF_init: + // If the method doesn't obey the init rules, don't bother annotating it. + if (S.checkInitMethod(method, QualType())) + return true; + + method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(), + S.Context)); + + // Don't add a second copy of this attribute, but otherwise don't + // let it be suppressed. + if (method->hasAttr<NSReturnsRetainedAttr>()) + return false; + break; + + case OMF_alloc: + case OMF_copy: + case OMF_mutableCopy: + case OMF_new: + if (method->hasAttr<NSReturnsRetainedAttr>() || + method->hasAttr<NSReturnsNotRetainedAttr>() || + method->hasAttr<NSReturnsAutoreleasedAttr>()) + return false; + break; + } + + method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(), + S.Context)); + return false; +} + +static void DiagnoseObjCImplementedDeprecations(Sema &S, + NamedDecl *ND, + SourceLocation ImplLoc, + int select) { + if (ND && ND->isDeprecated()) { + S.Diag(ImplLoc, diag::warn_deprecated_def) << select; + if (select == 0) + S.Diag(ND->getLocation(), diag::note_method_declared_at) + << ND->getDeclName(); + else + S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; + } +} + +/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global +/// pool. +void Sema::AddAnyMethodToGlobalPool(Decl *D) { + ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); + + // If we don't have a valid method decl, simply return. + if (!MDecl) + return; + if (MDecl->isInstanceMethod()) + AddInstanceMethodToGlobalPool(MDecl, true); + else + AddFactoryMethodToGlobalPool(MDecl, true); +} + +/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible +/// and user declared, in the method definition's AST. +void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { + assert(getCurMethodDecl() == 0 && "Method parsing confused"); + ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); + + // If we don't have a valid method decl, simply return. + if (!MDecl) + return; + + // Allow all of Sema to see that we are entering a method definition. + PushDeclContext(FnBodyScope, MDecl); + PushFunctionScope(); + + // Create Decl objects for each parameter, entrring them in the scope for + // binding to their use. + + // Insert the invisible arguments, self and _cmd! + MDecl->createImplicitParams(Context, MDecl->getClassInterface()); + + PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); + PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); + + // Introduce all of the other parameters into this scope. + for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(), + E = MDecl->param_end(); PI != E; ++PI) { + ParmVarDecl *Param = (*PI); + if (!Param->isInvalidDecl() && + RequireCompleteType(Param->getLocation(), Param->getType(), + diag::err_typecheck_decl_incomplete_type)) + Param->setInvalidDecl(); + if ((*PI)->getIdentifier()) + PushOnScopeChains(*PI, FnBodyScope); + } + + // In ARC, disallow definition of retain/release/autorelease/retainCount + if (getLangOpts().ObjCAutoRefCount) { + switch (MDecl->getMethodFamily()) { + case OMF_retain: + case OMF_retainCount: + case OMF_release: + case OMF_autorelease: + Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) + << MDecl->getSelector(); + break; + + case OMF_None: + case OMF_dealloc: + case OMF_finalize: + case OMF_alloc: + case OMF_init: + case OMF_mutableCopy: + case OMF_copy: + case OMF_new: + case OMF_self: + case OMF_performSelector: + break; + } + } + + // Warn on deprecated methods under -Wdeprecated-implementations, + // and prepare for warning on missing super calls. + if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { + if (ObjCMethodDecl *IMD = + IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod())) + DiagnoseObjCImplementedDeprecations(*this, + dyn_cast<NamedDecl>(IMD), + MDecl->getLocation(), 0); + + // If this is "dealloc" or "finalize", set some bit here. + // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. + // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. + // Only do this if the current class actually has a superclass. + if (IC->getSuperClass()) { + ObjCShouldCallSuperDealloc = + !(Context.getLangOpts().ObjCAutoRefCount || + Context.getLangOpts().getGC() == LangOptions::GCOnly) && + MDecl->getMethodFamily() == OMF_dealloc; + ObjCShouldCallSuperFinalize = + Context.getLangOpts().getGC() != LangOptions::NonGC && + MDecl->getMethodFamily() == OMF_finalize; + } + } +} + +namespace { + +// Callback to only accept typo corrections that are Objective-C classes. +// If an ObjCInterfaceDecl* is given to the constructor, then the validation +// function will reject corrections to that class. +class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback { + public: + ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {} + explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) + : CurrentIDecl(IDecl) {} + + virtual bool ValidateCandidate(const TypoCorrection &candidate) { + ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); + return ID && !declaresSameEntity(ID, CurrentIDecl); + } + + private: + ObjCInterfaceDecl *CurrentIDecl; +}; + +} + +Decl *Sema:: +ActOnStartClassInterface(SourceLocation AtInterfaceLoc, + IdentifierInfo *ClassName, SourceLocation ClassLoc, + IdentifierInfo *SuperName, SourceLocation SuperLoc, + Decl * const *ProtoRefs, unsigned NumProtoRefs, + const SourceLocation *ProtoLocs, + SourceLocation EndProtoLoc, AttributeList *AttrList) { + assert(ClassName && "Missing class identifier"); + + // Check for another declaration kind with the same name. + NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, + LookupOrdinaryName, ForRedeclaration); + + if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { + Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; + Diag(PrevDecl->getLocation(), diag::note_previous_definition); + } + + // Create a declaration to describe this @interface. + ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); + ObjCInterfaceDecl *IDecl + = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName, + PrevIDecl, ClassLoc); + + if (PrevIDecl) { + // Class already seen. Was it a definition? + if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { + Diag(AtInterfaceLoc, diag::err_duplicate_class_def) + << PrevIDecl->getDeclName(); + Diag(Def->getLocation(), diag::note_previous_definition); + IDecl->setInvalidDecl(); + } + } + + if (AttrList) + ProcessDeclAttributeList(TUScope, IDecl, AttrList); + PushOnScopeChains(IDecl, TUScope); + + // Start the definition of this class. If we're in a redefinition case, there + // may already be a definition, so we'll end up adding to it. + if (!IDecl->hasDefinition()) + IDecl->startDefinition(); + + if (SuperName) { + // Check if a different kind of symbol declared in this scope. + PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, + LookupOrdinaryName); + + if (!PrevDecl) { + // Try to correct for a typo in the superclass name without correcting + // to the class we're defining. + ObjCInterfaceValidatorCCC Validator(IDecl); + if (TypoCorrection Corrected = CorrectTypo( + DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope, + NULL, Validator)) { + PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); + Diag(SuperLoc, diag::err_undef_superclass_suggest) + << SuperName << ClassName << PrevDecl->getDeclName(); + Diag(PrevDecl->getLocation(), diag::note_previous_decl) + << PrevDecl->getDeclName(); + } + } + + if (declaresSameEntity(PrevDecl, IDecl)) { + Diag(SuperLoc, diag::err_recursive_superclass) + << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); + IDecl->setEndOfDefinitionLoc(ClassLoc); + } else { + ObjCInterfaceDecl *SuperClassDecl = + dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); + + // Diagnose classes that inherit from deprecated classes. + if (SuperClassDecl) + (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); + + if (PrevDecl && SuperClassDecl == 0) { + // The previous declaration was not a class decl. Check if we have a + // typedef. If we do, get the underlying class type. + if (const TypedefNameDecl *TDecl = + dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { + QualType T = TDecl->getUnderlyingType(); + if (T->isObjCObjectType()) { + if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) + SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); + } + } + + // This handles the following case: + // + // typedef int SuperClass; + // @interface MyClass : SuperClass {} @end + // + if (!SuperClassDecl) { + Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; + Diag(PrevDecl->getLocation(), diag::note_previous_definition); + } + } + + if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { + if (!SuperClassDecl) + Diag(SuperLoc, diag::err_undef_superclass) + << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); + else if (RequireCompleteType(SuperLoc, + Context.getObjCInterfaceType(SuperClassDecl), + PDiag(diag::err_forward_superclass) + << SuperClassDecl->getDeclName() + << ClassName + << SourceRange(AtInterfaceLoc, ClassLoc))) { + SuperClassDecl = 0; + } + } + IDecl->setSuperClass(SuperClassDecl); + IDecl->setSuperClassLoc(SuperLoc); + IDecl->setEndOfDefinitionLoc(SuperLoc); + } + } else { // we have a root class. + IDecl->setEndOfDefinitionLoc(ClassLoc); + } + + // Check then save referenced protocols. + if (NumProtoRefs) { + IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, + ProtoLocs, Context); + IDecl->setEndOfDefinitionLoc(EndProtoLoc); + } + + CheckObjCDeclScope(IDecl); + return ActOnObjCContainerStartDefinition(IDecl); +} + +/// ActOnCompatiblityAlias - this action is called after complete parsing of +/// @compatibility_alias declaration. It sets up the alias relationships. +Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc, + IdentifierInfo *AliasName, + SourceLocation AliasLocation, + IdentifierInfo *ClassName, + SourceLocation ClassLocation) { + // Look for previous declaration of alias name + NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, + LookupOrdinaryName, ForRedeclaration); + if (ADecl) { + if (isa<ObjCCompatibleAliasDecl>(ADecl)) + Diag(AliasLocation, diag::warn_previous_alias_decl); + else + Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; + Diag(ADecl->getLocation(), diag::note_previous_declaration); + return 0; + } + // Check for class declaration + NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, + LookupOrdinaryName, ForRedeclaration); + if (const TypedefNameDecl *TDecl = + dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { + QualType T = TDecl->getUnderlyingType(); + if (T->isObjCObjectType()) { + if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { + ClassName = IDecl->getIdentifier(); + CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, + LookupOrdinaryName, ForRedeclaration); + } + } + } + ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); + if (CDecl == 0) { + Diag(ClassLocation, diag::warn_undef_interface) << ClassName; + if (CDeclU) + Diag(CDeclU->getLocation(), diag::note_previous_declaration); + return 0; + } + + // Everything checked out, instantiate a new alias declaration AST. + ObjCCompatibleAliasDecl *AliasDecl = + ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); + + if (!CheckObjCDeclScope(AliasDecl)) + PushOnScopeChains(AliasDecl, TUScope); + + return AliasDecl; +} + +bool Sema::CheckForwardProtocolDeclarationForCircularDependency( + IdentifierInfo *PName, + SourceLocation &Ploc, SourceLocation PrevLoc, + const ObjCList<ObjCProtocolDecl> &PList) { + + bool res = false; + for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), + E = PList.end(); I != E; ++I) { + if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), + Ploc)) { + if (PDecl->getIdentifier() == PName) { + Diag(Ploc, diag::err_protocol_has_circular_dependency); + Diag(PrevLoc, diag::note_previous_definition); + res = true; + } + + if (!PDecl->hasDefinition()) + continue; + + if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, + PDecl->getLocation(), PDecl->getReferencedProtocols())) + res = true; + } + } + return res; +} + +Decl * +Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, + IdentifierInfo *ProtocolName, + SourceLocation ProtocolLoc, + Decl * const *ProtoRefs, + unsigned NumProtoRefs, + const SourceLocation *ProtoLocs, + SourceLocation EndProtoLoc, + AttributeList *AttrList) { + bool err = false; + // FIXME: Deal with AttrList. + assert(ProtocolName && "Missing protocol identifier"); + ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc, + ForRedeclaration); + ObjCProtocolDecl *PDecl = 0; + if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) { + // If we already have a definition, complain. + Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; + Diag(Def->getLocation(), diag::note_previous_definition); + + // Create a new protocol that is completely distinct from previous + // declarations, and do not make this protocol available for name lookup. + // That way, we'll end up completely ignoring the duplicate. + // FIXME: Can we turn this into an error? + PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, + ProtocolLoc, AtProtoInterfaceLoc, + /*PrevDecl=*/0); + PDecl->startDefinition(); + } else { + if (PrevDecl) { + // Check for circular dependencies among protocol declarations. This can + // only happen if this protocol was forward-declared. + ObjCList<ObjCProtocolDecl> PList; + PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); + err = CheckForwardProtocolDeclarationForCircularDependency( + ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList); + } + + // Create the new declaration. + PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, + ProtocolLoc, AtProtoInterfaceLoc, + /*PrevDecl=*/PrevDecl); + + PushOnScopeChains(PDecl, TUScope); + PDecl->startDefinition(); + } + + if (AttrList) + ProcessDeclAttributeList(TUScope, PDecl, AttrList); + + // Merge attributes from previous declarations. + if (PrevDecl) + mergeDeclAttributes(PDecl, PrevDecl); + + if (!err && NumProtoRefs ) { + /// Check then save referenced protocols. + PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, + ProtoLocs, Context); + } + + CheckObjCDeclScope(PDecl); + return ActOnObjCContainerStartDefinition(PDecl); +} + +/// FindProtocolDeclaration - This routine looks up protocols and +/// issues an error if they are not declared. It returns list of +/// protocol declarations in its 'Protocols' argument. +void +Sema::FindProtocolDeclaration(bool WarnOnDeclarations, + const IdentifierLocPair *ProtocolId, + unsigned NumProtocols, + SmallVectorImpl<Decl *> &Protocols) { + for (unsigned i = 0; i != NumProtocols; ++i) { + ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, + ProtocolId[i].second); + if (!PDecl) { + DeclFilterCCC<ObjCProtocolDecl> Validator; + TypoCorrection Corrected = CorrectTypo( + DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second), + LookupObjCProtocolName, TUScope, NULL, Validator); + if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) { + Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest) + << ProtocolId[i].first << Corrected.getCorrection(); + Diag(PDecl->getLocation(), diag::note_previous_decl) + << PDecl->getDeclName(); + } + } + + if (!PDecl) { + Diag(ProtocolId[i].second, diag::err_undeclared_protocol) + << ProtocolId[i].first; + continue; + } + + (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); + + // If this is a forward declaration and we are supposed to warn in this + // case, do it. + if (WarnOnDeclarations && !PDecl->hasDefinition()) + Diag(ProtocolId[i].second, diag::warn_undef_protocolref) + << ProtocolId[i].first; + Protocols.push_back(PDecl); + } +} + +/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of +/// a class method in its extension. +/// +void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, + ObjCInterfaceDecl *ID) { + if (!ID) + return; // Possibly due to previous error + + llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; + for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(), + e = ID->meth_end(); i != e; ++i) { + ObjCMethodDecl *MD = *i; + MethodMap[MD->getSelector()] = MD; + } + + if (MethodMap.empty()) + return; + for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(), + e = CAT->meth_end(); i != e; ++i) { + ObjCMethodDecl *Method = *i; + const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; + if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) { + Diag(Method->getLocation(), diag::err_duplicate_method_decl) + << Method->getDeclName(); + Diag(PrevMethod->getLocation(), diag::note_previous_declaration); + } + } +} + +/// ActOnForwardProtocolDeclaration - Handle @protocol foo; +Sema::DeclGroupPtrTy +Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, + const IdentifierLocPair *IdentList, + unsigned NumElts, + AttributeList *attrList) { + SmallVector<Decl *, 8> DeclsInGroup; + for (unsigned i = 0; i != NumElts; ++i) { + IdentifierInfo *Ident = IdentList[i].first; + ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second, + ForRedeclaration); + ObjCProtocolDecl *PDecl + = ObjCProtocolDecl::Create(Context, CurContext, Ident, + IdentList[i].second, AtProtocolLoc, + PrevDecl); + + PushOnScopeChains(PDecl, TUScope); + CheckObjCDeclScope(PDecl); + + if (attrList) + ProcessDeclAttributeList(TUScope, PDecl, attrList); + + if (PrevDecl) + mergeDeclAttributes(PDecl, PrevDecl); + + DeclsInGroup.push_back(PDecl); + } + + return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); +} + +Decl *Sema:: +ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, + IdentifierInfo *ClassName, SourceLocation ClassLoc, + IdentifierInfo *CategoryName, + SourceLocation CategoryLoc, + Decl * const *ProtoRefs, + unsigned NumProtoRefs, + const SourceLocation *ProtoLocs, + SourceLocation EndProtoLoc) { + ObjCCategoryDecl *CDecl; + ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); + + /// Check that class of this category is already completely declared. + + if (!IDecl + || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), + PDiag(diag::err_category_forward_interface) + << (CategoryName == 0))) { + // Create an invalid ObjCCategoryDecl to serve as context for + // the enclosing method declarations. We mark the decl invalid + // to make it clear that this isn't a valid AST. + CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, + ClassLoc, CategoryLoc, CategoryName,IDecl); + CDecl->setInvalidDecl(); + CurContext->addDecl(CDecl); + + if (!IDecl) + Diag(ClassLoc, diag::err_undef_interface) << ClassName; + return ActOnObjCContainerStartDefinition(CDecl); + } + + if (!CategoryName && IDecl->getImplementation()) { + Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; + Diag(IDecl->getImplementation()->getLocation(), + diag::note_implementation_declared); + } + + if (CategoryName) { + /// Check for duplicate interface declaration for this category + ObjCCategoryDecl *CDeclChain; + for (CDeclChain = IDecl->getCategoryList(); CDeclChain; + CDeclChain = CDeclChain->getNextClassCategory()) { + if (CDeclChain->getIdentifier() == CategoryName) { + // Class extensions can be declared multiple times. + Diag(CategoryLoc, diag::warn_dup_category_def) + << ClassName << CategoryName; + Diag(CDeclChain->getLocation(), diag::note_previous_definition); + break; + } + } + } + + CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, + ClassLoc, CategoryLoc, CategoryName, IDecl); + // FIXME: PushOnScopeChains? + CurContext->addDecl(CDecl); + + if (NumProtoRefs) { + CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, + ProtoLocs, Context); + // Protocols in the class extension belong to the class. + if (CDecl->IsClassExtension()) + IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, + NumProtoRefs, Context); + } + + CheckObjCDeclScope(CDecl); + return ActOnObjCContainerStartDefinition(CDecl); +} + +/// ActOnStartCategoryImplementation - Perform semantic checks on the +/// category implementation declaration and build an ObjCCategoryImplDecl +/// object. +Decl *Sema::ActOnStartCategoryImplementation( + SourceLocation AtCatImplLoc, + IdentifierInfo *ClassName, SourceLocation ClassLoc, + IdentifierInfo *CatName, SourceLocation CatLoc) { + ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); + ObjCCategoryDecl *CatIDecl = 0; + if (IDecl && IDecl->hasDefinition()) { + CatIDecl = IDecl->FindCategoryDeclaration(CatName); + if (!CatIDecl) { + // Category @implementation with no corresponding @interface. + // Create and install one. + CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc, + ClassLoc, CatLoc, + CatName, IDecl); + CatIDecl->setImplicit(); + } + } + + ObjCCategoryImplDecl *CDecl = + ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, + ClassLoc, AtCatImplLoc, CatLoc); + /// Check that class of this category is already completely declared. + if (!IDecl) { + Diag(ClassLoc, diag::err_undef_interface) << ClassName; + CDecl->setInvalidDecl(); + } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), + diag::err_undef_interface)) { + CDecl->setInvalidDecl(); + } + + // FIXME: PushOnScopeChains? + CurContext->addDecl(CDecl); + + // If the interface is deprecated/unavailable, warn/error about it. + if (IDecl) + DiagnoseUseOfDecl(IDecl, ClassLoc); + + /// Check that CatName, category name, is not used in another implementation. + if (CatIDecl) { + if (CatIDecl->getImplementation()) { + Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName + << CatName; + Diag(CatIDecl->getImplementation()->getLocation(), + diag::note_previous_definition); + } else { + CatIDecl->setImplementation(CDecl); + // Warn on implementating category of deprecated class under + // -Wdeprecated-implementations flag. + DiagnoseObjCImplementedDeprecations(*this, + dyn_cast<NamedDecl>(IDecl), + CDecl->getLocation(), 2); + } + } + + CheckObjCDeclScope(CDecl); + return ActOnObjCContainerStartDefinition(CDecl); +} + +Decl *Sema::ActOnStartClassImplementation( + SourceLocation AtClassImplLoc, + IdentifierInfo *ClassName, SourceLocation ClassLoc, + IdentifierInfo *SuperClassname, + SourceLocation SuperClassLoc) { + ObjCInterfaceDecl* IDecl = 0; + // Check for another declaration kind with the same name. + NamedDecl *PrevDecl + = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, + ForRedeclaration); + if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { + Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; + Diag(PrevDecl->getLocation(), diag::note_previous_definition); + } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { + RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl), + diag::warn_undef_interface); + } else { + // We did not find anything with the name ClassName; try to correct for + // typos in the class name. + ObjCInterfaceValidatorCCC Validator; + if (TypoCorrection Corrected = CorrectTypo( + DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope, + NULL, Validator)) { + // Suggest the (potentially) correct interface name. However, put the + // fix-it hint itself in a separate note, since changing the name in + // the warning would make the fix-it change semantics.However, don't + // provide a code-modification hint or use the typo name for recovery, + // because this is just a warning. The program may actually be correct. + IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); + DeclarationName CorrectedName = Corrected.getCorrection(); + Diag(ClassLoc, diag::warn_undef_interface_suggest) + << ClassName << CorrectedName; + Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName + << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString()); + IDecl = 0; + } else { + Diag(ClassLoc, diag::warn_undef_interface) << ClassName; + } + } + + // Check that super class name is valid class name + ObjCInterfaceDecl* SDecl = 0; + if (SuperClassname) { + // Check if a different kind of symbol declared in this scope. + PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, + LookupOrdinaryName); + if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { + Diag(SuperClassLoc, diag::err_redefinition_different_kind) + << SuperClassname; + Diag(PrevDecl->getLocation(), diag::note_previous_definition); + } else { + SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); + if (SDecl && !SDecl->hasDefinition()) + SDecl = 0; + if (!SDecl) + Diag(SuperClassLoc, diag::err_undef_superclass) + << SuperClassname << ClassName; + else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) { + // This implementation and its interface do not have the same + // super class. + Diag(SuperClassLoc, diag::err_conflicting_super_class) + << SDecl->getDeclName(); + Diag(SDecl->getLocation(), diag::note_previous_definition); + } + } + } + + if (!IDecl) { + // Legacy case of @implementation with no corresponding @interface. + // Build, chain & install the interface decl into the identifier. + + // FIXME: Do we support attributes on the @implementation? If so we should + // copy them over. + IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, + ClassName, /*PrevDecl=*/0, ClassLoc, + true); + IDecl->startDefinition(); + if (SDecl) { + IDecl->setSuperClass(SDecl); + IDecl->setSuperClassLoc(SuperClassLoc); + IDecl->setEndOfDefinitionLoc(SuperClassLoc); + } else { + IDecl->setEndOfDefinitionLoc(ClassLoc); + } + + PushOnScopeChains(IDecl, TUScope); + } else { + // Mark the interface as being completed, even if it was just as + // @class ....; + // declaration; the user cannot reopen it. + if (!IDecl->hasDefinition()) + IDecl->startDefinition(); + } + + ObjCImplementationDecl* IMPDecl = + ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, + ClassLoc, AtClassImplLoc); + + if (CheckObjCDeclScope(IMPDecl)) + return ActOnObjCContainerStartDefinition(IMPDecl); + + // Check that there is no duplicate implementation of this class. + if (IDecl->getImplementation()) { + // FIXME: Don't leak everything! + Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; + Diag(IDecl->getImplementation()->getLocation(), + diag::note_previous_definition); + } else { // add it to the list. + IDecl->setImplementation(IMPDecl); + PushOnScopeChains(IMPDecl, TUScope); + // Warn on implementating deprecated class under + // -Wdeprecated-implementations flag. + DiagnoseObjCImplementedDeprecations(*this, + dyn_cast<NamedDecl>(IDecl), + IMPDecl->getLocation(), 1); + } + return ActOnObjCContainerStartDefinition(IMPDecl); +} + +Sema::DeclGroupPtrTy +Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) { + SmallVector<Decl *, 64> DeclsInGroup; + DeclsInGroup.reserve(Decls.size() + 1); + + for (unsigned i = 0, e = Decls.size(); i != e; ++i) { + Decl *Dcl = Decls[i]; + if (!Dcl) + continue; + if (Dcl->getDeclContext()->isFileContext()) + Dcl->setTopLevelDeclInObjCContainer(); + DeclsInGroup.push_back(Dcl); + } + + DeclsInGroup.push_back(ObjCImpDecl); + + return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); +} + +void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, + ObjCIvarDecl **ivars, unsigned numIvars, + SourceLocation RBrace) { + assert(ImpDecl && "missing implementation decl"); + ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); + if (!IDecl) + return; + /// Check case of non-existing @interface decl. + /// (legacy objective-c @implementation decl without an @interface decl). + /// Add implementations's ivar to the synthesize class's ivar list. + if (IDecl->isImplicitInterfaceDecl()) { + IDecl->setEndOfDefinitionLoc(RBrace); + // Add ivar's to class's DeclContext. + for (unsigned i = 0, e = numIvars; i != e; ++i) { + ivars[i]->setLexicalDeclContext(ImpDecl); + IDecl->makeDeclVisibleInContext(ivars[i]); + ImpDecl->addDecl(ivars[i]); + } + + return; + } + // If implementation has empty ivar list, just return. + if (numIvars == 0) + return; + + assert(ivars && "missing @implementation ivars"); + if (LangOpts.ObjCNonFragileABI2) { + if (ImpDecl->getSuperClass()) + Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); + for (unsigned i = 0; i < numIvars; i++) { + ObjCIvarDecl* ImplIvar = ivars[i]; + if (const ObjCIvarDecl *ClsIvar = + IDecl->getIvarDecl(ImplIvar->getIdentifier())) { + Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); + Diag(ClsIvar->getLocation(), diag::note_previous_definition); + continue; + } + // Instance ivar to Implementation's DeclContext. + ImplIvar->setLexicalDeclContext(ImpDecl); + IDecl->makeDeclVisibleInContext(ImplIvar); + ImpDecl->addDecl(ImplIvar); + } + return; + } + // Check interface's Ivar list against those in the implementation. + // names and types must match. + // + unsigned j = 0; + ObjCInterfaceDecl::ivar_iterator + IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); + for (; numIvars > 0 && IVI != IVE; ++IVI) { + ObjCIvarDecl* ImplIvar = ivars[j++]; + ObjCIvarDecl* ClsIvar = *IVI; + assert (ImplIvar && "missing implementation ivar"); + assert (ClsIvar && "missing class ivar"); + + // First, make sure the types match. + if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { + Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) + << ImplIvar->getIdentifier() + << ImplIvar->getType() << ClsIvar->getType(); + Diag(ClsIvar->getLocation(), diag::note_previous_definition); + } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && + ImplIvar->getBitWidthValue(Context) != + ClsIvar->getBitWidthValue(Context)) { + Diag(ImplIvar->getBitWidth()->getLocStart(), + diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier(); + Diag(ClsIvar->getBitWidth()->getLocStart(), + diag::note_previous_definition); + } + // Make sure the names are identical. + if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { + Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) + << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); + Diag(ClsIvar->getLocation(), diag::note_previous_definition); + } + --numIvars; + } + + if (numIvars > 0) + Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count); + else if (IVI != IVE) + Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count); +} + +void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, + bool &IncompleteImpl, unsigned DiagID) { + // No point warning no definition of method which is 'unavailable'. + if (method->hasAttr<UnavailableAttr>()) + return; + if (!IncompleteImpl) { + Diag(ImpLoc, diag::warn_incomplete_impl); + IncompleteImpl = true; + } + if (DiagID == diag::warn_unimplemented_protocol_method) + Diag(ImpLoc, DiagID) << method->getDeclName(); + else + Diag(method->getLocation(), DiagID) << method->getDeclName(); +} + +/// Determines if type B can be substituted for type A. Returns true if we can +/// guarantee that anything that the user will do to an object of type A can +/// also be done to an object of type B. This is trivially true if the two +/// types are the same, or if B is a subclass of A. It becomes more complex +/// in cases where protocols are involved. +/// +/// Object types in Objective-C describe the minimum requirements for an +/// object, rather than providing a complete description of a type. For +/// example, if A is a subclass of B, then B* may refer to an instance of A. +/// The principle of substitutability means that we may use an instance of A +/// anywhere that we may use an instance of B - it will implement all of the +/// ivars of B and all of the methods of B. +/// +/// This substitutability is important when type checking methods, because +/// the implementation may have stricter type definitions than the interface. +/// The interface specifies minimum requirements, but the implementation may +/// have more accurate ones. For example, a method may privately accept +/// instances of B, but only publish that it accepts instances of A. Any +/// object passed to it will be type checked against B, and so will implicitly +/// by a valid A*. Similarly, a method may return a subclass of the class that +/// it is declared as returning. +/// +/// This is most important when considering subclassing. A method in a +/// subclass must accept any object as an argument that its superclass's +/// implementation accepts. It may, however, accept a more general type +/// without breaking substitutability (i.e. you can still use the subclass +/// anywhere that you can use the superclass, but not vice versa). The +/// converse requirement applies to return types: the return type for a +/// subclass method must be a valid object of the kind that the superclass +/// advertises, but it may be specified more accurately. This avoids the need +/// for explicit down-casting by callers. +/// +/// Note: This is a stricter requirement than for assignment. +static bool isObjCTypeSubstitutable(ASTContext &Context, + const ObjCObjectPointerType *A, + const ObjCObjectPointerType *B, + bool rejectId) { + // Reject a protocol-unqualified id. + if (rejectId && B->isObjCIdType()) return false; + + // If B is a qualified id, then A must also be a qualified id and it must + // implement all of the protocols in B. It may not be a qualified class. + // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a + // stricter definition so it is not substitutable for id<A>. + if (B->isObjCQualifiedIdType()) { + return A->isObjCQualifiedIdType() && + Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), + QualType(B,0), + false); + } + + /* + // id is a special type that bypasses type checking completely. We want a + // warning when it is used in one place but not another. + if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; + + + // If B is a qualified id, then A must also be a qualified id (which it isn't + // if we've got this far) + if (B->isObjCQualifiedIdType()) return false; + */ + + // Now we know that A and B are (potentially-qualified) class types. The + // normal rules for assignment apply. + return Context.canAssignObjCInterfaces(A, B); +} + +static SourceRange getTypeRange(TypeSourceInfo *TSI) { + return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); +} + +static bool CheckMethodOverrideReturn(Sema &S, + ObjCMethodDecl *MethodImpl, + ObjCMethodDecl *MethodDecl, + bool IsProtocolMethodDecl, + bool IsOverridingMode, + bool Warn) { + if (IsProtocolMethodDecl && + (MethodDecl->getObjCDeclQualifier() != + MethodImpl->getObjCDeclQualifier())) { + if (Warn) { + S.Diag(MethodImpl->getLocation(), + (IsOverridingMode ? + diag::warn_conflicting_overriding_ret_type_modifiers + : diag::warn_conflicting_ret_type_modifiers)) + << MethodImpl->getDeclName() + << getTypeRange(MethodImpl->getResultTypeSourceInfo()); + S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) + << getTypeRange(MethodDecl->getResultTypeSourceInfo()); + } + else + return false; + } + + if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(), + MethodDecl->getResultType())) + return true; + if (!Warn) + return false; + + unsigned DiagID = + IsOverridingMode ? diag::warn_conflicting_overriding_ret_types + : diag::warn_conflicting_ret_types; + + // Mismatches between ObjC pointers go into a different warning + // category, and sometimes they're even completely whitelisted. + if (const ObjCObjectPointerType *ImplPtrTy = + MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) { + if (const ObjCObjectPointerType *IfacePtrTy = + MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) { + // Allow non-matching return types as long as they don't violate + // the principle of substitutability. Specifically, we permit + // return types that are subclasses of the declared return type, + // or that are more-qualified versions of the declared type. + if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) + return false; + + DiagID = + IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types + : diag::warn_non_covariant_ret_types; + } + } + + S.Diag(MethodImpl->getLocation(), DiagID) + << MethodImpl->getDeclName() + << MethodDecl->getResultType() + << MethodImpl->getResultType() + << getTypeRange(MethodImpl->getResultTypeSourceInfo()); + S.Diag(MethodDecl->getLocation(), + IsOverridingMode ? diag::note_previous_declaration + : diag::note_previous_definition) + << getTypeRange(MethodDecl->getResultTypeSourceInfo()); + return false; +} + +static bool CheckMethodOverrideParam(Sema &S, + ObjCMethodDecl *MethodImpl, + ObjCMethodDecl *MethodDecl, + ParmVarDecl *ImplVar, + ParmVarDecl *IfaceVar, + bool IsProtocolMethodDecl, + bool IsOverridingMode, + bool Warn) { + if (IsProtocolMethodDecl && + (ImplVar->getObjCDeclQualifier() != + IfaceVar->getObjCDeclQualifier())) { + if (Warn) { + if (IsOverridingMode) + S.Diag(ImplVar->getLocation(), + diag::warn_conflicting_overriding_param_modifiers) + << getTypeRange(ImplVar->getTypeSourceInfo()) + << MethodImpl->getDeclName(); + else S.Diag(ImplVar->getLocation(), + diag::warn_conflicting_param_modifiers) + << getTypeRange(ImplVar->getTypeSourceInfo()) + << MethodImpl->getDeclName(); + S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) + << getTypeRange(IfaceVar->getTypeSourceInfo()); + } + else + return false; + } + + QualType ImplTy = ImplVar->getType(); + QualType IfaceTy = IfaceVar->getType(); + + if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) + return true; + + if (!Warn) + return false; + unsigned DiagID = + IsOverridingMode ? diag::warn_conflicting_overriding_param_types + : diag::warn_conflicting_param_types; + + // Mismatches between ObjC pointers go into a different warning + // category, and sometimes they're even completely whitelisted. + if (const ObjCObjectPointerType *ImplPtrTy = + ImplTy->getAs<ObjCObjectPointerType>()) { + if (const ObjCObjectPointerType *IfacePtrTy = + IfaceTy->getAs<ObjCObjectPointerType>()) { + // Allow non-matching argument types as long as they don't + // violate the principle of substitutability. Specifically, the + // implementation must accept any objects that the superclass + // accepts, however it may also accept others. + if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) + return false; + + DiagID = + IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types + : diag::warn_non_contravariant_param_types; + } + } + + S.Diag(ImplVar->getLocation(), DiagID) + << getTypeRange(ImplVar->getTypeSourceInfo()) + << MethodImpl->getDeclName() << IfaceTy << ImplTy; + S.Diag(IfaceVar->getLocation(), + (IsOverridingMode ? diag::note_previous_declaration + : diag::note_previous_definition)) + << getTypeRange(IfaceVar->getTypeSourceInfo()); + return false; +} + +/// In ARC, check whether the conventional meanings of the two methods +/// match. If they don't, it's a hard error. +static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, + ObjCMethodDecl *decl) { + ObjCMethodFamily implFamily = impl->getMethodFamily(); + ObjCMethodFamily declFamily = decl->getMethodFamily(); + if (implFamily == declFamily) return false; + + // Since conventions are sorted by selector, the only possibility is + // that the types differ enough to cause one selector or the other + // to fall out of the family. + assert(implFamily == OMF_None || declFamily == OMF_None); + + // No further diagnostics required on invalid declarations. + if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; + + const ObjCMethodDecl *unmatched = impl; + ObjCMethodFamily family = declFamily; + unsigned errorID = diag::err_arc_lost_method_convention; + unsigned noteID = diag::note_arc_lost_method_convention; + if (declFamily == OMF_None) { + unmatched = decl; + family = implFamily; + errorID = diag::err_arc_gained_method_convention; + noteID = diag::note_arc_gained_method_convention; + } + + // Indexes into a %select clause in the diagnostic. + enum FamilySelector { + F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new + }; + FamilySelector familySelector = FamilySelector(); + + switch (family) { + case OMF_None: llvm_unreachable("logic error, no method convention"); + case OMF_retain: + case OMF_release: + case OMF_autorelease: + case OMF_dealloc: + case OMF_finalize: + case OMF_retainCount: + case OMF_self: + case OMF_performSelector: + // Mismatches for these methods don't change ownership + // conventions, so we don't care. + return false; + + case OMF_init: familySelector = F_init; break; + case OMF_alloc: familySelector = F_alloc; break; + case OMF_copy: familySelector = F_copy; break; + case OMF_mutableCopy: familySelector = F_mutableCopy; break; + case OMF_new: familySelector = F_new; break; + } + + enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; + ReasonSelector reasonSelector; + + // The only reason these methods don't fall within their families is + // due to unusual result types. + if (unmatched->getResultType()->isObjCObjectPointerType()) { + reasonSelector = R_UnrelatedReturn; + } else { + reasonSelector = R_NonObjectReturn; + } + + S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector; + S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector; + + return true; +} + +void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, + ObjCMethodDecl *MethodDecl, + bool IsProtocolMethodDecl) { + if (getLangOpts().ObjCAutoRefCount && + checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) + return; + + CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, + IsProtocolMethodDecl, false, + true); + + for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), + IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); + IM != EM; ++IM, ++IF) { + CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, + IsProtocolMethodDecl, false, true); + } + + if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { + Diag(ImpMethodDecl->getLocation(), + diag::warn_conflicting_variadic); + Diag(MethodDecl->getLocation(), diag::note_previous_declaration); + } +} + +void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, + ObjCMethodDecl *Overridden, + bool IsProtocolMethodDecl) { + + CheckMethodOverrideReturn(*this, Method, Overridden, + IsProtocolMethodDecl, true, + true); + + for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), + IF = Overridden->param_begin(), EM = Method->param_end(); + IM != EM; ++IM, ++IF) { + CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, + IsProtocolMethodDecl, true, true); + } + + if (Method->isVariadic() != Overridden->isVariadic()) { + Diag(Method->getLocation(), + diag::warn_conflicting_overriding_variadic); + Diag(Overridden->getLocation(), diag::note_previous_declaration); + } +} + +/// WarnExactTypedMethods - This routine issues a warning if method +/// implementation declaration matches exactly that of its declaration. +void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, + ObjCMethodDecl *MethodDecl, + bool IsProtocolMethodDecl) { + // don't issue warning when protocol method is optional because primary + // class is not required to implement it and it is safe for protocol + // to implement it. + if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) + return; + // don't issue warning when primary class's method is + // depecated/unavailable. + if (MethodDecl->hasAttr<UnavailableAttr>() || + MethodDecl->hasAttr<DeprecatedAttr>()) + return; + + bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, + IsProtocolMethodDecl, false, false); + if (match) + for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), + IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); + IM != EM; ++IM, ++IF) { + match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, + *IM, *IF, + IsProtocolMethodDecl, false, false); + if (!match) + break; + } + if (match) + match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); + if (match) + match = !(MethodDecl->isClassMethod() && + MethodDecl->getSelector() == GetNullarySelector("load", Context)); + + if (match) { + Diag(ImpMethodDecl->getLocation(), + diag::warn_category_method_impl_match); + Diag(MethodDecl->getLocation(), diag::note_method_declared_at) + << MethodDecl->getDeclName(); + } +} + +/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely +/// improve the efficiency of selector lookups and type checking by associating +/// with each protocol / interface / category the flattened instance tables. If +/// we used an immutable set to keep the table then it wouldn't add significant +/// memory cost and it would be handy for lookups. + +/// CheckProtocolMethodDefs - This routine checks unimplemented methods +/// Declared in protocol, and those referenced by it. +void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc, + ObjCProtocolDecl *PDecl, + bool& IncompleteImpl, + const llvm::DenseSet<Selector> &InsMap, + const llvm::DenseSet<Selector> &ClsMap, + ObjCContainerDecl *CDecl) { + ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl); + ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() + : dyn_cast<ObjCInterfaceDecl>(CDecl); + assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); + + ObjCInterfaceDecl *Super = IDecl->getSuperClass(); + ObjCInterfaceDecl *NSIDecl = 0; + if (getLangOpts().NeXTRuntime) { + // check to see if class implements forwardInvocation method and objects + // of this class are derived from 'NSProxy' so that to forward requests + // from one object to another. + // Under such conditions, which means that every method possible is + // implemented in the class, we should not issue "Method definition not + // found" warnings. + // FIXME: Use a general GetUnarySelector method for this. + IdentifierInfo* II = &Context.Idents.get("forwardInvocation"); + Selector fISelector = Context.Selectors.getSelector(1, &II); + if (InsMap.count(fISelector)) + // Is IDecl derived from 'NSProxy'? If so, no instance methods + // need be implemented in the implementation. + NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy")); + } + + // If a method lookup fails locally we still need to look and see if + // the method was implemented by a base class or an inherited + // protocol. This lookup is slow, but occurs rarely in correct code + // and otherwise would terminate in a warning. + + // check unimplemented instance methods. + if (!NSIDecl) + for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(), + E = PDecl->instmeth_end(); I != E; ++I) { + ObjCMethodDecl *method = *I; + if (method->getImplementationControl() != ObjCMethodDecl::Optional && + !method->isSynthesized() && !InsMap.count(method->getSelector()) && + (!Super || + !Super->lookupInstanceMethod(method->getSelector()))) { + // If a method is not implemented in the category implementation but + // has been declared in its primary class, superclass, + // or in one of their protocols, no need to issue the warning. + // This is because method will be implemented in the primary class + // or one of its super class implementation. + + // Ugly, but necessary. Method declared in protcol might have + // have been synthesized due to a property declared in the class which + // uses the protocol. + if (ObjCMethodDecl *MethodInClass = + IDecl->lookupInstanceMethod(method->getSelector(), + true /*shallowCategoryLookup*/)) + if (C || MethodInClass->isSynthesized()) + continue; + unsigned DIAG = diag::warn_unimplemented_protocol_method; + if (Diags.getDiagnosticLevel(DIAG, ImpLoc) + != DiagnosticsEngine::Ignored) { + WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); + Diag(method->getLocation(), diag::note_method_declared_at) + << method->getDeclName(); + Diag(CDecl->getLocation(), diag::note_required_for_protocol_at) + << PDecl->getDeclName(); + } + } + } + // check unimplemented class methods + for (ObjCProtocolDecl::classmeth_iterator + I = PDecl->classmeth_begin(), E = PDecl->classmeth_end(); + I != E; ++I) { + ObjCMethodDecl *method = *I; + if (method->getImplementationControl() != ObjCMethodDecl::Optional && + !ClsMap.count(method->getSelector()) && + (!Super || !Super->lookupClassMethod(method->getSelector()))) { + // See above comment for instance method lookups. + if (C && IDecl->lookupClassMethod(method->getSelector(), + true /*shallowCategoryLookup*/)) + continue; + unsigned DIAG = diag::warn_unimplemented_protocol_method; + if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != + DiagnosticsEngine::Ignored) { + WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); + Diag(method->getLocation(), diag::note_method_declared_at) + << method->getDeclName(); + Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) << + PDecl->getDeclName(); + } + } + } + // Check on this protocols's referenced protocols, recursively. + for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(), + E = PDecl->protocol_end(); PI != E; ++PI) + CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl); +} + +/// MatchAllMethodDeclarations - Check methods declared in interface +/// or protocol against those declared in their implementations. +/// +void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap, + const llvm::DenseSet<Selector> &ClsMap, + llvm::DenseSet<Selector> &InsMapSeen, + llvm::DenseSet<Selector> &ClsMapSeen, + ObjCImplDecl* IMPDecl, + ObjCContainerDecl* CDecl, + bool &IncompleteImpl, + bool ImmediateClass, + bool WarnCategoryMethodImpl) { + // Check and see if instance methods in class interface have been + // implemented in the implementation class. If so, their types match. + for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(), + E = CDecl->instmeth_end(); I != E; ++I) { + if (InsMapSeen.count((*I)->getSelector())) + continue; + InsMapSeen.insert((*I)->getSelector()); + if (!(*I)->isSynthesized() && + !InsMap.count((*I)->getSelector())) { + if (ImmediateClass) + WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, + diag::note_undef_method_impl); + continue; + } else { + ObjCMethodDecl *ImpMethodDecl = + IMPDecl->getInstanceMethod((*I)->getSelector()); + assert(CDecl->getInstanceMethod((*I)->getSelector()) && + "Expected to find the method through lookup as well"); + ObjCMethodDecl *MethodDecl = *I; + // ImpMethodDecl may be null as in a @dynamic property. + if (ImpMethodDecl) { + if (!WarnCategoryMethodImpl) + WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, + isa<ObjCProtocolDecl>(CDecl)); + else if (!MethodDecl->isSynthesized()) + WarnExactTypedMethods(ImpMethodDecl, MethodDecl, + isa<ObjCProtocolDecl>(CDecl)); + } + } + } + + // Check and see if class methods in class interface have been + // implemented in the implementation class. If so, their types match. + for (ObjCInterfaceDecl::classmeth_iterator + I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) { + if (ClsMapSeen.count((*I)->getSelector())) + continue; + ClsMapSeen.insert((*I)->getSelector()); + if (!ClsMap.count((*I)->getSelector())) { + if (ImmediateClass) + WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, + diag::note_undef_method_impl); + } else { + ObjCMethodDecl *ImpMethodDecl = + IMPDecl->getClassMethod((*I)->getSelector()); + assert(CDecl->getClassMethod((*I)->getSelector()) && + "Expected to find the method through lookup as well"); + ObjCMethodDecl *MethodDecl = *I; + if (!WarnCategoryMethodImpl) + WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, + isa<ObjCProtocolDecl>(CDecl)); + else + WarnExactTypedMethods(ImpMethodDecl, MethodDecl, + isa<ObjCProtocolDecl>(CDecl)); + } + } + + if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { + // Also methods in class extensions need be looked at next. + for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension(); + ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) + MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, + IMPDecl, + const_cast<ObjCCategoryDecl *>(ClsExtDecl), + IncompleteImpl, false, + WarnCategoryMethodImpl); + + // Check for any implementation of a methods declared in protocol. + for (ObjCInterfaceDecl::all_protocol_iterator + PI = I->all_referenced_protocol_begin(), + E = I->all_referenced_protocol_end(); PI != E; ++PI) + MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, + IMPDecl, + (*PI), IncompleteImpl, false, + WarnCategoryMethodImpl); + + // FIXME. For now, we are not checking for extact match of methods + // in category implementation and its primary class's super class. + if (!WarnCategoryMethodImpl && I->getSuperClass()) + MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, + IMPDecl, + I->getSuperClass(), IncompleteImpl, false); + } +} + +/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in +/// category matches with those implemented in its primary class and +/// warns each time an exact match is found. +void Sema::CheckCategoryVsClassMethodMatches( + ObjCCategoryImplDecl *CatIMPDecl) { + llvm::DenseSet<Selector> InsMap, ClsMap; + + for (ObjCImplementationDecl::instmeth_iterator + I = CatIMPDecl->instmeth_begin(), + E = CatIMPDecl->instmeth_end(); I!=E; ++I) + InsMap.insert((*I)->getSelector()); + + for (ObjCImplementationDecl::classmeth_iterator + I = CatIMPDecl->classmeth_begin(), + E = CatIMPDecl->classmeth_end(); I != E; ++I) + ClsMap.insert((*I)->getSelector()); + if (InsMap.empty() && ClsMap.empty()) + return; + + // Get category's primary class. + ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); + if (!CatDecl) + return; + ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); + if (!IDecl) + return; + llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; + bool IncompleteImpl = false; + MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, + CatIMPDecl, IDecl, + IncompleteImpl, false, + true /*WarnCategoryMethodImpl*/); +} + +void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, + ObjCContainerDecl* CDecl, + bool IncompleteImpl) { + llvm::DenseSet<Selector> InsMap; + // Check and see if instance methods in class interface have been + // implemented in the implementation class. + for (ObjCImplementationDecl::instmeth_iterator + I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I) + InsMap.insert((*I)->getSelector()); + + // Check and see if properties declared in the interface have either 1) + // an implementation or 2) there is a @synthesize/@dynamic implementation + // of the property in the @implementation. + if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) + if (!(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2) || + IDecl->isObjCRequiresPropertyDefs()) + DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); + + llvm::DenseSet<Selector> ClsMap; + for (ObjCImplementationDecl::classmeth_iterator + I = IMPDecl->classmeth_begin(), + E = IMPDecl->classmeth_end(); I != E; ++I) + ClsMap.insert((*I)->getSelector()); + + // Check for type conflict of methods declared in a class/protocol and + // its implementation; if any. + llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; + MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, + IMPDecl, CDecl, + IncompleteImpl, true); + + // check all methods implemented in category against those declared + // in its primary class. + if (ObjCCategoryImplDecl *CatDecl = + dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) + CheckCategoryVsClassMethodMatches(CatDecl); + + // Check the protocol list for unimplemented methods in the @implementation + // class. + // Check and see if class methods in class interface have been + // implemented in the implementation class. + + if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { + for (ObjCInterfaceDecl::all_protocol_iterator + PI = I->all_referenced_protocol_begin(), + E = I->all_referenced_protocol_end(); PI != E; ++PI) + CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, + InsMap, ClsMap, I); + // Check class extensions (unnamed categories) + for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension(); + Categories; Categories = Categories->getNextClassExtension()) + ImplMethodsVsClassMethods(S, IMPDecl, + const_cast<ObjCCategoryDecl*>(Categories), + IncompleteImpl); + } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { + // For extended class, unimplemented methods in its protocols will + // be reported in the primary class. + if (!C->IsClassExtension()) { + for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(), + E = C->protocol_end(); PI != E; ++PI) + CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, + InsMap, ClsMap, CDecl); + // Report unimplemented properties in the category as well. + // When reporting on missing setter/getters, do not report when + // setter/getter is implemented in category's primary class + // implementation. + if (ObjCInterfaceDecl *ID = C->getClassInterface()) + if (ObjCImplDecl *IMP = ID->getImplementation()) { + for (ObjCImplementationDecl::instmeth_iterator + I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I) + InsMap.insert((*I)->getSelector()); + } + DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); + } + } else + llvm_unreachable("invalid ObjCContainerDecl type."); +} + +/// ActOnForwardClassDeclaration - +Sema::DeclGroupPtrTy +Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, + IdentifierInfo **IdentList, + SourceLocation *IdentLocs, + unsigned NumElts) { + SmallVector<Decl *, 8> DeclsInGroup; + for (unsigned i = 0; i != NumElts; ++i) { + // Check for another declaration kind with the same name. + NamedDecl *PrevDecl + = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], + LookupOrdinaryName, ForRedeclaration); + if (PrevDecl && PrevDecl->isTemplateParameter()) { + // Maybe we will complain about the shadowed template parameter. + DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl); + // Just pretend that we didn't see the previous declaration. + PrevDecl = 0; + } + + if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { + // GCC apparently allows the following idiom: + // + // typedef NSObject < XCElementTogglerP > XCElementToggler; + // @class XCElementToggler; + // + // Here we have chosen to ignore the forward class declaration + // with a warning. Since this is the implied behavior. + TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); + if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { + Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; + Diag(PrevDecl->getLocation(), diag::note_previous_definition); + } else { + // a forward class declaration matching a typedef name of a class refers + // to the underlying class. Just ignore the forward class with a warning + // as this will force the intended behavior which is to lookup the typedef + // name. + if (isa<ObjCObjectType>(TDD->getUnderlyingType())) { + Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i]; + Diag(PrevDecl->getLocation(), diag::note_previous_definition); + continue; + } + } + } + + // Create a declaration to describe this forward declaration. + ObjCInterfaceDecl *PrevIDecl + = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); + ObjCInterfaceDecl *IDecl + = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, + IdentList[i], PrevIDecl, IdentLocs[i]); + IDecl->setAtEndRange(IdentLocs[i]); + + PushOnScopeChains(IDecl, TUScope); + CheckObjCDeclScope(IDecl); + DeclsInGroup.push_back(IDecl); + } + + return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); +} + +static bool tryMatchRecordTypes(ASTContext &Context, + Sema::MethodMatchStrategy strategy, + const Type *left, const Type *right); + +static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, + QualType leftQT, QualType rightQT) { + const Type *left = + Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); + const Type *right = + Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); + + if (left == right) return true; + + // If we're doing a strict match, the types have to match exactly. + if (strategy == Sema::MMS_strict) return false; + + if (left->isIncompleteType() || right->isIncompleteType()) return false; + + // Otherwise, use this absurdly complicated algorithm to try to + // validate the basic, low-level compatibility of the two types. + + // As a minimum, require the sizes and alignments to match. + if (Context.getTypeInfo(left) != Context.getTypeInfo(right)) + return false; + + // Consider all the kinds of non-dependent canonical types: + // - functions and arrays aren't possible as return and parameter types + + // - vector types of equal size can be arbitrarily mixed + if (isa<VectorType>(left)) return isa<VectorType>(right); + if (isa<VectorType>(right)) return false; + + // - references should only match references of identical type + // - structs, unions, and Objective-C objects must match more-or-less + // exactly + // - everything else should be a scalar + if (!left->isScalarType() || !right->isScalarType()) + return tryMatchRecordTypes(Context, strategy, left, right); + + // Make scalars agree in kind, except count bools as chars, and group + // all non-member pointers together. + Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); + Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); + if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; + if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; + if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) + leftSK = Type::STK_ObjCObjectPointer; + if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) + rightSK = Type::STK_ObjCObjectPointer; + + // Note that data member pointers and function member pointers don't + // intermix because of the size differences. + + return (leftSK == rightSK); +} + +static bool tryMatchRecordTypes(ASTContext &Context, + Sema::MethodMatchStrategy strategy, + const Type *lt, const Type *rt) { + assert(lt && rt && lt != rt); + + if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; + RecordDecl *left = cast<RecordType>(lt)->getDecl(); + RecordDecl *right = cast<RecordType>(rt)->getDecl(); + + // Require union-hood to match. + if (left->isUnion() != right->isUnion()) return false; + + // Require an exact match if either is non-POD. + if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || + (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) + return false; + + // Require size and alignment to match. + if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false; + + // Require fields to match. + RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); + RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); + for (; li != le && ri != re; ++li, ++ri) { + if (!matchTypes(Context, strategy, li->getType(), ri->getType())) + return false; + } + return (li == le && ri == re); +} + +/// MatchTwoMethodDeclarations - Checks that two methods have matching type and +/// returns true, or false, accordingly. +/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons +bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, + const ObjCMethodDecl *right, + MethodMatchStrategy strategy) { + if (!matchTypes(Context, strategy, + left->getResultType(), right->getResultType())) + return false; + + if (getLangOpts().ObjCAutoRefCount && + (left->hasAttr<NSReturnsRetainedAttr>() + != right->hasAttr<NSReturnsRetainedAttr>() || + left->hasAttr<NSConsumesSelfAttr>() + != right->hasAttr<NSConsumesSelfAttr>())) + return false; + + ObjCMethodDecl::param_const_iterator + li = left->param_begin(), le = left->param_end(), ri = right->param_begin(); + + for (; li != le; ++li, ++ri) { + assert(ri != right->param_end() && "Param mismatch"); + const ParmVarDecl *lparm = *li, *rparm = *ri; + + if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) + return false; + + if (getLangOpts().ObjCAutoRefCount && + lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) + return false; + } + return true; +} + +void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) { + // If the list is empty, make it a singleton list. + if (List->Method == 0) { + List->Method = Method; + List->Next = 0; + return; + } + + // We've seen a method with this name, see if we have already seen this type + // signature. + ObjCMethodList *Previous = List; + for (; List; Previous = List, List = List->Next) { + if (!MatchTwoMethodDeclarations(Method, List->Method)) + continue; + + ObjCMethodDecl *PrevObjCMethod = List->Method; + + // Propagate the 'defined' bit. + if (Method->isDefined()) + PrevObjCMethod->setDefined(true); + + // If a method is deprecated, push it in the global pool. + // This is used for better diagnostics. + if (Method->isDeprecated()) { + if (!PrevObjCMethod->isDeprecated()) + List->Method = Method; + } + // If new method is unavailable, push it into global pool + // unless previous one is deprecated. + if (Method->isUnavailable()) { + if (PrevObjCMethod->getAvailability() < AR_Deprecated) + List->Method = Method; + } + + return; + } + + // We have a new signature for an existing method - add it. + // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". + ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); + Previous->Next = new (Mem) ObjCMethodList(Method, 0); +} + +/// \brief Read the contents of the method pool for a given selector from +/// external storage. +void Sema::ReadMethodPool(Selector Sel) { + assert(ExternalSource && "We need an external AST source"); + ExternalSource->ReadMethodPool(Sel); +} + +void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, + bool instance) { + // Ignore methods of invalid containers. + if (cast<Decl>(Method->getDeclContext())->isInvalidDecl()) + return; + + if (ExternalSource) + ReadMethodPool(Method->getSelector()); + + GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); + if (Pos == MethodPool.end()) + Pos = MethodPool.insert(std::make_pair(Method->getSelector(), + GlobalMethods())).first; + + Method->setDefined(impl); + + ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; + addMethodToGlobalList(&Entry, Method); +} + +/// Determines if this is an "acceptable" loose mismatch in the global +/// method pool. This exists mostly as a hack to get around certain +/// global mismatches which we can't afford to make warnings / errors. +/// Really, what we want is a way to take a method out of the global +/// method pool. +static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, + ObjCMethodDecl *other) { + if (!chosen->isInstanceMethod()) + return false; + + Selector sel = chosen->getSelector(); + if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") + return false; + + // Don't complain about mismatches for -length if the method we + // chose has an integral result type. + return (chosen->getResultType()->isIntegerType()); +} + +ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, + bool receiverIdOrClass, + bool warn, bool instance) { + if (ExternalSource) + ReadMethodPool(Sel); + + GlobalMethodPool::iterator Pos = MethodPool.find(Sel); + if (Pos == MethodPool.end()) + return 0; + + ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; + + if (warn && MethList.Method && MethList.Next) { + bool issueDiagnostic = false, issueError = false; + + // We support a warning which complains about *any* difference in + // method signature. + bool strictSelectorMatch = + (receiverIdOrClass && warn && + (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl, + R.getBegin()) != + DiagnosticsEngine::Ignored)); + if (strictSelectorMatch) + for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { + if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, + MMS_strict)) { + issueDiagnostic = true; + break; + } + } + + // If we didn't see any strict differences, we won't see any loose + // differences. In ARC, however, we also need to check for loose + // mismatches, because most of them are errors. + if (!strictSelectorMatch || + (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) + for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { + // This checks if the methods differ in type mismatch. + if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, + MMS_loose) && + !isAcceptableMethodMismatch(MethList.Method, Next->Method)) { + issueDiagnostic = true; + if (getLangOpts().ObjCAutoRefCount) + issueError = true; + break; + } + } + + if (issueDiagnostic) { + if (issueError) + Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; + else if (strictSelectorMatch) + Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; + else + Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; + + Diag(MethList.Method->getLocStart(), + issueError ? diag::note_possibility : diag::note_using) + << MethList.Method->getSourceRange(); + for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) + Diag(Next->Method->getLocStart(), diag::note_also_found) + << Next->Method->getSourceRange(); + } + } + return MethList.Method; +} + +ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { + GlobalMethodPool::iterator Pos = MethodPool.find(Sel); + if (Pos == MethodPool.end()) + return 0; + + GlobalMethods &Methods = Pos->second; + + if (Methods.first.Method && Methods.first.Method->isDefined()) + return Methods.first.Method; + if (Methods.second.Method && Methods.second.Method->isDefined()) + return Methods.second.Method; + return 0; +} + +/// CompareMethodParamsInBaseAndSuper - This routine compares methods with +/// identical selector names in current and its super classes and issues +/// a warning if any of their argument types are incompatible. +void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl, + ObjCMethodDecl *Method, + bool IsInstance) { + ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl); + if (ID == 0) return; + + while (ObjCInterfaceDecl *SD = ID->getSuperClass()) { + ObjCMethodDecl *SuperMethodDecl = + SD->lookupMethod(Method->getSelector(), IsInstance); + if (SuperMethodDecl == 0) { + ID = SD; + continue; + } + ObjCMethodDecl::param_iterator ParamI = Method->param_begin(), + E = Method->param_end(); + ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin(); + for (; ParamI != E; ++ParamI, ++PrevI) { + // Number of parameters are the same and is guaranteed by selector match. + assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch"); + QualType T1 = Context.getCanonicalType((*ParamI)->getType()); + QualType T2 = Context.getCanonicalType((*PrevI)->getType()); + // If type of argument of method in this class does not match its + // respective argument type in the super class method, issue warning; + if (!Context.typesAreCompatible(T1, T2)) { + Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) + << T1 << T2; + Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration); + return; + } + } + ID = SD; + } +} + +/// DiagnoseDuplicateIvars - +/// Check for duplicate ivars in the entire class at the start of +/// @implementation. This becomes necesssary because class extension can +/// add ivars to a class in random order which will not be known until +/// class's @implementation is seen. +void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, + ObjCInterfaceDecl *SID) { + for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), + IVE = ID->ivar_end(); IVI != IVE; ++IVI) { + ObjCIvarDecl* Ivar = (*IVI); + if (Ivar->isInvalidDecl()) + continue; + if (IdentifierInfo *II = Ivar->getIdentifier()) { + ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); + if (prevIvar) { + Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; + Diag(prevIvar->getLocation(), diag::note_previous_declaration); + Ivar->setInvalidDecl(); + } + } + } +} + +Sema::ObjCContainerKind Sema::getObjCContainerKind() const { + switch (CurContext->getDeclKind()) { + case Decl::ObjCInterface: + return Sema::OCK_Interface; + case Decl::ObjCProtocol: + return Sema::OCK_Protocol; + case Decl::ObjCCategory: + if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension()) + return Sema::OCK_ClassExtension; + else + return Sema::OCK_Category; + case Decl::ObjCImplementation: + return Sema::OCK_Implementation; + case Decl::ObjCCategoryImpl: + return Sema::OCK_CategoryImplementation; + + default: + return Sema::OCK_None; + } +} + +// Note: For class/category implemenations, allMethods/allProperties is +// always null. +Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, + Decl **allMethods, unsigned allNum, + Decl **allProperties, unsigned pNum, + DeclGroupPtrTy *allTUVars, unsigned tuvNum) { + + if (getObjCContainerKind() == Sema::OCK_None) + return 0; + + assert(AtEnd.isValid() && "Invalid location for '@end'"); + + ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); + Decl *ClassDecl = cast<Decl>(OCD); + + bool isInterfaceDeclKind = + isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) + || isa<ObjCProtocolDecl>(ClassDecl); + bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); + + // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. + llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; + llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; + + for (unsigned i = 0; i < allNum; i++ ) { + ObjCMethodDecl *Method = + cast_or_null<ObjCMethodDecl>(allMethods[i]); + + if (!Method) continue; // Already issued a diagnostic. + if (Method->isInstanceMethod()) { + /// Check for instance method of the same name with incompatible types + const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; + bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) + : false; + if ((isInterfaceDeclKind && PrevMethod && !match) + || (checkIdenticalMethods && match)) { + Diag(Method->getLocation(), diag::err_duplicate_method_decl) + << Method->getDeclName(); + Diag(PrevMethod->getLocation(), diag::note_previous_declaration); + Method->setInvalidDecl(); + } else { + if (PrevMethod) { + Method->setAsRedeclaration(PrevMethod); + if (!Context.getSourceManager().isInSystemHeader( + Method->getLocation())) + Diag(Method->getLocation(), diag::warn_duplicate_method_decl) + << Method->getDeclName(); + Diag(PrevMethod->getLocation(), diag::note_previous_declaration); + } + InsMap[Method->getSelector()] = Method; + /// The following allows us to typecheck messages to "id". + AddInstanceMethodToGlobalPool(Method); + // verify that the instance method conforms to the same definition of + // parent methods if it shadows one. + CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true); + } + } else { + /// Check for class method of the same name with incompatible types + const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; + bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) + : false; + if ((isInterfaceDeclKind && PrevMethod && !match) + || (checkIdenticalMethods && match)) { + Diag(Method->getLocation(), diag::err_duplicate_method_decl) + << Method->getDeclName(); + Diag(PrevMethod->getLocation(), diag::note_previous_declaration); + Method->setInvalidDecl(); + } else { + if (PrevMethod) { + Method->setAsRedeclaration(PrevMethod); + if (!Context.getSourceManager().isInSystemHeader( + Method->getLocation())) + Diag(Method->getLocation(), diag::warn_duplicate_method_decl) + << Method->getDeclName(); + Diag(PrevMethod->getLocation(), diag::note_previous_declaration); + } + ClsMap[Method->getSelector()] = Method; + /// The following allows us to typecheck messages to "Class". + AddFactoryMethodToGlobalPool(Method); + // verify that the class method conforms to the same definition of + // parent methods if it shadows one. + CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false); + } + } + } + if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { + // Compares properties declared in this class to those of its + // super class. + ComparePropertiesInBaseAndSuper(I); + CompareProperties(I, I); + } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { + // Categories are used to extend the class by declaring new methods. + // By the same token, they are also used to add new properties. No + // need to compare the added property to those in the class. + + // Compare protocol properties with those in category + CompareProperties(C, C); + if (C->IsClassExtension()) { + ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); + DiagnoseClassExtensionDupMethods(C, CCPrimary); + } + } + if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { + if (CDecl->getIdentifier()) + // ProcessPropertyDecl is responsible for diagnosing conflicts with any + // user-defined setter/getter. It also synthesizes setter/getter methods + // and adds them to the DeclContext and global method pools. + for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(), + E = CDecl->prop_end(); + I != E; ++I) + ProcessPropertyDecl(*I, CDecl); + CDecl->setAtEndRange(AtEnd); + } + if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { + IC->setAtEndRange(AtEnd); + if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { + // Any property declared in a class extension might have user + // declared setter or getter in current class extension or one + // of the other class extensions. Mark them as synthesized as + // property will be synthesized when property with same name is + // seen in the @implementation. + for (const ObjCCategoryDecl *ClsExtDecl = + IDecl->getFirstClassExtension(); + ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) { + for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(), + E = ClsExtDecl->prop_end(); I != E; ++I) { + ObjCPropertyDecl *Property = (*I); + // Skip over properties declared @dynamic + if (const ObjCPropertyImplDecl *PIDecl + = IC->FindPropertyImplDecl(Property->getIdentifier())) + if (PIDecl->getPropertyImplementation() + == ObjCPropertyImplDecl::Dynamic) + continue; + + for (const ObjCCategoryDecl *CExtDecl = + IDecl->getFirstClassExtension(); + CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) { + if (ObjCMethodDecl *GetterMethod = + CExtDecl->getInstanceMethod(Property->getGetterName())) + GetterMethod->setSynthesized(true); + if (!Property->isReadOnly()) + if (ObjCMethodDecl *SetterMethod = + CExtDecl->getInstanceMethod(Property->getSetterName())) + SetterMethod->setSynthesized(true); + } + } + } + ImplMethodsVsClassMethods(S, IC, IDecl); + AtomicPropertySetterGetterRules(IC, IDecl); + DiagnoseOwningPropertyGetterSynthesis(IC); + + bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); + if (IDecl->getSuperClass() == NULL) { + // This class has no superclass, so check that it has been marked with + // __attribute((objc_root_class)). + if (!HasRootClassAttr) { + SourceLocation DeclLoc(IDecl->getLocation()); + SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc)); + Diag(DeclLoc, diag::warn_objc_root_class_missing) + << IDecl->getIdentifier(); + // See if NSObject is in the current scope, and if it is, suggest + // adding " : NSObject " to the class declaration. + NamedDecl *IF = LookupSingleName(TUScope, + NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject), + DeclLoc, LookupOrdinaryName); + ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF); + if (NSObjectDecl && NSObjectDecl->getDefinition()) { + Diag(SuperClassLoc, diag::note_objc_needs_superclass) + << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject "); + } else { + Diag(SuperClassLoc, diag::note_objc_needs_superclass); + } + } + } else if (HasRootClassAttr) { + // Complain that only root classes may have this attribute. + Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass); + } + + if (LangOpts.ObjCNonFragileABI2) { + while (IDecl->getSuperClass()) { + DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); + IDecl = IDecl->getSuperClass(); + } + } + } + SetIvarInitializers(IC); + } else if (ObjCCategoryImplDecl* CatImplClass = + dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { + CatImplClass->setAtEndRange(AtEnd); + + // Find category interface decl and then check that all methods declared + // in this interface are implemented in the category @implementation. + if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { + for (ObjCCategoryDecl *Categories = IDecl->getCategoryList(); + Categories; Categories = Categories->getNextClassCategory()) { + if (Categories->getIdentifier() == CatImplClass->getIdentifier()) { + ImplMethodsVsClassMethods(S, CatImplClass, Categories); + break; + } + } + } + } + if (isInterfaceDeclKind) { + // Reject invalid vardecls. + for (unsigned i = 0; i != tuvNum; i++) { + DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); + for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) + if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { + if (!VDecl->hasExternalStorage()) + Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); + } + } + } + ActOnObjCContainerFinishDefinition(); + + for (unsigned i = 0; i != tuvNum; i++) { + DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); + for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) + (*I)->setTopLevelDeclInObjCContainer(); + Consumer.HandleTopLevelDeclInObjCContainer(DG); + } + + return ClassDecl; +} + + +/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for +/// objective-c's type qualifier from the parser version of the same info. +static Decl::ObjCDeclQualifier +CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { + return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; +} + +static inline +bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD, + const AttrVec &A) { + // If method is only declared in implementation (private method), + // No need to issue any diagnostics on method definition with attributes. + if (!IMD) + return false; + + // method declared in interface has no attribute. + // But implementation has attributes. This is invalid + if (!IMD->hasAttrs()) + return true; + + const AttrVec &D = IMD->getAttrs(); + if (D.size() != A.size()) + return true; + + // attributes on method declaration and definition must match exactly. + // Note that we have at most a couple of attributes on methods, so this + // n*n search is good enough. + for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) { + bool match = false; + for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) { + if ((*i)->getKind() == (*i1)->getKind()) { + match = true; + break; + } + } + if (!match) + return true; + } + return false; +} + +namespace { + /// \brief Describes the compatibility of a result type with its method. + enum ResultTypeCompatibilityKind { + RTC_Compatible, + RTC_Incompatible, + RTC_Unknown + }; +} + +/// \brief Check whether the declared result type of the given Objective-C +/// method declaration is compatible with the method's class. +/// +static ResultTypeCompatibilityKind +CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, + ObjCInterfaceDecl *CurrentClass) { + QualType ResultType = Method->getResultType(); + + // If an Objective-C method inherits its related result type, then its + // declared result type must be compatible with its own class type. The + // declared result type is compatible if: + if (const ObjCObjectPointerType *ResultObjectType + = ResultType->getAs<ObjCObjectPointerType>()) { + // - it is id or qualified id, or + if (ResultObjectType->isObjCIdType() || + ResultObjectType->isObjCQualifiedIdType()) + return RTC_Compatible; + + if (CurrentClass) { + if (ObjCInterfaceDecl *ResultClass + = ResultObjectType->getInterfaceDecl()) { + // - it is the same as the method's class type, or + if (declaresSameEntity(CurrentClass, ResultClass)) + return RTC_Compatible; + + // - it is a superclass of the method's class type + if (ResultClass->isSuperClassOf(CurrentClass)) + return RTC_Compatible; + } + } else { + // Any Objective-C pointer type might be acceptable for a protocol + // method; we just don't know. + return RTC_Unknown; + } + } + + return RTC_Incompatible; +} + +namespace { +/// A helper class for searching for methods which a particular method +/// overrides. +class OverrideSearch { +public: + Sema &S; + ObjCMethodDecl *Method; + llvm::SmallPtrSet<ObjCContainerDecl*, 128> Searched; + llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden; + bool Recursive; + +public: + OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) { + Selector selector = method->getSelector(); + + // Bypass this search if we've never seen an instance/class method + // with this selector before. + Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); + if (it == S.MethodPool.end()) { + if (!S.ExternalSource) return; + S.ReadMethodPool(selector); + + it = S.MethodPool.find(selector); + if (it == S.MethodPool.end()) + return; + } + ObjCMethodList &list = + method->isInstanceMethod() ? it->second.first : it->second.second; + if (!list.Method) return; + + ObjCContainerDecl *container + = cast<ObjCContainerDecl>(method->getDeclContext()); + + // Prevent the search from reaching this container again. This is + // important with categories, which override methods from the + // interface and each other. + Searched.insert(container); + searchFromContainer(container); + } + + typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator; + iterator begin() const { return Overridden.begin(); } + iterator end() const { return Overridden.end(); } + +private: + void searchFromContainer(ObjCContainerDecl *container) { + if (container->isInvalidDecl()) return; + + switch (container->getDeclKind()) { +#define OBJCCONTAINER(type, base) \ + case Decl::type: \ + searchFrom(cast<type##Decl>(container)); \ + break; +#define ABSTRACT_DECL(expansion) +#define DECL(type, base) \ + case Decl::type: +#include "clang/AST/DeclNodes.inc" + llvm_unreachable("not an ObjC container!"); + } + } + + void searchFrom(ObjCProtocolDecl *protocol) { + if (!protocol->hasDefinition()) + return; + + // A method in a protocol declaration overrides declarations from + // referenced ("parent") protocols. + search(protocol->getReferencedProtocols()); + } + + void searchFrom(ObjCCategoryDecl *category) { + // A method in a category declaration overrides declarations from + // the main class and from protocols the category references. + search(category->getClassInterface()); + search(category->getReferencedProtocols()); + } + + void searchFrom(ObjCCategoryImplDecl *impl) { + // A method in a category definition that has a category + // declaration overrides declarations from the category + // declaration. + if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { + search(category); + + // Otherwise it overrides declarations from the class. + } else { + search(impl->getClassInterface()); + } + } + + void searchFrom(ObjCInterfaceDecl *iface) { + // A method in a class declaration overrides declarations from + if (!iface->hasDefinition()) + return; + + // - categories, + for (ObjCCategoryDecl *category = iface->getCategoryList(); + category; category = category->getNextClassCategory()) + search(category); + + // - the super class, and + if (ObjCInterfaceDecl *super = iface->getSuperClass()) + search(super); + + // - any referenced protocols. + search(iface->getReferencedProtocols()); + } + + void searchFrom(ObjCImplementationDecl *impl) { + // A method in a class implementation overrides declarations from + // the class interface. + search(impl->getClassInterface()); + } + + + void search(const ObjCProtocolList &protocols) { + for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end(); + i != e; ++i) + search(*i); + } + + void search(ObjCContainerDecl *container) { + // Abort if we've already searched this container. + if (!Searched.insert(container)) return; + + // Check for a method in this container which matches this selector. + ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), + Method->isInstanceMethod()); + + // If we find one, record it and bail out. + if (meth) { + Overridden.insert(meth); + return; + } + + // Otherwise, search for methods that a hypothetical method here + // would have overridden. + + // Note that we're now in a recursive case. + Recursive = true; + + searchFromContainer(container); + } +}; +} + +Decl *Sema::ActOnMethodDeclaration( + Scope *S, + SourceLocation MethodLoc, SourceLocation EndLoc, + tok::TokenKind MethodType, + ObjCDeclSpec &ReturnQT, ParsedType ReturnType, + ArrayRef<SourceLocation> SelectorLocs, + Selector Sel, + // optional arguments. The number of types/arguments is obtained + // from the Sel.getNumArgs(). + ObjCArgInfo *ArgInfo, + DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args + AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, + bool isVariadic, bool MethodDefinition) { + // Make sure we can establish a context for the method. + if (!CurContext->isObjCContainer()) { + Diag(MethodLoc, diag::error_missing_method_context); + return 0; + } + ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); + Decl *ClassDecl = cast<Decl>(OCD); + QualType resultDeclType; + + bool HasRelatedResultType = false; + TypeSourceInfo *ResultTInfo = 0; + if (ReturnType) { + resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo); + + // Methods cannot return interface types. All ObjC objects are + // passed by reference. + if (resultDeclType->isObjCObjectType()) { + Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value) + << 0 << resultDeclType; + return 0; + } + + HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType()); + } else { // get the type for "id". + resultDeclType = Context.getObjCIdType(); + Diag(MethodLoc, diag::warn_missing_method_return_type) + << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); + } + + ObjCMethodDecl* ObjCMethod = + ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, + resultDeclType, + ResultTInfo, + CurContext, + MethodType == tok::minus, isVariadic, + /*isSynthesized=*/false, + /*isImplicitlyDeclared=*/false, /*isDefined=*/false, + MethodDeclKind == tok::objc_optional + ? ObjCMethodDecl::Optional + : ObjCMethodDecl::Required, + HasRelatedResultType); + + SmallVector<ParmVarDecl*, 16> Params; + + for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { + QualType ArgType; + TypeSourceInfo *DI; + + if (ArgInfo[i].Type == 0) { + ArgType = Context.getObjCIdType(); + DI = 0; + } else { + ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); + // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). + ArgType = Context.getAdjustedParameterType(ArgType); + } + + LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, + LookupOrdinaryName, ForRedeclaration); + LookupName(R, S); + if (R.isSingleResult()) { + NamedDecl *PrevDecl = R.getFoundDecl(); + if (S->isDeclScope(PrevDecl)) { + Diag(ArgInfo[i].NameLoc, + (MethodDefinition ? diag::warn_method_param_redefinition + : diag::warn_method_param_declaration)) + << ArgInfo[i].Name; + Diag(PrevDecl->getLocation(), + diag::note_previous_declaration); + } + } + + SourceLocation StartLoc = DI + ? DI->getTypeLoc().getBeginLoc() + : ArgInfo[i].NameLoc; + + ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, + ArgInfo[i].NameLoc, ArgInfo[i].Name, + ArgType, DI, SC_None, SC_None); + + Param->setObjCMethodScopeInfo(i); + + Param->setObjCDeclQualifier( + CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); + + // Apply the attributes to the parameter. + ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); + + if (Param->hasAttr<BlocksAttr>()) { + Diag(Param->getLocation(), diag::err_block_on_nonlocal); + Param->setInvalidDecl(); + } + S->AddDecl(Param); + IdResolver.AddDecl(Param); + + Params.push_back(Param); + } + + for (unsigned i = 0, e = CNumArgs; i != e; ++i) { + ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); + QualType ArgType = Param->getType(); + if (ArgType.isNull()) + ArgType = Context.getObjCIdType(); + else + // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). + ArgType = Context.getAdjustedParameterType(ArgType); + if (ArgType->isObjCObjectType()) { + Diag(Param->getLocation(), + diag::err_object_cannot_be_passed_returned_by_value) + << 1 << ArgType; + Param->setInvalidDecl(); + } + Param->setDeclContext(ObjCMethod); + + Params.push_back(Param); + } + + ObjCMethod->setMethodParams(Context, Params, SelectorLocs); + ObjCMethod->setObjCDeclQualifier( + CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); + + if (AttrList) + ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); + + // Add the method now. + const ObjCMethodDecl *PrevMethod = 0; + if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { + if (MethodType == tok::minus) { + PrevMethod = ImpDecl->getInstanceMethod(Sel); + ImpDecl->addInstanceMethod(ObjCMethod); + } else { + PrevMethod = ImpDecl->getClassMethod(Sel); + ImpDecl->addClassMethod(ObjCMethod); + } + + ObjCMethodDecl *IMD = 0; + if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) + IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), + ObjCMethod->isInstanceMethod()); + if (ObjCMethod->hasAttrs() && + containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) { + SourceLocation MethodLoc = IMD->getLocation(); + if (!getSourceManager().isInSystemHeader(MethodLoc)) { + Diag(EndLoc, diag::warn_attribute_method_def); + Diag(MethodLoc, diag::note_method_declared_at) + << ObjCMethod->getDeclName(); + } + } + } else { + cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); + } + + if (PrevMethod) { + // You can never have two method definitions with the same name. + Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) + << ObjCMethod->getDeclName(); + Diag(PrevMethod->getLocation(), diag::note_previous_declaration); + } + + // If this Objective-C method does not have a related result type, but we + // are allowed to infer related result types, try to do so based on the + // method family. + ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); + if (!CurrentClass) { + if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) + CurrentClass = Cat->getClassInterface(); + else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) + CurrentClass = Impl->getClassInterface(); + else if (ObjCCategoryImplDecl *CatImpl + = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) + CurrentClass = CatImpl->getClassInterface(); + } + + ResultTypeCompatibilityKind RTC + = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); + + // Search for overridden methods and merge information down from them. + OverrideSearch overrides(*this, ObjCMethod); + for (OverrideSearch::iterator + i = overrides.begin(), e = overrides.end(); i != e; ++i) { + ObjCMethodDecl *overridden = *i; + + // Propagate down the 'related result type' bit from overridden methods. + if (RTC != RTC_Incompatible && overridden->hasRelatedResultType()) + ObjCMethod->SetRelatedResultType(); + + // Then merge the declarations. + mergeObjCMethodDecls(ObjCMethod, overridden); + + // Check for overriding methods + if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || + isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) + CheckConflictingOverridingMethod(ObjCMethod, overridden, + isa<ObjCProtocolDecl>(overridden->getDeclContext())); + } + + bool ARCError = false; + if (getLangOpts().ObjCAutoRefCount) + ARCError = CheckARCMethodDecl(*this, ObjCMethod); + + // Infer the related result type when possible. + if (!ARCError && RTC == RTC_Compatible && + !ObjCMethod->hasRelatedResultType() && + LangOpts.ObjCInferRelatedResultType) { + bool InferRelatedResultType = false; + switch (ObjCMethod->getMethodFamily()) { + case OMF_None: + case OMF_copy: + case OMF_dealloc: + case OMF_finalize: + case OMF_mutableCopy: + case OMF_release: + case OMF_retainCount: + case OMF_performSelector: + break; + + case OMF_alloc: + case OMF_new: + InferRelatedResultType = ObjCMethod->isClassMethod(); + break; + + case OMF_init: + case OMF_autorelease: + case OMF_retain: + case OMF_self: + InferRelatedResultType = ObjCMethod->isInstanceMethod(); + break; + } + + if (InferRelatedResultType) + ObjCMethod->SetRelatedResultType(); + } + + return ObjCMethod; +} + +bool Sema::CheckObjCDeclScope(Decl *D) { + // Following is also an error. But it is caused by a missing @end + // and diagnostic is issued elsewhere. + if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) + return false; + + // If we switched context to translation unit while we are still lexically in + // an objc container, it means the parser missed emitting an error. + if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext())) + return false; + + Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); + D->setInvalidDecl(); + + return true; +} + +/// Called whenever @defs(ClassName) is encountered in the source. Inserts the +/// instance variables of ClassName into Decls. +void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, + IdentifierInfo *ClassName, + SmallVectorImpl<Decl*> &Decls) { + // Check that ClassName is a valid class + ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); + if (!Class) { + Diag(DeclStart, diag::err_undef_interface) << ClassName; + return; + } + if (LangOpts.ObjCNonFragileABI) { + Diag(DeclStart, diag::err_atdef_nonfragile_interface); + return; + } + + // Collect the instance variables + SmallVector<const ObjCIvarDecl*, 32> Ivars; + Context.DeepCollectObjCIvars(Class, true, Ivars); + // For each ivar, create a fresh ObjCAtDefsFieldDecl. + for (unsigned i = 0; i < Ivars.size(); i++) { + const FieldDecl* ID = cast<FieldDecl>(Ivars[i]); + RecordDecl *Record = dyn_cast<RecordDecl>(TagD); + Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, + /*FIXME: StartL=*/ID->getLocation(), + ID->getLocation(), + ID->getIdentifier(), ID->getType(), + ID->getBitWidth()); + Decls.push_back(FD); + } + + // Introduce all of these fields into the appropriate scope. + for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); + D != Decls.end(); ++D) { + FieldDecl *FD = cast<FieldDecl>(*D); + if (getLangOpts().CPlusPlus) + PushOnScopeChains(cast<FieldDecl>(FD), S); + else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) + Record->addDecl(FD); + } +} + +/// \brief Build a type-check a new Objective-C exception variable declaration. +VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, + SourceLocation StartLoc, + SourceLocation IdLoc, + IdentifierInfo *Id, + bool Invalid) { + // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage + // duration shall not be qualified by an address-space qualifier." + // Since all parameters have automatic store duration, they can not have + // an address space. + if (T.getAddressSpace() != 0) { + Diag(IdLoc, diag::err_arg_with_address_space); + Invalid = true; + } + + // An @catch parameter must be an unqualified object pointer type; + // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? + if (Invalid) { + // Don't do any further checking. + } else if (T->isDependentType()) { + // Okay: we don't know what this type will instantiate to. + } else if (!T->isObjCObjectPointerType()) { + Invalid = true; + Diag(IdLoc ,diag::err_catch_param_not_objc_type); + } else if (T->isObjCQualifiedIdType()) { + Invalid = true; + Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); + } + + VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, + T, TInfo, SC_None, SC_None); + New->setExceptionVariable(true); + + // In ARC, infer 'retaining' for variables of retainable type. + if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New)) + Invalid = true; + + if (Invalid) + New->setInvalidDecl(); + return New; +} + +Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { + const DeclSpec &DS = D.getDeclSpec(); + + // We allow the "register" storage class on exception variables because + // GCC did, but we drop it completely. Any other storage class is an error. + if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { + Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) + << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); + } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { + Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) + << DS.getStorageClassSpec(); + } + if (D.getDeclSpec().isThreadSpecified()) + Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); + D.getMutableDeclSpec().ClearStorageClassSpecs(); + + DiagnoseFunctionSpecifiers(D); + + // Check that there are no default arguments inside the type of this + // exception object (C++ only). + if (getLangOpts().CPlusPlus) + CheckExtraCXXDefaultArguments(D); + + TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); + QualType ExceptionType = TInfo->getType(); + + VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, + D.getSourceRange().getBegin(), + D.getIdentifierLoc(), + D.getIdentifier(), + D.isInvalidType()); + + // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). + if (D.getCXXScopeSpec().isSet()) { + Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) + << D.getCXXScopeSpec().getRange(); + New->setInvalidDecl(); + } + + // Add the parameter declaration into this scope. + S->AddDecl(New); + if (D.getIdentifier()) + IdResolver.AddDecl(New); + + ProcessDeclAttributes(S, New, D); + + if (New->hasAttr<BlocksAttr>()) + Diag(New->getLocation(), diag::err_block_on_nonlocal); + return New; +} + +/// CollectIvarsToConstructOrDestruct - Collect those ivars which require +/// initialization. +void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, + SmallVectorImpl<ObjCIvarDecl*> &Ivars) { + for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; + Iv= Iv->getNextIvar()) { + QualType QT = Context.getBaseElementType(Iv->getType()); + if (QT->isRecordType()) + Ivars.push_back(Iv); + } +} + +void Sema::DiagnoseUseOfUnimplementedSelectors() { + // Load referenced selectors from the external source. + if (ExternalSource) { + SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; + ExternalSource->ReadReferencedSelectors(Sels); + for (unsigned I = 0, N = Sels.size(); I != N; ++I) + ReferencedSelectors[Sels[I].first] = Sels[I].second; + } + + // Warning will be issued only when selector table is + // generated (which means there is at lease one implementation + // in the TU). This is to match gcc's behavior. + if (ReferencedSelectors.empty() || + !Context.AnyObjCImplementation()) + return; + for (llvm::DenseMap<Selector, SourceLocation>::iterator S = + ReferencedSelectors.begin(), + E = ReferencedSelectors.end(); S != E; ++S) { + Selector Sel = (*S).first; + if (!LookupImplementedMethodInGlobalPool(Sel)) + Diag((*S).second, diag::warn_unimplemented_selector) << Sel; + } + return; +} |